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A B S T R A C T   

Additive Manufacturing provides unprecedented opportunities for designing and producing intricate, architected 
materials with exceptional properties while maintaining reduced weight. One of the most straightforward ways 
to create such structures is to mimic the lattice geometries of crystals. New approaches are now exploring how to 
influence the behaviour of these structures by mimicking not only the crystal arrangement but also peculiar 
mechanisms occurring at the crystallographic scale. In such a context, this study first presents a hexagonal close- 
packed (HCP) lattice derived from the homonymous crystal structures of Ti or Zr metals. Subsequently, the 
twinning phenomenon responsible for the plastic deformation of these metals is reproduced geometrically into 
this structure to improve its energy absorption capability. Compressive tests conducted on 3D-printed samples 
confirm such a hypothesis: the specific energy absorption of twinned structures is significantly higher than that of 
the equivalent HCP ones, with an increase of up to 24.3%. Introducing twinned regions stabilises the plastic 
deformation despite a limited reduction of the peak stress. Therefore, replicating the twinning metallurgical 
mechanism within an HCP-inspired metamaterial proves successful, further validating the approach of 
mimicking and transferring atomic phenomena at a different scale to tailor the properties of architected 
materials.   

1. Introduction 

The rapid development of Additive Manufacturing (AM) is unlocking 
new possibilities in designing and fabricating complex architected ma-
terials (or mechanical metamaterial [1]), offering enhanced mechanical 
properties and structural performance at a reduced weight [2,3]. Among 
the different types of non-stochastic architected materials are those 
formed by a periodic arrangement of unit cells consisting of a regular 
network of struts [4,5], also known as strut-and-node [6] or truss [7] 
lattices. Extensive and comprehensive studies have been carried out 
with a focus on their elastic and plastic deformations [7], toughness, and 
energy absorption [7] properties, analysing the influence of various 
parameters. Intuitively, among the determinants of their behaviour is 
the topology of the unit cell [4]. Maxwell’s stability criterion can be 
applied to distinguish bending- and stretching-dominated structures 
depending on the nodal connectivity [4,8]. However, studies have also 
demonstrated the dependency of such a classification on other aspects. 

For example, the Octet lattice, classified as stretching-dominated, can be 
used for energy absorption applications at moderately high relative 
densities [7]. The loading direction also influences such behaviour [9]. 
Alterations in the lattice unit cell geometry also modify the deformation 
behaviour, such as the introduction of additional vertical beams [10], 
tactical structural modifications [11], the change of the beams’ slen-
derness ratio [7,12] or of their shape (e.g., tapered [7,13], hollow [14], 
semi-circular [15] or squared [16] vs. circular cross-sections). The me-
chanical response of a structure is also influenced by the number of 
repetitions of unit cells; the elimination of such dependence is found to 
be 5 in all directions, but also decreasing to 4, the results are acceptable 
[17]. In addition to geometric factors, the base material [18–21] and the 
potential presence of manufacturing defects [22,23] dramatically in-
fluence the mechanical response. 

Another point to underline is that the design of these strut-based 
lattices has been strongly inspired by Bravais lattices [24,25] and crys-
tallographic symmetries [26], with the atoms’ position and atomic 
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bonds reproduced by nodes and beams, respectively [20,27]. Among the 
seven crystalline systems, the cubic one is the most commonly used, as it 
includes the three famous simple cubic (SC), face-centred cubic (FCC) 
and body-centred cubic (BCC) unit cells [27]. However, other systems 
could also be considered, although the repetition of the basic unit along 
the three directions may not be as trivial as in the case of highly sym-
metric cells. For example, Bian and colleagues [28] attempted to fill this 
gap by designing new lattice structures that mimic triclinic (TC) crystal 
materials. In addition, tetragonal- and orthorhombic-inspired meta-
material lattices can be easily created by stretching a cubic lattice along 
one or two of its main directions, respectively. Such unit cells can be 
obtained by considering a prismatic bounding box with a square (for the 
tetragonal) or rectangular (for the orthorhombic) base. The repetition of 
a single unit cell forms a homogeneous lattice, which resembles the 
single crystals in the collapse of mechanical strength after yielding [20]. 
The formation of shear bands found in homogeneous architected ma-
terials (related to the plastic yield, bending or buckling of constituent 
struts [4]) is indeed similar to the dislocation movements found in single 
crystals, which are responsible for their plastic flow [20,29]. This sim-
ilarity inspires a transformative approach to designing innovative 
architected materials with high strength and damage-tolerant behaviour 
[20]. Such an approach is based on the mimicry of the crystallographic 
microstructure and the integration of associated hardening mechanisms 
at the macro- or mesoscale [20]. 

The concept of metallurgical-inspired metamaterials was first proved 
by designing structures resembling polycrystals with multiple domains, 
referred to as grains, characterised by the same unit cell type but with 
different orientations [20,29]. It was shown that the increase of the yield 
strength with the reduction of meta-grain size in metamaterials follows 
the well-known metallurgical Hall-Petch relationship [30–32], and it is 
due to the effectiveness of meta-grain boundaries in stopping shear band 
propagation [20,29]. Moreover, as boundary coherency influences the 
strengthening effect in polycrystals [33] similarly, strut connectivity at 
the boundary controls the hardening effect [29]. Besides, in the case of 
heterogeneous lattices made of different unit cells, innovative strategies 
using transition cells were also developed to combine unit cells with 
different nodal connectivity, taking inspiration from the connections 
observed in the grain boundaries of polycrystalline materials [34]. 

