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a b s t r a c t

The identification of switched systems is a complex optimization problem that involves
both continuous (parametrizations of the local models, a.k.a. modes) and discrete vari-
ables (model structures, switching signal). In particular, the combinatorial complexity
associated with the estimation of the switching signal grows exponentially with the
number of samples, which makes data segmentation (i.e. estimating the number and
location of mode switchings, and the mode sequence) a challenging problem. In this
work, we extend a previously developed randomized approach for the identification of
switched systems to encompass the estimation of the switching locations. The method
operates by extracting samples from a probability distribution of switched models, and
gathering information from the associated model performances to update the distribu-
tion, until convergence to a limit distribution associated to a specific model. A suitable
probability distribution is employed to represent the likelihood of a mode switching at
a certain time, and the update process is designed to correct the switching locations
and remove redundant switchings. The proposed algorithm has been compared to
existing state-of-the-art methods and has been tested on various benchmark examples,
to demonstrate its effectiveness.
© 2023 TheAuthors. Published by Elsevier Ltd. This is an open access article under the CCBY

license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

In many modeling problems, the heterogeneity of the system behavior is hardly captured by a single model and,
ather, different dynamics are observed, the system switching from one operational mode to another. Examples range
rom computer vision [1] to DC motors [2], from diesel engines [3] to pick-and-place machines [4], just to mention a
ew. To model such complex dynamic behaviors one can resort to a switched system, which is characterized by a set of
ocal models that capture the individual modes of operation, and a switching mechanism governing the transition from
ne mode to another. Mode switching is sometimes associated to the crossing of the boundaries between the operating
egions of the local models (piecewise affine (PWA) models) or is otherwise represented as an exogenous switching signal
switched systems).

The identification of a (discrete-time) switched system from data is a particularly challenging problem, that involves
he optimization of both continuous (parameterizations of the local models) and discrete variables (model structures,
witching signal). Various methodologies have been proposed in the literature to address this problem (see e.g. [5,6] for
survey). The major source of complexity is associated with the data segmentation task, i.e. estimating the number and

ocation of mode switchings, as well as the mode transition sequence. Indeed, the combinatorial complexity associated
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with the estimation of the switching signal grows exponentially with the number of samples. The modeling and
parametrization of the switching mechanism is therefore crucial. Many approaches use a Markov chain to model the
switching signal, introducing the notion of jump Markov models. The identification of state space jump Markov models
has been addressed in the Bayesian framework in [7,8], in the linear and nonlinear case, respectively. A solution for
the identification of jump linear input–output models was proposed in [9,10], and later extended to jump Box–Jenkins
models [11] and jump polynomial nonlinear AutoRegressive with eXogenous input (nonlinear ARX or NARX, [12,13])
models [14]. Other methods deal with a fully random switching mechanism, assuming that switchings can occur at any
time, involving any pair of modes. A Bayesian framework (see, e.g., [6,15,16]) has been developed to segment the training
data into an a priori known number of subsets, and next the local models are independently estimated, typically in a non-
parametric setting using kernel-based methods (with a few exceptions, such as [17]). Algebraic methods are discussed
in [18–20]. Finally, randomized methods have been developed as well, such as [21,22].

Regarding the last class of methods, the combinatorial part of the optimization problem is addressed by means of
a continuous relaxation approach, by resorting to a probability distribution designed to cover the solution space of
all discrete variables. As a result, the combinatorial problem is transformed into the continuous optimization of the
distribution parameters, until convergence to a limit distribution with probability mass concentrated at an optimum.
The key to this approach is an efficient representation and parametrization of the probability distribution. This relaxation
approach was originally applied in a nonlinear parametric identification setting to address the combinatorial problem
associated with the model structure selection task [23]. In that context, a joint Bernoulli distribution is employed to
parameterize the model structure, each distribution defining the probability that a specific regressor is selected in the
model. The joint distribution is updated by means of a sample-and-evaluate strategy. This work was later extended to the
identification of switched nonlinear systems, by adding a further combinatorial layer to the problem, associated to the
selection of the switching signal [20]. However, to avoid an excessive increase of the combinatorial complexity, switching
is assumed to occur only at a reduced subset of the data samples. A joint Categorical distribution is employed to associate
modes to each time interval between two subsequent candidate switching locations. A refinement stage [21,22] was later
added to correct the switching locations, thus providing a more reliable segmentation on the switching signal. Indeed,
alternating the updates of the randomized method with the corrections of the refinement stage yields sufficiently accurate
identification results, at the cost of an increased computational load.

We here follow the same philosophy, this time fully incorporating the switching signal in the probability distribution
(that is, removing the limiting assumption that switchings can occur only at specific times), and avoiding completely the
need for a separate refinement stage. The key to this improvement is the introduction of a suitable probabilistic description
of the switching locations, which complements the distributions associated to the switching sequence and the nonlinear
model structures. More precisely, a switching location is described by a discrete Gaussian distribution, and a number of
such distributions is initially assumed. Then, the centers and variances of these distributions are progressively tuned by
the randomized algorithm using an update policy that drives the centers towards the switching locations, and diminishes
the variance as the uncertainty on the switching locations is reduced. The update process is carried out until convergence
is obtained to limit distributions concentrated at specific locations. Redundant distributions are eliminated in the process.
The performance of the proposed method has been compared with existing state-of-the-art methods and analyzed in
various benchmark examples.

The rest of this paper is organized as follows. The switched NARX (SNARX) model class and the corresponding
identification problem are formalized in Section 2. The probabilistic reformulation of the discrete variables in the
randomized algorithm framework is discussed in Section 3, followed by the presentation of the identification algorithm
in Section 4. Various simulation examples are discussed in Section 5, followed by some concluding remarks in Section 6.

2. Problem statement

A (single-input single-output) switched nonlinear system with K modes is defined as

yt = f σt (xt )+ et (1)

where ut ∈ R and yt ∈ R are time-ordered input and output sequences, et is a disturbance generally assumed to be a zero-
ean Gaussian white noise, and xt = [yt−1, . . . , yt−ny , ut−1, . . . , ut−nu ] ∈ X ⊆ Rnu+ny is the vector collecting previous

nputs and outputs, nu, ny ∈ N being the (assigned) dynamic orders. The dynamics of the kth mode are described by (the
ossibly nonlinear) function f k : X → R. The switching signal σt ∈ {1, . . . , K } defines the active mode at time t .
The identification of (1) consists in the estimation of both the switching signal {σt}Nt=1 and the local models {f k(·)}Kk=1,

iven an observation training set {ut , yt}Nt=1.

