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Abstract
We propose a new statistical method, called generalized mixed-effects random
forest (GMERF), that extends the use of random forest to the analysis of hier-
archical data, for any type of response variable in the exponential family. The
method maintains the flexibility and the ability of modeling complex patterns
within the data, typical of tree-based ensemble methods, and it can handle both
continuous and discrete covariates. At the same time, GMERF takes into account
the nested structure of hierarchical data, modeling the dependence structure
that exists at the highest level of the hierarchy and allowing statistical infer-
ence on this structure. In the case study, we apply GMERF to Higher Education
data to analyze the university student dropout phenomenon. We predict engi-
neering student dropout probability by means of student-level information and
considering the degree program students are enrolled in as grouping factor.
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1 INTRODUCTION

In today’s Big data era, researchers often have to handle
big amounts of complex data. The focus of the analyst is
twofold: to reach a high accuracy in the prediction of a
studied phenomenon and to understand the complexity of
the underlying data structure. The analyst has often to find
a compromise between the interpretability of the model,
usually high in a simple model, and its accuracy, which
often increases as the model complexity increases.

To this purpose, tree-based methods, used for regres-
sion and classification, were introduced by Breiman et al.

Abbreviations: GLMM, generalized linear mixed model; GMERF,
generalized mixed-effects random forest; GMERT, generalized
mixed-effects regression tree; LMM, linear mixed-effects model;
MERF, mixed-effects random forest; MERT, mixed-effects regression
tree; RF, random forest.

in [10] and they are now raising in popularity for their high
level of interpretability. However, their high variability is
often an issue, resulting in poor predictions [21]. New
methods using trees as building blocks, called tree-based
ensemble methods, started being developed to improve
the predictive performance of trees [23]. Bagging, random
forest (RF), and boosting are examples of such methods
[21]. RF, described in [9], consists in a bootstrap aggre-
gation method that combines the predictions of a large
number of trees. In recent years, part of the statistical liter-
ature focuses on extending the use of tree-based methods
to the analysis of nested data, that is, data with a hierarchi-
cal structure, embedding them into mixed-effects models
[32]. However, the development of such methods is still
at its beginning. One way in which tree-based methods
have been extended for modeling nested data is integrating
them with linear mixed-effects models (LMMs) [32], with
the aim of solving LMMs low-flexibility issue, due to the
parametric assumptions.
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LMMs are used to model multilevel data, that is, data in
which statistical units naturally have a hierarchical struc-
ture (e.g., students nested within schools or patients nested
within hospitals), or longitudinal data (e.g., repeated mea-
surements for the same subject). The hierarchical struc-
ture of data is worth to be taken into account for several
reasons: (a) nested data are not i.i.d., as classical regres-
sion or classification models assume, but their distribution
depends on their grouping structure; (b) neglecting the
hierarchical structure could result in a loss of a valuable
piece of data information; (c) disentangling the effects
given to each level of the hierarchy allows to understand
and to investigate the latent structure present at the high-
est level of the hierarchy, enriching the knowledge on the
phenomenon described by data.

The first method proposed within this context is called
mixed-effects regression tree (MERT) [18] and it substi-
tutes the linear combination of the covariates in the fixed
effects part of a LMM with a regression tree, built with
the same set of covariates. In [35], the authors present an
analogous method, but with a different estimation pro-
cedure, called random effects expectation maximization
tree, that deals with both multilevel and longitudinal data.
With the aim of improving the accuracy in predictions,
regression trees are replaced by a RF in [19], where the
authors develop a method called mixed-effects random
forest (MERF). All these methods deal with a Gaussian
response variable and they are not suitable to classifica-
tion problems. Nonetheless, some developments for dif-
ferent types of response variables have also been done.
In [20], the MERT approach is extended to non-Gaussian
data and a generalized mixed-effects regression tree is
proposed. This algorithm is basically the penalized quasi
likelihood (PQL) algorithm used to fit generalized linear
mixed-effects models (GLMMs) where the weighted lin-
ear mixed-effect pseudo-model is replaced by a weighted
MERT pseudo-model. Another extension to a classifica-
tion problem is the generalized mixed-effects tree (GMET),
presented in [15], which is in line with the approach of
[35] as it uses the tree leaves as indicator variables, rather
than using the tree predictions as the MERT approach
does. In [14], the authors propose a generalized linear
mixed-effects model tree (GLMER tree) algorithm, that
alternates the estimates of a GLM tree and a mixed-effects
model until convergence. Lastly, the most recent work is
proposed in [36], where the authors develop a decision tree
method for modeling clustered and longitudinal binary
outcomes using a Bayesian setting.

In the context of a non-Gaussian response variable,
the existent methods extend the use of simple trees for
modeling nested data, but not their ensembles. As we pre-
viously state, tree-based methods suffer from high variance
and they usually do not have the same level of predictive

T A B L E 1 Tree-based mixed-effects models in the literature

Mixed-effects models Regression Classification

Simple tree MERT [20] GMERT [20]

RE-EM trees [35] GMET [15]

GLMER tree [14]

Random forest MERF [19] GMERF

accuracy as some of the other regression and classifica-
tion approaches. By aggregating many decision trees, using
an ensemble method, the predictive performance of trees
can be substantially improved. In this work, we develop
a novel model called generalized mixed-effects random
forest (GMERF), that is inspired by the GMET model pre-
sented in [15], but considers a RF instead of a standard tree
in the fixed effects part of the mixed-effects model. This
work can then be considered as a further step in the litera-
ture about tree-based mixed-effects models as Table 1 illus-
trates. Following the GMET approach, GMERF is based on
a GLMM in which the estimation of the fixed effects part is
performed with a RF, with the aim of handling interactions
among the different covariates and dealing with highly
nonlinear effects. This new method is the first one in the
literature able to model hierarchical data with a RF, for
a non-Gaussian response variable. Indeed GMERF, as all
GLMs, is able to deal with different types of responses, as
long as their distribution belongs to the exponential fam-
ily; this is not true for the Bayesian approach of [36], which
works only with binary responses. The strength of this
method is that it satisfies the flexibility and the predictive
power typical of RF, maintaining the ability of modeling
hierarchical data, for different types of response variables
in the exponential family. In the recent literature, RF has
been extended for new and various statistical tasks: non-
parametric quantile regression, conditional average partial
effect estimation, and heterogeneous treatment effect esti-
mation via instrumental variables [3]; causal inference [11,
29]; censored quantile regression [24]. To the best of our
knowledge, this is the first time that RF is extended to deal
with hierarchical data, both for regression and classifica-
tion, that is, for any response variable in the exponential
family.

