
PreferenceQueries over Taxonomic Domains
Paolo Ciaccia

University of Bologna

Bologna, Italy

paolo.ciaccia@unibo.it

Davide Martinenghi

Politecnico di Milano

Milano, Italy

davide.martinenghi@polimi.it

Riccardo Torlone

Roma Tre University

Roma, Italy

riccardo.torlone@uniroma3.it

ABSTRACT
When composing multiple preferences characterizing the most suit-

able results for a user, several issues may arise. Indeed, preferences

can be partially contradictory, suffer from a mismatch with the level

of detail of the actual data, and even lack natural properties such

as transitivity. In this paper we formally investigate the problem

of retrieving the best results complying with multiple preferences

expressed in a logic-based language. Data are stored in relational

tables with taxonomic domains, which allow the specification of

preferences also over values that are more generic than those in

the database. In this framework, we introduce two operators that

rewrite preferences for enforcing the important properties of tran-

sitivity, which guarantees soundness of the result, and specificity,

which solves all conflicts among preferences. Although, as we show,

these two properties cannot be fully achieved together, we use our

operators to identify the only two alternatives that ensure transi-

tivity and minimize the residual conflicts. Building on this finding,

we devise a technique, based on an original heuristics, for selecting

the best results according to the two possible alternatives. We fi-

nally show, with a number of experiments over both synthetic and

real-world datasets, the effectiveness and practical feasibility of the

overall approach.

PVLDB Reference Format:
Paolo Ciaccia, Davide Martinenghi, and Riccardo Torlone. Preference

Queries over Taxonomic Domains. PVLDB, 14(10): 1859 - 1871, 2021.

doi:10.14778/3467861.3467874

1 INTRODUCTION
Preferences strongly influence decision making and, for this reason,

their collection and exploitation are considered building blocks

of content-based filtering techniques [6, 24, 25]. A key issue in

this context is the mismatch that usually lies between preferences

and data, which often makes it hard to recommend items to cus-

tomers [19]. Indeed, whether they are collected by tracing the ac-

tions of the users or directly elicited from them, preferences are

typically expressed in generic terms (e.g., I prefer pasta to beef),

whereas available data is more specific (the menu might contain

lasagne and hamburger). The problem of automatically suggesting

the best solutions becomes even more involved when several pref-

erences at different levels of granularity and possibly conflicting

with each other are specified, as shown in the following example

that will be used throughout the rest of the paper.

This work is licensed under the Creative Commons BY-NC-ND 4.0 International

License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of

this license. For any use beyond those covered by this license, obtain permission by

emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights

licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 14, No. 10 ISSN 2150-8097.

doi:10.14778/3467861.3467874

Example 1.1. We would like to select some bottles of wine from

the list in Figure 1 available in an e-commerce store. We prefer

white wines to red ones, yet we prefer Amarone (a famous red

wine) to white wine. For the producer, we prefer Tuscan wineries

located in the province of Siena to those in the Piedmont province

of Asti. Moreover, if the winery lies in the Langhe wine region

(which spans different provinces, partially including, among others,

Asti and Cuneo) we prefer an aged wine (i.e., produced before 2017)

to a more recent one. Finally, we would like to have suggestions

only for the “best” possible alternatives. □

Wines
Wine Winery Year
Arneis Correggia 2019 𝑎

Amarone Masi 2014 𝑏

Amarone Bertani 2013 𝑐

Canaiolo Montenidoli 2015 𝑑

Barolo Laficaia 2014 𝑒

Arneis Ceretto 2019 𝑓

Figure 1: A list of wines

We first observe that further information is needed in this ex-

ample to identify the solutions that better fit all the mentioned

preferences. For instance, we need to know the province and the

wine region in which all the wineries are located. In addition, the

example shows that there are two important issues that need to be

addressed in such scenarios. First, conflicts can occur when prefer-

ences are defined at different levels of detail. Indeed, the preference

for Amarone, which is a red wine, is in contrast with the more

generic preference for white wines. Second, further preferences

can be naturally derived from those that are stated explicitly. For

instance, from the preference for wines from Siena to those from

Asti and the preference for aged wines when they are from the

Langhe region, we can also derive, by transitivity, a preference for

wines from Siena to young wines from Langhe.

In this paper we address the problem of finding the best data

stored in a repository in a very general scenario in which, as in the

above example: (i) preferences may not match the level of detail of

the available data, (ii) there may be conflicts between different pref-

erences, and (iii) known preferences can imply others. Specifically,

unlike previous approaches that have only tackled the problem of

mapping preferences to data (see, e.g., [20]), we formally investigate

the two main principles that need to be taken into account in this

context: specificity and transitivity. Specificity is a fundamental tool

for resolving conflicts between preferences by giving precedence to

the most specific ones, as it is natural in practical applications. For

instance, in our example, the specific preference for Amarone over

1859

https://doi.org/10.14778/3467861.3467874
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3467861.3467874

white wines counts more than the generic preference for white

wines over red ones. The specificity principle is indeed a pillar of

non-monotonic reasoning, where a conclusion derived from a more

specific antecedent overrides a conflicting inference based on a less

specific antecedent [13]. On the other hand, transitivity, besides

being a natural property, is important also from a practical point of

view, since non-transitive preferences might induce cycles, a fact

that could make it impossible to identify the best solutions [6].

To tackle the problem of dealing with non-monotonic prefer-

ences, we rely on a natural extension of the relational model in

which we just assume that taxonomies, represented by partial or-

ders on values, are defined on some attribute domains [22]. Thus,

for instance, in a geographical domain we can establish that the

value Italy is more generic than the value Rome, since the former

precedes the latter in the partial order. We then call t-relations (i.e.,

relations over taxonomies) standard relations involving attributes

over these taxonomic domains.

We express preferences in this model in a declarative way, by

means of first-order preference formulas specifying the conditions

under which, in a t-relation, a tuple 𝑡1 is preferable to a tuple 𝑡2. By

taking advantage of the taxonomies defined over the domains, in

a preference formula we can refer to values that are more generic

than those occurring explicitly in a t-relation (e.g., the fact that we

prefer white to redwines, as in Example 1.1). When evaluated over

a t-relation 𝑟 , a preference formula returns a preference relation that

includes all the pairs of tuples (𝑡1, 𝑡2) in 𝑟 such that 𝑡1 is preferable

to 𝑡2. Since the input preference formula may not induce a pref-

erence relation enjoying both transitivity and specificity, such a

formula then needs to be suitably rewritten. Eventually, the rewrit-

ten formula is used to select the best tuples in 𝑟 by means of the

Best operator, which filters out all the tuples that are strictly worse

than some other tuple [9]. How this rewriting has to be performed

is thus the main focus of this paper.

Problem. To study, from both a theoretical and a practical point of

view, to which extent the properties of transitivity and specificity can

be obtained by suitable rewritings of the initial preference formula.

We tackle the problem by introducing and formally investigat-

ing two operators that rewrite a preference formula: T to enforce

transitivity and S to remove all conflicts between more generic

and more specific preferences, thus attaining specificity. In order

to try to guarantee both properties, one thus needs to use both

operators. The first natural question that arises is whether the

order in which they are applied is immaterial. Unfortunately, it

turns out that these two operators do not commute. More so, even

their repeated application can produce different results, inducing

incomparable preference relations. This motivates us to explore

the (infinite) space of possible sequences of such operators. Based

on this analysis, we prove that it is indeed impossible to always

guarantee at the same time transitivity of the obtained preference

relation and a complete absence of conflicts therein, no matter the

order in which T and S are considered and how many times they

are applied. Intuitively, the removal of conflicts may compromise

transitivity, whereas enforcement of transitivity may (re-)introduce

conflicts. We also show that this impossibility result would persist

even if one considered a more fine-grained S operator that removes

conflicts one by one (instead of all at a time). In spite of this in-

trinsic limitation, we formally show that: (i) the set of all possible

sequences of operators can be reduced to a finite (and small) set, and

(ii) there are only two sequences, which we call minimal-transitive,

that guarantee transitivity and, at the same time, minimize residual

conflicts between preferences. We also show that the application of

the Best operator using the rewritten formulas obtained through the

two minimal-transitive sequences can lead to very different results.

However, in common practical cases, experimental evidence shows

that one of the two sequences typically resolves more conflicts, thus

returning a more refined set of best tuples.

In order to observe and assess the actual behavior of sequences

of operators, we developed an engine for implementing our ap-

proach, which rewrites an input preference formula and evaluates

it over t-relations. We conducted a number of experiments over

both synthetic and real-world data and taxonomies in scenarios of

different complexities, showing that: (i) the overhead incurred by

the rewriting process is low for the considered sequences; (ii) the

computation of the best results largely benefits from the minimiza-

tion of conflicts between preferences, both in terms of execution

time and cardinality of results; (iii) the adoption of an original

heuristic sorting criterion based on taxonomic knowledge greatly

reduces execution times.

In sum, the contributions of this paper are the following:

• a general framework that is able to express, in a logic-based

language, preferences over relations with taxonomic do-

mains, as illustrated in Section 2;

• two operators, presented in Section 3, that rewrite, within

this framework, the input preferences so as to enforce the

important properties of transitivity, which is required for

the correctness of the result, and specificity, which solves

possible conflicts among preferences;

• the formal investigation, illustrated in Section 4, of the com-

bined and repeated application of these operators to an initial

set of preferences;

• a technique based on an original heuristics, presented in

Section 5, for selecting the best results associated with given

sequences of operators, and the characterization of their

differences;

• the experimentation of the overall approach over both syn-

thetic and real-world data, showing its effectiveness and

practical feasibility, as illustrated in Section 6.

Related works are reported in Section 7 whereas some conclusions

are sketched in Section 8. Formal proofs of our results are omitted

in the interest of space.

2 PRELIMINARIES
In this section, we introduce our data model, originating from [22],

and a logic-based preference model, inspired by [6].

We remind that a partial order ≤ on a domain 𝑉 is a subset of

𝑉 ×𝑉 , whose elements are denoted by 𝑣1 ≤ 𝑣2, that is: 1) reflexive

(𝑣 ≤ 𝑣 for all 𝑣 ∈ 𝑉), 2) antisymmetric (if 𝑣1 ≤ 𝑣2 and 𝑣2 ≤ 𝑣1 then

𝑣1 = 𝑣2), and 3) transitive (if 𝑣1 ≤ 𝑣2 and 𝑣2 ≤ 𝑣3 then 𝑣1 ≤ 𝑣3). A

set with a partial order is called a poset.

2.1 Data Model
We consider a simple extension of the relational model in which the

values of an attribute can be arranged in a hierarchical taxonomy.

1860

Veneto Tuscany Piedmont

Roero LangheCuneoAstiSienaVerona

Valpolicella

BertaniMasi Montenidoli Casorzo Correggia Laficaia Ceretto

(a) A taxonomy𝑇𝑝 for production sites.

white rosé red

Arneis Canaiolo Amarone Barolo

(b) A taxonomy𝑇𝑤 for wines.

Figure 2: Taxonomies for the running example.

Definition 2.1 (Taxonomy). A taxonomy is a poset 𝑇 = (𝑉 , ≤𝑉),
where 𝑉 is a set of values and ≤𝑉 is a partial order on 𝑉 .

Example 2.2. A taxonomy relevant to our working example repre-

sents production sites at different levels of granularity. Considering

Example 1.1, this taxonomy,𝑇𝑝 , shown in Figure 2a, includes values

representing wineries (as minimal elements of the poset) as well as

values representing provinces, wine regions, and regions of Italy.