Other hardening effects can be successfully translated to architected 
materials, such as precipitation [20,35] and multi-phase hardening 
[20]. The former consists of particle dispersion inside the metallic ma-
trix, which restricts dislocation movement [36]. Similarly, including 
harder domains in a softer architected material alters shear band prop-
agation, strengthening the overall architected material [20]. More 
interestingly, the applicability of Orowan’s law, which states the inverse 
proportionality between additional strength and precipitate spacing 
[37,38], to architected materials was recently proven [35]. Finally, 
multi-phase hardening was successfully imitated by assigning different 
lattice types to different macro-lattice domains [20]. Additionally, 
multi-phase mimicry of lamellar structures, as those found in TiAl alloys, 
can be effectively used to finely control the mechanical response of 
metamaterials, providing a programmable and multi-stepped response 
[35]. Architected material behaviour is also affected by the base mate-
rial’s choice [20,39]. Using a crystalline material to fabricate crystal-like 
structures generates a hierarchical multiscale structure, called meta- 
crystal, in which synergistic effects contribute to strengthening 
[20,32,40]. The reproduction of the crystal twinning mechanism was 
also employed for lattice material generation, designing structures 
featuring a specular geometry with respect to a twinning plane (TP). 
Such a mechanism represents a particular planar defect which occurs 
when the atoms at the two sides of the plane are arranged as if mirrored 
with respect to it [41]. This condition represents an interesting mecha-
nism for improving the material’s mechanical behaviour. In meta-
materials, TPs act as shear band stoppers and produce a symmetrical 
distribution of them [28,42–44]. 

This concept of twinning boundaries is already inspiring relevant 

studies in the field of architected materials. For example, it was intro-
duced in the triply periodic minimal surface (TPMS) lattice design to 
effectively control the deformation behaviour and avoid catastrophic 
failure [43]. Wu et al. [44] found that incorporating twin boundaries in 
stretching-dominated truss lattices improves crack-propagation resis-
tance and energy absorption efficiency. The validity of the Hell-Petch 
effect was also demonstrated for twinning metamaterials [28,44]. 
Twin boundaries were also introduced in the TC lattice designed by Bian 
et al. [28], proving effective in enhancing energy absorption perfor-
mance. Lastly, Song and colleagues [42] designed new truss-based lat-
tices with horizontal and vertical twinning boundaries, demonstrating 
the possibility of tailoring the mechanical properties by controlling the 
number of twinning boundaries. 

This study falls into this context of metamaterial design and proposes 
an innovative approach to exploit the twinning phenomenon. First, it 
presents a hexagonal close-packed (HCP) lattice inspired by the hom-
onymous crystal structure. Then, a twinned region is introduced inside 
this HCP lattice to improve energy absorption without significantly 
reducing stiffness and strength. Indeed, the compression behaviour of 
ductile HCP metals, such as titanium and zirconium, demonstrates that 
their deformation is accommodated by this twinning phenomenon 
[45,46]. This study is, therefore, based on the hypothesis that intro-
ducing a twinned region inside a structure is expected to promote a more 
controlled deformation behaviour. Another contribution of this study is 
that although HCP, together with BCC and FCC, is the lattice forming 
90% of metallic materials, few examples of HCP-inspired lattices can be 
found in the literature. Only recently, an HCP unit cell was presented in 
the work of Liu and Pham [35], where it was exploited in the design of 
the previously mentioned lamellar structure inspired by TiAl alloys. 
Another example of an “HCP-like lattice” can be found in [47], although 
the authors refer to it as an Octet truss lattice. The same authors ana-
lysed its mechanical behaviour through tensile [47], compressive [48], 
fracture [47,49], and fatigue analyses [50–53]. However, the compres-
sive behaviour was only characterised by specimens fabricated in a 
brittle resin as base material [48]. In addition, in that study, the unit cell 
presents several interrupted beams that were not removed when the 
lattice had been created, thus generating a different overall beam 
arrangement compared to the HCP described in this study. 

Hence, this work follows the innovative approach of mimicking 
metallurgical phenomena at a larger scale to design new architected 
materials. Although other studies already proposed twinning-inspired 
lattices, the mimicry strategy implemented in the present work is 
novel. While those studies [28,42–44] applied the twinning by mirror-
ing their unit cell along specific planes, creating a layered architecture, 
here that mechanism is replicated as faithfully as possible as it occurs in 
HCP ductile metals. The intent is to explore whether introducing this 
phenomenon would affect the mechanical behaviour of HCP meta-
materials similarly to that occurring at the microscale to improve their 
energy absorption performance. Specifically, this study starts by 
experimentally comparing the compressive behaviour of the HCP lattice 
with that of a standard Octet. Then, once the superior compressive ca-
pabilities of the HCP are demonstrated, the twinning phenomenon is 
implemented, and its positive influence is proved. 

