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The use of Lyapunov Characteristic Exponents to assess
the stability of nonlinear, time-dependent mechanical sys-
tems is discussed. Specific attention is dedicated to methods
capable of estimating the largest exponent without requir-
ing the Jacobian matrix of the problem, which can be ap-
plied to time histories resulting from simulations performed
with existing multibody solvers. Helicopter ground reso-
nance is analyzed as the reference application. Improve-
ments over the available literature are: the problem is for-
mulated in physical coordinates, without eliminating peri-
odicity through multiblade coordinates; the rotation of the
blades is not linearized; the problem is modeled considering
absolute positions and orientations of parts. The dynamic
instability that arises at some angular velocities when the
isotropy of the rotor is broken (e.g., caused by the failure of
one lead-lag damper, a design test condition) is observed to
evolve into a large amplitude limit cycle, where the usual
Floquet-Lyapunov analysis of the linearized time-periodic
simply predicts instability.

1 Introduction
Stability assessment is a fundamental aspect of the anal-

ysis and design of any kind of dynamical system. The foun-
dations of modern stability theory lie in Aleksandr M. Lya-
punov’s work [1]. When considering Linear, Time-Invariant
(LTI) problems, in the form

ẋ = Ax (1)

∗Address all correspondence to this author.

stability is no longer a local property of a specific solution,
x(t), resulting from a specific set of initial conditions, x(t0)=
x0, but rather becomes a characteristic of the entire system.

In many applications, for example those associated
with rotorcraft dynamics, and specifically in helicopter ro-
tor aeromechanics, but also in the dynamics analysis of wind
[2, 3] and gas turbines [4], and rotors in general [5], prob-
lems often need to be formulated as time-periodic, although
often still linear, through linearization about a periodic or-
bit, resulting in Linear, Time-Periodic (LTP) problems. In
this case, stability assessment may exploit the periodicity
of the motion through the well-known Floquet-Lyapunov
method [6] (see for example [7]). Asymptotic stability is
associated with contraction, over a period T , of the so-called
“monodromy matrix”, which corresponds to the State Transi-
tion Matrix (STM) of the problem over one period. This ap-
proach is relatively popular in the rotorcraft aeromechanics
community, thanks to the work of Parkus [8], who first used
Floquet-Lyapunov analysis in blade flapping aeromechanics.
However, it was only thanks to the advent of digital comput-
ers that the method could be applied in practice. The first
attempts were proposed by Peters and Hohenemser [9], fol-
lowed by Biggers [10] and Friedmann and Silverthorn [11]
concerning the stability of flapping dynamics, where peri-
odicity arises from non-axial flow, and by Hammond [12]
concerning ground resonance, where periodicity may result
from loss of isotropy due to mechanical failure, to name a
few. A recent development by some of the authors of the
present work addressed the sensitivity study of the charac-
teristic solutions [13].

In general, however, when problems are non-linear and
subjected to non-(strictly) periodic time dependence, as may
occur in many transient-related problems, the ability to



evaluate the stability of reference trajectories can be ex-
tremely useful. The use of Lyapunov Characteristic Expo-
nents (LCE) or, in short, Lyapunov Exponents (LE), has
been recently proposed in the field of rotorcraft aerome-
chanics [14–16], also with a focus on their sensitivity study
[17–20], and other aerospace-related applications [18].

In this work, the possibility to estimate the largest LCE
from time series is leveraged to support its estimation from
general-purpose multibody analysis, usually formulated as a
set of differential-algebraic equations (DAE), an increasingly
popular tool to investigate the dynamics of complex mecha-
nisms and systems. This would make the stability analysis of
complex problems, typical for example of rotorcraft aerome-
chanics, feasible at low computational cost and with minimal
implementation effort, if any.

The essential theoretical aspects of LCE estimation are
presented in Section 2.

Section 3 briefly describes a Jacobian-based method, to
support the discussion of critical aspects of LCE estimation,
and the Jacobian-less method that will be subsequently used.

Section 4 illustrates the reference problem of helicopter
ground resonance, using the simplified model proposed by
Hammond in 1974 [12]. It is selected because it represents a
benchmark for the study of isotropic and non-isotropic rotors
and rotor supports. Its equations of motion are formulated
without any linearization. A multibody model is also formu-
lated using a general-purpose solver by combining rigid bod-
ies, kinematic constraints, and deformable structural compo-
nents for linear springs and dampers.