For instance, we can have values like Laficaia (a winery), Cuneo (a
province), Langhe (a wine region) and Piedmont (a region of Italy),

with Laficaia ≤𝑉 Cuneo, Laficaia ≤𝑉 Langhe, Laficaia ≤𝑉 Piedmont,
Cuneo ≤𝑉 Piedmont, and Langhe ≤𝑉 Piedmont. Additionally, Fig-
ure 2b shows a simple taxonomy 𝑇𝑤 for wines, which associates

each wine with a corresponding color. Finally, we assume a tax-

onomy 𝑇𝑦 mapping production years before 2017 to aged and the

other years to young. □

A t-relation is a standard relation of the relational model defined

over a collection of taxonomies.

Definition 2.3 (t-relation, t-schema, t-tuple). A t-schema is a set

𝑆 = {𝐴1 : 𝑇1, . . . , 𝐴𝑑 : 𝑇𝑑 }, where each 𝐴𝑖 is a distinct attribute

name and each 𝑇𝑖 = (𝑉𝑖 , ≤𝑉𝑖) is a taxonomy. A t-relation over 𝑆 is a

set of tuples over 𝑆 (t-tuples) mapping each 𝐴𝑖 to a value in 𝑉𝑖 . We

denote by 𝑡 [𝐴𝑖] the restriction of a t-tuple 𝑡 to the attribute 𝐴𝑖 .

For the sake of simplicity, in the following we will not make any

distinction between the name of an attribute of a t-relation and that

of the corresponding taxonomy, when no ambiguities can arise. We

observe that our model also accommodates “standard” attributes,

in which the domain 𝑉 is a set of flat values (i.e., ≤𝑉 is empty).

Example 2.4. A catalog of Italian wines can be represented by

the t-schema 𝑆 = {Wine : 𝑇𝑤 , Winery : 𝑇𝑝 , Year : 𝑇𝑦}. A possible

t-relation over 𝑆 is shown in Figure 1. Then we have 𝑏 [Year] = 2014
and 𝑒 [Wine] = Barolo. □

2.2 Preference Model
Given a set of attribute-taxonomy pairs 𝐴1 : 𝑇1, . . . , 𝐴𝑑 : 𝑇𝑑 , in

which 𝐴1, . . . , 𝐴𝑑 are all distinct, let T denote the set of all possible

t-tuples over any t-schema that can be defined using such pairs.

Definition 2.5 (Preference relation). A preference relation over the

t-tuples in T is a relation ⪰ on T × T . Given two t-tuples 𝑡1 and 𝑡2
in T , if 𝑡1 ⪰ 𝑡2 then 𝑡1 is (weakly) preferable to 𝑡2, also written as

(𝑡1, 𝑡2) ∈ ⪰. If 𝑡1 ⪰ 𝑡2 but 𝑡2 ̸⪰ 𝑡1, then 𝑡1 is strictly preferable to 𝑡2,

denoted by 𝑡1 ≻ 𝑡2.

Definition 2.6 (Incomparability and Indifference). Given a prefer-

ence relation on T and a pair of t-tuples 𝑡1 and 𝑡2 in T , if neither

𝑡1 ⪰ 𝑡2 nor 𝑡2 ⪰ 𝑡1, then 𝑡1 and 𝑡2 are incomparable. When both

𝑡1 ⪰ 𝑡2 and 𝑡2 ⪰ 𝑡1 hold, 𝑡1 and 𝑡2 are indifferent, denoted by 𝑡1 ≈ 𝑡2.

Notice that if ⪰ is transitive, then ≈ is an equivalence relation

(up to reflexivity) and ≻ is a strict partial order (i.e., transitive and

irreflexive). These properties do not hold, in the general case, when

⪰ is not transitive.

The transitivity of ⪰ implies that all the t-tuples involved in a

cycle are indifferent to each other, thus the cycle vanishes when

strict preferences are considered.

Example 2.7. Let us consider the t-relation in Figure 1 and assume

that we have the cycle of preferences: 𝑎 ⪰ 𝑏, 𝑏 ⪰ 𝑐 , and 𝑐 ⪰ 𝑎. If ⪰
is transitive then we also have 𝑎 ⪰ 𝑐 (from 𝑎 ⪰ 𝑏 and 𝑏 ⪰ 𝑐), 𝑏 ⪰ 𝑎

(from 𝑏 ⪰ 𝑐 and 𝑐 ⪰ 𝑎) and 𝑐 ⪰ 𝑏 (from 𝑐 ⪰ 𝑎 and 𝑎 ⪰ 𝑏). Then,

since 𝑎 ≈ 𝑏, 𝑏 ≈ 𝑐 , and 𝑎 ≈ 𝑐 , no cycle is present in ≻. □

Given a set of t-tuples 𝑟 ⊆ T , the “best” t-tuples in 𝑟 according

to the preference relation ⪰ can be selected by means of the Best

operator 𝛽 [9], which returns the t-tuples 𝑡1 of 𝑟 such that there is

no other t-tuple 𝑡2 in 𝑟 that is strictly preferable to 𝑡1.

Definition 2.8 (Best operator). Given a t-relation 𝑟 and a prefer-

ence relation ⪰ on the t-tuples in 𝑟 , the best operator 𝛽 is defined

as follows: 𝛽≻ (𝑟) = {𝑡1 ∈ 𝑟 | ∄𝑡2 ∈ 𝑟, 𝑡2 ≻ 𝑡1}.

When ≻ is a strict partial order, 𝛽≻ (𝑟) is not empty for any

non-empty t-relation 𝑟 . We remind that, if ≻1 and ≻2 are such that

≻1⊆≻2 then 𝛽≻2
(𝑟) ⊆ 𝛽≻1

(𝑟) holds for all 𝑟 [6].

Example 2.9. Let us consider the t-relation in Figure 1 and assume

that: 𝑏 ⪰ 𝑎, 𝑎 ⪰ 𝑓 , 𝑏 ⪰ 𝑓 , 𝑏 ⪰ 𝑑, 𝑐 ⪰ 𝑒, 𝑒 ⪰ 𝑐 . It follows that:

𝑏 ≻ 𝑎, 𝑎 ≻ 𝑓 , 𝑏 ≻ 𝑓 , 𝑏 ≻ 𝑑 (since the opposite does not hold for

those four preferences), but 𝑐 ≈ 𝑒 (since both 𝑐 ⪰ 𝑒 and 𝑒 ⪰ 𝑐).

Then, we have 𝛽≻ (𝑟) = {𝑏, 𝑐, 𝑒}. □

For expressing preferences we consider a logic-based language,

in which 𝑡1 ⪰ 𝑡2 iff they satisfy the first-order preference formula

𝐹 (𝑡1, 𝑡2): 𝑡1 ⪰ 𝑡2 ⇔ 𝐹 (𝑡1, 𝑡2) . Thus, when considering strict prefer-

ences we have:

𝑡1 ≻ 𝑡2 ⇔ 𝐹 (𝑡1, 𝑡2) ∧ ¬𝐹 (𝑡2, 𝑡1) . (1)

As in [6], we only consider intrinsic preference formulas (ipf’s), i.e.,

first-order formulas in which only built-in predicates are present

and quantifiers are omitted, as in Datalog. Predicates have either

the form (𝑥 [𝐴𝑖] ≤𝑉𝑖 𝑣) or (𝑥 [𝐴𝑖] ≰𝑉𝑖 𝑣), where 𝐴𝑖 is an at-

tribute defined over taxonomy 𝑇𝑖 = (𝑉𝑖 , ≤𝑉𝑖), 𝑥 is a t-tuple variable

over t-schemas including 𝐴𝑖 , and 𝑣 is a value in 𝑉𝑖 . The predi-

cate (𝑥 [𝐴𝑖] ≤𝑉𝑖 𝑣) (resp. (𝑥 [𝐴𝑖] ≰𝑉𝑖 𝑣)) holds for a t-tuple 𝑡 if
(𝑡 [𝐴𝑖] ≤𝑉𝑖 𝑣) (resp. (𝑡 [𝐴𝑖] ≰𝑉𝑖 𝑣)) holds. For convenience, we get
rid of ¬ as needed by transforming ≤𝑉𝑖 into ≰𝑉𝑖 and vice versa.

For the sake of generality, we consider that formula 𝐹 consists

of a set of preference statements, where each statement 𝑃𝑖 is in

1861

Disjunctive Normal Form (DNF), each disjunct of 𝑃𝑖 being termed

a preference clause, 𝐶𝑖, 𝑗 :

𝑃𝑖 (𝑥,𝑦) =
𝑚𝑖⋁︂
𝑗=1

𝐶𝑖, 𝑗 (𝑥,𝑦)

andwhere each clause𝐶𝑖, 𝑗 is a conjunction of predicates.We assume

that each clause𝐶𝑖, 𝑗 is non-contradictory, i.e., ∃𝑡1, 𝑡2 ∈ T such that

𝐶𝑖, 𝑗 (𝑡1, 𝑡2) is true. When a statement consists of a single clause we

use the two terms “clause” and “statement” interchangeably.

A formula 𝐹 is a disjunction of 𝑛 ≥ 1 preference statements:

𝐹 (𝑥,𝑦) =
𝑛⋁︂
𝑖=1

𝑃𝑖 (𝑥,𝑦).

Example 2.10. The preferences informally stated in Example 1.1

can be expressed by the formula

𝐹 (𝑥,𝑦) = 𝑃1 (𝑥,𝑦) ∨ 𝑃2 (𝑥,𝑦) ∨ 𝑃3 (𝑥,𝑦) ∨ 𝑃4 (𝑥,𝑦)
where the 4 preference statements, in which we use ≤ in place of

≤𝑉𝑖 to improve readability, are:

𝑃1 (𝑥,𝑦) = (𝑥 [Wine] ≤ white) ∧ (𝑦 [Wine] ≤ red)
𝑃2 (𝑥,𝑦) = (𝑥 [Wine] ≤ Amarone) ∧ (𝑦 [Wine] ≤ white)
𝑃3 (𝑥,𝑦) = (𝑥 [Winery] ≤ Siena) ∧ (𝑦 [Winery] ≤ Asti)
𝑃4 (𝑥,𝑦) = (𝑥 [Winery] ≤ Langhe) ∧ (𝑥 [Year] ≤ aged)∧

(𝑦 [Winery] ≤ Langhe) ∧ (𝑦 [Year] ≤ young)
The above statements, when evaluated over the t-tuples in Figure 1,

yield the following preferences, written as pairs of t-tuples in ⪰ (for

the sake of clarity, for each preference we also show the statement

used to derive it):

𝑃1 : (𝑎, 𝑏), (𝑎, 𝑐), (𝑎, 𝑒), (𝑓 , 𝑏), (𝑓 , 𝑐), (𝑓 , 𝑒)
𝑃2 : (𝑏, 𝑎), (𝑏, 𝑓), (𝑐, 𝑎), (𝑐, 𝑓)
𝑃4 : (𝑒, 𝑓)

Notice that 𝑃3 yields no preference, since there is no wine from

Asti’s province in the t-relation in Figure 1. □

In the rest of the paper, with the aim to simplify the notation, pref-

erence statements in the examples will be written with a compact

syntax, by omitting variables and attributes’ names, and separating

with ⪰ the “better” part from the “worse” part. For instance, the

above statement 𝑃4 will be written as:

𝑃4 = Langhe ∧ aged ⪰ Langhe ∧ young.