The rest of the paper is structured as follows: Section 2 gives the main 
metallurgical notions concerning HCP and FCC cells and their defor-
mation mechanisms, which are necessary to understand the design 
methodology described later; Section 3 details the material and methods 
employed with a particular focus on the design approach developed to 
implement the twinning mechanism and the experimental tests per-
formed; Section 4 details and comments on the experimental results; 
Section 5 ends the paper. 

2. Deformation mechanisms of HCP and FCC structures 

One of the key properties of crystal lattices is the “packing density”, i. 
e., the fraction of the volume filled by atoms considered rigid spheres. 
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The HCP structure is so called because it is one of the two ways rigid 
spheres can be packed together in space with the highest possible den-
sity and still have a periodic arrangement [54]. The HCP cell in this 
study is compared with the Octet. The Octet is an FCC-inspired unit cell 
[55,56] and, like the HCP, is the lattice with the highest packing density 
possible, equal to π

3
̅̅
2

√ ≈ 0.74. Given such a characteristic, both struc-
tures have the same nodal connectivity, equal to 12 [57]. Although the 
similarities between the two crystals are not visible at first sight, they 
can be caught by considering how they can be obtained by stacking rigid 
spheres of the same size. As shown in Fig. 1 a and b, both lattices are 
built through the repetition of layers of atoms arranged at the vertices of 
a triangular grid; the only difference comes from the stacking sequence 
of the layers: the HCP follows a stacking sequence of “ABABAB…” 
layers, while the FCC follows an “ABCABC…” sequence [54] (stacking 
sequence in Fig. 1 a). 

Despite this, the dissimilarity in the stacking sequence leads to sig-
nificant differences in their deformation mechanisms, with those of HCP 
metals being more complex than FCC ones [45] due to several factors. In 
addition to the lower symmetry, HCP metals differ in their crystallo-
graphic structure. The c/a axial ratio (where c and a are the total height 
and the length of the hexagon edge, respectively; see Fig. 1 b) varies 
from one metal to the other. 

As known from the literature [45], the ideal c/a value (i.e., the one 
guaranteeing the maximum sphere packing) is 

̅̅̅̅̅̅̅̅
8/3

√
≈ 1.63. However, 

HCP metals can have values ranging from 1.58 for Beryllium up to 1.89 
for Cadmium. This steric effect is an important aspect that prevents the 
HCP metals from being considered a homogenous class of metals [45], 
contributing to their highly different mechanical behaviour. 

In general, the dislocation movement is the primary mechanism 
responsible for the plastic deformation of metals; it occurs mainly along 
the lattice close-packed direction on the close-packed planes. Slips in 
FCC crystals occur along the previously mentioned close-packed planes 
(Fig. 1 c). Specifically, the slip plane is of type {111}, and the direction 
is of type 〈110〉. Given the permutations of the slip planes and di-
rections, FCC has 12 slip systems [45,58]. Slips in HCP metals are much 
more limited; because of this, the twinning mechanism competes with 
the slip in plastic deformation and can play an influential role [45,59]. 

Among the possible slip planes of HCP metals, basal slip (i.e., the 
dislocation movement on the base plane of the HCP cell shown in Fig. 1 
c) is the most common [60]. The activation of a specific deformation 
mechanism in HCP is governed by the c/a axial ratio and by the orien-
tation of the lattice with respect to the load. An interesting aspect 
relevant to this study is the case of a compression or tension load along 
the z-axis (see Fig. 1 for the reference system). For geometrical reasons, 

Fig. 1. Comparison between HCP and FCC structures. a) Stacking sequence: HCP and FCC lattices are obtained by stacking rigid spheres of equal diameter following 
an “ABABAB…” or “ABCABC…” sequence, respectively. b) Single unit cell: HCP and Octet unit cells with their geometrical parameters. c) Selected deformation 
modes: slip usually occurs along the close-packing directions (basal slip < a > in the HCP and 〈110〉 slip in the FCC). Under compression along the c-axis, HCP cells 
can accommodate deformation by twinning. Slip/twin planes are highlighted with colours, while Burger vectors are shown by light blue (for the HCP) and red (for 
the FCC) arrows. All representations are shown as isometric views. Fig. 1 c is inspired by [54]. (For interpretation of the references to colour in this figure legend, the 
reader is referred to the web version of this article.) 
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the basal slip (Fig. 1 c) cannot accommodate axial loads aligned along 
the z-axis [45,61]. So, many studies were conducted to understand the 
underlying mechanism that accommodates the deformation in this sit-
uation. Beryllium is reported to assume a brittle failure [46]; zinc un-
dergoes much greater plastic strain in tension due to the accommodation 
of {1012} twinning [46], while titanium accommodates the strain 
almost entirely by {1122} compression twins [61]. In Magnesium 
[60,62], twins can occur along the {1011} and {1122} compression 
planes. Zirconium [45] deforms by {1122} twinning and, at elevated 
temperatures, by {1012} and {1011} twins. It is, therefore, evident how 
the twinning plays a fundamental role in the deformability of HCP 

metals. 