2.1. Switching signal

The identification of switched systems entails a significant combinatorial complexity, mainly associated with the
correct attribution of the training samples to the modes, which is crucial for a successful identification of the local models.
Indeed, a priori there are KN possible switching signals. This complexity is reduced in [20–22] by assuming that the

system can switch at most Ns ≪ N times at specific locations in the observation horizon, collected in the time-ordered
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set T = {T1, . . . , TNs}, where Ti < Ti+1, for i = 1, . . . ,Ns−1. This reduces the size of the solution space for the switching
ignal to KNs+1. The resulting extended set

T = [1, T1, . . . , TNs , N + 1], (2)

nduces a segmentation of the observation set into Ns + 1 sub-intervals Ii = [T i, T i+1 − 1], each being associated to a
single mode κi ∈ {1, . . . , K }. Accordingly, one can define the corresponding mode sequence

κ = [κ1, . . . , κNs+1]. (3)

Notice that the switching signal can be easily retrieved as σt = κi, for t ∈ Ii. In this way, (2Ns + 1) discrete variables
are employed to fully characterize a switching signal instead of N , and the segmentation of the training set induces K
sub-training sets {Dk}

K
k=1 corresponding to K local models, where Dk = {(yt , ut) |σt = k}.

2.2. Modes and model structure

Regarding the structure of the local models, this work focuses on the polynomial NARX model class, whereby f k(x(·)) is
efined as a polynomial functional expansion of its arguments, and therefore configures a linear regression with respect
o monomials obtained from x:

f k(x) = ϕ(x)⊤ϑk, (4)

here ϑk is the parameter vector and ϕ(x) = [ϕ1(x), . . . , ϕn(x)] is the regressor vector in which, ϕj(x) : Rny+nu → R,
= 1, . . . , n, are the monomials of x up to a given order nd. So, the orders ny, nu and nd account for the flexibility as well
s the complexity of the local nonlinearity.
The identification of a model of type (4) involves the selection of the regressors and the estimation of the corresponding

arameters. The first task, a.k.a. model structure selection (see, e.g., [23]), is essential to reduce the complexity of the model
nd avoid overparametrization issues. Regarding the multi-model structure of the switched system, we assume that all
ocal models share the same set of potential regressors (ny, nu and nd are fixed), although the regressors actually included
n each local model may be different. A binary vector s ∈ {0, 1}n is used to encode the structure of a local model, such that
j = 1 indicates that the jth regressor is included in it, and conversely if sj = 0 the corresponding parameter ϑk

j is set to
. Accordingly, the structure of the modes of the switched system is encoded by a n× K binary matrix S = [s1, . . . , sK ],
here sk encodes the model structure of the kth mode.
Overall, the structure of the switched model is defined by a discrete variable λ = (T , κ, S) ∈ Λ, where Λ =

1, . . . , N}Ns × {1, . . . , K }Ns+1 × {0, 1}n×K .

.3. Problem setting

Given a time-ordered data set D = {(yt , ut )}Nt=1, the identification of the switched model involves the selection of the
iscrete variable λ ∈ Λ and the estimation of the local model parameters Θ = {ϑk

}
K
k=1 ∈ Rn×K , that minimize the loss

unction:

L(λ,Θ) =
1
N

K∑
k=1

∑
t∈Dk

(
yt − ϕ(xt )⊤ϑk)2 . (5)

Note that, for a fixed λ, the local data sets {Dk}
K
k=1 are completely defined, and the parameters ϑk

j such that Sj,k ̸= 0, for
k = 1, . . . , K , are estimated by minimizing (5):

Θλ
= argmin

Θ
L (λ,Θ) . (6)

Therefore, the loss function can actually be seen as a function of the discrete variable λ only, which effectively decouples
the optimization of the continuous and discrete variables, and justifies the following notation:

L
(
λ,Θλ

)
= L (λ) . (7)

Accordingly, the identification problem can be reformulated as the minimization of the loss function with respect to λ:

λ⋆ = argmin
λ∈Λ

L (λ) . (8)

The next sections explain how to address this discrete optimization problem.
For practical reasons, we employ instead of L(λ) a normalized performance index that evaluates the fitting accuracy

in a [0, 1] range, namely J (λ) = exp (−KL (λ)) where K is a scaling variable. An exponential index as J can facilitate
the discrimination between models with similar performance by amplifying their difference, thus improving the structure
selection process. Accordingly, (8) is equivalently reformulated as the maximization of J λ .
( )
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3. Probabilistic reformulation of the identification problem

Problem (8) is challenging since it is not feasible in practice to test all possible λ ∈ Λ. We next discuss a randomized
pproach to its solution based on a probabilistic reformulation, which can be interpreted as a continuous relaxation. Let
be a random variable that takes values in Λ according to a distribution PΨ . Then, the optimization problem defined in

8) is equivalent to maximizing the mean performance of PΨ :

P⋆Ψ = argmax
PΨ

∑
λ∈Λ

PΨ (λ)J (λ). (9)

To see this, assume that λ⋆ is an optimal solution, i.e. J (λ⋆) ≥ J (λ), ∀λ ̸= λ⋆. Then, it follows that the mean performance
f PΨ is maximized by a limit probability distribution P⋆Ψ with probability mass concentrated at λ⋆:

P⋆Ψ (λ) =
{
1 if λ = λ⋆

0 Otherwise.
(10)

Furthermore, as discussed in Appendix B, when employing a parameterized version of PΨ , there is a one-to-one
correspondence between the optimal solutions of problems (8) and (9), which implies the equivalence of the two
optimization problems.

We employ a randomized algorithm to address this optimization problem, whereby samples extracted from PΨ are
used to gather information regarding convenient choices for the discrete variables in λ. This information is in turn used to
update PΨ in order to increase the probability of extracting promising model structures. The resulting iterative sampling-
and-evaluation approach is outlined in Algorithm 1. Each extraction λp identifies a SNARX system, and can be evaluated by
means of (7). Then the distribution PΨ is updated taking collectively into account in the update term g(·) the performances
of the Np extracted model structures. The latter is designed to increase the expected performance of PΨ , i.e. to increase
the probability that successful model structures are extracted. Upon successful convergence to a limit distribution the
extraction probability is concentrated on a single model structure.

Algorithm 1 Outline of the randomized scheme
Input: A data set {(yt , ut )}Nt=1, a performance evaluation function J (·), an update strategy g(·), and an initial distribution

PΨ .
1: while PΨ (λ) is not a limit distribution do
2: Sampling: Extract Np samples {λp}Np

p=1 from PΨ ;
3: Evaluation: Calculate J (λp), p = 1, . . . ,Np;

4: Update: PΨ ← PΨ + g
(
{λp,J (λp)}Np

p=1

)
;

5: end while
6: Return λ⋆ = ψ ∼ PΨ .