3 OPERATIONS ON PREFERENCES
In this section we introduce two operators that can be applied to a

preference relation, postponing to the next section the detailed anal-

ysis of the possible ways in which they can be combined. The two

operators are: Transitive closure (T) and Specificity-based refine-

ment (S). Let ⪰ denote the initial preference relation; the resulting

relation is indicated ⪰T for T and ⪰S for S. Multiple application

of operators, e.g., first T and then S, leads to the relation (⪰T)S,
which we compactly denote as ⪰TS. In general, for any sequence

𝑋 ∈ {T, S}∗, ⪰X is the preference relation obtained from the initial

preference relation ⪰ by applying the operators in the order in

which they appear in X. Notice that ⪰𝜀 = ⪰, where 𝜀 denotes the
empty sequence.

We describe the behavior of the two operators by means of suit-

able rewritings of a preference formula. Given a sequence X of

operators, and an initial (input) formula 𝐹 (𝑥,𝑦) inducing the pref-

erence relation ⪰, 𝐹X (𝑥,𝑦) denotes the rewriting of 𝐹 that accounts

for the application of the X sequence, thus yielding ⪰X.

3.1 Transitive Closure
Transitivity of ⪰, and consequently of ≻, is a basic requirement of

any sound preference-based system. If ⪰ is not transitive then ≻
might contain cycles, a fact that could easily lead either to empty

or non-stable results, as the following example shows.

Example 3.1. Consider the t-tuples in Figure 3, in which both

Sbarbata and Molinara are rosé wines and Vogadori is a winery in the

Valpolicella wine region.

Wine Winery Year
Arneis Correggia 2019 𝑔

Barolo Laficaia 2014 ℎ

Sbarbata Laficaia 2019 ℓ

Molinara Vogadori 2014 𝑚

Figure 3: A set of wines for Example 3.1.

From the preference statements in Example 2.10, we have 𝑔 ⪰ ℎ

(through 𝑃1) andℎ ⪰ ℓ (through clause 𝑃4). However,𝑔 ̸⪰ ℓ . Assume

now two additional preference statements

𝑃𝛼 = rosé ∧ young ⪰ rosé ∧ aged,
𝑃𝛽 = Valpolicella ⪰ Roero,

which, respectively, induce preferences ℓ ⪰ 𝑚 and𝑚 ⪰ 𝑔. Overall,

since no other preferences hold, we have the non-transitive cycle of

strict preferences 𝑔 ≻ ℎ, ℎ ≻ ℓ , ℓ ≻𝑚 and𝑚 ≻ 𝑔. So, for a t-relation

𝑟 = {𝑔, ℎ, ℓ,𝑚}, we have 𝛽≻ (𝑟) = ∅.
Consider now 𝑟 ′ = {𝑔, ℎ, ℓ}, for which 𝛽≻ (𝑟 ′) = {𝑔}, and 𝑟 ′′ =

{𝑔, ℓ,𝑚}, for which 𝛽≻ (𝑟 ′′) = {ℓ}. Although both 𝑟 ′ and 𝑟 ′′ contain
𝑔 and ℓ , the choice of which of these t-tuples is better than the

other depends on the presence of other t-tuples (like ℎ and𝑚), thus

making the result of the 𝛽 operator unstable. □

The transitive closure operator, denoted T, given an input pref-

erence relation ⪰X yields the preference relation ⪰XT. We remind

that, as observed in Section 2.2, the transitivity of ⪰XT entails that

of ≻XT. The transitive closure 𝐹
XT

of an ipf 𝐹X with 𝑛 statements

𝑃1, . . . , 𝑃𝑛 is still a finite ipf that can be computed via Algorithm 1,

along the lines described in [6]. For the sake of conciseness, given

a preference clause 𝐶 (𝑥,𝑦), we denote by 𝐶𝑏 (𝑥) (resp. 𝐶𝑤 (𝑦)) the
part of𝐶 (𝑥,𝑦) given by the conjunction of the predicates involving

variable 𝑥 (resp. 𝑦). Notice that 𝐶 (𝑥,𝑦) = 𝐶𝑏 (𝑥) ∧𝐶𝑤 (𝑦) holds.
In the main loop of the algorithm (lines (2)–(9)) we test the

possibility of transitively combining two preference statements at

a time (line (4)), by considering each of their clauses (line (6)). Since

clauses are assumed to be non-contradictory, the test at line (7),

which can also be written as 𝐶𝑏
𝑚 (𝑡1) ∧𝐶𝑤

𝑚 (𝑡2) ∧𝐶𝑏
𝑞 (𝑡2) ∧𝐶𝑤

𝑞 (𝑡3),
reduces to checking if 𝐶𝑤

𝑚 (𝑡2) ∧𝐶𝑏
𝑞 (𝑡2) is satisfiable in T . This can

be done by checking whether no contradictory pair of predicates

occurs in𝐶𝑤
𝑚 (𝑡2) ∧𝐶𝑏

𝑞 (𝑡2). In particular, two predicates of the form

1862

Algorithm 1: T operator: Transitive closure of 𝐹X.

Input: formula 𝐹X = 𝑃1 ∨ . . . ∨ 𝑃𝑛 , taxonomies 𝑇1, . . . ,𝑇𝑑 .

Output: 𝐹XT, the transitive closure of 𝐹X.

(1) 𝐹XT := 𝐹X

(2) repeat
(3) 𝑛𝑒𝑤𝑃𝑟𝑒 𝑓 := false
(4) for each ordered pair (𝑃𝑖 , 𝑃 𝑗), 𝑃𝑖 in 𝐹XT, 𝑃 𝑗 in 𝐹X

(5) 𝑃 := empty

(6) for each ordered pair (𝐶𝑚,𝐶𝑞), 𝐶𝑚 in 𝑃𝑖 , 𝐶𝑞 in 𝑃 𝑗
(7) if ∃ 𝑡1, 𝑡2, 𝑡3 ∈ T s.t. 𝐶𝑚 (𝑡1, 𝑡2) ∧𝐶𝑞 (𝑡2, 𝑡3) = true

then 𝑃 := 𝑃 ∨ (𝐶𝑏
𝑚 (𝑥) ∧𝐶𝑤

𝑞 (𝑦))
(8) if 𝑃 ≠ empty then 𝐹XT := 𝐹XT ∨ 𝑃 , 𝑛𝑒𝑤𝑃𝑟𝑒 𝑓 := true
(9) until 𝑛𝑒𝑤𝑃𝑟𝑒 𝑓 = false
(10) return 𝐹XT

(𝑥 [𝐴𝑖] ≤𝑉𝑖 𝑣1) and (𝑥 [𝐴𝑖] ≤𝑉𝑖 𝑣2), over the same attribute 𝐴𝑖 and

using the same variable 𝑥 , are contradictory if values 𝑣1 and 𝑣2
are different and have no common descendant in the taxonomy 𝑉𝑖
(Section 6 further discusses how to check the existence of a common

descendant). If the predicates are of the form (𝑥 [𝐴𝑖] ≤𝑉𝑖 𝑣1) and
(𝑥 [𝐴𝑖] ≰𝑉𝑖 𝑣2), then they are contradictory in case there is a path

from 𝑣1 to 𝑣2 in 𝑉𝑖 (or 𝑣1 = 𝑣2).

The fact that the transitive closure is computed with respect

to the (possibly infinite) domain T of the t-tuples, and not with

respect to a (finite) t-relation 𝑟 of t-tuples, is quite standard for pref-

erence relations (see e.g., [6]), and has the advantage of yielding a

relation ⪰XT that does not change with 𝑟 and avoiding the problems

discussed in Example 3.1.

Example 3.2. Continuing with Example 2.10, the transitive clo-

sure of 𝐹 is the formula 𝐹T that, among others, adds the following

statements to 𝐹 :

𝑃5 = Amarone ⪰T red
𝑃6 = Siena ⪰T Langhe ∧ young

Statement 𝑃5 (𝑥,𝑦) clearly follows from 𝑃2 (𝑥, 𝑧) and 𝑃1 (𝑧,𝑦). More

interesting is statement 𝑃6 (𝑥,𝑦), obtained from 𝑃3 (𝑥, 𝑧) and 𝑃4 (𝑧,𝑦).
Since there exists at least one winery that is both in the Asti province
and in the Langhe region (Casorzo is one of them), this allows 𝑃3 (𝑥, 𝑧)
and 𝑃4 (𝑧,𝑦) to be transitively combined. With reference to the t-

tuples in Figure 1, we then have 𝑑 ⪰T 𝑓 . □

After applying the T operator, we simplify the formula as needed,

and, in particular, we remove statements that are subsumed by other

statements. Similarly, we also simplify statements by removing con-

tradictory clauses and clauses subsumed within the same statement.

3.2 Specificity-based Refinement
The most intriguing of our operators is the specificity-based re-

finement S. As it is also apparent from Example 2.10, conflicting

preferences, such as (𝑎, 𝑏) and (𝑏, 𝑎), may hold. Although these

preferences are compatible with the given definition of preference

relation, we argue that some of these conflicts need to be resolved

in order to derive a preference relation that better represents the

stated user preferences. To this end we resort to a specificity princi-

ple, which we adapt from the one typically used in non-monotonic

reasoning to solve conflicts. According to such a principle, a conclu-

sion derived from a more specific antecedent overrides a conflicting

(defeasible) inference based on a less specific antecedent, that is,

more specific information overrides more generic information.

Example 3.3. In our working example, we have a generic prefer-

ence for white wines over red wines. With no contradiction with

the generic preference, we might have a more specific preference

stating that a bottle of Amarone (a red wine) is superior to a bottle

of Arneis (a white wine). In this case, the more specific preference

would entail, among others, 𝑏 ⪰ 𝑎; yet, because of the more generic

preference for white wines, we also have 𝑎 ⪰ 𝑏, thus 𝑎 and 𝑏 be-

come indifferent. However, giving the same importance to both

preference statements contradicts the intuition, as the more specific

preference should take precedence over the more generic one. □

The specificity principle we adopt for analyzing conflicting pref-

erences is based on the extension of preferences statements, i.e., on

the set of pairs of t-tuples in T for which a statement is true.

Definition 3.4 (Specificity principle). Let ⪰X be a preference rela-

tion, and let 𝐹X be the corresponding formula. Let 𝑃𝑖 and 𝑃 𝑗 be two

preference statements in 𝐹X. We say that 𝑃𝑖 is more specific than 𝑃 𝑗
if, for any pair of t-tuples 𝑡1, 𝑡2 ∈ T such that 𝑃𝑖 (𝑡1, 𝑡2) is true, then
𝑃 𝑗 (𝑡2, 𝑡1) is also true, and the opposite does not hold.

From Definition 3.4 we can immediately determine how a less

specific statement has to be rewritten so as to solve conflicts.

Lemma 3.5. A preference statement 𝑃𝑖 (𝑥,𝑦) is more specific than

𝑃 𝑗 (𝑦, 𝑥) iff 𝑃𝑖 (𝑥,𝑦) implies 𝑃 𝑗 (𝑦, 𝑥) (written 𝑃𝑖 (𝑥,𝑦) → 𝑃 𝑗 (𝑦, 𝑥))
and the opposite does not hold.

1
If 𝑃 𝑗 (𝑦, 𝑥) is replaced by 𝑃 ′𝑗 (𝑦, 𝑥) =

𝑃 𝑗 (𝑦, 𝑥) ∧ ¬𝑃𝑖 (𝑥,𝑦), then 𝑃𝑖 and 𝑃 ′
𝑗
do not induce any conflicting

preferences.

Checking whether 𝑃𝑖 (𝑥,𝑦) implies 𝑃 𝑗 (𝑦, 𝑥) amounts to check-

ing whether 𝑃𝑖 (𝑥,𝑦) ∧ ¬𝑃 𝑗 (𝑦, 𝑥) is false, i.e., every clause in the

resulting formula is contradictory (contradictions can be checked

as described for T).
The S operator, whose behavior is defined by Algorithm 2, re-

moves from the preferences induced by a formula 𝐹X all those that

are conflicting and less specific.