We describe the GMERF method, providing the
pseudo-code of the algorithm for the estimation proce-
dure, we then show a simulation study, comparing its
performance to other existing methods and, lastly, we
apply it to a case study. We apply GMERF to a real
dataset, that Politecnico di Milano selected for the Stu-
dent Profile of Enhancing Tutoring Engineering (SPEET)
project (https://www.speet-project.com/). SPEET is a
project aimed at determining and categorizing different
profiles of engineering students across Europe. SPEET

https://www.speet-project.com/
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consortium is composed by six European universities:
Universitat Autònoma de Barcelona (UAB)—Barcelona,
Spain; Instituto Politecnico de Braganca (IPB)—Braganca,
Portugal; Opole University of Technology—Opole, Poland;
Politecnico di Milano (PoliMi)—Milano, Italy; Universi-
dad de Leòn—Leòn, Spain; University of Galati Dunarea
de Jos—Galati, Romania. The essence of SPEET project is
to apply data mining algorithms in order to extract infor-
mation about students and to profile them. A student
profile is a set of categories to which a student belongs
that gives an insight about how the student is approach-
ing and dealing with his/her studies. Some examples of
student profiles are: students that finish degree on time or
students that are blocked on a certain set of subjects. Com-
parisons among different partner institutions will be done
in order to establish correlations and get a more complete
European-level picture. The role of Politecnico di Milano
in the SPEET project is to describe why students leave their
studies at the university before accomplishing the degree
and to produce a classification method that automatically
identifies such students who are likely to drop their stud-
ies; from now on we refer to this abandonment as dropout.
The importance of this task is motivated by the fact that,
across all SPEET partners, almost a student out of two
leaves his/her engineering studies before obtaining the BSc
degree.

In the last decades, the analysis of university students
dropout is receiving particular attention in the educational
context. Many studies focus on predicting which are the
students at risk in the perspective of identifying the deter-
minants of the dropout and of helping those students (see
among the others [16, 12, 4, 34]). If it was possible to know
as soon as possible to which profile a student belongs,
it would be of valuable help for tutors to improve their
guiding actions.

We apply GMERF method to Politecnico di Milano
data for predicting students dropout probability by means
of student-level characteristics and considering the group-
ing structure of students within engineering degree pro-
grams. We consider students as statistical units, grouped
based on the degree program they are enrolled in. As
student-level covariates, we consider both students perfor-
mance at Politecnico di Milano (during the first semester of
the first year, in the perspective of providing an early warn-
ing system) and students collateral data, such as gender,
nationality, and previous studies. Results reveal that the
dropout is mainly associated to the early performance of
the student at university rather than to other student-level
variables. Also, with the information at our disposal, we
are able to predict the dropout in the 90% of cases.

GMERF represents a breakthrough in the literature
of both mixed-effects models and tree-based methods,

combining these two statistical approaches in a robust,
flexible, and structured method.

The paper is organized as follows: in Section 2 we
describe the GMERF method; in Section 3 we perform a
simulation study to investigate the strengths and weak-
nesses of our method, compared to other existing ones;
Section 4 reports the case study, that is, the application
of GMERF to Politecnico di Milano data to predict stu-
dents dropout probability and in Section 5 we draw our
conclusions.

2 METHODS

In this section, we recall the basics of generalized linear
mixed-effects models (Section 2.1) and we describe the
proposed GMERF model, together with the algorithm for
the estimation of its parameters (Section 2.2).

2.1 Generalized linear mixed-effects
models

Let consider a generalized linear mixed-effects model
(GLMM), described in [32]. GLMM is an extension of the
generalized linear model (GLM) [28] that includes both
fixed and random effects in the linear predictor. GLMMs
handle a wide range of response distributions where obser-
vations have a hierarchical structure, that is, they are
grouped at different levels. Therefore, the GLMs’ indepen-
dence assumption of the observations is no more valid.

For a GLMM with a two-level hierarchy, each observa-
tion j, for j = 1, … , ni, is nested within a group i, for i = 1,
… , I. Let y

i
= (yi1, … , yini) be the ni-dimensional response

vector for observations in the ith group. Conditionally on
random effects denoted by bi, a GLMM assumes that the
elements of y

i
are independent, with density function f i

from the exponential family, of the form

fi(yij|bi) = exp
{yij𝜂ij − a(𝜂ij)

𝜙
+ c(yij, 𝜙)

}
,

where a and c are specified functions, 𝜂 is the natural
parameter, and 𝜙 is the dispersion parameter. In addition,
we have

E[yij|bi] = a′(𝜂ij) = 𝜇ij,

Var[yij|bi] = 𝜓a′′(𝜂ij).