3.1. Representation of PΨ

The key to an effective application of Algorithm 1 is a convenient parametric representation of the distribution PΨ that
facilitates the sampling, evaluation and update tasks. We stress here that PΨ does not in any way represent a property of
the underlying system, but is only instrumental to the extraction of models, and represents in fact the likelihood of each
possible model to be the true one. In the absence of any a priori information on the SNARX model structure, no correlation
among the elements of λ can be exploited, and the latter are accordingly assumed independent. For this reason, without
loss of generality, one can assume that PΨ is separable as follows:

PΨ (λ) = PΨ (T , κ, S) = Pγ (T ) · Pξ (κ) · Pρ (S) , (11)

where Pγ (T ), Pξ (κ), and Pρ (S) denote the probability to pick a certain set of switching locations, the probability of a
certain mode switching sequence, and the probability to pick a certain structure for the local models, respectively. This
reasoning carries over to Pγ (T ), Pξ(κ), and Pρ(S), as well, in that we make no a priori assumption that the elements of
T , κ, and S are correlated.

Remark 1 (Independence Assumption). This independence assumption greatly simplifies the extraction and the update
phases, while still ensuring that all feasible elements of Λ are considered. In principle, if additional information were
available on the system (e.g., it is known that a certain mode transition can never take place, or that certain regressors
work better together), it could be incorporated in PΨ (λ) to provide more focused extractions (along the lines of [24]),
but this would come at an additional cost in both the extraction and update phases, which in the end would defeat the
purpose. ■
4
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As introduced in [21–23], we employ a Bernoulli distribution to characterize the probability that a certain regressor
elongs to a given mode (regressor inclusion probability, RIP), and a Categorical distribution to represent the probability
hat a certain mode is assigned to a given subperiod of data (mode extraction probability, MEP). These distributions are
riefly recalled in the sequel.
The distribution Pγ (T ) is much less obvious to design. Indeed, the fact that a switching can occur at any time in

he observation horizon would suggest adopting a Bernoulli distribution for each time sample t ∈ {1, . . . ,N} defining the
robability that a switching occurs at t . However, this choice is impracticable, due to the high combinatorial complexity of
he representation, which requires N parameters. A more compact representation can be obtained by assuming a discrete
aussian distribution for the location of each switching (switching location probability, SLP), as discussed in the following.

.1.1. Parametrization of Pγ (T )
Let γ be a random variable vector with Ns elements each associated to a candidate switching location, with γi ∈ Z.
e employ a discrete Gaussian distribution [25] centered at Ti ∈ {1, . . . ,N} to represent the probability that a switching

is located in the proximity of Ti. The confidence level is defined by the variance ω2
i . Then, the probability distribution of

γi is given by

Pγi (Ti) =
1
K ′

exp
(
−
(Ti − Ti)2

2ω2
i

)
, (12)

here Ti ∈ {1, . . . ,N} and K ′ =
∑N

x=1 exp
(
−
(x−Ti)2

2ω2
i

)
is a normalization factor. As explained previously, we assume that

all random variables γi, i = 1, . . . ,Ns are independent, and therefore the probability distribution of γ is given by

Pγ (T ) =
Ns∏
i=1

Pγi (Ti). (13)

.1.2. Parametrization of Pξ (κ) [21]
To represent the association of the ith sub-interval Ii to a mode, we employ a random variable ξi that takes values in

1, . . . , K } according to a Categorical distribution with parameters ηi
= [ηi1, . . . , η

i
K ]
⊤, where ηik indicates the probability

f associating the kth mode to Ii. Note that
∑K

k=1 η
i
k = 1.

In view of the independence assumption discussed above, we assume that ξi and ξj are independent for i ̸= j. Then,
he random vector ξ = [ξ1, . . . , ξNs+1] is distributed according to the aggregate Categorical distribution

Pξ (κ) =

Ns+1∏
i=1

ηiκi . (14)

he parameters of this distribution are conveniently collected in a matrix η = [η1, . . . , ηNs+1].

.1.3. Parametrization of Pρ (S) [23]
The presence of a regressor in the model structure of one mode is modeled by a random variable ρj,k that takes values

n {0, 1} according to a Bernoulli distribution, ρj,k ∼ Be(µj,k), where j = 1, . . . , n and k = 1, . . . , K . If ρj,k = 1 the jth
regressor is active in the kth mode, and absent otherwise. Clearly, if µj,k is the probability that ρj,k = 1, the probability
of rejecting the jth regressor is 1− µj,k.

A vector ρk
= [ρk

1, . . . , ρ
k
n], with n independent and identically distributed random variables, encodes the structure

of the kth local model with the probability parameters µk
= [µ1,k, . . . , µn,k]

⊤. To encompass all modes, a multivariate
Bernoulli distribution is employed for the matrix of random variables ρ = [ρ1, . . . , ρK

] ∈ {1, 0}n×K . Its parameters are
also conveniently collected in a matrix, namely µ = [µ1, . . . ,µK

]. In view of the usual independence assumption, the
probability distribution of the random matrix ρ is given by

Pρ (S) =
K∏

k=1

⎛⎝ ∏
j:Sj,k=1

µj,k

∏
j:Sj,k=0

(
1− µj,k

)⎞⎠ . (15)

The notation associated to the probabilistic reformulation of the problem is summarized in Table 1 for the reader’s
convenience.

4. Randomized algorithm for the identification of switched NARX system

As shown in Fig. 1, the randomized algorithm designed for the identification of SNARX systems iterates a 3-step
sequence, involving three phases: the sampling stage, the evaluation stage and the update stage.
5
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Table 1
Notation employed in the probabilistic reformulation.
Variable Deterministic Stochastic Distribution
explanation variable variable parameters

Switching locations T γ ∼ Pγ T ,ω
Switching sequence κ ξ ∼ Pξ η

Local model structures S ρ ∼ Pρ µ

Fig. 1. Flowchart of the proposed algorithm.

4.1. Sampling stage

Extracting a sample λ from PΨ implies extracting separately:

• a set of switching locations T p from Pγ (T ) in (13);
• a mode switching sequence κp from Pξ (κ) in (14);
• a set of local model structures Sp from Pρ(S) in (15).

he sampling procedure is repeated Np times, yielding the samples {λp}Np
p=1, with λp = (T p, κp, Sp). Samples not satisfying

he following conditions are rejected (and substituted):

(i) κp must include all modes;
(ii) the switching locations must be ordered, i.e. T p

i < T p
i+1.

4.2. Evaluation stage

4.2.1. Parameter estimation
The optimal parameters of the local models defined by λp are estimated with ordinary Least Squares, yielding:

ϑ̂
k
=

(
Φ⊤Φ

)−1
Φ⊤Y , (16)
k k k

6
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with k = 1, . . . , K . In expression (16) Φk ∈ RNk×n̂k is the regressor matrix stacking on its rows the n̂k regressors ϕ(xt )
xtracted for the kth mode in the pth sample, and Y ∈ RNk×1 is the time-ordered vector collecting the outputs of the kth

mode. Both Φk and Y are limited to data in Dk = {(yt , xt) |σ
p
t = k}, i.e. the subset of samples associated to the kth mode

according to the switching signal resulting from λp, Nk = #{Dk} being the corresponding number of samples.