Stability results from simplified and linearized models
of this problem are compared with corresponding results ob-
tained from the proposed models, and discussed in Section 5.

2 Theoretical Foundations
As discussed for example in [16] and references therein

(e.g., [21]), LCEs indicate the rate of expansion or contrac-
tion of perturbations of a generic solution of the nonlinear
differential problem

ẋ = f(x, t) (2)

with x∈Rn, f : Rn+1→Rn, and t ∈R, along independent di-
rections in the state space. As such, they describe the stabil-
ity of the reference solution with respect to such directions.

Consider a solution x(t) of Eq. (2) for t ≥ t0 (some au-
thors refer to it as the ‘fiducial trajectory’), and a solution
ix(t) of the problem

iẋ = f/x
∣∣
x(t),t ix, ix(t0) = ix0 i ∈ 1,n (3)

where f/x
∣∣
x(t),t is the partial derivative of f with respect to x,

evaluated along the trajectory x(t) at time t, for a perturbation
ix0 of arbitrary magnitude and direction. LCEs are defined

as

λi = lim
t→∞

1
t

log‖ix(t)‖ . (4)

Each λi is calculated from one of n linearly independent ix0,
the equivalent of the principal directions of a LTI problem.

Since Eq. (3) is linear time-dependent, its solution can
be expressed through the State Transition Matrix (STM)
Y(t, t0) ∈ Rn×n,

ix = Y(t, t0) ix0 (5)

so the contractive or expansive characteristic of ix is actually
a property of the STM.

The STM Y(t, t0) is the solution of Ẏ = f/x
∣∣
x(t),t Y, with

Y(t0, t0) = I, namely the matrix that represents the evolution
of the problem’s state from time t0 to t. Then Eq. (4) is equiv-
alent to

λi = lim
t→∞

1
t

Re(log(eig(Y(t, t0)))) . (6)

When all LCEs are negative, the solution is exponentially
stable. When at least one LCE is positive, the solution is un-
stable, or leads to a chaotic attractor. When the largest LCE
is zero, or the largest LCEs are zero, a limit cycle oscillation
(LCO) is expected; i.e., there exists one direction, or mul-
tiple independent directions, in the state space along which
the solution neither expands nor contracts. In case of mul-
tiple largest LCEs equal to zero, a higher order periodic or
quasi-periodic attractor exists, e.g. a torus.

Note the analogy with the LTI case, since Y(t, t0)
LTI≡

eA(t−t0), with A∈Rn×n, and thus λi
LTI
= Re(eig(A)), and with

the LTP one, in which

Y(t, t0)
LTP≡ eB(t−t0)P(t− t0) (7)

with P(t) ∈ Rn×n and P(t +T )≡ P(t) ∀t ∈ R, where T ∈ R
is the constant period, and B ∈ Rn×n constant, yielding

λi
LTP
= lim

n→+∞

1
nT

Re(log(eig(Y(t0 +nT, t0))))

≡ 1
T

Re(log(eig(Y(t0 +T, t0))))

= Re(eig(B)) , (8)

with n ∈N. In this sense, one may consider the LCEs as sort
of the eigenvalues of matrix f/x, appropriately averaged over
time. For this reason, LCEs are often called the ‘spectrum’ of
the associated problem [21], much like the spectrum of LTI
problems is represented by the eigenvalues of matrix A= f/x.

In most practical cases, the definition of Eq. (6) can-
not be used in practice, because usually for t → +∞ at least



some of the elements of the STM contract to zero, in case
of asymptotic stability of the solution, or expand to infin-
ity, in case of instability, resulting in either under- or over-
flowing, or both. As proposed in the work of Benettin et
al. [22], to estimate LCEs in practice one needs to exploit
the re-orthogonalization of the local directions of evolution
of the solution. Alternative approaches based on well known
orthogonal decompositions (the Singular Value Decomposi-
tion (SVD) and the QR factorization, respectively [23]) have
been proposed:

λi = lim
t→∞

1
t

log(svd(Y(t, t0)))