3. Materials and methods 

3.1. Sample design 

The digital models of the HCP and HCP-twinned structures were 
created in the Grasshopper environment of Rhinoceros 7. For the Octet, 
the Intralattice plugin was employed [63]. Details about the HCP and 
HCP-twinned structures beam and node arrangements are provided 
below. Besides, how the tuning of the structure geometric parameters 
has been performed to guarantee the sample printability and 

Fig. 2. Generation of an HCP structure and its parametrisation. a) ABA sequence of stacked atoms forming the HCP crystal; substitution of each layer with a 
triangular grid and connection of two adjacent grids through tetrahedral beams (from left to right); b) parametrisation of the HCP lattice. 

Fig. 3. Design of the twinned HCP structure (TwHCP). a) Mirroring of the HCP unit cell with respect to the {11 22} plane and beam adjustments (TP stands for 
“Twinning Plane”); b) introduction of the twinned region (in grey) inside an HCP lattice and new beam insertion (they are light-blue coloured) to guarantee nodal 
connectivity. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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comparability is also clarified. Seven types of structures were tested, 
classified into three groups. 

3.1.1. The HCP structure 
Given its intricate nature, the HCP structure was not created by 

reproducing a single unit cell but by replicating the crystal lattice. The 
HCP lattices are built by alternating two layers of closed-packed atoms, 
arranged at the vertices of a triangular tilting, stacked in an ABA 
sequence (Fig. 2 a, left) [54]. Assuming the atoms are the lattice’s nodes, 
their connection creates two triangular grids corresponding to the A and 
B layers (blue and yellow in Fig. 2 a, right). The connection between the 
A and B layers is achieved through vertical beams connecting the corners 
of the A-layer triangles to those of the B-layer triangles, which lie exactly 
on the projection of their centre in the B-layer plane (red beams in Fig. 2 
a, right). This produces an ordered array of tetrahedrons. The design was 
parametrised to depend only on the imposed length of the beam (a). The 
two triangular grids are shifted of a

̅̅
3

√

3 in the y-direction and equally 
spaced of c/2 in the z-direction (Fig. 2 b). As already explained, a is the 
edge of the triangles, while c is the height of the HCP unit cell (Fig. 1). 

3.1.2. The twinned HCP (TwHCP) structure 
For the development of the twinned region, a specific twinning 

plane, i.e., {1122}, was selected from the possible twinning systems of 
HCP metals (Fig. 1 c and Fig. 3 a, step 1). It allows a straightforward 
design as it is the only twinning plane intersecting at least one node in all 
A and B layers (Fig. 2 and Fig. 3 a, step 2). Therefore, this guarantees 
connectivity between the twinned and HCP regions. To build the twin-
ned region first, the portion of the HCP cell above the TP was removed 
(Fig. 3 a, step 2), and a mirroring of the remaining beams/nodes was 
then performed with respect to the TP (Fig. 3 a, step 3). Some adjust-
ments were made to ensure all beams within the cell have a linear ge-
ometry (Fig. 3 a, steps from 3 to 4). In particular, the beams intersected 
(and therefore cut) by the plane were removed and replaced by new ones 
that connect the mirrored and non-mirrored nodes linearly (yellow 
beams in Fig. 3 a). Far from the mirroring interface, both the unper-
turbed and the twinned regions evolve according to the classical HCP 
lattice geometry (Fig. 3 b). A specific (c/a) =

̅̅̅
3

√
was chosen to ensure 

that specific vertical beams would become parallel to the x-y plane after 
mirroring. This choice was made to simplify the printing process since 
the expansion of the twinned region would require the presence of 
parallel beams in contact with the printing plate. The final structure was 
obtained through a series of steps, including developing the twinned 

part within a defined spatial region, laterally bounded by the twinning 
plane and a parallel plane, whose length is 2a in the x-direction (Fig. 3 b, 
left). The twinned section was then subjected to a second mirroring 
process along a second twinning plane, which restored the original HCP 
lattice geometry at the other interface. A second row of triangles was 
added to the B layer (light blue beams in Fig. 3 b, right) to improve node 
connectivity within the twinned section. 

3.1.3. Relative density calculation and sample classification 
To compute ρ (i.e., the structure’s relative density), the volume of the 

structure was analytically calculated. A dedicated algorithm was 
developed in Matlab® since the HCP (Fig. 2) and the TwHCP (Fig. 3) 
lattices do not feature a standard periodic repetition of the unit cell 
along the reference axes. The analytical approach implemented in 
Matlab is described in detail in the Supplementary Material (see 
Supplementary Material A. Volume and relative density computation), 
where the various approaches for replicating the HCP and its twinned 
versions are explained. Besides, a second analytical Matlab model was 
developed to calculate the ρ of each structure (see Supplementary 
Material A. Volume and relative density computation). For the 
bounding box, the minimum rectangular solid that can contain the 
whole structure was considered. 

