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Abstract. For 1 < p < 2 and q large, we prove the existence of two positive,

nonconstant, radial and radially nondreacreasing solutions of the supercritical
equation

−∆pu + up−1 = uq−1

under Neumann boundary conditions, in the unit ball of RN . We use a vari-
ational approach in an invariant cone. We distinguish the two solutions upon

their energy: one is a ground state inside a Nehari-type subset of the cone, the

other is obtained via a mountain pass argument inside the Nehari set.
As a byproduct of our proofs, we detect the limit profile of the low energy

solution as q →∞ and show that the constant solution 1 is a local minimum

on the Nehari set.

1. Introduction

For 1 < p < 2, we consider the following Neumann problem
−∆pu+ up−1 = uq−1 in B,

u > 0 in B,

∂νu = 0 on ∂B,

(1.1)

where B denotes the unit ball of RN (N ≥ 1), ν is the outer unit normal of ∂B and
q > p. In particular, the nonlinearity on the right-hand side is allowed to be super-
critical in the sense of Sobolev embeddings and, for q sufficiently large, we prove
that the problem admits two distinct nonconstant radial, radially nondecreasing
solutions.

Although we address the problem governed by the –possibly singular– p-Laplacian
operator, with p ∈ (1, 2), the interest in this class of problems originally arose for the
case p = 2, as a stationary version of the Keller-Segel system for chemotaxis. For
the semilinear problem, the existence and non-existence of nonconstant solutions
has been widely studied since the eighties. In [16], in the subcritical regime, Lin, Ni
and Takagi proved that if the radius of the ball is sufficiently small, the semilinear
problem admits only the constant solution, while, if the radius is sufficiently large,
it admits a nonconstant solution. Similar existence and non-existence results have
been proved also in the supercritical regime in [15]. Conversely, the validity of such
results in the critical case depends on the dimension N , cf. [1, 2, 10]. More recently,
for a general nonlinearity f(u) on the right-hand side, it has been proved in [7] that
the semilinear problem admits a radial, radially increasing solution if f(1) = 1 and
the radial Morse index of the constant solution u ≡ 1 is greater than one. When the
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nonlinearity is the pure power f(u) = uq−1, the previous hypothesis on the radial
Morse index reads as q > 2 + λrad

2 (R), where λrad
2 (R) is the first nonzero radial

eigenvalue of the Laplacian in the ball B(R), with Neumann boundary conditions.
From this assumption, it is apparent that the existence of nonconstant solutions
for this kind of problems is related to the radius of the ball or to the exponent q.
Subsequently, for any k ∈ N, under the analogous hypothesis q > 2 + λrad

k+1(R),
the existence of k oscillating radial solutions has been proved in [6] via bifurcation
techniques, in [5] via a perturbative approach and variational methods, and in [8]
using the shooting method for ODEs and a phase plane analysis.

For the quasilinear problem the situation is quite different and strongly depends
on whether p is greater or less than 2. A first non-existence result for the critical
p-Laplacian problem with p > 2, in a small ball, is contained in [2]. Much more
recently, by means of variational techniques, the existence of a nonconstant radial,
nondecreasing solution has been proved in [11] in the case p > 2, for every q > p,
regardless of the radius of the ball. Even more, in [8], it has been proved that, if
q > p > 2, problem (1.1) admits infinitely many nonconstant radial solutions. In
the same paper, also the case p < 2 has been considered, but the type of result is
quite different: it is shown that for every k ∈ N there exists Rk > 0 such that if
the radius is greater than Rk, the problem admits 2k nonconstant radial solutions,
which in couple share the same oscillatory behavior. In particular, for R > R1,
the existence of two increasing solutions is obtained via shooting approach, see also
[9] for solutions with reverse monotonicity properties in the subcritical case. On
the other side, numerical simulations suggest that the existence of such solutions
for q large is independent of the radius of the ball. In Figure 1, we represent the
branch of radial, radially increasing solutions of (1.1) when varying the parameter
q. From the picture it is clear that, for a fixed value of q sufficiently large, besides
the constant solution u ≡ 1, there are two more solutions on this branch. We refer
to [8, Section 3] for further bifurcation diagrams and comparisons with the cases
p > 2 or p = 2.

In the present paper, we obtain the existence of two increasing solutions, uq and
vq, under the assumption that the exponent q is large enough, independently of the
radius of the ball. The variational techniques applied here allow us to detect which
of the two solutions has higher energy, and to identify the limit behavior as q →∞
of the one with lower energy. We further observe that the numerical simulations
suggest that the higher energy solution vq should converge to the constant 1 as
q →∞, which is an interesting open problem.

In order to state rigorously our results, we introduce here some objects that will
be used throughout the paper.

We work in the set

C := {u ∈W 1,p
rad(B) : u ≥ 0, u(r1) ≤ u(r2) for all 0 < r1 ≤ r2 ≤ 1}, (1.2)

where with abuse of notation we write u(|x|) := u(x). This set is a closed convex
cone in W 1,p(B) and was first introduced in [18] in the context of a similar problem
with p = 2. Working in this cone has the twofold advantage of recovering the
compactness in this supercritical regime, cf. Lemma 2.1, and of knowing a priori
the monotonicity of the solutions that will be found therein. On the other hand,
since this cone has empty interior in the W 1,p-topology, see [18, Introduction], it is
not possible to apply directly the Mountain Pass Theorem in C: thanks to a priori
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Figure 1. In blue, the branch of radially nondecreasing solutions
u of (1.1), plotted as u(0) as function of q. Both the upper and
the lower parts of such a branch seem to persist for all values of
q. Moreover, the blue branch do not bifurcate from the one of
constant solutions u ≡ 1. The figure is obtained numerically with
the sotfware AUTO-07p [13], for problem (1.1) with p = 1.97 in
dimension N = 1.

estimates in the cone, we apply the truncation method and refine the Deformation
Lemma to find a mountain pass solution of the problem inside the cone.

We introduce a Nehari-type set inside C as follows

Nq :=

{
u ∈ C \ {0} :

∫
B

(|∇u|p + |u|p)dx =

∫
B

fq(u)u dx

}
,

where fq is a suitable truncated nonlinearity, that is Sobolev-subcritical (see Lemma
2.3 below). Letting also Fq(u) :=

∫ u
0
fq(s)ds, we shall consider the following modi-

fied energy functional

Iq(u) :=

∫
B

(
|∇u|p

p
+
|u|p

p
− Fq(u)

)
dx.

The first result of the paper is the existence, for q sufficiently large, of a noncon-
stant radial solution uq and the detection of its limit profile as q →∞.