Notice that, after a first analysis of the existing implications

among the statements (line (4)) and the rewriting of the implied

statements (line (5)), the analysis needs to be repeated, since new

implications might arise. For instance, let 𝐹X = 𝑃1 ∨ 𝑃2 ∨ 𝑃3, with

𝑃1 (𝑦, 𝑥) → 𝑃2 (𝑥,𝑦) being the only implication. After rewriting

𝑃2 (𝑥,𝑦) into 𝑃 ′
2
(𝑥,𝑦) = 𝑃2 (𝑥,𝑦) ∧ ¬𝑃1 (𝑦, 𝑥), it might be the case

that 𝑃 ′
2
(𝑥,𝑦) → 𝑃3 (𝑦, 𝑥), thus 𝑃3 needs to be rewritten.

Although multiple rounds might be needed, Algorithm 2 is guar-

anteed to terminate. Indeed, if 𝑃𝑖 (𝑥,𝑦) → 𝑃 𝑗 (𝑦, 𝑥), and 𝑃 𝑗 (𝑦, 𝑥) is
consequently replaced by 𝑃 ′

𝑗
(𝑦, 𝑥) = 𝑃 𝑗 (𝑦, 𝑥) ∧ ¬𝑃𝑖 (𝑥,𝑦), the two

statements 𝑃𝑖 and 𝑃 ′
𝑗
, as well as their possible further rewritings,

have disjoint extensions, and therefore will not interact anymore

in the rewriting process. Since the number of statements is finite,

so is the number of rewritings, which ensures that the algorithm

will eventually stop.

1
The hypothesis that 𝑃 𝑗 (𝑦, 𝑥) does not imply 𝑃𝑖 (𝑥, 𝑦) excludes the case of opposite
preference statements (e.g., white is better than red, and red is better than white), to

which the S operator clearly does not apply.

1863

Algorithm2: S operator: Specificity-based refinement of 𝐹X.

Input: formula 𝐹X = 𝑃1 ∨ . . . ∨ 𝑃𝑛 , taxonomies 𝑇1, . . . ,𝑇𝑑 .

Output: 𝐹XS, the specificity-based refinement of 𝐹X.

(1) repeat
(2) 𝑛𝑒𝑤𝑅𝑜𝑢𝑛𝑑 := false
(3) for each statement 𝑃𝑖
(4) 𝐼𝑚𝑝𝑙 (𝑃𝑖) := {𝑃 𝑗 |𝑃 𝑗 (𝑦, 𝑥) → 𝑃𝑖 (𝑥,𝑦) ∧ 𝑃𝑖 (𝑥,𝑦) ̸→ 𝑃 𝑗 (𝑦, 𝑥)}
(5) if 𝐼𝑚𝑝𝑙 (𝑃𝑖) ≠ ∅ then

𝑛𝑒𝑤𝑅𝑜𝑢𝑛𝑑 := true, 𝑃 ′
𝑖
;= 𝑃𝑖

for each 𝑃 𝑗 ∈ 𝐼𝑚𝑝𝑙 (𝑃𝑖)
𝑃 ′
𝑖
(𝑥,𝑦) := 𝑃 ′

𝑖
(𝑥,𝑦) ∧ ¬𝑃 𝑗 (𝑦, 𝑥)

(6) if 𝑛𝑒𝑤𝑅𝑜𝑢𝑛𝑑 then 𝑃𝑖 := 𝑃 ′
𝑖
, 𝑖 = 1, .., 𝑛

(7) until 𝑛𝑒𝑤𝑅𝑜𝑢𝑛𝑑 = false
(8) return 𝐹XS = 𝑃𝑖 ∨ . . . ∨ 𝑃𝑛

Here too, we simplify the formula resulting from the rewritings

according to the same principles used for the T operator.

Example 3.6. Continuing with Example 3.2, the application of the

S operator amounts to rewriting formula 𝐹T by replacing the clause

𝑃1 (𝑥,𝑦) with 𝑃1 (𝑥,𝑦) ∧ ¬𝑃2 (𝑦, 𝑥), since 𝑃2 (𝑦, 𝑥) → 𝑃1 (𝑥,𝑦). This,
after distributing ¬ over the two predicates in 𝑃2 and simplifying,

leads to the new clause:

𝑃7 = white ⪰TS red ∧ ¬Amarone.

The preferences that were derived from 𝑃1 can be seen in Example

2.10; we repeat them for the sake of clarity:

𝑃1 : (𝑎, 𝑏), (𝑎, 𝑐), (𝑎, 𝑒), (𝑓 , 𝑏), (𝑓 , 𝑐), (𝑓 , 𝑒).
Among them, (𝑎, 𝑏), (𝑎, 𝑐), (𝑓 , 𝑏), and (𝑓 , 𝑐) do not satisfy 𝑃7 (𝑥,𝑦),
since both 𝑏 and 𝑐 refer to Amarone. Thus, 𝑃7 : (𝑎, 𝑒), (𝑓 , 𝑒) . □

It is relevant to observe that the application of the S operator

always leads to smaller (i.e., cleaner) results. For instance, consid-

ering t-relation 𝑟 in Figure 1 and input preference statements 𝑃1
and 𝑃2 from Example 2.10, we have 𝛽≻ (𝑟) = {𝑎, 𝑏, 𝑐, 𝑑, 𝑓 }, whereas
𝛽≻S (𝑟) = {𝑏, 𝑐, 𝑑}.

Lemma 3.7. For any t-relation 𝑟 and any preference relation ⪰X
we have 𝛽≻XS (𝑟) ⊆ 𝛽≻X (𝑟).

4 MINIMAL-TRANSITIVE SEQUENCES
In this section we analyze the effect of performing the operations

described in the previous section, and prove some fundamental

properties of the obtained preference relations. After introducing

the basic properties and main desiderata in Section 4.1, we explore

the space of possible sequences in Section 4.2 and, as a major re-

sult, we show that, out of infinitely many candidates, only a finite

number of sequences needs to be considered. Finally, in Section 4.3

we identify the only two sequences that meet all our requirements.

4.1 Basic properties
In order to clarify the relationships between the results of the

different operations, we introduce the notions of equivalence and

containment between sequences of operators.

Definition 4.1 (Equivalence and containment). Let X, Y ∈ {T, S}∗;
X is contained in Y, denoted X ⊑ Y, if for every initial preference

relation ⪰, ⪰X⊆⪰Y; X and Y are equivalent, denoted X ≡ Y, if both
X ⊑ Y and Y ⊑ X.

Among the basic properties of our operators, we observe that

T and S are idempotent, T is monotone and cannot remove prefer-

ences, while S cannot add preferences. In addition, the preference

relation obtained after applying T on the initial preference relation

⪰ is maximal, in that it includes all other relations obtained from ⪰
by applying T and S in any way.

Theorem 4.2. Let X, Y ∈ {T, S}∗, with X ⊑ Y. Then:

XTT ≡ XT XSS ≡ XS idempotence (2)

XT ⊑ YT monotonicity (3)

X ⊑ XT XS ⊑ X inflation / deflation (4)

X ⊑ T maximality (5)

We now focus on those sequences, that we call complete, that

include both T and S, since their corresponding operations are

both part of the our requirements. In particular, transitivity of the

obtained strict preference relation is at the core of the computation

of the Best (𝛽) operator, as shown in Example 3.3. To this end,

we characterize as transitive those sequences that entail such a

transitivity.

Definition 4.3 (Complete and transitive sequence). A sequence

X ∈ {T, S}∗ is complete if X contains both T and S; X is transitive if,

for every initial preference relation ⪰, ≻X is transitive.

Eventually, our goal is to drop conflicting and less specific prefer-

ences while preserving transitivity. To this end, we add minimality

with respect to ⊑ as a desideratum. In particular, we want to deter-

mine the so-called minimal-transitive sequences, i.e., those that are

minimal among the transitive sequences. As it turns out, all such

sequences are also complete.

Definition 4.4 (Minimal-transitive sequence). Let Σ be a set of

sequences; X ∈ Σ is minimal in Σ if there exists no other sequence

Y ∈ Σ, Y ≢ X such that Y ⊑ X. A minimal-transitive sequence is a

sequence that is minimal in the set of transitive sequences.

4.2 The space of possible sequences
We now chart the space of possible sequences so as to understand

the interplay between completeness, transitivity and minimality.

We start by observing that any sequence with consecutive rep-

etitions of the same operator is equivalent, through idempotence,

to a shorter sequence with no such repetitions; for instance, TSS is

equivalent to TS. Since sequences with repetitions play no signifi-

cant role in our analysis, we shall henceforth disregard them.

Clearly, every sequence is contained in T, due to its maximality.

Other containment relationships follow from inflation of T and

deflation of S. Further relationships come from the following result,

stating that adding ST (i.e., removing conflicts and then transitively

closing the resulting preference formula) to a sequence ending with

T cannot introduce any new preference.

Lemma 4.5. Let X ∈ {T, S}∗. Then XTST ⊑ XT.

Lemma 4.5 induces two chains of inclusions, namely:

. . . ⊑ TSTST ⊑ TST ⊑ T (6)

. . . ⊑ STSTST ⊑ STST ⊑ ST. (7)

1864

In addition to that, the following result seems to suggest that

the longer sequences in the above chains are preferable, since they

lead to larger sets of strict preferences (≻), which, as was observed
in Section 2.2, correspond to smaller (i.e., cleaner) results for the

Best 𝛽 operator.

Proposition 4.6. Let X ∈ {T, S}∗. Then, for any initial preference
relation ⪰, we have ≻XT⊆≻XTST.

There are, evidently, infinitely many sequences in the chains (6)

and (7) and, more generally, in {T, S}∗. However, for any given

initial preference formula, a counting argument on the number of

formulas obtainable through the operators allows us to restrict to

only a finite amount of sequences. Moreover, it turns out that the

repeated application of a TS suffix does not change the semantics

of a sequence, so we can apply it just once and disregard all other

sequences.

Lemma 4.7. Let X ∈ {T, S}∗. Then XTS ≡ XTSTS.

An immediate consequence of this result is that, through elimi-

nation of consecutively repeated operators via idempotence and of

consecutively repeated TS sub-sequences via Lemma 4.7, we can

restrict our attention to a set of just eight sequences, because any

sequence is equivalent to one of those.

Theorem 4.8. Let X ∈ {T, S}∗. Then ∃Y ∈ {𝜀, T, S, TS, ST, TST,
STS, STST} such that X ≡ Y.

ε

T

S

ST

STS

STST TS

TST

Figure 4: A transitively reduced graph showing contain-
ment between sequences. Dashed border for incomplete
sequences; grey background for non-transitive sequences;
blue background for minimal-transitive sequences. All con-
tainment relationships are strict.

Figure 4 shows a (transitively reduced) graph whose nodes corre-

spond to the eight sequences mentioned in Theorem 4.8 and whose

arcs indicate containment. Thanks to the theorem, we have nar-

rowed the space of possible sequences to analyze from an infinite

set {T, S}∗ to just these eight sequences.

4.3 Minimality and transitivity
Now that we have restricted our scope to a small set of representa-

tive sequences, we can discuss minimality and transitivity in detail,

so as to eventually detect minimal-transitive sequences. Note that

incomplete sequences can be immediately ruled out of our analy-

sis: it is straightforward to show that S is not transitive, T is not

minimal (it is indeed maximal) and 𝜀 is neither.

Minimality. Generally, any complete sequence not ending with

S is non-minimal, in that it may contain conflicting preferences

(possibly introduced by T) that turn out to be in contrast with other,

more specific preferences. We exemplify this on ST. In the examples

to follow, we shall refer to t-tuples with a single attribute on a single

taxonomy about time.