= lim
t→∞

1
t

log(diag(qr(Y(t, t0)))) , (9)

where svd(M) indicates the singular values of matrix M,
which are non-negative by definition, whereas qr(M) indi-
cates the diagonal elements of the upper-triangular matrix R
that results from the QR factorization of M (an algorithm
that factors a generic real matrix M ∈ Rn×n into the prod-
uct of an orthonormal matrix, Q ∈ Rn×n, and an upper tri-
angular matrix, R ∈ Rn×n, namely M = QR), using its re-
alization that guarantees they are non-negative. Efficient
algorithms are available for LCE estimation; for example,
the continuous SVD and QR methods, and the discrete QR
method [21, 22, 24].

It is worth recalling that these methods do not easily deal
with LCEs of multiplicity greater than one. This case, unfor-
tunately frequent in mechanics, corresponds to subcritically
damped oscillatory systems in LTI problems, whose com-
plex conjugated eigenvalues share the same real part. As
discussed in Ref. 25, the computability of an LCE requires
that the problem possesses the property of exponential di-
chotomy, which in turn requires an appropriate separation
between LCEs. This issue has been discussed in [26], where
the real Schur decomposition [23] is proposed to effectively
detect LCEs with multiplicity greater than one, although no
algorithm capable of dealing with over- or underflow of the
STM has been devised yet.

The possibility to extend the approach to systems of
DAE, as outlined for example in [27–32], represents a
promising development, in view of their use in the formula-
tion of modern multibody dynamics based on the redundant
coordinate approach.

The use of Jacobian-less methods applied to time his-
tories resulting from multibody dynamics is very promising,
as proposed by the authors in [33, 34], since it intrinsically
overcomes the DAE nature of the problem’s formulation, and
there is no need to access the Jacobian matrix of the problem,
nor to evaluate it numerically, making the approach easily
applicable to existing solvers.

3 Practical LCE Estimation
This section briefly presents the methods used in this

work to estimate the LCEs or, in some cases, only the largest

LCE, from problems of interest analyzed with the multibody
formalism.

3.1 Discrete QR Method
The discrete QR is one of the most popular methods for

the estimation of LCEs. It is based on incrementally updating
the LCE estimates with the diagonal elements of the upper-
triangular matrix R obtained from the QR factorization of the
STM between two consecutive time steps.

Given the STM Y(t, t j−1) from time t j−1 to an arbitrary
time t, set Y j = Y(t j, t j−1). Consider then the QR factor-
ization [23] of Y jQ j−1, starting from Q0 = I, which implies
Q jR j = Y jQ j−1. After defining RΠ j = Π

j
k=0R j−k, one can

notice that

Y jQ j−1RΠ j−1 = Q jR jRΠ j−1 = Q jRΠ j . (10)

This way, Y jQ j−1RΠ j−1 can be used to construct the QR
factorization of the STM from t0 to t j as Y(t j, t0) = Q jRΠ j

by only considering incremental QR factorizations over
YkQk−1, i.e. with limited contraction/expansion in each ma-
trix Rk. Recalling that the product of two upper triangular
matrices A and B, namely C = AB, is an upper triangular
matrix as well, with diagonal elements cii = aiibii, the LCEs
can be estimated from RΠ j as

λi = lim
j→∞

1
t j

logrii(t j), (11)

where j ∈ N and rii(t j) are the diagonal elements of matrix
R(t j) = RΠ j . Thus the logarithm of each element

rii(t j) = Π
j
k=0r( j−k)ii (12)

can be incrementally computed as

log(rii(t j)) =
j

∑
k=0

log(rkii), (13)

which helps preventing overflow or underflow in numerical
computations, leading to

λi = lim
j→∞

1
t j

j

∑
k=0

log(rkii). (14)

Care must be taken to ensure that the diagonal elements of
R j are positive, which can be satisfied by changing the sign
of each row of the R matrix with negative diagonal element,
and the corresponding column of the Q matrix; in pseudo-
code:



for i in 1:n,
if (R(i, i) < 0),

R(i, :) = -R(i, :);
Q(:, i) = -Q(:, i);

end
end

The evaluation of the STM requires matrix f/x. Alterna-
tive approaches, based on its numerical evaluation through
finite differences are available, embedding it into the evalu-
ation of the STM across each time step. In this work, the
method proposed by Dieci [35] has been used in applica-
tion to what has been termed the ad-hoc implementation of
the problem, namely its direct formulation as a system of
Ordinary Differential Equations (ODE). Matrix f/x was nu-
merically evaluated using the complex algebra approach pro-
posed by Squire and Trapp [36].