Remark 2. To avoid overfitting issues [23], the statistical significance of the regressors in the extracted structure sk is
validated a posteriori by a Student’s t-test. The model parameters are re-estimated after rejecting the regressors that are
judged not statistically significant by the test. □

L(λ) is determined as the minimum of (5), corresponding to the optimal parameterizations ϑ̂
k
, k = 1, . . . , K , and the

associated exponential index J (λ) is also calculated.1

4.2.2. A posteriori correction of the switching locations
The location of the switchings (and, therefore, the corresponding segmentation of the observation window) can be

significantly improved by taking into account the estimated mode dynamics. To this end, suppose that κp
i ̸= κ

p
i+1. Then, we

apply a local search method around T p
i to find the switching position that minimizes the loss function, given the current

estimated mode dynamics associated to the κp
i and κp

i+1 modes. The search window is defined as [minp{T
p
i },maxp{T

p
i }].

Obviously the same scheme cannot be applied if κp
i = κ

p
i+1 (i.e. T p

i is not an actual switching location in the pth extraction),
nd thus T p

i will not be corrected in that case. This refinement procedure is repeated for all elements in T p. The corrected
LP centers and the corresponding local performances are grouped per switching pattern sp = (κp

i , κ
p
i+1), in the sets Tsp

i
nd Jspi , respectively, for reasons that will be clear in the following. A pseudo-code version of the proposed a posteriori
orrection is provided in Algorithm 2.

Algorithm 2 A posteriori correction

Input: {T p
i }

Ns,Np
i=1,p=1, {κ

p
i }

Ns+1,Np
i=1,p=1 , {ϑ̂

k
}
K
k=1, K.

utput: {Tsp
i , J

sp
i }

Ns
i=1, where sp = (m, n),m, n = 1, . . . , K

1: for i = 1 to Ns do
2: Tsp

i ← [ ], J
sp
i ← [ ], ∀sp;

3: for p = 1 to Np do
4: if κp

i ̸= κ
p
i+1 then

5: T −i ← minp{T
p
i }; T +i ← maxp{T

p
i };

6: t⋆ ← T −i ; L
⋆
←∞;

7: for t̂ ← T −i to T +i do

8: L←
∑t̂−1

t=T −i

(
yt − ϕ(xt )⊤ϑ̂

κ
p
i

)2

+
∑T +i

t=t̂

(
yt − ϕ(xt )⊤ϑ̂

κ
p
i+1

)2

;

9: if L < L⋆ then L⋆ ← L; t⋆ ← t̂;
0: end if
1: end for
2: else
3: t⋆ ← T p

i ;

4: L⋆ ←
∑T +i

t=T −i

(
yt − ϕ(xt )⊤ϑ̂

κ
p
i

)2

;

5: end if
6: J ⋆

← exp (−KL⋆);
7: sp = (κp

i , κ
p
i+1);

8: Tsp
i ← [T

sp
i , t

⋆
];

9: Jspi ← [J
sp
i ,J

⋆
];

0: end for
1: end for

The next example illustrates the role of the a posteriori correction in the estimation of the switching locations (the
simulations are taken from Example 1, see Section 5.1, at the first iteration of the algorithm).

Fig. 2 shows the distribution of the extractions of two SLPs before and after the a posteriori correction. In the latter case,
the extractions are clearly clustered according to the switching patterns, the cluster associated to the best performance

1 The scaling parameter is set to K = 10−(min(⌊log10(L(λ))⌋)+1) at the first iteration, to guarantee an adequate discrimination ability on the model
erformance in the [0, 1] range.
7
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Fig. 2. Example 1: Distribution of the extracted switching locations before and after the a posteriori correction (extracted switching locations (left),
orrected results (right)). The true switching location T ⋆

i is marked by a dashed orange line. The corrected switching locations are grouped based
n the associated switching pattern. The group with the maximum mean performance index is marked by filled symbols.

ndicating the most likely switching pattern. Restricting attention to this switching pattern, denoted sp⋆, if it corresponds
o an actual switching (i.e., κp

i ̸= κ
p
i+1), one also gets a very precise indication regarding the location of the switching.

or example, in case (a) sp⋆ = (M1,M2), which is clustered in the proximity of the true switching (see Fig. 2(a), right
ub-figure).
Conversely, Fig. 2(b) refers to an external switching situation, in that there is no real switching in the search window.

ccordingly, here sp⋆ = (M1,M1), indicating that this whole region should probably be assigned to mode 1. Notice
lso that both switching patterns (M1,M2) and (M2,M1) are clustered near the borders of the search window, which
onfirms that it is unlikely that a switching can occur inside.

.3. Update stage

.3.1. Update of the SLPs
Let sp⋆ = (m, n) = argmaxsp J̄

sp
i , where J̄spi denotes the average performance index associated to the switching pattern

p at the ith SLP. Let also J⋆i = Jsp
⋆

i and T⋆i = Tsp⋆
i .

In the external switching case (m = n), there is not a clear indication of where to move the corresponding SLP in order
to find a switching. Therefore, its center Ti is not modified (T new

i = Ti), but its variance is increased, so as to extend the
xploration region: ωnew

i = βωi, where β > 1 is a hyper-parameter.2
In the internal switching case (m ̸= n), the SLP center is updated to the weighted position:

T new
i =

⎡⎣∑#{J⋆i }
q=1 J⋆i,q · T

⋆
i,q∑#{J⋆i }

q=1 J⋆i,q

⎤⎦ , (17)

here #{J⋆i } is the length of vector J⋆i , and [·] is the round operator. The update to the weighted position according to
xpression (17) can be nicely interpreted as a local gradient ascent rule as discussed in Appendix A.

2 In all experiments, we set β = 1.1.
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The reliability of this indication is related to the dispersion of the results associated to sp⋆. For example, at the early
stages of the algorithm, it is not unusual that these results should be widely spread due to coarse modeling and insufficient
accuracy. To account for this, in the internal switching case we generally decrease the variance of the SLP unless the
dispersion is large, according to the following update law:

ωnew
i = aωi + (1− a)ωi,0Pi, (18)

here 0 < a < 1 (e.g., a = 0.9), ωi,0 is the initial variance of the SLP, and 0 ≤ Pi ≤ 1 is a dispersion indicator for the ith
LP, defined as follows:

Pi =

1
#{T⋆i }

∑#{T⋆i }
q=1 |Ti − T⋆i,q|

max(T +i − Ti, Ti − T −i )
. (19)

f Pi = 1, the variance will tend to revert to the initial value ωi,0, whereas if the dispersion is sufficiently small, the
variance will decrease to 0.