Theorem 1.1. For q sufficiently large there exists a nonconstant solution uq ∈ C
of (1.1), which has the following variational characterization

Iq(uq) = inf
u∈Nq

Iq(u). (1.3)

Moreover, as q →∞, Iq(uq) < Iq(1) and

uq → G in W 1,p(B) ∩ C0,ν(B̄) (1.4)

for any ν ∈ (0, 1), where G is the unique solution of{
−∆pG+ |G|p−2G = 0 in B,

G = 1 on ∂B.
(1.5)

An immediate consequence of the previous theorem is that, for q large, uq 6≡ 1:
it is enough to notice that the limit problem (1.5) does not admit the constant
solution and conclude using the convergence in (1.4). The proof technique for
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detecting the limit profile is inspired by [14], cf. also [11] for the case p > 2.
Moreover, as expressed by (1.3), the solution uq is the minimizer of the modified
energy Iq restricted to the Nehari set Nq. Contrarily to what happens for problem
(1.1) in the case p ≥ 2, in the present case the constant solution 1 is also a local
minimizer of Iq on Nq, although not a global one, for large values of q.

Theorem 1.2. For any q > 2 there exist two constants δq ∈ (0, 1) and Mq > 0
such that for every w ∈ Nq with the property ‖w − 1‖W 1,p(B) ≤ δq, it holds

Iq(w)− Iq(1) ≥Mq‖w − 1‖pW 1,p(B).

From one side, being uq and 1 both minimizers on the Nehari set, it is more
difficult to distinguish them using a comparison between their energies. We notice
in passing that, with respect to the case p ≥ 2, an additional difficulty arises here
due to the fact that functional Iq is not of class C2 for p < 2. The key result to prove
the previous theorem is Lemma 5.1, in which we show that a Poincaré-Wirtinger-
type inequality holds in a neighborhood of 1. On the other side, the presence of two
minimizers produces a third solution. Indeed, taking advantage of Theorem 1.2, we
can prove the existence, for q sufficiently large, of another nonconstant solution vq
of (1.1), corresponding to a mountain pass type solution over Nq.

Theorem 1.3. For q sufficiently large there exists another nonconstant solution
vq ∈ C of (1.1), distinct from uq.

We observe that, being Nq the intersection between the Nehari manifold and the
cone C, it has no more the structure of a manifold. Therefore, also for this second
solution, we cannot apply directly the standard theorems of Critical Point Theory.
In this case, we need to define a candidate critical level in terms of two-dimensional
paths, cf. definition (6.3), and then use again the refined version of the deformation
lemma inside the cone C. Compared with the shooting method used in [8], one of
the advantages of this approach is that we know, by construction, that vq has higher
energy than uq.

The paper is organized as follows. In Section 2 we establish some a priori bounds
for the solutions of (1.1) belonging to C; this allows us to define a truncated non-
linearity that is Sobolev-subcritical. In Section 3 we apply a mountain pass type
theorem inside the cone C, in order to prove the existence of a mountain pass so-
lution of (1.1). In order to show that such solution is nonconstant for sufficiently
large values of q, we detect its limiting behaviour as q →∞: this is done in Section
4, where we can conclude the proof of Theorem 1.1. We prove Theorem 1.2 in
Section 5. The property stated therein is the main ingredient for the proof of the
existence of a third solution, that is concluded in Section 6.

2. A priori estimates and truncated problem

In this section we establish some a priori estimates for the solutions of (1.1)
belonging to C, and also for a slightly more general problem. Our aim is to truncate
the nonlinearity uq−1, in order to replace it with a Sobolev subcritical one, but
keeping the same C-solutions.

Since we are interested in the regime q → ∞, in the following we take, for
simplicity,

q > 2,
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in such a way that the nonlinearities involved are of class C1 also in the origin.
Let us first recall some known properties of the set C defined in (1.2), since it

will play a very important role in all the paper. We note that the definition of C is
well-posed because W 1,p

rad(B)-functions can be taken continuous in (0, 1]. Moreover,
by monotonicity, for every u ∈ C, we can set u(0) := limr→0+ u(r) and consider
u ∈ C(B̄). Finally, being nondecreasing, every u ∈ C is differentiable a.e. and
u′(r) ≥ 0 where it is defined. As already mentioned in the Introduction, the set
C is a closed convex cone in W 1,p(B): for all u, v ∈ C and λ ≥ 0 the following
properties hold

(i) λu ∈ C;
(ii) u+ v ∈ C;
(iii) if also −u ∈ C, then u ≡ 0;
(iv) C is closed for the topology of W 1,p.

Working in the cone C allows us to treat supercritical nonlinearities thanks to
the property stated in the following lemma.

Lemma 2.1 ([11, Lemma 2.2]). For every t ∈ [1,∞) there exists C(N, t) such that

‖u‖L∞(B) ≤ C(N, t)‖u‖W 1,t(B) for all u ∈ C.

In particular, by applying Lemma 2.1 with t = p, we obtain that

C ⊂ L∞(B). (2.1)

Another consequence of Lemma 2.1 is that the cone C endowed with the W 1,p-norm
is compactly embedded in Lt(B) for all t ∈ [1,∞), see [11, Lemma 2.3] for details.

Let p∗ be the critical exponent for the Sobolev embedding W 1,p(B) ↪→ Lt(B),
namely

p∗ :=

{
Np
N−p if N > p,

+∞ otherwise.

Fix ` ∈ (p, p∗). We now consider a class of modified problems
−∆pu+ up−1 = ϕ(u) in B,

u > 0 in B,

∂νu = 0 on ∂B,

(2.2)

where ϕ can be any function of the form

ϕ(s) = ϕq,s0(s) :=

{
sq−1 if s ∈ [0, s0],

sq−1
0 + q−1

`−1 s
q−`
0 (s`−1 − s`−1

0 ) if s ∈ (s0,∞),
(2.3)

with s0 ∈ (2,∞). Notice that the functions ϕ are of class C1, nonnegative and
increasing. In the next lemma we prove that the solutions of (2.2) belonging to C
are bounded in the C1-norm, independently of q and s0.

Lemma 2.2. Every solution u ∈ C of (2.2), for every ϕ of the form (2.3), satisfies

‖u‖L∞(B) ≤ 1 + (p′)1/p and ‖u′‖L∞(B) ≤ (p′)1/p.

Proof. Let ϕ = ϕq,s0 be any function of the form (2.3) and let u ∈ C be any solution
of (2.2). We first show that

u(0) ≤ 1. (2.4)
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To this aim, suppose by contradiction that u(0) > 1. By using equation (2.3) and
the fact that u is nondecreasing, we obtain∫

{u≥s0}
(up−1 − ϕ(u)) dx = −

∫
{u≤s0}

(up−1 − uq−1) dx > 0.

This contradicts the fact that, for u > s0,

up−1 − ϕ(u) = up−1 − q − 1

`− 1
sq−`0 u`−1 +

q − `
`− 1

sq−1
0

≤ up−1 − q − 1

2(`− 1)
sq−`0 u`−1 +

q − `
2(`− 1)

sq−1
0 < 0,

where we used that ϕ is nonnegative and, in the last line, we applied relation (62)
in [11], with M = 2. Hence (2.4) is established.