Example 4.9. Let 𝐹 consist of 𝑃1 and the more specific 𝑃2:

𝑃1 = autumn ⪰ sep, 𝑃2 = sep10 ⪰ oct10.

By specificity, in 𝐹S, 𝑃1 is replaced by the statement 𝑃3 consisting

of two clauses (grouped by curly brackets):

𝑃3 =

{︃
autumn ⪰ sep ∧ ¬sep10

autumn ∧ ¬oct10 ⪰ sep

In 𝐹ST, the clauses in 𝑃3 transitively combine into 𝑃1 again, since,

e.g., the value sep30 is below sep but not sep10 and below autumn
but not oct10; therefore oct10 ⪰ST sep10 holds. However, in 𝐹STS, 𝑃1
is again replaced by 𝑃3, so that oct10 ̸⪰STS sep10, which shows that

ST is not minimal. □

All the containments indicated in Figure 4 are strict, as can be

shown through constructions similar to that of Example 4.9, so no

sequence ending with T is minimal in {T, S}∗.

Lemma 4.10. Let X ∈ {T, S}∗. Then XT is not minimal in {T, S}∗.

Transitivity. Transitivity is certainly achieved for any sequence
ending with T: any relation ⪰XT is transitive by construction, which

entails transitivity of ≻XT. However, the following result shows that,

in the general case, no sequence ending with S is transitive.

Lemma 4.11. Let X ∈ {T, S}∗. Then XS is not transitive.

Minimal-transitive sequences. As a consequence of Lem-

mas 4.10 and 4.11, we can state a major result, showing that transi-

tivity and minimality in {T, S}∗ are mutually exclusive.

Theorem 4.12. No sequence is both transitive and minimal in

{T, S}∗.

Moreover, we observe that all complete sequences starting with

S are incomparable (i.e., containment does not hold in any direction)

with those starting with T, as stated below (also refer to Figure 4).

Theorem 4.13. Let X ∈ {TS, TST} and Y ∈ {ST, STS, STST}. Then
X ⋢ Y and Y ⋢ X.

This property is shown for TS and STS in the next example.

Example 4.14. Let 𝐹 consist of the following statements:

𝑃1 = summer ⪰ spring, 𝑃2 = jul21 ⪰ jun, 𝑃3 = may ⪰ jul.

Then 𝐹T includes 𝑃1, 𝑃3 and the following 4 statements:

𝑃4 = summer ⪰ jul (𝑃1 + 𝑃3), 𝑃5 = may ⪰ spring (𝑃3 + 𝑃1),
𝑃6 = may ⪰ jun (𝑃3 + 𝑃2), 𝑃7 = summer ⪰ jun (𝑃1 + 𝑃6),
while 𝑃2 is removed, as it is redundant with respect to 𝑃7. No

statement in 𝐹T is more specific than 𝑃4, so 𝑃4 is in 𝐹TS and, e.g.,

jul21 ⪰TS jul10 holds. In 𝐹S, instead, 𝑃1 (less specific than 𝑃3) is

replaced by

𝑃8 =

{︃
summer ⪰ spring ∧ ¬may

summer ∧ ¬jul ⪰ spring

1865

So, now, by combining 𝑃8 (instead of 𝑃1) and 𝑃3, in 𝐹ST we do not

obtain 𝑃4 and then jul21 ̸⪰STS jul10. With this, TS ⋢ STS.
For the other non-containment, consider that, in 𝐹ST, 𝑃2 com-

bines with 𝑃8 into the following statement:

𝑃9 = jul21 ⪰ spring,

so that jul21 ⪰ST may holds. No statement in 𝐹ST is more specific

than 𝑃9, so jul21 ⪰STS may also holds. Instead, jul21 ̸⪰TS may, since
𝐹TS is as 𝐹T, but with 𝑃8 instead of 𝑃1. Therefore STS ⋢ TS. □

The notion of minimal-transitive sequence captures the fact

that transitivity cannot be waived, since we are indeed looking for

the minimal sequences among those that are both complete and

transitive. Only three sequences are both complete and transitive:

ST, TST and STST, the first of which contains the last one and is

therefore not minimal. The remaining two sequences are transitive,

incomparable by Theorem 4.13, and, therefore, minimal in the set of

complete and transitive sequences, i.e., TST and STST are minimal-

transitive sequences.

Theorem 4.15. The only minimal-transitive sequences are TST
and STST.

As observed in Theorem 4.13, the sequence STST, which removes

less specific conflicting preferences before computing the first tran-

sitive closure, does not in general entail a set of preferences included

in those induced by TST. We shall further characterize the behavior

of these two sequences in Section 5, from a theoretical point of

view, and, experimentally, in Section 6.

We also observe that the result of Theorem 4.12 is inherent

and that no finer granularity in the interleaving of T and S (e.g., by

making S resolve one conflict at a time instead of all together) would

remove this limitation: as Example 4.9 shows, the presence of one

single preference (oct10 ⪰ sep10) is sufficient to make the relation

transitive but not minimal, and its absence to make it minimal but

not transitive. The atomicity of this conflict is enough to conclude

that it is unavoidable and that no method whatsoever (not just

those based on the T and S operators) could solve it.

5 COMPUTING THE BEST RESULTS
5.1 Worst-case difference between TST and STST
As shown in Theorem 4.13, the two minimal-transitive semantics

are incomparable, thus there will be t-relations 𝑟 and initial pref-

erence relations ⪰ for which the best results delivered by the two

semantics will differ. A legitimate question is: How much can these

results be different? In order to answer this question we consider

the maximum value of the cardinality of the difference of the re-

sults delivered by the two minimal-transitive semantics over all

t-relations with 𝑛 t-tuples and over all input preference relations ⪰.
To this end, let us define, for any two sequences X and Y:

DiffBest(X, Y, 𝑛) = max

⪰, |𝑟 |=𝑛

{︁
|𝛽≻X (𝑟) − 𝛽≻Y (𝑟) |

}︁
as the worst-case difference in the results delivered by X with re-

spect to those due to Y, for any given cardinality of the target

t-relation 𝑟 . We can prove the following:

Theorem 5.1. We have both DiffBest(TST, STST, 𝑛) = Θ(𝑛) and
DiffBest(STST, TST, 𝑛) = Θ(𝑛).

From a practical point of view, Theorem 5.1 shows that there

is no all-seasons minimal-transitive semantics. Furthermore, there

can be cases (used in the proof of the theorem) in which the number

of best results from any of the two semantics is comparable to 𝑛,

whereas the other semantics returns O(1) t-tuples. In Section 6

we will experimentally investigate the actual difference of results

delivered by the two minimal-transitive semantics.

5.2 A heuristics for computing the best results
In order to compute the best results according to the formula 𝐹X

we adopt the well-known BNL algorithmic pattern [2]. We remind

that BNL-like algorithms have worst-case quadratic complexity,

although in practice they behave almost linearly [11]. Remind also

that, according to Equation (1), given a preference formula 𝐹X (𝑥,𝑦)
defining weak preferences, the corresponding strict preferences are

those induced by the formula 𝐹X≻ (𝑥,𝑦) = 𝐹X (𝑥,𝑦) ∧ ¬𝐹X (𝑦, 𝑥).
The t-tuples that do not match any side of any clause in the

preference formula correspond to those objects that the formula

does not talk about and that can, thus, be considered irrelevant. As

recognized in the germane literature [10], such objects are of little

interest and, in the following, we shall therefore compute 𝛽 so as

to only include relevant t-tuples (i.e., those that satisfy either side

of at least one clause of 𝐹X, thus of 𝐹X≻ as well).

The algorithm keeps the current best t-tuples in the 𝐵𝑒𝑠𝑡 set.

When a new t-tuple 𝑡 is read, and 𝑡 is found to be relevant, 𝑡 is

compared to the tuples in 𝐵𝑒𝑠𝑡 . Given 𝑡 ′ ∈ 𝐵𝑒𝑠𝑡 , if 𝑡 ′ ≻X 𝑡 then

𝑡 is immediately discarded. Conversely, 𝑡 is added to 𝐵𝑒𝑠𝑡 and all

t-tuples 𝑡 ′ ∈ 𝐵𝑒𝑠𝑡 such that 𝑡 ≻X 𝑡 ′ are removed from the 𝐵𝑒𝑠𝑡 set.

Eventually, we have 𝛽≻X (𝑟) = 𝐵𝑒𝑠𝑡 .

An improvement to this basic scheme is to pre-sort the t-relation

so that the t-tuples matching the left side of a clause and corre-

sponding to lower-level values in the taxonomies come first. The

rationale is that lower-level values are likely associated with a

smaller amount of t-tuples, so that a smaller 𝐵𝑒𝑠𝑡 partial result

can be found before scanning large amounts of data. Furthermore,

such t-tuples are likely to be preferred to many others, in partic-

ular when specificity is a concern. More in detail, we scan 𝑟 and,

for each relevant t-tuple 𝑡 (irrelevant t-tuples are immediately dis-

carded) we compute a height index, ℎ𝑖 (𝑡), as follows: For any clause
𝐶 (𝑥,𝑦) = 𝐶𝑏 (𝑥) ∧ 𝐶𝑤 (𝑦) such that 𝐶𝑏 (𝑡) holds, we consider the
“height” of each value 𝑣 occurring in the clause, computed as the

distance of 𝑣 from the leaves of its taxonomy.
2
Then, the minimum

height over predicates in𝐶𝑏 (𝑡) and over all other matching clauses

is used as value ofℎ𝑖 (𝑡), and t-tuples are sorted by increasing height
index values; conventionally, when 𝑡 matches no clauses, we set

ℎ𝑖 (𝑡) = ∞.

Example 5.2. Consider a formula 𝐹 = 𝑃1∨𝑃2, where 𝑃1 and 𝑃2 are
taken from Example 2.10. Then, we have 𝐹STST = 𝑃3∨𝑃2∨𝑃4, where
𝑃3 = white ⪰ red ∧ ¬Amarone and 𝑃4 = Amarone ⪰ red ∧ ¬Amarone.
Out of the t-tuples in Figure 1, 𝑑 is irrelevant, while 𝑒 does not

match any clause, and thus ℎ𝑖 (𝑒) = ∞. Wines 𝑎 and 𝑓 match white
in 𝑃3, which has height 1 (see Figure 2b), soℎ𝑖 (𝑎) = ℎ𝑖 (𝑓) = 1, while

𝑏 and 𝑐 match Amarone in both 𝑃2 and 𝑃4, with ℎ𝑖 (𝑏) = ℎ𝑖 (𝑐) = 0.

Thus, 𝑏 and 𝑐 come before 𝑎 and 𝑓 in the ordering, and 𝑒 is last. □

2
In case of non-functional taxonomies, in which a node may have more than one

parent, we take the minimum distance.

1866

6 EXPERIMENTS
In this section, we consider from a practical point of view the se-

quences of operators T, TST, and STST, discussed in the previous

sections. The main goals of the experimental study are: (i) to un-

derstand the impact of the rewriting process on the overall query

execution time and how this depends on the specific sequence at

hand; (ii) to assess the effect of minimal-transitive sequences on (the

cardinality of) the results of the 𝛽 (Best) operator; (iii) to compare

overall execution times incurred by minimal-transitive sequences

with respect to baseline strategies in which either no rewriting oc-

curs or only the transitive closure of the input formula is computed;

(iv) to measure the effects of the heuristics presented in Section 5. In

particular, we study how efficiency and effectiveness are affected by

taxonomy’s size and morphology, dataset size, number of attributes,

and number and type of preferences. The relevant parameters used

in our analysis are summarized in Table 1.