3.2 Jacobian-Less Methods: Maximum LCE from
Time Series

The largest LCE, or Maximum LCE (MLCE) can be es-
timated from a time series. Among the algorithms proposed
in the literature (see for example [37]), the one proposed by
Rosenstein et al. [38] is used in this work.

The trajectory matrix, X, is constructed from an N-point
time series xi, i = 1, ...,N, using the time delay method. Each
row of matrix X is a phase-space vector, namely

X =
[

X1 X2 . . . Xm
]

(15)

with

Xk =
[

x1+(k−1)J x2+(k−1)J . . . xM+(k−1)J
]T (16)

with k = 1, ...,m. Thus, X ∈ RM×m, with m, M, J, and N
related by

M = N− (m−1)J (17)

where m is the embedding dimension, estimated through the
False Nearest Neighbor (FNN) algorithm [39], N the length
of the time series, and J represents the so-called reconstruc-
tion delay, obtained by estimating the Average Mutual Infor-
mation (AMI) [40].

After constructing the trajectory matrix, the algorithm
locates the nearest neighbor, X ĵ, of each point on the trajec-
tory. It is found by searching for the point that minimizes
the distance from each particular reference point, X j. The
distance is expressed as

d j(0) = min
X ĵ

∥∥∥X j−X ĵ

∥∥∥ (18)

where d j(0) is the initial distance from the jth point to its
nearest neighbor, and ‖·‖ denotes the Euclidean norm.

An additional constraint is that nearest neighbors have
a temporal separation greater than the mean period, T̄ , of
the time series, namely the reciprocal of the mean frequency
of the power spectrum, although it can be expected that any
comparable estimate, e.g., using the median frequency of the
magnitude spectrum, yields equivalent results. In all the pro-
posed cases, it is estimated as

T̄ = ceil( fs/max(meanfreq(X, fs))) (19)

using Matlab’s ‘meanfreq’ function, where fs is the sam-
pling frequency of the time series. The nearest neighbors
constraint is ∣∣ j− ĵ

∣∣> T̄ (20)

Thanks to this, each pair of neighbors can be considered as
nearby initial conditions for different trajectories.

The largest Lyapunov exponent is then estimated as the
mean rate of separation of the nearest neighbors. The jth pair
of nearest neighbors diverge approximately at a rate given by
the largest Lyapunov exponent:

d j(i)≈C jeλ1(i∆t) (21)

where C j is the initial separation. By taking the logarithm of
both sides

logd j(i)≈ logC j +λ1(i∆t) (22)

which represents a set of approximately parallel lines, for
j = 1, ...,M, each with a slope roughly proportional to λ1.
The largest Lyapunov exponent is calculated using a least-
squares fit to the “average” line defined by

y(i) =
1
∆t
〈logd j(i)〉 (23)

where 〈·〉 denotes the average over all values of j.
In this work, the Jacobian-less method proposed by

Rosenstein et al. is applied to time histories resulting from
the simulation of the ad-hoc formulation of the problem, as
an alternative to the discrete QR method, and to time his-
tories resulting from the use of MBDyn1, a free general-
purpose multibody solver [41]. In the latter case, this method
is of particular interest, since it does not require the capabil-
ity of the solver to expose the Jacobian matrix of the prob-
lem, and can thus be applied to any solver.

4 Example Problem: Ground Resonance
The problem of helicopter ground resonance is consid-

ered to exemplify the estimation of LCEs from a non-trivial

1https://www.mbdyn.org/



dynamical problem, since it is characterized by non-linear,
time-varying dynamics, with nonlinearities both intrinsic in
the geometry of the blades’ motion and possibly in the con-
stitutive properties of the lead-lag dampers.