Proceeding similarly to [8, Lemma 2.2], we let, for any u ≥ 0, Φ(u) =
∫ u

1
ϕ(s) ds

and, for any r ∈ [0, 1],

H(r) :=
u′(r)p

p′
+ Φ(u(r))

with 1/p′ = 1 − 1/p. By making use of the equation satisfied by u in radial form,
we conclude that

H ′(r) = −N − 1

r
u′(r)p ≤ 0 for every r ∈ (0, 1].

Being Φ ≥ 0 and u′(0) = 0, this implies

u′(r)p

p′
≤ H(r) ≤ H(0) = Φ(u(0)) = u(0)q−1 ≤ 1 for every r ∈ [0, 1],

where in the last step we used (2.4). Consequently,

u(r) = u(0) +

∫ r

0

u′(s) ds ≤ 1 + (p′)1/p

for every r ∈ [0, 1]. �

In the light of Lemma 2.2, we now choose a specific function ϕ of the form (2.3)
in such a way that every solution of (2.2) with this specific ϕ, belonging to C, solves
also the original problem (1.1). To this aim, we choose s0 greater both than the
L∞ bound and than another constant that will be needed later; from now on we
let

s0 := max
{

2 + (p′)1/p, C(N, p)(1 + |B|1/p)
}
, (2.5)

C(N, p) being the constant that appears in Lemma 2.1.

Lemma 2.3. Define fq(s) := ϕq,s0(s). If u ∈ C solves
−∆pu+ up−1 = fq(u) in B,

u > 0 in B,

∂νu = 0 on ∂B,

(2.6)

then u solves (1.1).
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Proof. Let u ∈ C be a solution of (2.6). By Lemma 2.2 it holds ‖u‖L∞(B) ≤
1 + (p′)1/p < s0, so that

fq(u(x)) = u(x)q−1 for every x ∈ B.
Hence u solves (1.1). �

Remark 2.4. By direct calculations one can check that fq is of class C1, nonnegative,
increasing and satisfies the following properties for every q > `:

fixed any s > 0, the map t ∈ (0,∞) 7→ fq(ts)

tp−1
is increasing, (2.7)

lim
s→∞

fq(s)

s`−1
=
q − 1

`− 1
sq−`0 . (2.8)

These two properties will play a role in the subsequent sections.

Remark 2.5. We notice, for future use, that for every u ∈ C satisfying ‖u −
1‖W 1,p(B) ≤ 1 it holds fq(u) = uq−1. Indeed, using Lemma 2.1, the triangular
inequality and relation (2.5),

‖u‖L∞(B) ≤ C(N, p)‖u‖W 1,p(B) ≤ C(N, p)(1 + |B|1/p) ≤ s0.

3. Existence of a mountain pass radial solution

The aim of this section is to prove the existence of a mountain pass type solution
of (1.1). In view of Lemma 2.3, problems (1.1) and (2.6) have the same solutions
in C; the advantage of dealing with (2.6) is that this problem is subcritical and it
can be treated with variational methods. Nonetheless, being forced to work in the
cone C, we cannot apply directly standard techniques, because C has empty interior
in the W 1,p-topology.

From now on in the paper, fq is the function introduced in Lemma 2.3, extended
to zero in (−∞, 0). As already mentioned in the Introduction, denoting Fq(u) :=∫ u

0
fq(s)ds, the energy functional associated to problem (2.6) is Iq : W 1,p(B) → R

defined as

I(u) :=

∫
B

(
|∇u|p

p
+
|u|p

p
− Fq(u)

)
dx. (3.1)

Being ` < p∗ and thanks to the Sobolev embedding, the functional Iq is well defined
and of class C1. We can also associate to (2.6) the Nehari-type set

Nq :=

{
u ∈ C \ {0} :

∫
B

(|∇u|p + |u|p)dx =

∫
B

fq(u)u dx

}
. (3.2)

As problems (1.1) and (2.6) need not be equivalent outside C, we define Nq as the
intersection of the cone C with the standard Nehari manifold of (2.6); this destroys
the structure of manifold for Nq. On the other hand, being Nq a subset of C, it
is embedded in L∞(B), cf. (2.1). It is a standard property that Nehari sets are
bounded away from the origin; in this setting, an additional feature is that such a
bound is independent of q.

Lemma 3.1 ([11, Lemma 5.2]). There exists σ > 0 such that

inf
q≥p+1

inf
u∈Nq

‖u‖L∞(B) ≥ σ.

The functional Iq satisfies the mountain pass geometry and the Palais-Smale
condition:
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Lemma 3.2. Let τ ∈ (0,min{σ, 1}), with σ given in Lemma 3.1,

(i) there exists αq > 0 such that Iq(u) ≥ αq for every u ∈ C with ‖u‖L∞(B) = τ ;
(ii) there exists k > τ such that Iq(k · 1) < 0.

Proof. The proof of part (i) is contained in [11, Lemma 3.9]. We prove now part

(ii). By (2.8), there exists s̃ > s0 such that fq(s) >
q−1

2(`−1)s
q−`
0 s`−1 for every s > s̃.

Hence, for every k > s̃, we get

Iq(k · 1) = |B|

(
kp

p
−
∫ s̃

0

fq(s)ds−
∫ k

s̃

fq(s)ds

)

≤ |B|
(
kp

p
− s̃min

[0,s̃]
fq −

d

2

k`

`
+
d

2

s̃`

`

)
.

So, being ` > p, limk→+∞ Iq(k · 1) = −∞, which concludes the proof. �

Lemma 3.3 ([11, Lemma A.4]). Iq satisfies the Palais-Smale condition, i.e. ev-
ery sequence (un) ⊂ W 1,p(B) such that (Iq(un)) is bounded and I ′q(un) → 0 in

(W 1,p(B))′ admits a convergent subsequence.

We are now ready to introduce the mountain pass level

cq = inf
γ∈Γq

max
t∈[0,1]

Iq(γ(t)), (3.3)

where

Γq := {γ ∈ C([0, 1]; C) : γ(0) ∈ Uq,−, γ(1) ∈ Uq,+} ,
and

Uq,− =
{
u ∈ C : Iq(u) <

αq
2
, ‖u‖L∞(B) < τ

}
,

Uq,+ =
{
u ∈ C : Iq(u) < 0, ‖u‖L∞(B) > τ

}
,

(3.4)

with τ , and αq as in Lemma 3.2.

Theorem 3.4. The value cq defined in (3.3) is finite and there exists a critical
point uq ∈ C of Iq with Iq(uq) = cq.

The proof of this theorem requires several tools, which we introduce in the fol-
lowing.