In summary, we show that: the rewriting due to the minimal-

transitive sequences TST and STST incurs a low overhead across all

tested scenarios; such sequences are effective both in reducing the

cardinality of 𝛽 and in achieving substantial speedup with respect

to baseline strategies, and that the speedup is further incremented

when adopting our heuristics.

Table 1: Operating parameters for performance evaluation
(defaults, when available, are in bold).

Full name Tested value

Taxonomy’s depth 𝛿 2, 3, 4, 5, 6, 7, 8, 9, 10
Taxonomy’s fanout 𝑓 2, 3, 4, 5, 6, 7, 8, 9, 10
Synthetic taxonomy’s kind regular, random, scale-free

of attributes 𝑑 1, 2, 3, 4, 5
of input clauses 𝑐 2, 4, 6, 8, 10
of maximal values 2, 4, 6, 8, 10
Type of preferences conflicting, contextual
Dataset size 𝑁 10K, 50K, 100K, 500K, 1M

6.1 Taxonomies, datasets, and preferences
We use two families of taxonomies: synthetic and real taxonomies.

We run our tests on three kinds of synthetic taxonomies: regular,

random and scale-free. A regular taxonomy is generated as a forest

of 𝑓 (“fanout”) rooted trees consisting of 𝛿 levels and 𝑓 children for

each internal node. The total number of nodes is therefore

∑︁𝛿
𝑖=1 𝑓

𝑖
,

i.e.,
𝑓 (𝑓 𝛿−1)

𝑓 −1 . A random taxonomy is generated as in the previous

case, but the fanout of each node is Poisson distributed with an

average of 𝑓 . The default values for 𝑓 and 𝛿 are chosen to match the

size of the real taxonomies used in the experiments (15-20K nodes).

Finally, a scale-free taxonomy targets the same number of nodes,

but following a power-law distribution (which is observed to be a

recurrent structure, e.g., in the Semantic Web; see [26, 27]), for the

fanout. Scale-free taxonomies generated this way (with reasonable

exponents around 2.7) are typically very deep (between 30 and 60

levels). All synthetic taxonomies are functional by construction, i.e.,

every node has exactly one parent. Synthetic datasets of various

sizes are generated by drawing values uniformly at random from a

different taxonomy for each attribute.

We adopt two real taxonomies and datasets: flipkart3 and

UsedCars4. The former lists product categories of various kinds

and consists of 15,236 nodes (of which 12,483 leaf categories) and

15,465 arcs spread throughout 10 levels. This taxonomy is non-

functional, in that there exist nodes with more than one parent, i.e.,

some products belong to more than one category. Product info is

available as a t-relation consisting of 19,673 t-tuples that also include

original price, discounted price, and user rating, rendered here as

attributes associated with a “flat” taxonomy with three values (e.g.,

“high”, “medium”, “low”). UsedCars features a large collection of

used vehicles for sale consisting, after cleaning, of 232,470 t-tuples

including, among others, price range (as a flat taxonomy) and model.

Models are organized in a functional taxonomy, with 14,588 nodes

and 14,540 leaves, over three levels (besides model name and make,

we obtained country information via the Car Models List DB
5
).

The study of the best taxonomy representation in the general

case is orthogonal with respect to the problems we study in this

paper (see, e.g., [14]). However, given the taxonomies we deal with,

it is convenient to precompute all paths in order to speed up all

taxonomy-based computations, e.g., establishing when a value is

more specific than another.

For our experiments, we consider two common types of pref-

erences, discussed below: conflicting preferences and contextual

preferences. We omit the results concerning other common types

of preferences, as their behavior is not essentially different.

A pair of conflicting preference statements has the following form:

𝑃1 = 𝑣1 ⪰ 𝑣2, 𝑃2 = 𝑣 ′
2
⪰ 𝑣1,

where 𝑣1 and 𝑣2 are maximal values (i.e., tree roots) of the same

taxonomy 𝑇𝑖 and 𝑣
′
2
≤𝑉𝑖 𝑣2. Clearly, 𝑃2 is more specific than 𝑃1.

The second kind of preferences, used for experiments on multi-

attribute relations, are pairs of conflicting contextual preferences, i.e.,

conflicting preferences applied to one attribute, in which the other

attributes are used to establish a sort of “context” of applicability.

A pair of contextual preferences is of the following form:

𝑃1 = 𝑣
(1)
1

∧ 𝑣 (2) ∧ . . . ∧ 𝑣 (𝑑) ⪰ 𝑣
(1)
2

∧ 𝑣 (2) ∧ . . . ∧ 𝑣 (𝑑) ,

𝑃2 = 𝑣
′(1)
2

∧ 𝑣 (2) ∧ . . . ∧ 𝑣 (𝑑) ⪰ 𝑣
(1)
1

∧ 𝑣 (2) ∧ . . . ∧ 𝑣 (𝑑) ,

where the (𝑖) superscript denotes values from taxonomy𝑇𝑖 , 𝑣
(1)
1

and

𝑣
(1)
2

are maximal in 𝑇1, and 𝑣
′(1)
2

≤𝑉𝑖 𝑣
(1)
2

. Note that, when there are

𝑑 = 1 attributes, this is just a pair of conflicting preferences. For real

data, flat taxonomies are used for context attributes. An example

of contextual preference is given by statement 𝑃4 in Example 2.10.

6.2 Results: computation of the output formula
In order to assess feasibility of the computation of the preference

formula resulting after applying a sequence of operators, we report

the corresponding execution time averaged out over 100 different

runs (as measured on a machine sporting a 2,3 GHz 8-Core Intel

Core i9 with 32 GB of RAM).

Our first experiments test the impact of the characteristics of

the taxonomy in the case of synthetic taxonomies and one pair

of conflicting preferences. For regular taxonomies, computing 𝐹T

3
https://www.flipkart.com

4
https://www.kaggle.com/austinreese/craigslist-carstrucks-data

5
https://www.teoalida.com/cardatabase/car-models-list

1867

https://www.flipkart.com
https://www.kaggle.com/austinreese/craigslist-carstrucks-data
https://www.teoalida.com/cardatabase/car-models-list

2 4 6 8 10
0

50

100

150

200

maximal values

tim
e
to
fo
rm
ul
a
(m
s)

TST

STST

T

(a) Scale-free taxonomies.

2 4 6 8 10
0.0

0.1

0.2

0.3

0.4

0.5

input clauses

tim
e
to
fo
rm
ul
a
(s
)

TST

STST

T

(b) Regular taxonomies.

1 2 3 4 5
0.000

0.002

0.004

0.006

0.008

attributes

tim
e
to
fo
rm
ul
a
(s
)

TST

STST

T

(c) Contextual preferences.

2 4 6 8 10
0.0

0.1

0.2

0.3

0.4

0.5

0.6

input clauses

tim
e
to
fo
rm
ul
a
(s
)

TST

STST

T

(d) flipkart taxonomy.

Figure 5: Time for computing the formula: various settings.

(0.5𝑚𝑠 on average) is generally faster than computing 𝐹STST (1.5𝑚𝑠)

and 𝐹TST (2.7𝑚𝑠) and neither 𝑓 nor 𝛿 affect the computation time

significantly. Similar times are obtained with random taxonomies.

With scale-free taxonomies the same relative costs are kept, but

times are slightly higher, due to the much deeper structure, and

tend to decrease as the the number of maximal nodes increases,

as shown in Figure 5a; still, all times are well under 0.2𝑠 and thus

negligible with respect to the time required for computation of 𝛽 ,

as will be shown in Section 6.3.

Figure 5b shows that the time for computing the formula grows

with the number of input clauses, with times always below 0.5𝑠 .

For a multi-attribute scenario, Figure 5c shows the behavior

with contextual preferences as the number of attributes varies.

The resulting formula is always computed in less than 0.01𝑠 ; times

slightly grow as the number of attributes grows, but remain low.

We now turn to the case of real taxonomies. With UsedCars,
which is functional, results are very similar to those obtained with

synthetic taxonomies and thus not shown here in the interest of

space. We then test on flipkart, which is non-functional, the case

of conflicting preferences as the number of input clauses 𝑐 varies.

This has an impact on the overhead for determining redundancies

in formulas and for checking clause satisfiability when computing

T. Indeed, both require checking whether two values 𝑣1 and 𝑣2 have

a common descendant in the taxonomy, which is immediate in the

case of functional taxonomies, as it suffices to check whether there

is a path from 𝑣1 to 𝑣2 or vice versa. However, for non-functional

taxonomies this check may require extracting all descendants of 𝑣1
and 𝑣2, which may be expensive for large taxonomies, especially

when 𝑣1 and 𝑣2 are maximal values. Yet, for taxonomies in which

only few nodes have more than one parent (like flipkart, with
170 such nodes), it is convenient to keep track of those nodes at

taxonomy load time; with this, we can check the existence of a com-

mon descendant between 𝑣1 and 𝑣2 by checking whether there is a

path to both from one of those nodes (if they are not the descendant

of one another). As Figure 5d shows, the times measured with the

flipkart taxonomy are only slightly higher than with synthetic

taxonomies (and always sub-second).

average median
0

500

1000

1500

2000

|B
es
t|

TST

STST

T

ε

(a) Cardinality of 𝛽 .

average median
0

5

10

15

20

25

tim
e
fo
r
B
es
t(
s)

TST

STST

T

ε

(b) Time for computing 𝛽 .

Figure 6: Computing 𝛽 with default parameter values.

6.3 Results: computation of 𝛽
As discussed in Section 5, we restrict the 𝛽 operator to act only on

relevant t-tuples. In the same vein, we shall only consider prefer-

ences inducing a non-empty set of relevant t-tuples.

With conflicting preferences and default parameter values on

regular taxonomies, the amount of relevant t-tuples is roughly 40%

of the size of a synthetic dataset. Figure 6a shows that both T and 𝜀

retain about half of the relevant t-tuples (which is both the average

and the median value we obtained), while TST and STST retain less

than 2% in the median case (the average value goes up to 20% due

to runs with unfocused input formulas referring to values not in

the dataset). This is reflected in the computation times, shown in

Figure 6b, which are consistently around 24𝑠 for T and 10𝑠 for 𝜀, but

nearly two orders of magnitude smaller in the median case for TST
and STST. With both scale-free and random taxonomies, the amount

of relevant t-tuples varies much more (with an average still around

40%), but times are on average one order of magnitude smaller for

TST and STST than for T, with results for the latter covering almost

the entire dataset due to the lack of conflict resolution.

We observe that the application of T alone corresponds to the

work performed by preference evaluation methods that only aim

at guaranteeing transitivity, e.g., [6, 12, 17], which are therefore

outperformed by our approach. The inability of T to deal with

conflicting preferences, thus generating many indifferent t-tuples,

which in turn induce (very) large result sets, indeed applies to all our

scenarios. Similar observations apply to 𝜀 (i.e., the empty sequence,

corresponding to the input formula), which represents the action

of works on preference evaluation using no rewriting whatsoever,

such as [5, 20]. Additionally, the results obtained via 𝜀 would be

totally unreliable, due to lack of transitivity (see Example 3.1). We

thus refrain from considering T and 𝜀 from now on.

We now analyze the cost incurred by the computation of 𝛽 as we

deviate from standard parameter values. In the case of contextual

preferences, adding context makes the 𝛽 set leaner and, thus, easier

to compute, so that times are under 1𝑠 already with two attributes.

As usual, STST is slightly quicker to compute, since it gives rise to

a smaller formula (although its strict version coincides with that of

TST, and thus their cardinalities coincide).