A monotonic, differentiable link function g specifies
the function of the mean that the model equates to
the systematic component. Usually, the canonical link
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function is used, that is, g = (a′)−1. From now on, without
loss of generality, the canonical link function is used. In
this case, the model takes the following form:

𝜇
i
= E[y

i
|bi] i = 1, … , I

g(𝜇
i
) = 𝜂

i
(1)

𝜂
i
= Xi𝛽 + Zibi

bi ∼ Q(0,Ψ),

where i is the group index, I is the total number of groups,
ni is the number of observations within the ith group, and∑I

i=1 ni = J. 𝜂
i
is the ni-dimensional linear predictor vector,

where Xi is the ni × (P+ 1) matrix of fixed effects regres-
sors (including 1 for the intercept) of observations in group
i, 𝛽 is the (P+ 1)-dimensional vector of their coefficients,
Zi is the ni × (Q+ 1) matrix of regressors for the random
effects (including 1 for the random intercept), bi is the
(Q+ 1)-dimensional vector of their coefficients, and Ψ is
the (Q+ 1)× (Q+ 1) within-group covariance matrix of the
random effects. Fixed effects are identified by parameters
associated to the entire population, while random ones
are identified by group-specific parameters. This model-
ing takes into account the dependence structure among
data (i.e., observations are not assumed independent but
their nested structure is considered). Mixed-effects models
consist in iterative methods that alternate the fixed effects
estimates to the random effects ones, disentangling the
effects given to the grouping level (i.e., given to the fact
that observations are naturally nested within groups) form
the others. In particular, the unexplained variability of data
is composed by the residual variability plus the variability
due to the nested structure of the observations (that corre-
sponds to the variance of the random effects). In order to
quantify these variances, the variance partition coefficient
(VPC) is a measure of the intraclass correlation introduced
in [17] and it is equal to the percentage of variation that is
found at the highest level of a hierarchical model over the
total variance. It is defined as

VPC =
𝜎2

m

𝜎2
m + 𝜎2

lat

, (2)

where 𝜎2
m is the estimated variance of random effects, and

𝜎2
lat is the residual variability that can neither be explained

by fixed effects, nor through the group features that are
represented by the random effects.

GLMMs parameters are estimated through maximum
likelihood or restricted maximum likelihood (REML)
methods, as described in [30]. Such estimation methods,
for models of this type, do not have closed form solutions,

but optimal parameters are found numerically—for
example, with Gaussian quadrature or PQL [33]—in order
to estimate the integrals to evaluate the likelihood, which
is then maximized through an iterative method.

2.2 Generalized mixed-effects random
forest

Our proposed GMERF embeds the use of tree-based
ensemble methods within the mixed-effects models struc-
ture, for different classes of response variables in the expo-
nential family.

We basically relax the linear assumption on the fixed
effects part of a GLMM, by substituting it with a tree-based
structure, making the model more flexible and adaptable
to different and unknown functional forms. The matrix
formulation of the GMERF model takes the following
form:

𝜇
i
= E[y

i
|bi] i = 1, … , I

g(𝜇
i
) = 𝜂

i
(3)

𝜂
i
= f (Xi) + Zibi

bi ∼ Q(0,Ψ)

with the same notation of Equation (1).
The fixed effects part f (Xi) is not assumed to be

linear any more, but it is assumed to have a complex
and unknown structure that we estimate by a tree-based
ensemble method, the RF [9]. The basic idea of a RF is
to train a large number of trees, each one using a differ-
ent dataset built from the original one by bootstrap, and
including among the covariates used in each tree only a
(random) subset of the P available ones. The prediction of
the RF is a suitable aggregation of the predictions of the
built trees.

As in a GLMM, bi and bi′ are assumed independent for
i≠ i′. Fixed effects are identified by a nonparametric RF
model associated to the entire population, while random
ones are identified by group-specific parameters.

To implement GMERF model, we need to decouple
the estimation of fixed and random effects parts, alter-
nating them until convergence. To this purpose, we note
that, if random effects were known, the GMERF model
implies that we could fit a RF to estimate f using 𝜂ij − ZT

ij bi
as dependent variable. Similarly, if the population-level
effects f were known, then we could estimate the random
effects using a traditional mixed-effects linear model with
response corresponding to 𝜂ij − f (Xij). As neither the ran-
dom effects nor the fixed effects are known, we implement
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an iterative method that alternates, until convergence, the
estimation of the RF, relative to the fixed effects part, with
the estimation of the random effects. The convergence is
reached when the difference between the random effects
estimates at two consecutive iterations is lower than a fixed
tolerance. A second important aspect to be faced is that
𝜂

i
is not known and it cannot be directly deduced from

data. The solution that we adopt, in line with the one
proposed in [15], is estimating it by means of a standard
GLM model using as covariates the fixed effects covariates.
The pseudo-code of the estimation procedure is shown in
Algorithm 1.

In the literature, there has been little exploration of
the statistical properties of RFs and of mathematical forces
driving the algorithm. Most theoretical studies have con-
centrated on isolated part or stylized versions of the
algorithm [8, 26, 27]. In [7], the authors offer an in-depth
analysis of a RF model that is very close to the original
one [9], proving that the procedure is consistent and that
its rate of convergence depends only on the number of the
strong features and not on how many noise variables are
present. Nevertheless, the statistical mechanism of RFs is
not yet fully understood and is under active investigation.
Both in the simulation study and in the case study, GMERF
algorithm has no trouble to converge. With respect to stan-
dard trees for nested data, replacing a single tree by a
RF probably helps to stabilize the process. However, an
in-depth study of the convergence issue in future work
would be useful to better understand the behavior of the
GMERF algorithm.

The RF is fitted using the R package randomForest [25]
which implements the original algorithm described in [9].
The GLMM is fitted using the function glmer from the R
package lme4 [5]. To predict a new observation [xij; zij] we
use the formula

𝜂ij = f̂ (xij) + zT
ij b̂i, (4)

where f̂ is the RF estimated by the algorithm, bi is the
vector of the random effects coefficients related to the ith
group. The prediction of 𝜇ij is obtained by applying to
the corresponding 𝜂ij the inverse link function g−1. For
example, for a binary response variable, we use the canon-
ical link function logit(x) = log(x/(1− x)).