4.3.2. SLP redundancy check
SLPs with significant overlap, i.e. such that Ti+1 − Ti < 2(ωi+1 + ωi), are merged into one, to avoid redundancy. The

center of the resulting SLP is set between the two original centers according to the weighted location:

T new
i =

ωi+1Ti + ωiTi+1
ωi + ωi+1

, (20)

hich places it nearer to the center of the original SLP with smaller variance. The standard deviation of the merged SLP
s calculated so as to cover 99% of the confidence interval of the SLP with a smaller variance:

ωnew
i =

⎧⎪⎨⎪⎩
Ti+1 − T new

i + 3ωi+1

3
if ωi > ωi+1

T new
i − Ti + 3ωi

3
otherwise

(21)

ith a similar rationale, SLPs close to the borders (i.e. such that either Ti + 3ωi touches the right boundary or Ti − 3ωi
ouches the left one) are updated by increasing the variance according to ωnew

i = βωi, and moving the center far from
the border by 3(ωnew

i − ωi). In this way, the SLPs close to the borders are not lost, but can eventually detect a switching
location.

Remark 3. Notice that the mechanism explained previously to eliminate redundant SLPs can be indirectly exploited to
estimate the number of switchings – which is generally unknown – during the identification process. Indeed, one can
start the identification procedure assuming a number of switchings equal to an estimated upper bound, and then the
rules described above can get rid of redundant SLPs. See also the example in Section 5.1.

4.3.3. Update of the MEPs and RIPs
After the refinement of the switching locations, the parameters of the local models are re-estimated, this time assuming

the switchings fixed at the locations T = [T1, . . . , TNs ] for all extractions, i.e. using the modified extracted structures
λ̂p = (T , κp, Sp). Then, the model performance is evaluated and the point-wise loss Lt (λ̂p) calculated for t = 1, . . . ,N .

The update of the MEPs and the RIPs is carried out along the same lines of [20–23]. For the MEPs, the general principle
is that the probability of assigning Ii to the kth mode (associated to the parameter ηki in a MEP) should be increased if the
mean performance of the extractions such that κp

i = k is higher than other choices, κp
i ̸= k, and vice versa. Accordingly,

the MEPs are updated as follows:

ηnewi,k = ηi,k + χ
M
i δi,k (22)

for i = 1, . . . ,Ns and k = 1, . . . , K , where χM
i > 0 is a step size, and the update factor δi,k is defined as

δi,k =
1

#{p|κp
i = k}

∑
p|κpi =k

JMi (λ̂p)−
1

#{p|κp
i ̸= k}

∑
p|κpi ̸=k

JMi (λ̂p), (23)

here JMi (λ̂p) = exp
(
−KM

i LMi (λ̂p)
)
is the local performance index, LMi (λ̂p) being the mean loss in the time interval Ii.

Similarly, the RIPs are updated according to the law:

µnew
j,k = µj,k + χ

R
k lj,k, (24)

or j = 1, . . . , n and k = 1, . . . , K , where χR
k > 0 is the step size, and the update term lj,k is defined as

li,k =
1

#{p|Spj,k = 1}

∑
p

JRk (λ̂
p)−

1
#{p|Spj,k = 0}

∑
p

JRk (λ̂
p), (25)
p|Sj,k=1 p|Sj,k=0

9
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where JRk (λ̂
p) = exp

(
−KR

kL
R
k(λ̂

p)
)
, the loss LRk(λ̂

p) being calculated only on the sup-periods associated to the kth local
odel in the pth extraction.
Since the update terms in the previous expressions are based on performance averages computed on the extracted

amples, the confidence that can be placed on them is limited, especially at early iterations, which justifies the inertia
erm in the update equations.

The step sizes χM
i and χR

k are set adaptively as follows, to take into account the dispersion of the extracted samples [21]:

χM
i = 1/

(
10(̃JMi (λ̂p)− J̄Mi (λ̂p))+ 0.1

)
;

χR
k = 1/

(
10(̃JRk (λ̂

p)− J̄Rk (λ̂
p))+ 0.1

) (26)

here J̃Mi (λ̂p)(̃JRk (λ̂
p)) and J̄Mi (λ̂p)(J̄Rk (λ̂

p)) are the maximum and mean performance indices over all extractions. Briefly, if
he extracted samples exhibit a wide range of performance index values the update term is not fully reliable (this occurs
ften at the early iterations), and accordingly the step size is set to a small value. The opposite applies when the dispersion
s small.

Finally, suitable saturation thresholds are introduced to keep ηi,k and µj,k in proper intervals [21,23]. Actually, these
robabilities are never allowed to go to 0 or 1, to preserve the exploration capabilities of the algorithm.

.4. Stopping criterion

The identification procedure operates by iteratively updating the distribution PΨ to increase its mean performance.
he mean performance is approximated by its sampled counterpart obtained over the extractions λ̂p, 1, . . . ,Np, obtained
t a given iteration:

J̄ =
1
Np

1
N

Np∑
p=1

N∑
t=1

Jt (λ̂p). (27)

he algorithm terminates when J̄ does not increase anymore. In practice, for increased robustness, we check that J̄
oes not vary more than a given tolerance ϵ for a certain number (e.g., 5) of consecutive iterations. Upon termination the
robability distribution is saturated to the nearest limit distribution.

. Simulation examples

Four examples are discussed in this section. All tests are performed in a MATLAB R2021a environment [26] on an
ntel(R) Core(TM) i7-6700K CPU @4.0 GHz with 32G of RAM. In all examples, the confidence level in the statistical test is
et to 0.001. The initial RIPs and MEPs are set to 0.1 and 1/K ,3 respectively, and the lower bounds are set to ηmin = 0.01
nd µmin = 0.001.
We will rate the performance of the estimated models with the following two indices:

• The classification error rate, evaluated as CER = #{t|σt ̸= σ̂t}
• The fitting performance index, defined as FIT = 100

(
1− ∥ŷ−y∥

2
2

∥y−ȳ∥22

)
, where y is the output in the training set, ȳ is the

mean value, and ŷ is the one-step-ahead prediction output of y.

.1. Example 1: A 2-mode SNARX case

Consider the following SNARX system [27], with 2 modes:

M1 : yt = −0.905yt−1 + 0.9ut−1 + et ,

M2 : yt = −0.4y2t−1 + 0.5ut−1 + et ,
(28)

here ut is the input signal distributed in [0, 1] uniformly and et is a zero mean white noise with variance 0.012
SNR=18). Starting at M1, the system switches between the two modes at T ⋆

= [350 1450 1600 1750] in an observation
indow of N = 2000 samples. We initialize the SLPs associated to the candidate switchings centered at T (0)

=

50, 100, 150, . . . , 1950], with initial standard deviations set to 5. The orders of the local models are set to nu = 2,
y = 2 and nd = 2. Consequently, there are a total of 15 candidate regressors in each mode. Np = 100 extractions are
ampled and evaluated at every iteration.
Initially, as many as 39 SLPs are present, which sets to 240 the number of possible switching sequences. Fortunately,

ven though the number of SLPs is largely overestimated, many redundant ones are quickly removed during the

3 Parameter η is initialized to 1 to reduce the multiplicity of equivalent solutions.
1,1
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c

Fig. 3. Example 1: Refinement and reduction of the switching locations over iterations.