The seven types of structures tested are shown in Fig. 4. They have 
been clustered into three groups, each sharing the same relative density. 
One structure has been taken as a reference for each group. They are 
always those with the twinned region because they are more complex to 
design and fabricate than the not twinned ones or the Octet. In addition, 
these structures are characterised by the same a and r values (Fig. 4). We 
decided to set these values a priori to keep under control their manu-
facturability. The relative density of these reference structures has been 
considered an input for the Matlab model to dimension the other 
structures. Different relative densities were inevitably obtained for the 
three groups. Additional details are provided in the Supplementary 
Material (see Supplementary Material B. Structures’ details). As 
shown in Fig. 4, the Octet (“OT”) structure was also included in the 
study, specifically in Group 1. Besides, it was decided to study: 1) the 
influence of the vertical extension (affecting the height “H” of the 
structure, Fig. 4) of the twinned region and 2) the influence of the 
extension of the non-twinned one on the mechanical behaviour of the 
structure. In this second case, the sample’s length “L” (Fig. 4) changes. 
The resulting new variants are TwHCP_H and HCP_H in the first case and 
TwHCP_L and HCP_L in the second. 

Fig. 4. Relationships between the seven lattice structures analysed in this work. These can be divided into three groups. In each group, the twinned structure was 
taken as a reference, and one or two equivalent (=same ρ) structures were developed. The letters “a” and “r” indicate the beams’ length and radius, respectively, and 
are shared by the different twinned lattices. “OT” stands for Octet, “HCP” for the Hexagonal Closed package, and “TwHCP” for the twinned variant of the HCP. The 
remaining labels indicate further variants of the “HCP” and the “TwHCP”. Specifically, “_H” and “_L” are added to indicate the propagation of the twinning phe-
nomenon along the structure height or length, respectively. 

G. Zappa et al.                                                                                                                                                                                                                                  Materials & Design 244 (2024 ) 113098 

5 



The details of the samples are reported in Table 1 and in Supple-
mentary Fig. B.1, B,2, and B.3. All the choices about beam radius and 
length, relative density, and array (Table 1) were motivated by the need 
to find a trade-off between the manufacturability of the structures and 
the requirement of equal relative density and overall volume. 

Slight differences in the sample’s overall dimensions, beam length 
and radius are inevitable to guarantee an equivalent relative density 
considering the different cell shapes. Concerning beams’ length, the 
main difference concerns a and involves twinned HCP and HCP struc-
tures (i.e., 6.00 mm vs. 6.14 mm, respectively, Table 1). However, this 
difference is less than 3%. For manufacturability reasons, geometrical 
parameters (i.e., beam length a and radius r) were kept constant among 
structure categories: this implies a slight increase in the relative density 
of the variants compared to the structure of the first group. However, it 
is worth noting that direct comparisons were performed only among 
structures belonging to the same group and, therefore, among those 
having the same relative density. 

3.2. Sample fabrication 

All the structures were fabricated using Material Extrusion (MEX) 
and, specifically, a Fused Filament Fabrication (FFF) 3D printer (Ulti-
maker 3) with polylactic acid (PLA) filament with a diameter of 2.85 mm 
(Ultimaker black PLA). The standard extruder with a nozzle diameter 
equal to 0.4 mm was used. The mechanical properties of the material 
provided by the manufacturer can be found in [64]. 

The software Ultimaker Cura v. 5.2.1 was used for the slicing; the 
default parameters of the “Normal − 0.15 mm profile” were selected, 
imposing an infill density equal to 100%. Three replicas were printed for 
each structure. Three additional TwHCP lattice samples were printed at 
a 0.10 mm layer height (instead of the standard 0.15 mm) to quantify 
this parameter’s influence. Overall, 24 samples were printed and tested. 
Each sample was printed separately. Besides, all samples were weighed 
before testing using a precision digital weight scale (Kern PCB 2500–2, 
0.01 g resolution). Pictures of the 3D-printed samples are reported in the 
Supplementary Material (see Supplementary Material C. 3D-printed 
samples). 

3.3. Mechanical testing 

Compressive tests were conducted under displacement control using 
an MTS Alliance RF/150 testing machine with a 150kN load cell at a 
strain rate of 0.003 s− 1 (room temperature). The loading direction was 
consistent with the printing direction; the tests were terminated at a 
strain of 50%. The stress–strain nominal curves were extracted by 
dividing the recorded forces by the nominal cross-section area of the 
bounding box of the lattice to get the nominal stress and dividing the 
change in length along the applied displacement direction by the initial 
length to obtain the nominal strain. Elastic modulus and peak stress 

were extracted according to the slope of the first linear region and the 
highest recorded stress before plastic deformation, respectively. The 
specific energy absorption (SEA) and the densification strain were 
calculated according to the equations provided in [7,28,44,65–68]. 
Specifically, the SEA is defined as the energy absorption per unit mass, 
expressed as Eq. (1): 

SEA =
EA
m

=
1
m

∫ d

0

F(x)
A

dx (1)  

where EA represents the energy-absorption capacity until densification 
d, m is the mass of the structure, F(x) the force and A, the nominal area. 
Energy absorption per unit volume can also be quantified as the area 
under the stress–strain curve, as Eq. (2): 

Wv =

∫ εd

0
σdε (2)  

where εd is the densification strain. This latter can be calculated by 
adopting an energy-absorption efficiency method, as explained in [44], 
defined as Eq. (3): 

φ(ε) =
∫ ε

0 σ(ε)dε
σ(ε) (3)  

with the densification strain defined as the strain at which φ(ε) reaches 
its maximum value, satisfying Eq. (4): 

dφ(ε)
dε

⃒
⃒
⃒
⃒

ε=εd

= 0 (4)  

Hardening rate (dσ
dε) curves were plotted to quantify the stabilisation of 

the deformation behaviour. The compressive tests were filmed with a 
Nikon D7200 camera. Snapshots have been extracted from the video to 
analyse the compressive behaviour of the samples. 