As already visible in Figure 6, random preference formulas may

fail to represent a meaningful specification of preferences, thus

leading to very large result sets. For this reason, we disregard such

formulas and, in particular, in the next experiments we only retain

those “good runs” in which either TST or STST produce less than 2%

of the t-tuples in the dataset. Figure 7a shows how the cardinality

of 𝛽 varies, under these hypotheses and default parameter values,

as the number of input clauses 𝑐 varies, thus confirming that STST
typically leads to a smaller result than TST.

1868

2 4 6 8 10
0

10

20

30

40

50

initial clauses

|B
es
t|

TST

STST

(a) Cardinality of 𝛽 .

2 4 6 8 10
0

20

40

60

80

100

120

140

initial clauses

tim
e
fo
r
B
es
t(
s)

TST

STST

TSTH

STSTH

(b) Time for computing 𝛽 with and
without heuristic sort (H).

Figure 7: Synthetic datasets: conflicting preferences, varying
the number of input clauses 𝑐 (only good runs).

10K 50K 100K 500K 1M
0

50

100

150

size

|B
es
t|

TST

STST

(a) Cardinality of 𝛽 .

10K 50K 100K 500K 1M
0

5

10

15

20

size

tim
e
fo
r
B
es
t(
s)

TSTH

STSTH

(b) Time for computing 𝛽 with
heuristic sort (H).

Figure 8: Synthetic datasets: varying the dataset size 𝑁 (only
good runs, size in logarithmic scale).

2 4 6 8 10
0

5

10

15

initial clauses

|B
es
t|

TST

STST

(a) Cardinality of 𝛽 .

2 4 6 8 10
0.0

0.5

1.0

1.5

2.0

initial clauses

tim
e
fo
r
B
es
t(
s)

TSTH

STSTH

(b) Time for computing 𝛽 with
heuristic sort (H).

Figure 9: flipkart: conflicting preferences, varying the num-
ber of input clauses 𝑐 (only good runs).

We now consider the heuristics described in Section 5, which

sorts the t-relation according to increasing height index values.

Figure 7b compares times obtained with the heuristic sort strategy

(marked with an 𝐻 subscript) to those obtained with no heuristics

as the number of input clauses 𝑐 varies. The sort takes between 3%

and 10% of the total time spent for computing 𝛽 , yet the use of the

proposed heuristics largely outperforms standard executions, with

times never exceeding 2𝑠; without the heuristics, times diverge to

well over 100𝑠 , on average, in the more expensive scenarios.

Having ascertained the suitability of the heuristic sort, we demon-

strate its scalability with the experiment shown in Figure 8, which

shows a linear trend for times as the size 𝑁 of the dataset varies,

while cardinalities tend to grow logarithmically.

The trends shown with synthetic data are confirmed with real

data on flipkart. Figure 9a shows that the cardinality of 𝛽 typi-

cally grows as the number of input clauses grows. Consequently,

Figure 9b shows times slightly growing with the number of input

clauses, but always under 2.1𝑠 . The case of contextual preferences

is shown in Figure 10, where times decrease as the number of at-

tributes grows, since the number of relevant t-tuples decreases with

the number of applied contexts. For the same reason, the cardinality

1 2 3 4
0

10

20

30

40

50

60

attributes

|B
es
t|

TST

STST

(a) Cardinality of 𝛽 .

1 2 3 4
0.00

0.02

0.04

0.06

0.08

0.10

0.12

attributes

tim
e
fo
r
B
es
t(
s)

TSTH

STSTH

(b) Time for computing 𝛽 with
heuristic sort (H).

Figure 10: flipkart: contextual preferences, varying the
number of attributes 𝑑 (only good runs).

(a) User interface.

100

200

300

400

500

600

|B
es
t|

TST
STST

(b) Cardinality of 𝛽 .

2

4

6

8

10

12

14

tim
e
fo
r
B
es
t(
s)

TSTH
STSTH

(c) Time for computing 𝛽 .

Figure 11: User interface and experiments on UsedCars.

of 𝛽 is higher with 2 or 3 attributes than with 4; however, with only

1 attribute (and thus no context) the cardinality is the lowest, since

the t-tuples satisfying the most specific preference are not filtered

out by contexts.

For experiments on UsedCars, we collected preferences from a

set of 107 users by means of a Web interface allowing the specifica-

tion of statements in the simplified notation presented in Section 2

through an expandable tree-view of the taxonomy (see Figure 11a).

After instructing users on how to specify preferences (even con-

flicting ones), we observed an average of 3.4 statements (from 2 to

9) per query and as many as 78% of cases of conflicts. Figure 11b

shows box plots representing the distributions of cardinalities of 𝛽

obtained with user-defined preferences, which confirms that STST
tends to produce slightly smaller results than TST. We observe that

such cardinalities, typically corresponding to the number of cars

available for a specific model and price range, are very low with

respect to the dataset size (and could be further reduced if filters

based on other criteria, such as mileage, were applied). Execution

times (Figure 11c) are, on average, below 10𝑠 for both sequences,

and thus overall acceptable and comparable with the measurements

obtained with similarly sized synthetic data (Figure 8b).

7 RELATEDWORKS AND DISCUSSION
In spite of the many works on the use of qualitative preferences for

querying databases (see, e.g., [25]), only a few address the issues

arising when attributes’ domains exhibit a hierarchical structure.

Preferences in OLAP systems are considered in [12], where an

algebraic language, based on that in [17], is adopted. Preferences on

1869

attributes are only of an absolute type, stating which are the most

(resp. least) preferred values at a given “level” of a dimensional

attribute. Preferences are then propagated along levels, with no

concern for the combination of preferences, less so conflicting ones.

Lukasiewicz et al. [20] extend the Datalog+/- ontological lan-

guage with qualitative preferences, yet they do not address the

problems arising from conflicting preferences. In a subsequent

work [21], the authors assume that, besides the order generated

by the preferences, another linear order exists, originating from

probabilistic scores attached to specific objects. Since the two or-

ders may conflict, ad-hoc operators for compromising among the

two orders are introduced and evaluated. Although [21] considers

conflicts, these are not among preferences and their solutions are

not applicable to the scenario we consider in this paper.

To the best of our knowledge, no other work addresses the exact

same issues we tackle here. Yet, Section 6.3 has shown how existing

methods (those that just enforce transitivity as well as works on

preference evaluation using no rewritings) would be unsuitable to

meet the goals we set in this paper.

The specificity principle on which we have based the definition

of our S operator follows a long-standing tradition in the AI and

KR fields, in which conflicts arising from contradictory evidences

(antecedents) are solved by means of non-monotonic reasoning.

However, in this context, the issue of inheritance of properties,

which can be dealt with in different ways according to the adopted

reasoning theory (see, e.g., [13]), leads to problems that are quite

different from those we have considered in this paper.

The need to address conflicts arising from preferences was also

observed in [8]. The framework proposed there allows for a re-

stricted form of taxonomies (with all values organized into distinct,

named levels) and hints at an ad hoc procedure with very limited

support for conflict resolution; the focus of [8] is, however, on the

downward propagation of preferences.

A kind of specificity principle was also considered in [9], albeit

on a different preference model (using strict rather than weak pref-

erences) and a different scenario, in which preferences are to be

combined across different contexts. In that work, given two conflict-

ing preferences, e.g., 𝑎 ≻ 𝑏, which is valid in a context 𝑐 , and 𝑏 ≻ 𝑎

valid in context 𝑐 ′, if context 𝑐 is more specific than 𝑐 ′ then 𝑎 ≻ 𝑏

wins and 𝑏 ≻ 𝑎 is discarded. Thus, specificity considered in [9]

concerns contexts, whereas, in the present paper, specificity has to

do with preference statements that involve values at different levels

of detail in the taxonomies. Conflicts in [9] are at the level of a

single pair of objects (since no language for specifying preferences

was considered there), whereas in the present work we deal with

conflicts between preference statements, which in general involve

many pairs of objects - a fact that requires a solution incomparable

with those adopted in [9].

A line of research that is only apparently related to ours concerns

the problem of propagating preferences across the nodes/terms of

an ontology, see, e.g., [3, 4, 23]. Given “interest scores” attached to

some terms, these works focus on (numerical) methods to combine

and propagate such scores to “similar” terms in the ontology.

A definitely relevant issue, orthogonal to our focus and thus

outside the scope of this paper, is that of preference elicitation. This

problem has been thoroughly studied in various fields, such as Rec-

ommender Systems, decision making, marketing, and behavioral

economics, with remarkable recent attention on relative preferences,

either expressed with pairwise comparisons or inferred from abso-

lute preferences [15, 16].

Commonmethods to solve conflicts among preferences are based

on the use of operators, the most well-known being Pareto and

Prioritized composition [6, 9, 17]. Given a conflict between 𝑎 and 𝑏

originating from two different preference statements, Pareto com-

position just drops both preferences 𝑎 ≻ 𝑏 and 𝑏 ≻ 𝑎. Conversely,

Prioritized composition a priori assumes that one of the two state-

ments is more important than the other, and then solves the conflict

by retaining the corresponding preference.We have no such a-priori

notion of priority, which might be hard to define in practice; rather,

we rely on a definition of specificity that dynamically determines

if a statement takes precedence over another depending on the

available taxonomies.

Many algorithms have been devised to answer preference

queries, although most of them work only for numerical attributes

[18]. Among the algorithms that can be applied to arbitrary strict

partial orders ≻, BNL [2] is undoubtedly the most well-known

among those that compute the result sets by means of dominance

tests. Improvements to the BNL logic, such as those found in the

SFS [7] and SaLSa [1] algorithms, require the input relation to be

topologically sorted, which in these algorithms is based on the

presence of numerical attributes. A different approach, pioneered

in [10], avoids (most of the) dominance tests by partitioning the

domain of (relevant) tuples into a set of equivalence classes, where

each class includes all and only those tuples whose values are the

best for a subset of the input preference statements. For instance,

a statement like (𝐴𝑖 = 𝑣) ⪰ (𝐴𝑖 = 𝑣 ′) induces two equivalence

classes, the first including all tuples with value 𝑣 for attribute 𝐴𝑖 ,

and the second those with value 𝑣 ′. For each equivalence class a

different SQL query is then executed, until it is guaranteed that no

further optimal tuples exist. However, since the number of equiv-

alence classes is exponential in the number of input statements,

this approach cannot be adopted in our framework, in which the

rewritten formula to be evaluated, due to the transitive closure

operator, can well contain tens of statements.

8 CONCLUSIONS
In this paper we have tackled the problem of finding the best el-

ements from a repository on the basis of preferences referring to

values that are more generic than the underlying data and may

involve conflicts. To this aim, we have introduced and formally

investigated two operators for enforcing, in a given collection of

preferences, the properties of specificity, which can solve conflicts,

and transitivity, which guarantees the soundness of the final result.

We have then characterized the limitations that can arise from their

combination and identified the best ways in which they can be used

together. We have finally proposed a technique based on an origi-

nal heuristics for selecting the best results associated with given

sequences of operators and shown, with a number of experiments

over both synthetic and real-world datasets, the effectiveness and

practical feasibility of the overall approach. Future work includes

extending our framework to more general scenarios in which do-

main values are connected by ontological relationships, as is the

case in Ontology-Based Data Access [28].

1870

REFERENCES
[1] Ilaria Bartolini, Paolo Ciaccia, and Marco Patella. 2008. Efficient sort-based

skyline evaluation. ACM Trans. Database Syst. 33, 4 (2008), 31:1–31:49. https:

//doi.org/10.1145/1412331.1412343

[2] Stephan Börzsönyi, Donald Kossmann, and Konrad Stocker. 2001. The Skyline

Operator. In Proceedings of the 17th International Conference on Data Engineering,

April 2-6, 2001, Heidelberg, Germany. 421–430. https://doi.org/10.1109/ICDE.2001.