Fig. 4. Example 1: Evolution of the SLPs over iterations. From top to bottom: initialization, 10th, 30th, 40th, and 60th iteration. Different background
olors indicate the true mode assignment over time.

Fig. 5. Example 1: Evolution of the MEPs and RIPs over iterations. From left to right: MEPs (M1 in blue, M2 in red), RIPs of M1 , RIPs of M2 (true
regressors are marked by red triangles). From top to bottom: initialization, 10th, 30th, 40th, and 60th iteration. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)

identification (compare e.g. the results at iteration 30 with the initial settings in Fig. 3), thus progressively reducing the
combinatorial complexity of the problem. More precisely, the SLPs nearest to the true switchings quickly converge to the
correct locations and reduce their variance, as can be appreciated in Fig. 4. Conversely, the variances of the SLPs that do
not ‘‘cover’’ any true switching are enlarged to search for actual switchings, triggering various SLP merging operations.
Fig. 5 shows that around the 30th iteration, although there are still some spurious switching locations, each interval is
unequivocally assigned to one mode, with the correct switching pattern, and the local model structures have already
converged to the true ones.

Table 2 gives some aggregate results relative to 100 MC runs. The proposed algorithm shows high efficiency and
precision in the estimation of the switching signal. In particular, the CER is as low as 0.17%, corresponding to 3.4 samples
over 2000, and the FIT is 94.45%. Notice also the extremely low variance of the two indices, indicating a remarkable
consistency of the results over the MC runs. Furthermore, the algorithm was able to estimate the switching sequence by
exploring and testing a relatively small number of switching sequences.
11
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Fig. 6. Example 1: MC analysis for increasing Ns: elapsed time (boxplots, left axis) and average CER (blue line, right axis). (For interpretation of the
eferences to color in this figure legend, the reader is referred to the web version of this article.)

Table 2
Example 1: MC simulation results.
Average elapsed time [s] 17.68
Percentage of correct selection of κ [%] 100
Average # of explored switching sequences 2326.3
# of allowed switching sequences 1.1E12
CER [%] (mean (std.)) 0.17 (0.04)
FIT [%] (mean (std.)) 94.45 (1.1E−3)
Percentage of correct selection of s1 [%] 100
Average # of explored models for M1 997
# of possible model structures for M1 32768
Percentage of correct selection of s2 [%] 100
Average # of explored models for M2 1159
# of possible model structures for M2 32768

A further test was carried out, to verify the ability of the proposed method to deal with a large number of switchings.
For this purpose, we allow the system to switch between the two modes for Ns times, the switching locations being set
andomly according to T ⋆i ∼ N (500i, 5), i = 1, . . . ,Ns. A 50-run MC is carried out for each value of Ns ∈ {5, 10, . . . , 40}.
Fig. 6 (right axis) indicates that the CER is under 0.5% in all realizations. Even when dealing with a large data set (i.e.,
= 20500, Ns = 40), no more than 0.27% of the samples are misclassified on average.

.2. Example 2: A 3-mode SNARX case

Consider the following SNARX system presented in [21]:

M1 : yt = 0.5yt−1 + 0.8ut−2 + u2
t−1 − 0.3y2t−2 + et ,

M2 : yt = 0.2y3t−1 − 0.5yt−2 − 0.7yt−2u2
t−2 + 0.6u2

t−2 + et ,

M3 : yt = 0.4y3t−1 + 0.5yt−2 − 0.7yt−2u2
t−2 + 0.6u2

t−2 + et ,

(29)

here ut is the input signal uniformly distributed in [−1, 1] and et is a Gaussian white noise with zero mean and variance
.01 (SNR = 23). The SNARX system switches 5 times at T ⋆ = [500, 1030, 2115, 2740, 3000] in the observation window
ith N = 3400 samples, and the true switching sequence is κ⋆ = [1, 2, 1, 3, 2, 3]. The pre-defined model orders are
u = 2, ny = 2, nd = 3, for a total of 35 candidate model structures for each mode. The SLPs are initialized with centers
t T (0)

= [300, 600, . . . , 3300] (i.e., every 300 samples) and standard deviation ω(0)
i = 15 for all i. The algorithm samples

Np = 200 extractions at each iteration.
Besides the additional mode, this example poses another challenge with respect to the previous one, in that M2 and

M3 share the same structure. Nonetheless, the algorithm is again effective in locating the switching locations, quickly
removing the redundant SLPs, and driving the other ones to the correct locations (see the update of the SLPs in Fig. 7).

It is interesting to compare the proposed method with the two-stage solutions developed in [21,22]. Fig. 8 shows
the average loss over time for all three methods. Both two-stage methods ultimately achieve the same performance as
the proposed one, but require various restarts (after the refinement stage) and a significantly larger computational time.
Regarding the proposed method, it is important to remark that the evaluation stage costs an average of 0.4022 s per
iteration, while the a posteriori correction, as a part of the evaluation stage, takes just 0.0544s per iteration on average
(see Fig. 9).

Table 3 reports the results for a 100 run MC simulation. Apparently, the proposed algorithm never misses any switching,
after testing only 5909 possible sequences on average among 177147 admissible ones. The model structures of modes M2
and M are occasionally slightly different from the true ones, but this does not significantly affect the model accuracy,
3
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Fig. 7. Example 2: Evolution of the SLPs over iterations. From top to bottom: initialization, 10th, 20th, 30th, 40th, and 50th iteration. Different
ackground colors indicate the true mode assignment over time.

Fig. 8. Example 2: Comparison between the proposed method and previous randomized-based approaches. The number in parenthesis counts the
algorithm re-starts in the two-stage schemes.

Table 3
Example 2: MC simulation results.
Elapsed time [s] 73.6
CER [%] mean (std.) 0.09 (0.02)
FIT [%] mean (std.) 95.55 (0.05)
Percentage of correct selection of κ [%] 100
Aver. # of explored switching sequences 5909
# of allowed switching sequences 177147
Percentage of correct selection of s1 [%] 100
Average # of explored models for M1 5612
Percentage of correct selection of s2 [%] 98
Average # of explored models for M2 7018
Percentage of correct selection of s3 [%] 88
Average # of explored models for M3 6230
# of possible structures (for all modes) 3.4E10

as can be appreciated with the CER and FIT indices. As evident from Table 3, all 100 runs yield models with comparable
CER and FIT values.

Tables 4 and 5 give an overview of the obtained results in terms of the average elapsed time, the CER, and the
ercentage of correct identifications of each switching location (for the purpose of this analysis, a switching location
s assumed to be estimated correctly if the error is within 3 samples, i.e., |T ⋆i − Ti| ≤ 3). In this respect, notice that a large
LP variance and a sparse set of SLPs hampers the detection of close switchings (i.e., such that Ti+1−Ti ≤ 2(ωi+ωi+1)). In
he example, such a problem occasionally occurs with T ⋆3 (at sample 2740) and T ⋆4 (at sample 3000). On the other hand,
otice that the combinatorial complexity increases exponentially with the number of initial SLPs, which may explain the
ailed MC run when using an SLP every 100 samples.4 Overall, there is a relatively large range of values of ωi and initial
ettings of the centers of the SLPs for which the behavior of the algorithm is more than acceptable.