Given the operator T : (W 1,p(B))′ → W 1,p(B) such that T (w) = v, where v is
the unique solution to {

−∆pv + |v|p−2v = w in B,

∂νv = 0 on ∂B,
(3.5)

we introduce T̃ : W 1,p(B)→W 1,p(B) defined by

T̃ (u) = T (fq(u)). (3.6)

Being ` < p∗, u ∈ W 1,p(B) implies u ∈ L`(B). Hence, by (2.3), fq(u) ∈ L`′(B) ⊂
(W 1,p(B))′ and T̃ is well defined; moreover, T̃ preserves the cone C, that is a crucial
property for our technique.

Lemma 3.5 ([11, Lemma 3.4]). The operator T̃ defined in (3.6) satisfies T̃ (C) ⊆ C.
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Proposition 3.6 ([11, Proposition A.3]). The operator T̃ is compact. Furthermore,
there exist two positive constants a, b such that for all u ∈ W 1,p(B) the following
properties hold

I ′q(u)[u− T̃ (u)] ≥ a‖u− T̃ (u)‖2W 1,p(B)(‖u‖+ ‖T̃ (u)‖W 1,p(B))
p−2,

‖I ′q(u)‖∗ ≤ b‖u− T̃ (u)‖p−1
W 1,p(B),

(3.7)

where ‖ · ‖∗ denotes the norm in the dual space (W 1,p(B))′.

We note that (3.7) implies that the set {u : T̃ (u) = u} coincides with the set of
critical points of Iq.

Lemma 3.7 ([3, Lemma 5.2]). For every c ∈ R there exists κc > 0 such that

‖u‖W 1,p(B) + ‖T̃ (u)‖W 1,p(B) ≤ κc(1 + ‖u− T̃ (u)‖W 1,p(B))

for every u ∈W 1,p(B) with Iq(u) ≤ c.

As the operator u − T̃ (u) is not Lipschitz, it can not be used as a generalized
pseudogradient vector field for I ′q(u). To overcome this obstacle, we rely on the
results proved in [3, 4] that are reformulated in our framework in [11].

Lemma 3.8 ([11, Lemma A.5]). Let W := W 1,p(B)\{u : T̃ (u) = u}. There exists
a locally Lipschitz continuous operator K : W → W 1,p(B) satisfying the following
properties:

(i) K(C ∩W ) ⊂ C;

(ii) 1
2‖u − K(u)‖W 1,p(B) ≤ ‖u − T̃ (u)‖W 1,p(B) ≤ 2‖u − K(u)‖W 1,p(B) for all
u ∈W ;

(iii) let a > 0 be the constant given in Proposition 3.6, then

I ′q(u)[u−K(u)] ≥ a

2
‖u−T̃ (u)‖2W 1,p(B)(‖u‖W 1,p(B)+‖T̃ (u)‖W 1,p(B))

p−2 for all u ∈W.

Lemma 3.9 ([11, Lemma A.6]). Let c ∈ R be such that I ′q(u) 6= 0 for all u ∈ C with

Iq(u) = c. Then there exist two positive constants ε̄ and δ̄ such that the following
inequalities hold

(i) ‖I ′q(u)‖∗ ≥ δ̄ for all u ∈ C with |Iq(u)− c| ≤ 2ε̄;

(ii) ‖u−K(u)‖W 1,p(B) ≥ δ̄ for all u ∈ C with |Iq(u)− c| ≤ 2ε̄.

Lemma 3.10. Let c ∈ R be such that I ′q(u) 6= 0 for all u ∈ C with Iq(u) = c and let
ε̄ be as in Lemma 3.9. For every ε ≤ ε̄ there exists a function η : C → C satisfying
the following properties:

(i) η is continuous with respect to the topology of W 1,p(B);
(ii) Iq(η(u)) ≤ Iq(u) for all u ∈ C;

(iii) Iq(η(u)) ≤ c− ε for all u ∈ C such that |Iq(u)− c| < ε;
(iv) η(u) = u for all u ∈ C such that |Iq(u)− c| > 2ε.

Proof. Let ε ≤ ε̄. Let χ : R→ [0, 1] be a smooth cut-off function such that

χ(t) =

{
1 if |t− c| < ε,

0 if |t− c| > 2ε.
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Recalling the definition of K in Lemma 3.8, let Φ : W 1,p(B) → W 1,p(B) be the
map defined by

Φ(u) :=

{
χ(Iq(u)) u−K(u)

‖u−K(u)‖W1,p(B)
if |Iq(u)− c| ≤ 2ε,

0 otherwise.

Note that the definition of Φ is well posed by Lemma 3.9. For all u ∈ C, we consider
the Cauchy problem

{
d
dtη(t, u(x)) = −Φ(η(t, u(x))) (t, x) ∈ (0,∞)×B,
η(0, u(x)) = u(x) x ∈ B.

(3.8)

Being K locally Lipschitz continuous by Lemma 3.8, for all u ∈ C there exists a
unique solution η(·, u) ∈ C1([0,∞);W 1,p(B)).

For u ∈ C, we shall define η(u) := η(t̄, u) for a suitable t̄ to be specified later.
Since for every t, η(t, ·) preserves the cone and satisfies properties (i) and (iv), the
same holds true also for η. In particular, the preservation of the cone can be proved
as in [11, Lemma 3.8], using the property that T̃ (C) ⊂ C, cf. Lemma 3.5.

Let us prove now (ii). Also in this case, it holds for all t. Indeed, for every u ∈ C
and t > 0, we can write

Iq(η(t, u))− Iq(u) =

∫ t

0

d

ds
Iq(η(s, u))ds

= −
∫ t

0

χ(Iq(η(s, u)))

‖η(s, u)−K(η(s, u))‖W 1,p(B)
I ′q(η(s, u))[η(s, u)−K(η(s, u))]ds

≤ −a
2

∫ t

0

‖η(s, u)− T̃ (η(s, u))‖2W 1,p(B)χ(Iq(η(s, u)))

‖η(s, u)−K(η(s, u))‖W 1,p(B)(‖η(s, u)‖W 1,p(B) + ‖T̃ (η(s, u))‖W 1,p(B))2−p
ds

≤ 0,

(3.9)
where we have used the inequality in Lemma 3.8-(iii).

It remains to choose t̄ in such a way that (iii) holds. Let u ∈ C be such that
|Iq(u) − c| < ε and let t be sufficiently large. Then, two cases arise: either there
exists s ∈ [0, t] for which Iq(η(s, u)) ≤ c− ε and so, by the previous calculation we
get immediately that Iq(η(t, u)) ≤ c− ε, or for all s ∈ [0, t], Iq(η(s, u)) > c− ε. In
this second case,

c− ε < Iq(η(s, u)) ≤ Iq(u) < c+ ε.