3 SIMULATION STUDY

In this section, we perform a simulation study, compar-
ing GMERF performance to other similar classification
methods on different simulated datasets, with the aim of
evaluating GMERF strengths and weaknesses.

3.1 Simulation design

Without loss of generality, we simulate the response vari-
able from a Bernoulli distribution.1 The data generating
process (DGP) of binary data is based on the following
equations:

𝜂ij = f (Xij) +
Q∑

q=1
biqzijq

𝜇ij = logit−1(𝜂ij) (5)
yij ∼ Bernoulli(𝜇ij),

where f identifies the fixed effect unknown functional
form, Xij is the P-dimensional vector of fixed effects covari-
ates and

∑Q
q=1 biqzijq is the linear random effects part of

the model. As far as the fixed effects part is concerned, we
consider a sizeable (but not too large) number P of covari-
ates and we design f to include both a linear part and a
tree-like part, as well as interactions among covariates. In
this way, we simulate the case of a very diverse structure
that will test the flexibility and adaptability of our method.
In particular, we set P = 7 and we design f in the following
way:

f (x1, … , x7) = 𝛼(x2
1 − 3x2 − x2x2

3) + 𝛽tree(x4, x5, x6), (6)

where 𝛼 and 𝛽 are two parameters used to control the
variability of f ; tree(x4, x5, x6) is a function with a tree-like
structure, described in Figure 1. The last variable X7 is
no significant by construction and it is included in order
to test whether the algorithm is misled by it. The seven
covariates are randomly generated according to the fol-
lowing distributions: X1, X2 ∼U(−1, 1); X3 ∼Weibull(3);
X4 ∼U(−3, 3); X5 ∼U(−6, 6); X6 ∼U(−5, 5); X7 ∼U
(−4, 4).

Regarding the random effects part, we generate N = 10
groups, each one with ni = 40 observations2 (for a total of
400 units) by sampling from a normal distribution, accord-
ing to the assumption of the GLMM. Regarding the ran-
dom effects specification, we simulate two different cases:

• Random intercept only:
∑Q

q=1 biqzijq = bi0 ∼  (0, 𝛾2),
that is, there is one scalar random effect, where 𝛾 regu-
lates the variability of the random effect;

1Here, we make this choice to be in line with the case study in which the
response variable is binary. We recall that the model can deal with any
response variable in the exponential family, that is handled by the
function glmer from the R package lme4 (since the glmer function is a
step on the GMERF algorithm), by setting the appropriate link function.
2Without loss of generality and for the sake of simplicity, we fix the
same size for all groups. Nonetheless, the number of observations is
allowed to differ across groups.
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F I G U R E 1 Tree-like part (tree(x4, x5, x6)) of the fixed effects
structure in Equation (6)

• Random intercept and slope:
∑Q

q=1 biqzijq = bi0 + bi1xij1,
where x1ij is the first fixed effects covariate and the ran-
dom coefficient is b ∼ 2(0,Σ), with Σ = diag(𝛾2; 𝛿2).
b0i and b1i are independent for any value of i; 𝛿 is a
variance-regulation parameter as well. In this case, x is
a covariate whose effect is not assumed as fixed for all
observations but is group-specific, that is, we assume x
to have different effects across observations belonging
to different groups.

The presented parameters regulate the variability in
the simulated data; we select their values in order to gener-
ate probability 𝜇ij of each unit not too close to 0 or 1 (except
for a small number of observations). We perform a total
of eight simulation cases in which we change the value of
each coefficient in order to simulate the case of low or high
variance for the corresponding component of the model;
the chosen coefficients values are summarized in Table 2.

We compare GMERF’s performance with the ones of
the following methods: GLM; GLMER, which fits the
GLMM and is part of the R package lme4 ([5]); RF, which
can be fitted using the R package randomForest [25];
GMET, described in [15]; support vector machines (SVMs),
implemented in the R package e1071 [37] and the GLMER
tree from the glmertree R package [14]. We select these
methods to—at least partially—cover the panorama of
both generalized linear and tree-based mixed-effects mod-
els and the most recent classification techniques.

3.2 Simulation results

For each of the eight combinations of fixed and random
effects parameters described in Table 2 and each of the
seven models, we simulate the dataset 100 times and we
analyze the distribution of the results. In order to eval-
uate the predictive performances, we generate, together
with each training dataset, a test dataset, consisting of 50
observations for each group (a total of 500 observations).

To evaluate the quality of the predictions we compute
two indexes: predictive mean absolute deviation (PMAD)
and predictive misclassification rate (PMCR), which are
defined as

PMAD = 1
Ntest

I∑
i=1

ni∑
j=1

|𝜇ij − 𝜇ij|,
PMCR = 1

Ntest

I∑
i=1

ni∑
j=1

|yij − ŷij|, (7)

where Ntest = 500 and ni = 50 ∀ i = 1, … , 10; 𝜇ij is the
actual probability simulated by the DGP in (5), 𝜇ij is the
probability predicted by the model, yij is the actual value of
the response and ŷij is the response predicted by the model.
Simulation results are shown in Table 3. Note that RF and
SVM algorithms do not produce probabilities as output,
but just the actual responses, so PMAD is not available for
them.

The predictive performances of the compared methods
are good, being the average PMAD slightly greater than
0.1, overall, while the misclassified samples are roughly 1
every 5.