The analysis of the dynamic stability of a linearized
model of an isotropic rotor is standard, since it results
in a LTI problem when so-called Multi-Blade Coordinates
(MBC) [7] are considered. When isotropy or symmetry is
lost, for example when a lead-lag damper fails, the problem
becomes time-periodic. In this case, its stability can be ana-
lyzed using the Floquet-Lyapunov approach. In classical ap-
plications of rotorcraft dynamics, the problem is linearized,
assuming small blade lag angles, and analyzed using Flo-
quet’s theory.

In this work, however, to better highlight the ability of
the proposed methods to estimate the LCEs, the problem is
formulated without any small angle approximation for the ro-
tation of the blades, and thus without a priori linearization.
Furthermore, no MBC are used, an easier and more straight-
forward way to model a complex system using the multibody
approach.

4.1 Equations of Motion
A classical model, which became a de-facto benchmark,

was proposed by Hammond in his 1974 paper [12]. A sketch
is presented in Fig. 1. The equations of motion of the system,
formulated ad-hoc, are thus

Ibζ̈i− fi(ζ̇i)+ kiζi + eΩ
2Sb sinζi (24)

−Sb [ẍh sin(ψi +ζi)− ÿh cos(ψi +ζi)] = 0 i = 1 . . .Nb

for each blade, where fi(ζ̇i) is the blade damping moment,
with fi(ζ̇i) = −ciζ̇i when the linear damper of [12] is con-
sidered, and

(mx +Nbmb) ẍh + cxẋh + kxxh (25a)

−Sb

Nb

∑
i=1

[
ζ̈i sin(ψi +ζi)+

(
Ω+ ζ̇i

)2
cos(ψi +ζi)

+
eΩ2

ρ
cosψi

]
= 0

(my +Nbmb) ÿh + cyẏh + kyyh (25b)

−Sb

Nb

∑
i=1

[
ζ̈i cos(ψi +ζi)−

(
Ω+ ζ̇i

)2
sin(ψi +ζi)

−
eΩ2

ρ
sinψi

]
= 0

with ρ = Sb/mb, for the airframe. The numerical data pro-
posed in [12] are reported in Table 1. For the airframe, they
refer to quantities reduced to the equivalent motion of the
hub, xh and yh, which explains the different mass values for
the two coordinates.

Fig. 1. Sketch of the rotor model (adapted from [12]). Only one
blade is shown for clarity.

Table 1. Hammond model’s data [12].

Number of blades, Nb 4

Blade mass, mb 94.9 kg

Blade mass static moment, Sb 289.1 kg·m

Blade mass moment of inertia, Ib 1084.7 kg·m2

Lag hinge offset, e 0.3048 m

Lag spring, ki 0 m·N·rad−1

Lag damper, ci 4067.5 m·N·s·rad−1

Hub mass, mx 8026.6 kg

Hub mass, my 3283.6 kg

Hub spring, kx 1240481.8 N·m−1

Hub spring, ky 1240481.8 N·m−1

Hub damper, cx 51078.7 N·s·m−1

Hub damper, cy 51078.7 N·s·m−1

4.2 Multibody Model
The problem has been also modeled using MBDyn. The

model is exactly equivalent to the simplified ground reso-
nance problem originally proposed by Hammond. However,
owing to the peculiar characteristic of the problem of having
different airframe equivalent inertia terms associated with
motion in the x and y directions, its modeling in MBDyn has
been obtained by splitting the airframe body in two parts:

• the first part is connected to the ground by a constraint
that only allows its absolute displacement in the x direc-
tion;

• the second part is connected to the first one by a con-
straint that only allows its displacement relative to the
first one in the y direction;

• the mass of the second part is my, whereas that of the



Fig. 2. Sketch of the MBDyn model of Hammond’s system [12].

first one is mx−my, such that the overall mass associ-
ated with the absolute motion of the hub center in the x
direction, involving the combined motion of both parts,
is mx;

• the first part is connected to the ground by a spring and
a damper, of characteristics kx and cx;

• another spring and damper, of characteristics ky and cy,
connect the second to the first part;

The rotor hub is modeled as a third, massless part, whose
relative motion with respect to the second part of the airframe
is a prescribed rotation about axis z with constant angular
velocity;

The blades are described as rigid bodies through their
absolute displacement and orientation, constrained to the hub
by revolute joints that only allow their relative rotation about
the lead-lag hinge, whose axis is parallel to the global z axis,
and thus to the axis of rotation of the rotor. Such rotation is
restrained by an angular damper that represents the equiva-
lent lead-lag damper torque.