4. Results and discussion 

Drawing inspiration from the remarkable compressive properties of 
ductile metals, the described approach investigates the innovative 
design of an HCP lattice structure crafted to emulate the crystal 
arrangement found in these metals. Leveraging the structural arrange-
ment derived from the crystallographic characteristics of Ti and Zr, 
engineered metamaterials with unprecedented mechanical resilience 
were obtained. Central to the methodology is integrating the twinning 
phenomenon, a hallmark mechanism underlying the plastic deformation 
observed in these metals. By harnessing the intrinsic capability of 
twinning to redistribute stress, the deformation behaviour of the studied 
metamaterials was modified, boosting their structural integrity and 
significantly augmenting their energy absorption capacity. 

Firstly, the correctness of the design procedure and the analytical 

Table 1 
Terminology and geometrical details of the seven samples analysed in this work (see also Fig. 4). The 7 structures are detailed in Supplementary Fig. B.1, B.2, and B.3.  

Group Name Design category Relative 
density [-] 

a 
[mm] 

r 
[mm] 

Details 

1st OT Octet 0.34 − 1 Sample sizes: 44.5x33.9x23.2 mm3 (4x3x2 array, cell size 10.6 mm) 
HCP Hexagonal close- 

packed 
6.14 0.9 Sample sizes:44.9x33.8x22.5 mm3 (7x3x2 array) 

TwHCP Twinned HCP 6.00 0.9 Sample sizes: 43.8x34.7x22.5 mm3 (3 repetitions of the “base” twinned unit cell performed 
along the y-direction) 

2nd HCP_H Hexagonal close- 
packed 

0.35 6.16 0.9 Sample sizes: 51.5x33.8x33 mm3 (8x3x3 array) 

TwHCP_H Twinned HCP 6.00 0.9 Sample sizes: 49.8x34.7x32.9 mm3 (3 repetitions of the “base” twinned unit cell performed 
along the y direction, and 2 repetitions along the z-direction) 

3rd HCP_L Hexagonal close- 
packed 

0.37 6.16 0.9 Sample sizes: 69.6x33.8x22.6 mm3 (11x3x2 array) 

TwHCP_L Twinned HCP 6.00 0.9 Sample sizes: 67.8x34.7x22.6 mm3 (3 repetitions of the “base” wider twinned unit cell 
performed along the y-direction)  
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model implemented is discussed. Table 2 reports printed sample weights 
(mean ± standard deviation) and the theoretical values. 

Each group’s weights are comparable and exhibit low standard de-
viation, guaranteeing the repeatability of the manufacturing process. 
The comparability among samples within the same group demonstrates 
that the implemented design process has ensured the equivalence of 
volumes and, thus, weights for each group. Except for the three addi-
tional samples printed at 0.1 mm layer height (i.e., TwHCP_01 in Group 
1), all samples are lighter than their theoretical weight, meaning that an 
under-extrusion of the material has occurred. Lowering the layer height 
has instead led to an over-extrusion. A maximum difference of 7.30% 
between the average weight and the theoretical value was measured for 

the TwHCP_H structure and, in general, for the second group of samples 
(Fig. 4 and Table 2) due to the increased complexity of the geometry to 
be printed compared to the others. Possible factors contributing to the 
differences between theoretical and experimental weight may be 
intrinsic porosity due to the AM process and approximations introduced 
by the slicing process. However, a good degree of repeatability can be 
observed within the same group of samples. 

4.1. Compression test results 

Fig. 5 reports mechanical tests of the designed crystal-inspired con-
figurations, the stress–strain curves, and the deformation mechanisms of 
the three types of structures in Group 1 (Fig. 4). 

The Octet structure (Fig. 5 a) exhibits the well-known stretching- 
dominated behaviour, with a softening after the peak stress. A layer-by- 
layer collapse characterises the deformation behaviour (see Snapshot IV 
of Fig. 5 a, where the white rectangle highlights the collapsed first 
layer). It does not present the shear-band formation typical of Octet 
structures [69]. This is due to a poor choice of the number of cell rep-
etitions in the three directions, which is lower than the one suggested in 
the literature [17] for material homogenisation purposes. However, as 
explained in Section 3.1.3, this design choice was motivated by the need 
to design structures sharing an equivalent relative density compared to 
the reference structure. 

The HCP (Fig. 5 b), as expected by its high connectivity, has a 

Table 2 
Theoretical and experimental masses of the samples (see also Table 1). The 
Δ(th− exp) [%] is calculated as: (mth − mexp)/mth*100.