The best mean performances, both in terms of PMAD
and PMCR, are the ones of GLM and GLMER mod-
els. GMET model always performs worse than those,
while GMERF is mostly comparable to them. On aver-
age, RF performs worse, except for the cases in which
fixed effects variance is large and random effects one
is small. GLMERtree results to be the worst performing
algorithm, which constantly has PMAD and PMCR 0.1
higher than the ones of the other algorithms (besides hav-
ing high performance variance). As for the SVM method,
it performs better when the random effects variability
increases, reaching an accuracy close to the one of the
best performing models; in this sense it is complementary
to the RF, which performs better on the other simulation
cases. The two cases in which RF have the best perfor-
mances are the ones with large-variability fixed effects and
small-variability random effects. This result confirms that
RF is very efficient at identifying fixed effects, but, when
the hierarchical structure is relevant, mixed-effects mod-
els, that take into account the hierarchy, over-perform it.
In this sense, GMERF performances follow the RF ones -



248 PELLAGATTI et al.

T A B L E 2 Simulation parameters of both fixed effects (Equation (6)) and random effects parts for the simulation
data process

Random effects
Fixed effects
variability 𝜶 𝜷

Random effects
variability 𝜸2 𝜹2

Intercept only Small 0.4 0.25 Small 0.5 0

Intercept only High 0.7 0.6 Small 0.5 0

Intercept only Small 0.4 0.25 High 2 0

Intercept only High 0.7 0.6 High 2 0

Intercept and slope Small 0.4 0.25 Small 0.3 0.5

Intercept and slope High 0.7 0.6 Small 0.3 0.5

Intercept and slope Small 0.4 0.25 High 1.4 1.4

Intercept and slope High 0.7 0.6 High 1.4 1.4

having the worst values of PMCR in correspondence of the
worst PMCR RF values—and they are better than RF ones
when the hierarchy is not negligible.

The performances of all algorithms are overall com-
parable, especially in the average PMAD value, which
almost never differs more than 0.02 between two different
algorithms.

As for the variances in the estimations, GMERF rep-
resents a big improvement with respect to GMET: GMET
is often the one having the largest variance (especially for
PMAD), whereas GMERF is the one with the smallest vari-
ance (especially in PMAD, where this happens six times
out of eight). This is a big upside of the algorithm, which
proves to provide more stable estimates; this is probably
due to the iterative nature of the algorithm, which sta-
bilizes the estimates. GMERF algorithm iterates between
estimations of a GLMER model and a RF one; this makes
GMERF to get the advantages of both algorithms and justi-
fies the low variability: if one of the two performs bad on a
given dataset the other one can compensate; thus, the vari-
ability of the misclassification can be kept under control.
This justifies the improvement in the algorithm obtained
by replacing the tree estimate with a forest.

In conclusion, GMERF algorithm performs compara-
bly to GLMER and GLM, particularly when fixed effects
are larger than random effects, but its estimates result
to be more stable; this can be seen in the same way as
ridge regression versus classical linear regression: ridge is
biased, but its estimates have lower variance and, in some
cases, it is preferable to its unbiased alternative.

4 CASE STUDY

In this section, we present a real life application of GMERF
method: we give our contribution to the SPEET project
by using GMERF to model and predict students dropout,

as introduced in Section 1. The aim of this study is to
apply GMERF to university students data in order to pre-
dict the student dropout probability considering students
information—including demographics, previous studies
and performances at the beginning of their academic
career—and the engineering degree programs they are
enrolled in. In particular, we review the case study pro-
posed in [15], where the authors apply GMET to the same
dataset: in our application we compare GMERF results
with GMET ones.

4.1 The dataset

The data come from Politecnico di Milano database, that
consists of 41,098 engineering careers in Bachelor of
Science (BSc) that began between A.Y. 2010/2011 and
2015/2016. Politecnico di Milano has I = 23 different engi-
neering degree programs and students are structurally
nested within those programs. A descriptive analysis
shows that a high percentage of students (27%, more than
one out of four) leaves Politecnico di Milano before obtain-
ing the degree. Our goal is to find out which student-level
indicators are able to discriminate between two different
profiles: dropout and graduate students. Standing on pre-
vious literature [2], there are typically three macro-areas
of student-level information that result to be significant
in predicting student dropout: student collateral data (i.e.,
general personal information about the student), student
previous studies (i.e., information about the studies of the
student before enrolling at the university), student career
data (i.e., track of the career of the student at the univer-
sity, including exams, scores, and mobilities). Taking this
prior knowledge into account and after some explorative
analysis, we select from Politecnico di Milano database, as
variables to be included in the model, the student infor-
mation that we think could be more informative: personal
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T A B L E 3 Prediction performances of the seven methods in each of the eight simulation cases listed in Table 2