A sketch of the model is shown in Fig. 2. The MBDyn
model of Hammond’s problem is available from the project’s
website2.

5 Results
5.1 Isotropic System

The rotor is isotropic when all blades are identical in
terms of geometry and constitutive properties. In the case at
hand, the geometry and the inertia of the blades are assumed
to be identical. The rotor is thus isotropic when also all the
damper characteristics ci are identical, for i = 1 . . .Nb.

This section compares the stability results obtained with
the following models:

a) the conventional, linearized time-invariant model ob-
tained using the MBC, which acts as a reference (‘Eige-

2https://gitlab.com/zanoni-mbdyn/
mbdyn-tests-public/-/tree/develop/Hammond/GR_
MBDyn
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Fig. 3. Estimated LCEs of the isotropic rotor.

nanalysis’);
b) the results obtained using the Jacobian-based discrete

QR method to estimate all the LCEs of the ad-hoc model
(‘LCE QR ad-hoc’);

c) the results obtained using the Jacobian-less method for
the estimation of the MLCE from the time series com-
puted by the multibody and ad-hoc models (‘MLCE
MBDyn’ and ‘MLCE ad-hoc’).

Figure 3 illustrates how the stability indicators of the
isotropic rotor change with the angular velocity of the rotor.
The values indicated as ‘Eigenanalysis’ refer to the real part
of the eigenvalues of the monodromy matrix obtained from a
linearization of the problem about the trivial solution of zero
blade rotation. The corresponding results obtained using the
discrete QR algorithm from the ad-hoc problem yield identi-
cal results. Indeed, being the reference solution of zero blade
motion always asymptotically stable, the absence of a priori
linearization is inessential.

The values indicated as “MLCE MBDyn” refer to the
maximum LCE estimated from the time series computed by
the multibody model, whereas those indicated as “LCE QR
ad-hoc” have been obtained from the ad-hoc formulation us-
ing the QR algorithm. All results are negative, which indi-
cates asymptotic stability. These results are in line with those
proposed by Hammond in [12], which were obtained from a
linearized model using MBC.

It is worth noticing the set of values at about −1.875
s−1 from 65 rpm onwards, which actually represents two
coincident eigenvalues, associated with the ‘collective’ (all
blades rotating by the same amount) and so-called ‘reaction-
less’ (blades alternately rotating by opposite amounts) rotor
MBC. Those two real parts of the corresponding eigenvalues
are not affected by the angular velocity of the rotor, since the
corresponding motions are mechanically decoupled from the
motion of the airframe. As such, usually they are not consid-
ered when the problem is formulated using MBC; they ap-
pear in the solution presented here because it is formulated
using the four physical blade rotation angles as coordinates.

5.2 Loss of Isotropy: One Damper Inoperative
Current Certification Standards (CS 27 [42] and CS 29

[43], respectively for small and large rotorcraft) require that
“the rotorcraft may have no dangerous tendency to oscillate
on the ground with the rotor turning” (CS 27.241/29.241),
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and that “the reliability of the means for preventing ground
resonance must be shown either by analysis and tests, or re-
liable service experience, or by showing through analysis or
tests that malfunction or failure of a single means will not
cause ground resonance” (CS 27.663(a)/29.663 (a)).

For this purpose, the case of one lead-lag damper inoper-
ative needs to be evaluated, to check the stability margins of
the rotorcraft within the desired envelope of rpm and other
structural parameters (weight and center of mass position,
landing gear equivalent stiffness and damping, and so on).
In the present analysis, we focus on checking the suitabil-
ity of the proposed methods in analyzing a problem that no
longer can be made time-independent, and that according to
the linearized analysis proposed in [12] based on the Floquet-
Lyapunov theory results in extensive regions of instability.