In particular, being ε ≤ ε̄, Lemma 3.9-(i) applies, providing η(s, u) ∈ W :=

W 1,p(B) \ {u : T̃ (u) = u}. By the definition of χ and Lemma 3.9-(ii), it results
that for all s ∈ [0, t]

χ(Iq(η(s, u))) = 1, ‖η(s, u)−K(η(s, u))‖W 1,p(B) ≥ δ̄.
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Hence, by (3.9), Lemma 3.7, Lemma 3.8-(ii)-(iii), and Lemma 3.9, we obtain for
all t > 0

Iq(η(t, u)) ≤ Iq(u)

− a

2κ2−p
c+ε̄

∫ t

0

‖η(s, u)− T̃ (η(s, u))‖2W 1,p(B)

‖η(s, u)−K(η(s, u))‖W 1,p(B)(1 + ‖η(s, u)− T̃ (η(s, u))‖W 1,p(B))2−p
ds

≤ Iq(u)− aδ̄

8κ2−p
c+ε

∫ t

0

‖η(s, u)−K(η(s, u))‖W 1,p(B)(
1 + 1

2‖η(s, u)−K(η(s, u))‖W 1,p(B)

)2−p ds
< c+ ε− aδ̄

8κ2−p
c+ε

(
1 +

δ̄

2

)p−2

t,

where we have used that the function f(x) = x2(1 + x)p−2 is increasing in R+.
Therefore, Iq(η(t, u)) < c− ε for every

t ≥ 16ε

aδ̄

(
1 +

δ̄

2

)2−p

κ2−p
c+ε =: t̄,

and the proof is concluded. �

• Proof of Theorem 3.4. By Lemma 3.2, αq ≤ cq <∞. Indeed, for k large enough,
the curve γ(t) = kt, t ∈ [0, 1] belongs to Γ. Hence, Γ 6= ∅ and so cq < ∞. On the
other side, for every γ ∈ Γ, max[0,1] Iq(γ) ≥ αq, and so also cq ≥ αq.

Now, suppose by contradiction that there are no critical points u ∈ C of Iq at
level cq. By Lemma 3.9-(i), ‖I ′q(u)‖∗ ≥ δ̄ for every u ∈ C such that |Iq(u)−cq| ≤ 2ε̄.
Fix

ε < min
{
ε̄,
cq
2
− αq

4

}
.

Let γ ∈ Γ be any curve such that maxt∈[0,1] Iq(γ(t)) < cq + ε, and define γ̄(t) :=
η(γ(t)) for t ∈ [0, 1], with η as in Lemma 3.10. Being cq − 2ε > αq/2, neither γ(0)
nor γ(1) belong to the strip {u : |Iq(u) − cq| ≤ 2ε} and consequently, by Lemma
3.10-(iv), γ̄ ∈ Γ. Hence, by Lemma 3.10-(iii), maxt∈[0,1] Iq(γ̄(t)) < cq, contradicting
the definition of cq as infimum. �

4. The mountain pass solution is non-constant for q large

In this section we will find the limit profile, as q → ∞, of the mountain pass
solution uq whose existence has been proved in Theorem 3.4 for every q > 2. As a
byproduct of this result, we immediately have that uq is non-constant for q large.

To this aim, we first state some lemmas whose proofs can be found in [11, Section
5] for the case p > 2, but they continue to hold also in this setting with 1 < p < 2.

The next lemma ensures that the Nehari-type set Nq defined in (3.2) is homeo-
morfic to a sphere; its proof uses property (2.7) of fq.

Lemma 4.1 (cf. [11, Lemma 5.3]). For every u ∈ C \ {0} there exists a unique
hq(u) > 0 such that hq(u)u ∈ Nq. It holds

Iq(tu) > 0 for all t ∈ (0, hq(u)]; (4.1)

I ′q(tu)[u] > 0 if and only if t ∈ (0, hq(u)).

Furthermore, if (un) ⊂ C \ {0} is such that un → u ∈ C \ {0} with respect to the
W 1,p-norm, then hq(un)→ hq(u). Finally, the map

H : u ∈ C ∩ S1 7→ hq(u)u ∈ Nq, where S1 := {u ∈W 1,p(B) : ‖u‖W 1,p(B) = 1}
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is a homeomorphism.

The following lemma guarantees that the mountain pass level in the cone coin-
cides with the infimum on the Nehari-type set in the cone.

Lemma 4.2 (cf. [11, Lemma 5.4]). The following equalities hold

cq = inf
u∈C\{0}

sup
t≥0

Iq(tu) = inf
u∈Nq

Iq(u). (4.2)

In the next lemma, we refine for uq the C1-a priori bound previously obtained
in Lemma 2.2, using that fq(uq) = uq−1

q .

Lemma 4.3. For all q > 2,

‖uq‖L∞(B) ≤
(
q

p

) 1
q−p

and ‖u′q‖L∞(B) ≤
(

q − p
q(p− 1)

) 1
p

.

In particular, lim supq→∞ ‖uq‖L∞(B) ≤ 1 and lim supq→∞ ‖u′q‖L∞(B) ≤ p−
1
p .

Proof. If uq ≡ 1 the thesis is immediately verified with C = 1, otherwise the thesis
can be proved following the argument in [11, Lemma 5.5]. �

In view of the previous lemma, the existence of a limit profile follows.

Lemma 4.4 (cf. [11, Lemma 5.6]). There exists a function u∞ ∈ C for which

uq ⇀ u∞ in W 1,p(B), uq → u∞ in C0,ν(B̄) as q →∞, (4.3)

for any ν ∈ (0, 1). Furthermore, u∞(1) = 1.

Proof. In view of Lemma 4.3 and using the compactness of the embedding C1 ↪→
C0,ν , (4.3) immediately follows. Furthermore, up to a subsequence uq → u∞ point-
wise, hence u∞ ∈ C. As for the last part of the statement, we observe that, if
uq ≡ 1 for every q, then obviously u∞ ≡ 1. Otherwise, if uq 6≡ 1, integrating the
equation satisfied by uq, we get∫

B

up−1
q (1− uq−pq )dx = 0.

Since uq is positive and nondecreasing, we deduce that

uq(0) < 1, uq(1) > 1 for all q ≥ 2 > p. (4.4)

Hence, ‖uq‖L∞(B) = uq(1) > 1. Consequently, together with Lemma 4.3, we get

1 ≤ lim inf
q→∞

uq(1) = lim inf
q→∞

‖uq‖L∞(B) ≤ lim sup
q→∞

‖uq‖L∞(B) ≤ 1,

and so u∞(1) = limq→∞ ‖uq‖L∞(B) = 1. �

We can give a variational characterization of the solution of (1.5) and a relation
with the mountain pass level cq.