Model setting Feff var Reff var Algorithm Mean PMAD Var PMAD Mean PMCR Var PMCR

Int Small Small GLM 0.112 0.14 0.365 0.694

Int Small Small GLMER 0.11 0.118 0.363 0.769

Int Small Small RF — — 0.372 0.703

Int Small Small GMET 0.116 0.141 0.369 0.922

Int Small Small GMERF 0.111 0.102 0.36 0.718

Int Small Small SVM — — 0.378 0.732

Int Small Small GLMERtree 0.141 0.197 0.383 0.963

Int Large Small GLM 0.166 0.075 0.31 0.473

Int Large Small GLMER 0.165 0.064 0.308 0.491

Int Large Small RF — — 0.296 0.486

Int Large Small GMET 0.172 0.065 0.31 0.417

Int Large Small GMERF 0.172 0.065 0.308 0.511

Int Large Small SVM — — 0.32 0.484

Int Large Small GLMERtree 0.185 0.089 0.322 0.438

Int Small Large GLM 0.089 0.168 0.239 2.012

Int Small Large GLMER 0.09 0.183 0.239 2.107

Int Small Large RF — — 0.283 2.641

Int Small Large GMET 0.097 0.201 0.243 2.059

Int Small Large GMERF 0.096 0.108 0.241 2.404

Int Small Large SVM — — 0.242 2.445

Int Small Large GLMERtree 0.26 1.569 0.394 3.101

Int Large Large GLM 0.133 0.196 0.23 1.1

Int Large Large GLMER 0.135 0.208 0.23 1.09

Int Large Large RF — — 0.269 1.271

Int Large Large GMET 0.141 0.212 0.236 1.198

Int Large Large GMERF 0.142 0.168 0.238 1.126

Int Large Large SVM — — 0.238 1.063

Int Large Large GLMERtree 0.264 1.279 0.357 1.84

Int+ Slope Small Small GLM 0.111 0.107 0.351 0.559

Int+ Slope Small Small GLMER 0.111 0.122 0.351 0.555

Int+ Slope Small Small RF — — 0.369 0.727

Int+ Slope Small Small GMET 0.117 0.19 0.358 0.704

Int+ Slope Small Small GMERF 0.111 0.092 0.352 0.508

Int+ Slope Small Small SVM — — 0.366 0.758

Int+ Slope Small Small GLMERtree 0.15 0.258 0.381 0.746

Int+ Slope Large Small GLM 0.164 0.057 0.307 0.483

Int+ Slope Large Small GLMER 0.164 0.051 0.305 0.381

Int+ Slope Large Small RF — — 0.293 0.412
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T A B L E 3 Continued

Model setting Feff var Reff var Algorithm Mean PMAD Var PMAD Mean PMCR Var PMCR

Int+ Slope Large Small GMET 0.172 0.049 0.31 0.483

Int+ Slope Large Small GMERF 0.172 0.048 0.306 0.523

Int+ Slope Large Small SVM — — 0.316 0.499

Int+ Slope Large Small GLMERtree 0.187 0.124 0.321 0.714

Int+ Slope Small Large GLM 0.092 0.168 0.242 1.702

Int+ Slope Small Large GLMER 0.094 0.19 0.241 1.697

Int+ Slope Small Large RF — — 0.288 1.908

Int+ Slope Small Large GMET 0.101 0.22 0.247 1.859

Int+ Slope Small Large GMERF 0.099 0.138 0.243 1.735

Int+ Slope Small Large SVM — — 0.245 2.026

Int+ Slope Small Large GLMERtree 0.256 1.53 0.396 3.053

Int+ Slope Small Large GLM 0.134 0.248 0.24 1.408

Int+ Slope Small Large GLMER 0.137 0.249 0.241 1.409

Int+ Slope Small Large RF — — 0.275 0.993

Int+ Slope Small Large GMET 0.143 0.272 0.242 1.346

Int+ Slope Small Large GMERF 0.145 0.225 0.242 1.33

Int+ Slope Small Large SVM — — 0.246 1.36

Int+ Slope Small Large GLMERtree 0.265 0.928 0.359 2.034

information, previous studies and the career track at the
first semester of the first year, in the perspective of pre-
dicting the student dropout probability as soon as possible
([6, 16]). Table 4 reports the selected variables, with their
description. As students are naturally nested within degree
programs, we include in the model a random intercept
given to the degree program in which students are enrolled
in, in order to take into account this source of dependence
among students and to investigate possible differences in
the dropout phenomenon across degree programs.

We exclude from the dataset four degree programs
having few students enrolled (less than 200), so the final
number of degree programs considered is I = 19. The
statistical units are represented by the concluded (either
graduated or dropout) careers of students enrolled in the
19 selected degree programs.3 The final dataset regards
24,736 students (statistical units) nested within 19 degree
programs.4

3The 19 engineering degree programs are: Aerospace, Automation,
Biomedical, Building, Chemical, Civil, Civil and Environmental,
Electrical, Electronic, Energy, Computing Systems, Environmental and
Land Planning, Industrial Production, Management, Materials and
Nanotechnology, Mathematical, Mechanical, Physics,
Telecommunications.
4This dataset coincides with the one used in [15], with the only
difference that variable Previous studies here has four levels, whereas in

We randomly split the dataset into training and test
sets, with a ratio of 70% for model fitting and 30% for eval-
uation (which we will refer to as test set). We then split
again the model fitting set into a training set and a valida-
tion set using a proportion of, respectively, 80% and 20%;
validation set will be used to select the threshold value popt
to classify students.

4.2 Model results

The mixed-effects model we implement considers Sta-
tus as binary response variable; all variables from Sex
to Credits in Table 4 as fixed effects covariates and
it includes a random intercept b0 for the degree pro-
gram. We apply GMERF model using toll = 0.02 and
itmax = 30. It converges after eight iterations (compu-
tational time = 2.33 min), proving to reach the stability
quite quickly. Estimates of random intercepts together
with their confidence intervals are shown in Figure 2.
We notice that 10 intercepts are not significantly differ-
ent from 0 (with 95% confidence), being in line with the
average. Five programs increase the log-odds of dropout,

[15] it has only three levels (“Classica” and “Altro” are considered as a
unique level); this has a minor impact on the final results of the
analysis, so a comparison between the two methods is still possible.
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T A B L E 4 Politecnico di Milano student-level variables

Variable name Type of variable Domain Description

Status Factor {0, 1} Binary response variable about the status of the concluded
career: 1 = Dropout, 0 = Graduate

Sex Factor {“M”, “F”} Gender of the student

Nationality Factor {“I”, “F”} Nationality of the student: “I” = Italian, “F” = Foreign

Previous studies Factor Four levels Type of studies before university (secondary school): “Scien-
tifica,” “Classica,” “Tecnica,” “Other”

Avg Score Numeric {0}∪ [18; 30] Weighted average score obtained in exams of the first semester
of the first year

Attempts Numeric [0; 5] Average number of attempts per exam of the first semester of the
first year

Credits Integer {1, … , 50} Total number of Crediti Formativi Universitari (CFU) obtained
by the student after the first semester of the first year.