In this section we compare the stability results obtained
with the following models:

a) the conventional, linearized time-periodic model ob-
tained using the MBC, although their use no longer
makes the problem LTI because of the loss of isotropy;
this solution is used as a reference (‘Floquet’);

b) the results obtained using the Jacobian-based discrete
QR method to estimate all the LCEs of the ad-hoc model
(‘LCE QR ad-hoc’);

c) the results obtained using the Jacobian-less method for
the estimation of the MLCE from the time series com-
puted by the multibody and ad-hoc models (‘MLCE
MBDyn’ and ‘MLCE ad-hoc’).

The latter two cases are identical to those considered for the
isotropic rotor problem.

The lag damper of blade 3 is made inoperative, i.e.,
c3 = 0. Figure 4 compares the real part of Floquet’s expo-
nents resulting from the linearized, time-periodic analysis,
with the LCEs estimated from the nonlinear ad-hoc problem
using the discrete QR method. One may observe that where
Floquet’s method can only find positive real parts, indicating
instability of the linearized model, the largest of the LCEs es-
timated from the geometrically exact nonlinear problem has
(almost) zero value, which is indicative of an LCO, as dis-
cussed later when the phase space trajectories of the blades
are presented in Fig. 8 for an unstable case. Indeed, the blade
can only rotate by a finite, although large amount about the
lag hinge; thus, a motion limited in amplitude results instead
of the indefinitely divergent motion predicted by the analysis
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Fig. 5. MLCE of non-isotropic case, using Jacobian-less method.
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Fig. 6. MLCE of non-isotropic case, using Jacobian-less method,
with underflow.

of the linearized periodic model.
Figure 5 compares the largest real part of the Floquet

exponent with the Maximum LCE, estimated from the time
histories obtained by integrating the multibody problem us-
ing the Jacobian-less method. Identical results have been ob-
tained with the ad-hoc formulation of the problem, as one
would expect, considering that the resulting time histories
are quite similar; they only slightly differ because differ-
ent numerical integration schemes have been used. For the
ad-hoc formulation, Matlab’s ode23() implementation of
the explicit Runge-Kutta scheme proposed by Bogacki and
Shampine [44] was used. With MBDyn, a second-order ac-
curate, implicit A-stable multistep scheme with tunable algo-
rithmic dissipation and asymptotic spectral radius ρ∞ = 0.6
[45] was used.

Figure 6 is analogous to Fig. 5; the curves differ in that
the analyses used to estimate the MLCE were executed for a
fixed time duration. Consequently, when the MLCE is neg-
ative and too large in modulus, the analysis results quickly
underflow, making the estimation less accurate. For this rea-
son, particular care is required in defining the appropriate
duration of the analysis.

Figures 7 and 8 show the phase space of the 6 coordi-
nates of the ad-hoc problem at two specific values of rpm
and initial configuration. Figure 7 refers to an asymptoti-
cally stable case, with Ω = 124.2 rpm and an initial solution
of x0 = 0.1 m for the airframe displacement in the x direction
and everything else zero. The plot of blade 3, the one miss-
ing the damper, shows larger amplitude and much slower de-
cay of the oscillations compared with the others. It is worth
noticing that the phase space portraits of blades 2 and 4 are



Fig. 7. Phase space of ad-hoc solution with one damper inoperative, in asymptotically stable conditions (Ω = 125 rpm).

Fig. 8. Phase space of ad-hoc solution with one damper inoperative, in unstable conditions (Ω = 250 rpm).

identical if the signs of the axes are exchanged. The circles
indicate samplings spaced by one period, i.e., by one rotor
revolution.

Figure 8 refers to an unstable case, with Ω = 242.4 rpm
and the same initial condition. As illustrated by the (nearly)
zero MLCE of Fig. 5, the solution evolves towards a LCO,
highlighted by the circles obtained by sampling the solution
at each revolution that describe a periodic orbit. The red and
blue spots in the x and y plots correspond to the solution en-
tirely spanning that portion of the phase space, eventually
resulting in the aforementioned periodic orbit. The ampli-

tude of the motion of blade 3, the one with the inoperative
damper, is of the order of ±π/2 (−1.9 radian to 1.5 radian);
quite large and surely destructive for a helicopter in terms of
induced structural loads, yet undoubtedly limited.