Lemma 4.5 (cf. [11, Lemmas 5.7 and 5.8]). The quantity

c∞ := inf

{
‖v‖pW 1,p(B)

p
: v ∈ C, v = 1 on ∂B

}
is uniquely achieved by the radial function G satisfying (1.5). Furtheremore, the
following chain of inequalities holds

‖G‖pW 1,p(B)

p
= c∞ ≤

‖u∞‖pW 1,p(B)

p
≤ lim inf

q→∞

‖uq‖pW 1,p(B)

p
≤ lim inf

q→∞
cq. (4.5)
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We are now ready to prove Theorem 1.1.

• Proof of Theorem 1.1. Let uq be the mountain pass solution found in Theorem
3.4 for every q > 2. We recall that uq can also be characterized by Iq(uq) =
infu∈Nq

Iq(u), cf. Lemma 4.2. Once we prove the asymptotic behavior (1.4) of uq,

being the convergence C0,ν and recalling that G is nonconstant, we can immediately
conclude that uq is nonconstant for q large enough.

The proof of (1.4) follows the lines of [11, Theorem 1.3]; we report it here to
highlight the role of the previous lemmas. Let G be the unique solution of (1.5).
Since G ∈ C \ {0}, by Lemma 4.1 there exists a unique hq(G) > 0 such that
hq(G)G ∈ Nq. We claim that, for q large, hq(G) < s0. Indeed, let t = t̄q be the
unique solution of

‖G‖pW 1,p(B) −
1

tp−1

∫
B

(tG)q−1Gdx = 0,

namely t̄q =

(
‖G‖p

W1,p(B)

‖G‖q
Lq(B)

) 1
q−p

, then

t̄q(G)→ 1

‖G‖L∞(B)
= 1 as q →∞. (4.6)

Since s0 > 2, there exists q̄ large, such that t̄q < s0 for q ≥ q̄. Now, fix q > q̄. Since
by definition t = hq(G) is the unique solution of

‖G‖pW 1,p(B) −
1

tp−1

∫
B

fq(tG)Gdx = 0,

and fq(s) = sq−1 as s < s0, hq(G) = t̄q by uniqueness, and the claim is proved.
This implies that fq(hq(G)G) = (hq(G)G)q−1, and by (4.6) we get

c∞ =
‖G‖pW 1,p(B)

p
= lim
q→∞

‖hq(G)G‖pW 1,p(B)

p
= lim
q→∞

(
Iq(hq(G)G) +

hq(G)q

q

∫
B

Gqdx

)
.

Using that hq(G)G ∈ Nq, we can rewrite the last term in the limit as follows

c∞ = lim
q→∞

(
Iq(hq(G)G) +

‖hq(G)G‖pW 1,p(B)

q

)
= lim
q→∞

Iq(hq(G)G).

On the other hand, by Lemma 4.2 we obtain

cq = inf
u∈Nq

Iq(u) ≤ Iq(hq(G)G).

The previous two equations provide c∞ ≥ lim supq→∞ cq, which, together with
Lemma 4.5, imply

c∞ = lim
q→∞

cq. (4.7)

As a consequence, the inequalities in (4.5) are indeed equalities, so that

lim
q→∞

‖uq‖W 1,p(B) = ‖G‖W 1,p(B) and ‖u∞‖W 1,p(B) = ‖G‖W 1,p(B).

Hence, u∞ achieves c∞ and, by Lemma 4.5, u∞ = G. Together with the W 1,p-weak
convergence and the uniform convexity of W 1,p(B), this implies that uq → G in
W 1,p(B). By Lemma 4.4 the convergence is also C0,ν(B̄) for any ν ∈ (0, 1).

Finally, let us prove that the following inequality holds

Iq(uq) < Iq(1) for q sufficiently large. (4.8)
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Indeed, suppose by contradiction that there exists a sequence qn → ∞ such that
Iqn(1) = cqn for every n. As a consequence of (4.7), we can pass to the limit in the
previous equality and obtain ‖1‖pW 1,p(B)/p = c∞, thus contradicting the fact that

c∞ is uniquely achieved by G 6≡ 1, cf. Lemma 4.5. �

5. The constant solution is a local minimizer on Nq
In this section we prove that the constant solution 1 is a local minimizer on

the Nehari-type set Nq for every q > 2. To this aim, we shall need a Poincaré–
Wirtinger-type inequality.

Lemma 5.1. Fix q > 2. There exist δq ∈ (0, 1) and a constant CPW > 0 such that
for every w ∈ Nq with the property ‖w − 1‖W 1,p(B) ≤ δq, it holds

‖w − 1‖pLp(B) ≤ CPW ‖∇w‖
p
Lp(B).

Proof. Suppose by contradiction that for every n ∈ Nq there exists wn ∈ Nq such
that

‖wn − 1‖W 1,p(B) ≤
1

n
and ‖wn − 1‖Lp(B) ≥ n‖∇wn‖Lp(B). (5.1)

Letting

εn := ‖wn − 1‖Lp(B) and vn :=
wn − 1

εn
,

we have that ‖vn‖Lp(B) = 1 for every n and that, by (5.1), ‖∇vn‖Lp(B) ≤ 1
n → 0

as n→∞. Hence, there exist a subsequence nk and v̄ ∈W 1,p(B) such that,

vnk
⇀ v̄ weakly in W 1,p(B) and vnk

→ v̄ in Lp(B)

as k →∞. Moreover,

‖v̄‖pW 1,p(B) ≤ lim inf
k→∞

‖vnk
‖pW 1,p(B) ≤ lim inf

k→∞

(
‖vnk
‖pLp(B) +

1

npk

)
= ‖v̄‖pLp(B) ≤ ‖v̄‖

p
W 1,p(B),

providing that the convergence vnk
→ v̄ in W 1,p(B) is actually strong and that v̄

is a non-trivial constant function, more precisely v̄ = ±|B|−1/p.
We shall now exhibit a contradiction by exploiting the fact that wn ∈ Nq for

every n. Noticing that fq(wn) = wq−1
n for every n (see Remark 2.5), the Nehari

condition for wn writes ∫
B

(|∇wn|p + wpn)dx =

∫
B

wqn dx.

We rewrite the last equality in terms of vn and we divide it by εn to obtain

εp−1
n

∫
B

|∇vn|pdx =

∫
B

wpn
(1 + εnvn)q−p − 1

εn
dx, (5.2)

that readily leads to the contradiction 0 = (q − p)
∫
B
v̄ dx by passing to the limit

along the subsequence nk as k →∞. We remark that the converge of the right-hand
side in (5.2) is justified by the Lebesgue dominated convergence theorem as∣∣∣∣wpn(x)

(1 + εnvn(x))q−p − 1

εn

∣∣∣∣ = (q − p)
∣∣wpn(x)(1 + ξn(x)vn(x))q−p−1vn(x)

∣∣
≤ (q − p)‖wn‖q−1

L∞(B)|vn(x)| ≤ (q − p)sq−1
0 |vn(x)|,
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with vn ∈ L1(B) and ξn(x) ∈ (0, εn) given by the Lagrange theorem. �

Remark 5.2. Given δq as in Lemma 5.1, for every w ∈ Nq with the property that
‖w − 1‖W 1,p(B) ≤ δq it holds

‖∇w‖pLp(B) ≤ ‖w − 1‖pW 1,p(B) ≤ (CPW + 1)‖∇w‖pLp(B).