4 In the failed realization only two local models are identified, which conflicts with the a priori information on the number of modes, which
ould prompt the user to re-identify the system anyway.
13
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Table 4
Example 2: Analysis on the number of initial SLPs (100 MC runs for each set)

T (0)
i 100i 200i 300i 400i 500i

ω
(0)
i 15

Elapsed time [s] 80.6 74.2 73.6 68.6 65.4
CER [%] 0.16 0.09 0.09 0.09 0.09
% of correct identification of T ⋆

1 100 100 100 100 100
% of correct identification of T ⋆

2 100 100 100 100 100
% of correct identification of T ⋆

3 99 100 100 100 100
% of correct identification of T ⋆

4 99 100 100 100 100

Table 5
Example 2: Analysis on the initial variances of the SLPs (100 MC runs for each set)

T (0)
i 300i

ω
(0)
i 5 15 25 35

Elapsed time [s] 74.2 73.6 72.2 71.0
CER [%] 0.10 0.09 0.09 0.79
% of correct identification of T ⋆

1 100 100 100 100
% of correct identification of T ⋆

2 100 100 100 100
% of correct identification of T ⋆

3 100 100 100 91
% of correct identification of T ⋆

4 100 100 100 91

Fig. 9. Example 2: Iteration time of the proposed algorithm.

5.3. Example 3: An LPV system

We next address the identification of a linear parameter varying (LPV) system used in [28]:

yt = ϑ i
1yt−1 − 0.7yt−2 + ut−1 − 0.5ut−2 + et , (30)

where ut , yt and et are the input, output and noise signal, respectively, ut being defined as a Pseudo Random Binary
sequence and et as a Gaussian white noise with zero mean and standard deviation 0.5 (SNR = 38). Parameter ϑ i

1 is
the varying parameter scheduled by a switching signal and has four possible values, i.e. −1.5, −1, −0.5, and 0.5, which
determine four different modes. Switching occurs at T ⋆

= [400, 810, 1270, 1500, 1830, 2150] over an observation horizon
of N = 2500 time-ordered samples, and the switching sequence is κ⋆ = [1, 2, 3, 2, 3, 4, 1].

The identification of this system is particularly challenging, as the model structure is the same for all modes, with only
one parameter changing. The proposed algorithm is here initialized assuming a switching every 100 samples, i.e. setting
24 SLPs with centers at Ti = 100i, and standard deviations ωi = 10, k = 1, . . . , 24. At each iteration, Np = 100 extractions
are sampled.

The proposed algorithm is first compared with the SON-EM algorithm proposed in [28]. To make a fair comparison,
we skip the model structure selection part, and assume from the start that the true regressors ([yt−1, yt−2, ut−1, ut−2]) are
known. The two algorithms show a comparable accuracy on the estimated parameters of the models (see Fig. 10), but the
SON-EM algorithm is not as efficient in the estimation of the switching signal, with several outliers. The results obtained
with the proposed approach are also consistent with those of the two-stage randomized algorithm (see Fig. 9 in [21]).

Over a batch of 100 MC runs, the proposed algorithm never lost any switching location. The accuracy of the parameter
estimation can be appreciated in Table 6. Conversely, 9 failed runs out of 100 were reported by running the algorithm
in [21]. Even considering only the successful runs in the comparison, the distribution of the detected switchings (see the
blue barplots in Fig. 11) is much sharper with the proposed algorithm, as also witnessed by the extremely low CER value
(0.17%) achieved on average. The average FIT equals 97.27%, with a standard deviation of 0.03.
14
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Fig. 10. Example 3: Estimation of θ1 with the proposed method and the SON-EM algorithm.

Fig. 11. Example 3: Distribution of the detected switching locations. A comparison between the proposed method (red bars) and the two-stage
andomized algorithm in [21] (blue bars). (For interpretation of the references to color in this figure legend, the reader is referred to the web
ersion of this article.)

Table 6
Example 3: Parameter estimation performance over 50 MC runs.
Parameter Mode 1 (mean (std.)) Mode 2 (mean (std.))

ϑ1 −1.4999 (6.53E−5) −1.0029 (1.60E−3)
ϑ2 −0.7007 (6.01E−4) −0.7071 (1.40E−3)
ϑ3 1.0198 (1.57E−3) 1.0161 (2.56E−3)
ϑ4 −0.5032 (1.97E−3) −0.5233 (1.14E−3)

Parameter Mode 3 (mean (std.)) Mode 4 (mean (std.))

ϑ1 −0.5258 (1.74E−4) 0.4907 (4.54E−3)
ϑ2 −0.7065 (4.76E−5) −0.7093 (1.61E−3)
ϑ3 0.9960 (3.07E−4) 1.0004 (4.03E−3)
ϑ4 −0.4618 (1.93E−4) −0.5189 (1.15E−4)

Table 7
Example 3: Robustness w.r.t to noise. A comparison between the proposed algorithm and the method
in [9] (50 MC runs for each set).
std(e) (SNR) 0.1 (755) 0.3 (85) 0.5 (36)

Algorithm Prop. Method [9] Prop. Method [9] Prop. Method [9]

mean FIT 99.84 92.38 98.78 88.83 97.14 88.18
max FIT 99.87 98.05 98.83 94.51 97.21 92.20
min FIT 99.78 81.82 98.72 82.38 97.04 83.63

Finally, the proposed algorithm is compared with the method introduced in [9] to analyze its robustness with respect
to noise. In the experiments, the output is corrupted by white noise with standard deviation std(e) = 0.1, 0.3 and 0.5.

For each noise level 50 MC runs were carried out with each algorithm. The resulting FIT values are reported in Table 7.
The proposed algorithm consistently shows higher (and less variable) performances for all tested levels of noise.
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Fig. 12. Example 4: Simulated vs. measured output on the validation data set (top); switching signal estimated using our method (middle), and
using the method proposed in [9] (bottom).

5.4. Example 4: A pick-and-place machine

We consider the identification of the hybrid dynamics of a pick-and-place process introduced in [29]. An electronic
component is attracted by the mounting head and then placed on the printed circuit board (PCB), which is characterized
by two main operation modes: (1) the free mode (the mounting head carries the electronic component without touching
the circuit board), and (2) the impact mode (the mounting head is in contact with the PCB). This process has been used
as a benchmark example in several works [4,9,30].

A data record has been collected over an interval of 15s, with a sampling frequency of 400 Hz. This includes the voltage
applied to the motor (the input signal, u) and the vertical position of the mounting head (the output signal, y). The data
are split into three disjoint subsets: (1) the training set that includes N = 4400 samples gathered in the first 11 s, (2)
the evaluation set including 400 samples in 1 s after the training set which is used to tune the initial SLPs, and (3) the
validation set with the remaining Nv = 1200 samples.