914855

[3] Federica Cena, Silvia Likavec, and Francesco Osborne. 2013. Anisotropic propa-

gation of user interests in ontology-based user models. Inf. Sci. 250 (2013), 40–60.

https://doi.org/10.1016/j.ins.2013.07.006

[4] Gil Chamiel and Maurice Pagnucco. 2008. Exploiting Ontological Structure

for Complex Preference Assembly. In AI 2008: Advances in Artificial Intelli-

gence, 21st Australasian Joint Conference on Artificial Intelligence, Auckland,

New Zealand, December 1-5, 2008. Proceedings (Lecture Notes in Computer Sci-

ence), Wayne Wobcke and Mengjie Zhang (Eds.), Vol. 5360. Springer, 86–92.

https://doi.org/10.1007/978-3-540-89378-3_9

[5] Chee Yong Chan, H. V. Jagadish, Kian-Lee Tan, Anthony K. H. Tung, and Zhenjie

Zhang. 2006. Finding k-dominant skylines in high dimensional space. In Pro-

ceedings of the ACM SIGMOD International Conference on Management of Data,

Chicago, Illinois, USA, June 27-29, 2006, Surajit Chaudhuri, Vagelis Hristidis, and

Neoklis Polyzotis (Eds.). ACM, 503–514. https://doi.org/10.1145/1142473.1142530

[6] Jan Chomicki. 2003. Preference formulas in relational queries. ACM Trans.

Database Syst. 28, 4 (2003), 427–466. https://doi.org/10.1145/958942.958946

[7] Jan Chomicki, Parke Godfrey, Jarek Gryz, and Dongming Liang. 2003. Sky-

line with Presorting. In Proceedings of the 19th International Conference on Data

Engineering, March 5-8, 2003, Bangalore, India, Umeshwar Dayal, Krithi Ra-

mamritham, and T. M. Vijayaraman (Eds.). IEEE Computer Society, 717–719.

https://doi.org/10.1109/ICDE.2003.1260846

[8] Paolo Ciaccia, Davide Martinenghi, and Riccardo Torlone. 2019. Finding Pre-

ferred Objects with Taxonomies. In Conceptual Modeling - 38th International

Conference, ER 2019, Salvador, Brazil, November 4-7, 2019, Proceedings (Lecture

Notes in Computer Science), Alberto H. F. Laender, Barbara Pernici, Ee-Peng

Lim, and José Palazzo M. de Oliveira (Eds.), Vol. 11788. Springer, 397–411.

https://doi.org/10.1007/978-3-030-33223-5_33

[9] Paolo Ciaccia, Davide Martinenghi, and Riccardo Torlone. 2020. Foundations of

Context-aware Preference Propagation. J. ACM 67, 1 (2020), 4:1–4:43. https:

//doi.org/10.1145/3375713

[10] Periklis Georgiadis, Ioannis Kapantaidakis, Vassilis Christophides, Elhadji Ma-

madou Nguer, and Nicolas Spyratos. 2008. Efficient Rewriting Algorithms

for Preference Queries. In Proceedings of the 24th International Conference on

Data Engineering, ICDE 2008, April 7-12, 2008, Cancún, Mexico, Gustavo Alonso,

José A. Blakeley, and Arbee L. P. Chen (Eds.). IEEE Computer Society, 1101–1110.

https://doi.org/10.1109/ICDE.2008.4497519

[11] Parke Godfrey, Ryan Shipley, and Jarek Gryz. 2007. Algorithms and analyses for

maximal vector computation. VLDB J. 16, 1 (2007), 5–28. https://doi.org/10.1007/

s00778-006-0029-7

[12] Matteo Golfarelli, Stefano Rizzi, and Paolo Biondi. 2011. myOLAP: An Approach

to Express and Evaluate OLAP Preferences. IEEE Trans. Knowl. Data Eng. 23, 7

(2011), 1050–1064. https://doi.org/10.1109/TKDE.2010.196

[13] John F. Horty. 1994. Some Direct Theories of Nonmonotonic Inheritance. In

Handbook of Logic in Artificial Intelligence and Logic Programming (Vol. 3): Non-

monotonic Reasoning and Uncertain Reasoning. Oxford University Press, Inc., USA,

111–187.

[14] Ruoming Jin, Yang Xiang, Ning Ruan, and Haixun Wang. 2008. Efficiently an-

swering reachability queries on very large directed graphs. In Proceedings of

the ACM SIGMOD International Conference on Management of Data, SIGMOD

2008, Vancouver, BC, Canada, June 10-12, 2008, Jason Tsong-Li Wang (Ed.). ACM,

595–608. https://doi.org/10.1145/1376616.1376677

[15] Saikishore Kalloori, Tianyu Li, and Francesco Ricci. 2019. Item Recommendation

by Combining Relative and Absolute Feedback Data. In Proceedings of the 42nd

International ACM SIGIR Conference on Research and Development in Information

Retrieval, SIGIR 2019, Paris, France, July 21-25, 2019, Benjamin Piwowarski, Max

Chevalier, Éric Gaussier, Yoelle Maarek, Jian-Yun Nie, and Falk Scholer (Eds.).

ACM, 933–936. https://doi.org/10.1145/3331184.3331295

[16] Saikishore Kalloori, Francesco Ricci, and Rosella Gennari. 2018. Eliciting pairwise

preferences in recommender systems. In Proceedings of the 12th ACM Conference

on Recommender Systems, RecSys 2018, Vancouver, BC, Canada, October 2-7, 2018,

Sole Pera, Michael D. Ekstrand, Xavier Amatriain, and John O’Donovan (Eds.).

ACM, 329–337. https://doi.org/10.1145/3240323.3240364

[17] Werner Kießling. 2002. Foundations of Preferences in Database Systems. In

VLDB 2002, Proceedings of 28th International Conference on Very Large Data Bases,

August 20-23, 2002, Hong Kong, China. 311–322. http://www.vldb.org/conf/2002/

S09P04.pdf

[18] Georgia Koutrika and Yannis E. Ioannidis. 2004. Personalization of Queries in

Database Systems. In Proceedings of the 20th International Conference on Data

Engineering, ICDE 2004, 30 March - 2 April 2004, Boston, MA, USA. 597–608. https:

//doi.org/10.1109/ICDE.2004.1320030

[19] G.S. Linoff and M.J.A. Berry. 2001. Mining the web: Transforming Customer Data

into Customer Value. John Wiley & Sons, New York.

[20] Thomas Lukasiewicz, Maria Vanina Martinez, and Gerardo Ignacio Simari. 2013.

Preference-Based Query Answering in Datalog+/- Ontologies. In IJCAI 2013,

Proceedings of the 23rd International Joint Conference on Artificial Intelligence,

Beijing, China, August 3-9, 2013, Francesca Rossi (Ed.). IJCAI/AAAI, 1017–1023.

http://www.aaai.org/ocs/index.php/IJCAI/IJCAI13/paper/view/6505

[21] Thomas Lukasiewicz, Maria Vanina Martinez, Gerardo I. Simari, and Oana Tifrea-

Marciuska. 2015. Preference-Based Query Answering in Probabilistic Datalog+/-

Ontologies. J. Data Semant. 4, 2 (2015), 81–101. https://doi.org/10.1007/s13740-

014-0040-x

[22] Davide Martinenghi and Riccardo Torlone. 2014. Taxonomy-based relaxation of

query answering in relational databases. VLDB J. 23, 5 (2014), 747–769. https:

//doi.org/10.1007/s00778-013-0350-x

[23] Miriam Martínez-García, Aïda Valls, and Antonio Moreno. 2019. Inferring prefer-

ences in ontology-based recommender systems using WOWA. J. Intell. Inf. Syst.

52, 2 (2019), 393–423. https://doi.org/10.1007/s10844-018-0532-5

[24] Francesco Ricci, Lior Rokach, and Bracha Shapira. 2011. Introduction to Rec-

ommender Systems Handbook. In Recommender Systems Handbook, Francesco

Ricci, Lior Rokach, Bracha Shapira, and Paul B. Kantor (Eds.). Springer, 1–35.

https://doi.org/10.1007/978-0-387-85820-3_1

[25] Kostas Stefanidis, Georgia Koutrika, and Evaggelia Pitoura. 2011. A survey on

representation, composition and application of preferences in database systems.

ACM Trans. Database Syst. 36, 3 (2011), 19:1–19:45. https://doi.org/10.1145/

2000824.2000829

[26] Yannis Theoharis, George Georgakopoulos, and Vassilis Christophides. 2012.

PoweRGen: A power-law based generator of RDFS schemas. Inf. Syst. 37, 4 (2012),

306–319. https://doi.org/10.1016/j.is.2011.09.005

[27] Yannis Theoharis, Yannis Tzitzikas, Dimitris Kotzinos, and Vassilis Christophides.

2008. On Graph Features of Semantic Web Schemas. IEEE Trans. Knowl. Data

Eng. 20, 5 (2008), 692–702. https://doi.org/10.1109/TKDE.2007.190735

[28] Guohui Xiao, Diego Calvanese, Roman Kontchakov, Domenico Lembo, Antonella

Poggi, Riccardo Rosati, and Michael Zakharyaschev. 2018. Ontology-Based Data

Access: A Survey. In Proceedings of the Twenty-Seventh International Joint Con-

ference on Artificial Intelligence, IJCAI 2018, July 13-19, 2018, Stockholm, Sweden,

Jérôme Lang (Ed.). ijcai.org, 5511–5519. https://doi.org/10.24963/ijcai.2018/777

1871

https://doi.org/10.1145/1412331.1412343
https://doi.org/10.1145/1412331.1412343
https://doi.org/10.1109/ICDE.2001.914855
https://doi.org/10.1109/ICDE.2001.914855
https://doi.org/10.1016/j.ins.2013.07.006
https://doi.org/10.1007/978-3-540-89378-3_9
https://doi.org/10.1145/1142473.1142530
https://doi.org/10.1145/958942.958946
https://doi.org/10.1109/ICDE.2003.1260846
https://doi.org/10.1007/978-3-030-33223-5_33
https://doi.org/10.1145/3375713
https://doi.org/10.1145/3375713
https://doi.org/10.1109/ICDE.2008.4497519
https://doi.org/10.1007/s00778-006-0029-7
https://doi.org/10.1007/s00778-006-0029-7
https://doi.org/10.1109/TKDE.2010.196
https://doi.org/10.1145/1376616.1376677
https://doi.org/10.1145/3331184.3331295
https://doi.org/10.1145/3240323.3240364
http://www.vldb.org/conf/2002/S09P04.pdf
http://www.vldb.org/conf/2002/S09P04.pdf
https://doi.org/10.1109/ICDE.2004.1320030
https://doi.org/10.1109/ICDE.2004.1320030
http://www.aaai.org/ocs/index.php/IJCAI/IJCAI13/paper/view/6505
https://doi.org/10.1007/s13740-014-0040-x
https://doi.org/10.1007/s13740-014-0040-x
https://doi.org/10.1007/s00778-013-0350-x
https://doi.org/10.1007/s00778-013-0350-x
https://doi.org/10.1007/s10844-018-0532-5
https://doi.org/10.1007/978-0-387-85820-3_1
https://doi.org/10.1145/2000824.2000829
https://doi.org/10.1145/2000824.2000829
https://doi.org/10.1016/j.is.2011.09.005
https://doi.org/10.1109/TKDE.2007.190735
https://doi.org/10.24963/ijcai.2018/777