Group  Theoretical 
[g] 

Experimental (μ ± σ) 
[g] 

Δ(th− exp) [%]

TwHCP  14.7 14.45 ± 0.03  1.68 
1st HCP  14.7 14.47 ± 0.12  1.56  

OT  14.7 14.50 ± 0.06  1.34  
TwHCP_01  14.7 14.84 ± 0.02  − 0.93 

2nd TwHCP_L  24.3 23.93 ± 0.07  1.54  
HCP_L  24.3 23.91 ± 0.01  1.60 

3rd TwHCP_H  24.9 23.08 ± 0.16  7.30 
HCP_H  24.9 24.28 ± 0.66  2.48  

Fig. 5. Compressive stress–strain curves and deformation mechanism of the Octet (a), HCP (b) and TwHCP (c) structures (Group 1, Fig. 4). The red dotted lines in c 
represent the twin boundaries. For the y-axis, different scales were used to better highlight the fluctuations of the curves. Three samples were tested for each 
structure. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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stretching-dominated behaviour too: compared to the Octet, the post- 
softening behaviour is slower, and the plastic plateau is broader and 
does not present wide fluctuations. Snapshots highlight how the defor-
mation concentrates around the middle triangular layer (white dotted 
box in Snapshot II, Fig. 5 b), creating a shear band parallel to the 
compression plates. A small increase of the stress is reported around ε =

20% (Shapshot II, Fig. 5 b), with a consequent stabilisation. This can be 
explained by the collapse of a layer of vertical beams. 

The TwHCP structure (Fig. 5 c), whose deformation behaviour is 
again one of stretching-dominated structures, is characterised by a 
minor stress reduction after the yielding (equal to − 12.4 and − 4.4% for 
the HCP and the TwHCP, respectively) and a wider and broader plateau 
with respect to the HCP structure. Interestingly, the deformation mode is 

changed by introducing the twin boundaries: the shear bands high-
lighted in the HCP structure do not extend horizontally throughout the 
whole sample. It can be noticed from the snapshots that the buckling of 
the struts starts in the region where the geometry is affected the most by 
the presence of the twinned area; at the outer boundaries, the lack of 
multiple HCP cells, which provide high stiffness, represents an initiation 
site for the plastic deformation of the structure (white dotted circles in 
Snapshot II, Fig. 5c). The deformation is then reported to proceed as a 
subsequent failure of HCP vertical strut layers. It is initiated in the areas 
featuring fewer HCPs in the x-direction and proceeds to the ones with a 
higher number of HCPs, thus leading to a “rotation” of the twinned area 
during the deformation. The farther regions from the twin boundaries 
are the last to deform (white dotted squares in Snapshot III, Fig. 5 c), 

Fig. 6. Compressive stress–strain curves and deformation mechanism of the HCP_H (a), TwHCP_H (b), HCP_L (c), and TwHCP_L (d) structures. The red dotted lines in 
(b) and (d) represent the twin boundaries. Three samples were tested for each structure. (For interpretation of the references to colour in this figure legend, the reader 
is referred to the web version of this article.) 
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confirming that the introduction of the twinned region affects the 
deformation. The second stress plateau typical of HCP can be explained 
equivalently as the failure of the vertical beam layer highlighted by the 
white dotted boxes in Snapshot IV, Fig. 5 c. The behaviour of the 
TwHCP_01 samples (not reported in Fig. 5) is almost identical to that of 
the TwHCP ones, documenting a negligible influence of the layer height 
parameter. Further details are reported in the Supplementary Material 
(see Supplementary Material D. TwHCP_01). 

To expand the comparison between the HCP and TwHCP and deepen 
the comprehension of the effects induced by the presence of the twinned 
region, the two variants TwHCP_H and TwHCP_L were introduced and 
tested along with their equivalent non-twinned structures HCP_H and 
HCP_L (Fig. 4, Group 2 and Group 3). 

The HCP_H stress–strain curves are reported in Fig. 6 a. They show 
similar overall behaviour to the one observed from HCP, with softening 
after the stress peak and fluctuations due to layer-by-layer collapse. It is 
interesting to observe how multiple HCP layers induce curvature of the 
triangular grids in the central regions during the compression. The white 
dotted lines in Snapshot IV in Fig. 6 a highlight the curvature: this 
behaviour suggests that possible new deformation modes arise as the 
lattice dimension increases (HCP vs HCH_H) due to the homogenisation 
of the material. The TwHCP_H structure shows a more homogeneous 
deformation than the previously analysed TwHCP structure (Fig. 5 c). As 
shown in Fig. 6 b, the deformation is localised inside the twinned area. 
The first deformation in the HCP region occurs again in the outer 
boundaries next to the twin interface, as they are not part of a contin-
uous lattice. These locations are highlighted by the light blue dotted 
squares in Snapshot III in Fig. 6 b. 

The HCP_L stress–strain curves, shown in Fig. 6 c, confirm the 
stretching-dominated behaviour of the HCP cell, with shear bands for-
mation along the central triangular layer. Eventually, the increase in the 
HCP region at the edges of a twinned lattice brought the desired results, 
as the stress–strain curves of the TwHCP_L lattice (Fig. 6 d) present 
almost no fluctuations. From the snapshots, it can be noticed that the 
formation of shear bands occurs in the HCP areas. Still, they are not 
allowed to propagate across the entire structure due to the discontinuity 
provided by the twinned region. 