We compare our method with the algorithm proposed in [9] that is specifically studied for fitting jump models, and
which is reported to have a better performance compared to the clustering approach of [31] on this example. A SNARX
model with K = 2 modes is employed to model the placement process. To make a fair comparison, we use linear local
models such that ϕ(xt ) = [1, yt−1, yt−2, ut−1, ut−2] and ignore the model structure selection part. The proposed algorithm
has been applied starting with initial SLPs set to Ti = 40i and ωi = 8 for i = 1, . . . , 109. We set Np = 200 in this example.
After the identification, a Voronoi diagram is employed to define a piece-wise map in the regressors space, that drives
the mode-switching mechanism.

Fig. 12 compares the output measurements with the corresponding open-loop simulations on the validation set, and
shows the predicted switching signal. Mode 1 and Mode 2 can be associated to the free mode and the impact mode,
espectively, according to the physical knowledge of the process. The resulting FIT of the proposed algorithm is equal to
5.7%, which is slightly lower than in [9] (96.8%). Still, the performance of our method is considerably better than the
lustering approach of [31] which yields a FIT of 93.8%. We here emphasize the advantages of the proposed method in
erms of increased robustness compared to [9] (see Table 7) and the additional ability to deal with the model structure
election of nonlinear local models.

. Conclusions

A randomized algorithm for the identification of switched nonlinear ARX systems has been proposed, with special
ocus on the estimation of the location of mode switchings. We use Gaussian distributions to provide a probabilistic
haracterization of the switching locations, which smoothly fits in a previously developed framework of a randomized
dentification method, that already included a probabilistic representation of the mode switching sequence and the local
odel structures. These distributions are tuned by way of a sample-and-evaluate strategy. Compared with previous
ersions of the randomized method, all discrete variables can now be estimated in a single run, and switching refinements
nd algorithm re-starts are avoided. While showing a higher identification efficiency, the proposed algorithm also achieves
igher precision in the estimation of the switching locations. Two key elements that enable this improvement are the a
osteriori correction of the switching locations and the variance adaptation mechanism, that facilitate and accelerate the
uning of the switching locations.
16
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The proposed algorithm is potentially able to estimate the correct number of switching locations by removing the
edundant ones (subtractive strategy). Further work will focus also on additive strategies allowing the inclusion of
dditional switching locations and modes as needed, to reduce the combinatorial complexity and the a priori information
equired by the algorithm, especially regarding the number of modes.
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ppendix A. Update to the weighted position

The performance of PΨ can be calculated as EPΨ (λ) [J (λ)]. Let us calculate the gradient of this expression with respect
o the center Ti of the ith SLP5:

∇TiEPΨ (λ) [J (λ)] = EPΨ (λ)
[
J (λ) ∇Ti logPΨ (λ)

]
here we have used the well known log-derivative trick. Estimating this expected value via Monte Carlo sampling one
ets:

∇TiEPΨ (λ) [J (λ)] ∼=
1
Np

Np∑
p=1

J (λp) ∇Ti logPΨ (λp)

Now, in view of the independence assumption (PΨ (λ) is the product of the individual probabilities associated to the
elements of λ), of the properties of the logarithm (the logarithm of the product is the sum of logarithms), and considering
that only Pγi (T ; Ti) depends on parameter Ti, the previous expression can be simplified to:

∇TiEPΨ (λ) [J (λ)] ∼=
1
Np

Np∑
p=1

J (λp) ∇Ti logPγi (T
p
i ; Ti)

Now, since

∇Ti logPγi (T
p
i ; Ti) = ∇Ti log

⎛⎝ 1√
2πω2

i

exp
(
−

(T p
i − Ti)2

2ω2
i

)⎞⎠
=

T p
i − Ti
ω2

i
,

one obtains

∇TiEPΨ (λ) [J (λ)] ∼=
1
ω2

i

1
Np

Np∑
p=1

J (λp) (T p
i − Ti).

5 For the purpose of this calculation we will assume that SLPs are modeled as continuous Gaussians.
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Using this gradient to update Ti according to the gradient ascent method, the following update rule would be obtained:

T new
i = Ti + χ

1
ω2

i

1
Np

Np∑
p=1

J (λp)(T p
i − Ti),

which, by setting the adaptive step size χ = ω2
i Np∑Np

p=1 J (λp)
, becomes:

T new
i =

∑Np
p=1 J (λp)T p

i∑Np
p=1 J (λp)

.

Update Eq. (17) is inspired by the previous expression, but incorporates two modifications that accelerate convergence
nd provide reasonable results even when using few samples in the Monte Carlo estimation of the expected value. First
f all, a local performance index measured on the search window is used in the update equation, as opposed to a global
ndex, as this is more directly informative on the performance of the SLP. On a similar line, not all samples are taken into
ccount, but only those associated to the best performing switching pattern (sp⋆).

ppendix B. Equivalence of the reformulated optimization problem

There is a one to one correspondence between the optimal solutions of the optimization problem (8) and its
eformulated version (9), consisting in the maximization of the mean performance of PΨ . As already discussed, if the
irst problem admits an optimal solution λ⋆ then the reformulated problem admits a corresponding optimal solution P⋆Ψ ,
.e. the limit probability distribution with probability mass concentrated at λ⋆.

If λ⋆ is not unique, however, the reformulated problem has other optimal solutions as well. Without loss of generality,
uppose that there are two equivalent optimal solutions λ⋆ and λ⋆⋆, i.e. J (λ⋆) = J (λ⋆⋆) > J (λ), ∀λ ̸= λ⋆, λ⋆⋆. Besides
he 2 limit distributions corresponding to λ⋆ and λ⋆⋆, all ‘‘mixed’’ distributions, such that P(λ⋆) + P(λ⋆⋆) = 1, with both
(λ⋆) > 0 and P(λ⋆⋆) > 0 (and, clearly, P(λ) = 0, ∀λ ̸= λ⋆, λ⋆⋆) also maximize the mean performance.
Fortunately, since in practice we employ a parameterized version of the probability distribution (e.g. P(λ) =

(λ1)P(λ2) . . .P(λNλ ), where λi, i = 1, . . . ,Nλ, are the elements of vector λ), such ‘‘mixed’’ distributions cease to be
ptimal. Indeed, P(λ⋆) > 0 implies that the probabilities of all individual elements of λ⋆ are positive, and a similar
ondition applies for the elements of λ⋆⋆, given that P(λ⋆⋆) > 0. This implies that the models extracted from this
istribution can be λ⋆ and λ⋆⋆, but also mixed models containing elements of both solutions. Since the latter are not
ptimal, the mean performance of this distribution is also suboptimal.
Therefore, maximizing the mean performance of PΨ will yield the same optimal solutions as the original problem.
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