Degree program Factor 23 levels Degree program the student is enrolled in (grouping variable)

Notes: Variable Avg Score has a peculiarity, in the sense that it takes values from 18 to 30 (the minimum and maximum possible score) plus a point mass
at 0, representing students who did not pass any exam.

while four programs decrease them. As the variance of the
standard logistic distribution is 𝜋2/3≃ 3.29, the VPC can
be estimated as:

VPC =
𝜎2

m

𝜎2
m + 𝜋2∕3

= 0.2261.

Roughly 23% of unexplained variation in the response is
attributable to the nested structure of students. This value
of VPC, together with the fact that some random intercepts
are significantly different from zero (Figure 2) suggests
that there is a relevant heterogeneity in the dropout phe-
nomenon across degree programs and highlight the impor-
tance of taking into account the hierarchical structure of
these data. Regarding the fixed effects part, RF model mea-
sures the importance of each covariate (measured as the
increase of the residual sum of squares when the values
of the corresponding variable are randomly permuted in
the training dataset) in explaining the response and the
partial effect of each covariate (that can be displayed by
means of partial dependence plots). Figure 3 reports the
variables importance plot. GMERF model identifies Avg
1.1 and CFU 1.1 as the most important variables. In par-
ticular the three covariates associated with performance
of the student during his/her first semester of career are
more important than student collateral information; this
suggests that the choice of leaving the studies is mainly
associated to the university performance of the student,
more than his/her background when enrolling. This vari-
ables importance measure method relies on the choice of
a performance measure and is well known and frequently
adopted. Nonetheless, a very recent branch of the literature
proposes an alternative method that selects the variables

depending on the structure of the trees [22, 31, 13]. In
particular, the authors in [22] propose an algorithm based
on the minimal depth (MD) statistic, that is, based on the
idea that variables that tend to split close to the root node
should have more importance in prediction. By removing
the dependence on performance measures, the arrange-
ment of the trees gains strength, as in the case of splitting
rules. Equivalently, the authors in [31] propose a new alter-
native importance measure, called intervention in predic-
tion measure (IPM), that follows the same approach of MD
but, unlike MD, is a case-based method. In order to check
the robustness of variables importance in Figure 3, we
measure the IPM variables importance, that is expressed
as a percentage. Table 5 and Figure 4 report numerical and
graphical results, respectively.5 The rankings of the vari-
ables, standing on their estimated importance, obtained by
the two methods coincide.

Variables importance plot identifies the important
covariates but it does not give insights about the type
of association between the covariates and the response
(e.g., whether they are directly or inversely related to the
outcome or the relevant covariate values range). Partial
plots highlight the association of each covariate with the
response, net to the other covariates included in the model.
Figures 5 and 6 show the partial plots for all continuous
and categorical fixed effects covariates, respectively. In par-
ticular, for the variable Avg Score, we show two different

5As IPM method does not support categorical covariates (with more
than two categories), we recoded the PreviousStudies covariate as two
separate dummy variables: Clas (Classica vs. Scientifica) and Tecn
(Tecnica vs. Scientifica).
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F I G U R E 2 Random
intercepts relative to the 19 degree
programs estimated by the GMERF
model with their confidence
intervals

F I G U R E 3 Plot of GMERF’s fixed effects variables
importance to predict student dropout; the height of the bar is the
increase of the residual sum of squares (RSS) when the values of the
corresponding variable are randomly permuted

plots, Figure 5A,B: the former shows the plot with respect
to the entire range values of Avg Score, while the latter
focuses just on the values from 18 to 30; the jump after 0
in the first one is motivated by the fact that there are no
values of this variable in the interval (0; 18).

By looking at Figure 5B,D, we notice an inverse pro-
portional association between the dropout probability and
the values of variables Avg Score and Attempts, that sug-
gests that students trying less exams and not passing

T A B L E 5 IPM of the
fixed-effects covariates used in the
GMERF method to predict student
dropout

Variables IPM

Credits 0.218

Avg Score 0.206

Attempts 0.187

Tecn (vs. scientific) 0.095

Nationality 0.083

Sex 0.081

Other (vs. scientific) 0.073

Class (vs. scientific) 0.057

them at the first semester tend to drop their studies. (In
particular, Figure 5B shows that the dropout probability
decreases linearly with variable Avg Score.) This pattern
repeats in Figure 5C, even if not in the same straightfor-
ward way. From this figure we also note that students who
obtain 30 CFU after the first semester (i.e., the student
passes all exams of that semester) has almost null dropout
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F I G U R E 4 Intervention in prediction measure (IPM) of the
fixed-effects covariates used in the GMERF method to predict
student dropout

probability; this strongly suggests that a student likely to
dropout can be identified after a semester of studies.

Regarding the previous studies, Figure 6 shows that
there is not a significant difference in the dropout prob-
ability of students who attended scientific, classic, or
other schools (after adjusting for the other characteristics),
whereas students who attended technical schools are more
likely to dropout.

GMERF model estimates the probability that a stu-
dent drops his/her studies. To evaluate the quality of the
predictions we use four indexes: Accuracy A, that is the
percentage of correctly classified units; Sensibility SN that
is, out of all the positive units, the proportion of those
found by the algorithm; Specificity SP that is, out of all
the positive-predicted units, the percentage of those who
actually are; F1-measure, which combines Sensitivity and
Specificity as

F1 = 2 ⋅ SN ⋅ SP
SN + SP

. (8)

We use the validation set to choose the optimal threshold
value popt for prediction, by looking at the prediction accu-
racy and at the ROC curve that we build with this set [1].
In Figure 7, the complete ROC curve Sensitivity-Specificity
is shown. The optimal value turns out to be popt = 0.4,
both in terms of Accuracy (A = 0.9082) and F1-measure
(F1 = 0.8305); the other indexes values are SN = 0.8102
and SP = 0.8495. The relative misclassification table is.

y = 0 y = 1

ŷ = 0 2366 180

ŷ = 1 138 779

These results show a high predictive power of the model in
the validation set. We now test the method on the test set.