Pertaining the quantification of the twinning effect, Fig. 7 shows that 
all the samples featuring the twinned area present a decrease in the peak 
stress (ranging from − 4.1 to − 16.6%, Fig. 7 a), an extension of the 
plastic plateau, characterised by later densification (the increase of the 
densification strain ranges from 7.9 to 10.4%, Fig. 7 b) and an increase 
of the SEA with respect to the equivalent HCP structure (up to 24.3%, 
Fig. 7 c). Quantitative comparisons were performed on structures 
belonging to the same group, therefore sharing the same relative den-
sity. The comparisons of the stress–strain and hardening rate curves, 
those useful to visualise the stabilisation of the plastic deformation 
behaviour, are shown in Fig. 8 a and Fig. 8 b, respectively. These find-
ings are aligned with the ones found by other authors in the literature 
[28,42–44] because the energy absorption is increased without nega-
tively affecting the peak stress. In addition, our study rigorously proves 
the effectiveness of mimicking the atomic phenomenon at higher scales. 
The greatest enhancement in the specific energy absorption was expe-
rienced by the TwHCP_L, featuring a larger amount of HCP lattice on the 
sides of the twinned area. In such a structure, the interruption of the 
shear bands due to the twinning boundaries prevents the layer-by-layer 
collapse, limiting the stress fluctuations in the post-yielding phase. 

Hence, the emulation of metallographic phenomena, particularly the 
incorporation of the twinning mechanism into the HCP lattice, has 
demonstrated significant efficacy in altering the deformation charac-
teristics of materials. This alteration results in heightened energy ab-
sorption capabilities, showcasing a promising avenue for material 
engineering and design. By integrating twinning mechanisms into the 
lattice structure, researchers have been able to enhance the material’s 
ability to absorb energy, which has numerous positive implications 
across various application fields. Specifically, this study opens up new 

Fig. 7. Comparison between all the HCP and twinned HCP structures: histo-
grams showing the peak stress decrease (a), the densification strain increase (b), 
and the specific energy absorption increase (c) induced by introducing a 
twinned area in an HCP lattice. 
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possibilities for advancing the design of architected materials, particu-
larly in areas where energy absorption is crucial, such as aerospace 
[70,71], wearable technology and biomedicine [72,73], and construc-
tion [74]. In aerospace, materials with enhanced energy absorption 
capabilities can be employed to guarantee the safety of passengers and 
equipment, mitigating the damage caused by collisions or crashes, 
potentially saving lives, and reducing maintenance and repair costs. 
Energy absorption is also essential for enhancing comfort, safety, and 
effectiveness concerning wearables and biomedicine. Finally, in the 
construction industry, materials with enhanced energy absorption ca-
pabilities can enhance the resilience of structures against natural di-
sasters, such as earthquakes or heavy machinery’s impacts. 

To further explore the potential of this approach, different AM 
technologies and materials can be investigated for sample fabrication, 
depending on the specific application field. Once the appropriate ma-
terial is selected for the targeted application, the design and number of 
twinned regions can be fine-tuned to ensure the desired behaviour in 
terms of peak stress and plastic plateau. Moreover, the implementation 
of twinning regions, including the selection of the twinning plane used 
to design them, can be adjusted according to the specific loading con-
ditions under analysis. This flexibility allows the tailoring of the material 
properties to meet the requirements of various real-world scenarios, 
maximising its effectiveness in practical applications. 

5. Conclusions 

This study is inspired by the compressive behaviour of ductile metals 
with a hexagonal close-packed structure experiencing the metallurgical 
twinning phenomenon. It proposes a novel architected material based 
on an HCP unit cell and a modification of the same by introducing this 
twinning phenomenon at higher scales. As for Ti and Zr ductile metals, 
the twinning mechanism accommodates the compressive load by plastic 
deformation. Introducing a twinned zone inside a homogenous HCP 
lattice stabilises the deformation behaviour and increases the energy 
absorption capabilities up to 24.3% without compromising mechanical 

properties excessively. In this study, the HCP lattice was studied, but the 
proposed approach could be extended to other unit cells, such as the BCC 
unit cell, because it is often considered for energy-absorbing applica-
tions in combination with materials such as TPU [75]. The BCC has a 
lower packing density than FCC and HCP; thus, it is less prone to slip 
deformation mechanisms, and has several twinning mechanisms that 
could be reproduced by adopting the same design approach described in 
the paper. This study could be extended by considering other twinning 
planes based on the loading conditions. In addition, it could be inter-
esting to repeat the study considering the ductile metals used as inspi-
ration as the base material. One limitation of the study resides in the 
necessity for extensive manual adjustments in generating the digital 
model of the twinned structure, particularly concerning guaranteeing 
node connectivity. In the future, implementing more automated pro-
cedures could streamline the generation of these twinned regions, 
enhancing efficiency and accuracy in modelling. 
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