• Proof of Theorem 1.2. Let w be as in the hypotheses and

gt(s) :=
1

t

∫
B

(1 + s(w − 1))tdx,

for t > 1 and s ∈ [0, 1]. Since by Remark 2.5, fq(w) = wq−1, we can write

Iq(w)− Iq(1) =
1

p

∫
B

|∇w|pdx+ (gp(1)− gp(0))− (gq(1)− gq(0)). (5.3)

Now, being p > 1, the function |x|p is convex, and the inequality (1 + x)p ≥ 1 + px
holds for every x ≥ −1. Thus, applying this inequality to w − 1, we get

(1 + (w − 1))p ≥ 1 + p(w − 1),

which, integrated over B, becomes

gp(1)− gp(0) ≥ g′p(0).

On the other hand, since q > 2, the function gq is of class C2, and so we can write
the following Taylor expansion

gq(1)− gq(0) = g′q(0) +
(q − 1)

2

∫
B

(1 + ξ(w− 1))q−2(w− 1)2dx for some ξ ∈ (0, 1).

We further observe that g′p(0) = g′q(0). Therefore, combining together the previous
consideration, we can estimate (5.3) as follows:

Iq(w)− Iq(1) ≥ 1

p

∫
B

|∇w|pdx− q − 1

2

∫
B

(1 + ξ(w − 1))q−2(w − 1)2dx

≥ 1

p

∫
B

|∇w|pdx− q − 1

2
max{1, ‖w‖L∞(B)}q−2

∫
B

(w − 1)2dx

≥ 1

p

∫
B

|∇w|pdx− q − 1

2
sq−2

0 ‖w − 1‖2L2(B).

(5.4)

We distinguish now two cases, depending on whether the critical Sobolev exponent
p∗ is greater or less than 2.

Case 1: p ≥ 2N
N+2 . In this case, p∗ ≥ 2. Hence, taking δq smaller if necessary and

using Remark 5.2, we obtain by (5.4)

Iq(w)− Iq(1) ≥ C‖w − 1‖pW 1,p(B) − C
′‖w − 1‖2W 1,p(B), (5.5)

where C := 1
p(CPW +1) > 0, C ′ := q−1

2 sq−2
0 CS , and CS arises from the Sobolev

inequality for the embedding W 1,p(B) ↪→ L2(B). Recalling that p < 2 and that
‖w − 1‖W 1,p(B) ≤ δq, this estimate provides

Iq(w)− Iq(1) ≥ C

2
‖w − 1‖pW 1,p(B) for δq � 1.
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Case 2: p < 2N
N+2 . In this case, p∗ < 2. By the inequality in Remark 2.5 and the

triangle inequality, ‖w − 1‖L∞(B) ≤ s0 + 1. Therefore, we have∫
B

(w − 1)2dx ≤ (s0 + 1)2−p∗
∫
B

(w − 1)p
∗
dx,

and arguing as in the previous case, we get

Iq(w)− Iq(1) ≥ C‖w − 1‖pW 1,p(B) − C
′′‖w − 1‖p

∗

W 1,p(B),

where C ′′ := q−1
2 sq−2

0 (s0 + 1)2−p∗C ′S , and now C ′S arises from the embedding

W 1,p(B) ↪→ Lp
∗
(B). Again, for δq � 1, this allows to conclude, being p∗ < p. �

Remark 5.3. Theorem 1.2 actually implies that the constant solution 1 is a strict
local minimizer for Iq on Nq. Indeed, given δq as in Theorem 1.2, if w ∈ Nq is such
that ‖w − 1‖W 1,p(B) = δq, then

Iq(w) ≥ Iq(1) +Mqδ
p
q . (5.6)

Remark 5.4. Another consequence of Theorem 1.2 is that uq cannot be too close
to 1 for q sufficiently large. More precisely, ‖uq − 1‖W 1,p(B) ≥ δq. Indeed, suppose
by contradiction that ‖uq − 1‖W 1,p(B) < δq. Since, by Theorem 1.1, uq 6≡ 1 for
q sufficiently large, Theorem 1.2 would provide Iq(uq) ≥ Iq(1), which contradicts
(4.8).

6. Existence of a higher energy nonconstant solution

In order to prove the existence, for q sufficiently large, of the second solution vq,
we shall apply a variational method over the Nehari set Nq. A mountain pass type
theorem over Nq applies due to the fact that, as shown in the previous section, both
the nonconstant solution uq and the constant solution 1 are local minimizers of the
energy Iq over Nq. The main difficulty in what follows is that the Nehari set is not
a manifold, which prevents us from directly applying the mountain pass theorem
over manifolds. We shall instead construct a candidate critical level by means of
two-dimensional paths and show that it is indeed critical using the deformation
previously introduced (see Lemma 3.10). As the deformation takes place inside the
cone C, we need to define a variational structure inside C itself; this is done keeping
in mind the structure of the Nehari set in C, see Lemma 4.1. Let us start with some
preliminary estimates.

Lemma 6.1. Let

γ0(t, s) = t(suq + 1− s)
There exists q̄ > 2, such that, for every q ≥ q̄, there exist 0 < R1 � 1, R2 � 1
such that

(i) 0 < Iq(γ0(R1, s)) ≤ cq
2 ;

(ii) I ′q(γ0(R1, s))[γ0(R1, s)] > 0;
(iii) Iq(γ0(R2, s)) < 0;
(iv) I ′q(γ0(R2, s))[γ0(R2, s)] < 0

for every s ∈ [0, 1].

Proof. Notice first that, thanks to Lemma 4.4, for every s ∈ [0, 1] and t > 0 it holds

‖γ0(t, s)‖L∞(B) ≤ t‖uq‖L∞(B) = tuq(1)→ t as q →∞. (6.1)
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Hence it is possible to choose R1 so small that ‖γ0(R1, s)‖L∞(B) ≤ τ < s0, where
τ is given in Lemma 3.2. This implies both Iq(γ0(R1, s)) > 0 and

fq(γ0(R1, s)) = γ0(R1, s)
q−1 (6.2)

for every s ∈ [0, 1] and for every sufficiently large q. With similar estimates we
obtain, for every t > 0 and s ∈ [0, 1],

Iq(γ0(t, s)) ≤
‖γ0(t, s)‖pW 1,p(B)

p
→ tp

p

(
‖∇G‖pLp(B) + |B|

)
as q →∞,

where we used the convergence proved in Theorem 1.1. As limq→∞ cq = c∞ > 0
(see (4.7)), it is possible to choose t = R1 so small that (i) holds for every sufficiently
large q. To prove (ii) we make use of (6.2):

I ′q(γ0(R1, s))[γ0(R1, s)] = ‖γ0(R1, s)‖pW 1,p(B) − ‖γ0(R1, s)‖qLq(B)

≥ ‖γ0(R1, s)‖pLp(B) − |B|‖γ0(R1, s)‖qL∞(B) ≥ |B| (R
p
1uq(0)p −Rq1uq(1)q)

→ |B|Rp1G(0)p as q →∞,

for every s ∈ [0, 1], where we used again Theorem 1.1. Therefore, taking R1 smaller,
if necessary, also (ii) holds for every sufficiently large q.