The misclassification table of the predictions on the test
set is.

y = 0 y = 1

ŷ = 0 5138 406

ŷ = 1 273 1603

and the value of the indexes are:

A = 0.9085
SP = 0.8544
SN = 0.7979
F1 = 0.8252.

Overall, GMERF model gives the right prediction 91% of
times, 80% of students who drop their studies are correctly
identified and 85% of students predicted as dropout actu-
ally are; these high values, especially regarding the indices
SN and SP, reveal that the method is very accurate, but, at
the same time, it is less sensitive in predicting students to
drop their studies.

In the perspective of investigating the advantages of RF
with respect to simple trees, we now compare our results
with the ones found in [15] by using the GMET model
on the same dataset. Both models identify variables Cred-
its and Avg Score as the two most important variables to
predict the dropout; on the other end, variable Sex is not
considered significant by either of them. As far as random
effects are concerned, both models identify Environmen-
tal and Land planning engineering as the one associated
with the lowest dropout rate and they also both asso-
ciate Computer and Civil engineering with high dropout
probabilities.

The major differences between the fixed effects part
estimated by GMET and GMERF are the following:

• Variable Attempts is considered important by GMERF,
but it does not appear in GMET as splitting node;
this may happen because the effect of this variable is
masked, in GMET, by the first split based on variable
CFU 1.1; the two variables, at least for very small values,
are naturally correlated (people attempting no exams do
not pass exams and therefore do not get any CFU); how-
ever, the RF used in GMERF uses different variables in
different trees and is then able to distinguish the effects
of both variables, which is one of the main advantages
of RF over classification trees;

• Nationality is considered very important by GMET,
being the second split, while in GMERF it has almost
null importance.
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F I G U R E 5 Partial plots of student dropout probability with respect to continuous variables: variable Avg Score on the entire range in
panel (A), variable Avg Score on the range (18; 30) in panel (B); variable Credits in panel (C) and variable Attempts in panel (D). The y-axis
reports the increment/decrement in dropout probability, given to the covariate on the x-axis

Regarding the estimation of random effects, the two
compared methods identify a similar trend in the associa-
tion between the 19 degree programs and students dropout
probability, except for:

• Management Engineering, which our model considers
in line with the average, while GMET associates it to a
lower dropout probability, with respect to the average;

• Biomedical Engineering and Telecommunications Engi-
neering, which in our model are associated to a higher

dropout probability, while in GMET they are associated
to a null random intercept.

Comparing the predictive power of the two mod-
els on the test set, we see that GMERF brings a slight
improvement to the accuracy, from GMET’s 0.878 to 0.908;
therefore 3% more of the students are correctly classi-
fied, which confirms our initial expectation. Overall we
can say that the two models highlighted similar dynamics,
which is an evidence on the robustness of the two of them;
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F I G U R E 6 Partial plots of the student dropout probability with respect to categorical variables: PrevStudies, Sex, and Nationality. The
y-axis reports the increment/decrement in dropout probability, given to the covariate on the x-axis

F I G U R E 7 ROC curve obtained from the validation set; the
point highlighted is the one corresponding to the optimal value of
popt found with the validation process

the major difference is the higher precision with which
GMERF model classified students and showed the effects
of each covariate on the dropout probability.

5 CONCLUSION

In this work, we present a method called GMERF, which
consists in a novel method that extends the use of RF to the
analysis of hierarchical data, for a non-Gaussian response
variable. GMERF modeling substitutes the linear combi-
nation of the fixed-effects covariates of a GLMM with a RF.
This new method contributes to the statistical literature

about mixed-effects models and tree-based method, taking
advantage of the flexibility and the predictive power of a
RF, but maintaining the structure of mixed-effects mod-
els. Although our simulation and case studies focus on the
binary response case, this approach can handle any type of
response variable in the exponential family. Using suitable
link functions, GMERF is able to model different outcomes
such as counts data, as well as the particular case of a Gaus-
sian response. GMERF can be considered a step forward
in the class of models which combine tree-based meth-
ods with linear mixed models. The simulation study shows
that GMERF has prediction performances comparable to
models like GLM and GLMM, with the advantage that its
estimates are less variable then the ones of these mod-
els; moreover, it has the added benefit of no assuming any
functional form on the fixed effect part and it can deal with
heterogeneous covariates (categorical and continuous) at
the same time, which is a very big advantage in terms of
flexibility. In particular, the RF part is able to model the
association between each covariate and the response, net
to the effect of all the other covariates, identifying possi-
ble nonlinear trends and range-dependent patterns. The
advantages of using GMERF, instead of GLMM, depend
on the complexity of the fixed effects structure (that, most
of the time, is not known a priori): if fixed effects covari-
ates are linearly associated to the response and are not
correlated, GLMM is expected to perform better; on the
opposite, if the covariates set is substantially large and
the covariates potentially interact among each other creat-
ing complex patterns in their association to the response,
then, we expect GMERF to outperform parametric meth-
ods with predefined functional forms. In other words, as
the random effects estimates follow the same procedure as
in GLMM, the potential of GMERF emerges depending on
the fixed effects covariates that describe the different real
cases.
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In the case study, we give a contribution to the SPEET
project, by providing an accurate method to classify stu-
dents as dropout or graduate that resulted to be successful
in the 90% of cases. These results might be useful in the per-
spective of defining new tutoring systems to help students
at risk. Our study results in an improvement in the predic-
tion accuracy over the GMET model, which was applied
on the same dataset; this is one of the goals we expect to
achieve when using GMERF, since the two models have
the same formulation, but GMERF uses a RF to estimate
the fixed effects, which is an algorithms that improves the
regression tree used in GMET (besides the fact that GMET
is not iterative). GMERF proves to be a powerful and an
easily interpretable method that can be applied to various
complex real data problem.
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