Let us now consider R2 � 1. For every s ∈ [0, 1] and t > 0 we have

inf
B
γ0(t, s) ≥ tuq(0)→ tG(0) as q →∞.

Hence, being G(0) > 0 by Weak and Strong Maximum Principles [12, Theorem 1.1]
and [19, Theorem 5], it is possible to chooseR2 large enough that infB γ0(R2, s) > s0

for every s ∈ [0, 1] and t > 0, implying

fq(γ0(R2, s)) = −q − `
`− 1

sq−1
0 +

q − 1

`− 1
sq−`0 (γ0(R2, s))

`−1

for every s ∈ [0, 1] and sufficiently large q. This allows to prove that, for every
s ∈ [0, 1],

Iq(γ0(R2, s)) ≤ −C1R
`
2 + C1R

p
2 + C3R2 + C4,

for some constants C1 > 0 and C2, C3, C4 ∈ R independent of R2. As ` > p, (iii)
holds for sufficiently large R2, independent of q. The proof of (iv) is very similar
to that of (iii). �

In what follows, we fix q ≥ q̄, with q̄ given in Lemma 6.1. Let R1, R2 as in
Lemma 6.1, we define Q := [R1, R2]× [0, 1] ⊂ R2,

γ0 : Q→ C, γ0(t, s) := t(suq + 1− s).

Notice that γ0(t, s) ∈ C for every (t, s) ∈ Q thanks to the convexity of C. In
particular, γ0 belongs to the set

Υq := {γ ∈ C(Q; C) : γ = γ0 on ∂Q}.

We define our candidate critical level as

dq := inf
γ∈Υq

max
(t,s)∈Q

Iq(γ(t, s)). (6.3)
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Remark 6.2. The estimates proved in Lemma 6.1 allow to conclude that, for every
γ ∈ Υq,

max
(t,s)∈∂Q

Iq(γ(t, s)) = Iq(1).

Indeed, notice first that, being γ = γ0 on ∂Q, it is sufficient to estimate Iq(γ0(t, s)),
(t, s) ∈ ∂Q. Lemma 6.1 provides

Iq(γ0(R2, s)) < 0 < Iq(γ0(R1, s)) ≤
cq
2

=
Iq(uq)

2
≤ Iq(1)

2
.

Concerning the remaining part of ∂Q, we have for every t > 0

Iq(γ0(t, 0)) = Iq(t) ≤ Iq(1)

Iq(γ0(t, 1)) = Iq(tuq) ≤ Iq(1)

by the fact that 1, uq ∈ Nq and by Lemma 4.1.

Lemma 6.3. Given Mq and δq as in Theorem 1.2, it holds

dq ≥ Iq(1) +Mqδ
p
q .

Proof. Given γ ∈ Υq, we claim that there exists (t̄, s̄) ∈ (R1, R2)× (0, 1) such that

γ(t̄, s̄) ∈ Nq and ‖γ(t̄, s̄)− 1‖W 1,p(B) = δq (6.4)

with δq as in Theorem 1.2. Once the claim is proved, Remark 5.3 implies

max
(t,s)∈Q

Iq(γ(t, s)) ≥ Iq(γ(t̄, s̄)) ≥ Iq(1) +Mqδ
p
q

for every γ ∈ Υq and hence the statement.
In order to prove (6.4), let F ,G :→ R be defined as

F(t, s) = ‖hq(γ(t, s))γ(t, s)− 1‖W 1,p(B) − δq,
with hq as in Lemma 4.1, and

G(t, s) = I ′q(γ(t, s))[γ(t, s)].

Notice that F ,G are continuous in Q. Moreover, by Lemma 6.1,

G(R2, s) < 0 < G(R1, s)

for every s ∈ [0, 1]. By Lemma 4.1 and the fact that 1 ∈ Nq, it holds

F(t, 0) = ‖hq(t)t− 1‖W 1,p(B) − δq = −δq < 0

for every t ∈ [R1, R2], whereas, by Remark 5.4,

F(t, 1) = ‖hq(tuq)tuq − 1‖W 1,p(B) − δq = ‖uq − 1‖W 1,p(B) − δq > 0

for every t ∈ [R1, R2]. Hence, by Miranda’s Theorem [17] there exists (t̄, s̄) ∈
(R1, R2)× (0, 1) such that

F(t̄, s̄) = G(t̄, s̄) = 0,

thus implying (6.4). �

• Proof of Theorem 1.3. By Lemma 6.3 and the fact that Υq is not empty, for q ≥ q̄
we have that dq ∈ (Iq(1),∞). We need to show that, for sufficiently large q, dq is
a critical level for Iq in C. To this aim we proceed by contradiction, thus assuming
that there are no critical points u ∈ C of Iq at level dq. Given ε̄ as in Lemma 3.9,
let

ε < min

{
ε̄,
Mqδ

p
q

3

}
,
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with Mq, δq as in Theorem 1.2. By Lemma 3.10 there exists η : C → C such that
Iq(η(u)) ≤ dq − ε for all u ∈ C such that |Iq(u)− dq| < ε and η(u) = u for all u ∈ C
such that |Iq(u)− dq| > 2ε.

Let γ ∈ Υq be any path such that

max
(t,s)∈Q

Iq(γ(t, s)) < dq + ε.

Notice that, by Remark 6.2, Lemma 6.3 and the choice of ε, we have

max
(t,s)∈∂Q

Iq(γ(t, s)) = max
(t,s)∈∂Q

Iq(γ0(t, s)) = Iq(1) ≤ dq −Mqδ
p
q ≤ dq − 3ε.

Therefore, defining γ̄(t, s) := η(γ(t, s)) for (t, s) ∈ Q, we have that γ̄ = γ on ∂Q
and thus γ̄ ∈ Υq. Hence, by Lemma 3.10-(iii),

max
(t,s)∈∂Q

Iq(γ̄(t, s)) ≤ dq − ε

thus contradicting the definition of dq. This proves the existence of a critical point
vq ∈ C at level dq. Since Iq(vq) > Iq(1) > Iq(uq), the functions vq, 1, uq are three
distinct radially nondecreasing solutions of (1.1). �
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