Figure 9 shows the amplitude of blade 3 rotation with
the failed damper as a function of the rotor angular veloc-
ity. The unstable rpm region can be well appreciated. As
the rpm increases from zero, when unstable conditions are
reached at about 210 rpm the oscillation immediately jumps
to a very large extension. Then, as the rpm increases further,
it slowly reduces until stable conditions are reached again
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Fig. 9. Amplitude of blade 3 limit cycle oscillation with failed damper.
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Fig. 10. Moment of damper with nonlinear constitutive law.

slightly above 300 rpm. It is worth stressing that the ab-
normal amplitude motion experienced in the region of rpm
that formally corresponds to a LCO identifies an operation
range that cannot be physically acceptable, as the result-
ing dynamic loads would likely cause the breakdown of any
structure.

In conclusion, from a design point of view the results ob-
tainable with the linearized model and Floquet-Lyapunov’s
analysis suffice in predicting instability. However, the cor-
rect identification of a LCO-type solution provided by the
proposed analysis gives further insight into the characteris-
tics of the phenomenon.

5.3 Nonlinear Constitutive Law
The case of a more realistic damper model, character-

ized by a nonlinear constitutive law, is considered. The rela-
tively simple model used for example in [16, 46], originally
proposed by [47, 48], is here considered, namely

fi(ζ̇i) =

{
−
(

χ|ζ̇i|+CL

)
ζ̇i |ζ̇i|< ζ̇L

−sign(ζ̇i)χζ̇2
L |ζ̇i| ≥ ζ̇L

(26)

with χ = χ−CL/ζ̇L, χ = 1.2203 · 106 m·N·s2·rad−2, with
a moment-saturation limit angular velocity ζ̇L = 1 deg·s−1,
and CL = ci. Namely, the damper moment, shown in Fig. 10,
is second-order polynomial for angular rates ζ̇i that do not
exceed, in norm, a threshold ζ̇L, and otherwise constant.

The parametric stability of the isotropic problem at fixed
rpm is then studied by varying the linear contribution in
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Fig. 11. MLCE of isotropic case with nonlinear ad-hoc model and
nonlinear damper, using discrete QR and Jacobian-less method.

Eq. (26), namely the term −CLζ̇i, with CL ∈ [0,ci], as pro-
posed in [16], after the insurgence of a LCO for CL = 0 was
observed in [46].

The results presented in [16] in terms of LCEs are here
reproduced and presented in Fig. 11, considering the ad-hoc
model, which includes the geometric nonlinearities associ-
ated with the finite motion of the parts, and the multibody
model, which on top of that adds the formulation of the blade
motion with respect to the absolute reference frame, in form
of a set of DAEs. The two analyses show essentially identi-
cal results, since the resulting time histories are quite similar.
The stability of the trivial solution, namely zero blade lead-
lag rotation and zero airframe displacement, is evaluated.
The largest LCE is zero for values of the linear contribution
to the characteristic moment of the damper,−CLζ̇, that range
from zero to about 35% of the nominal value, indicating the
existence of a limit cycle oscillation that is confirmed also in
case of complete geometric nonlinearity in the kinematics of
the blades. From that point on, the LCE becomes progres-
sively negative with steady slope, reaching a value of about
-1 s−1 when the linear contribution−CLζ̇ reaches its nominal
value.

Figure 12 shows the sensitivity of the LCE estimation
to the amplitude of the initial angular velocity perturbation
of blade 3, ζ̇3(0), for CL = ci (the nominal value). Below
a magnitude of about 0.6 rad/s, the MLCE is negative for
all values of rpm. For higher initial values, a region ap-
pears, the red, flat area that corresponds to an MLCE value of
about 0, where the aforementioned LCO occurs. The region
grows, extending over a broader rpm range, for initial values
of ζ̇3(0) of increasingly larger magnitude.

6 Conclusions
This paper discussed the use of estimated Lyapunov

Characteristic Exponents to evaluate the stability of solutions
of complex mechanical systems. Its elements of novelty are:

• the Maximum LCE can be estimated from general-
purpose multibody formulations, without the need to
modify existing solvers, by resorting to Jacobian-less
methods that make use of time series only;

• very effective algorithms based on the discrete QR fac-
torization and capable of estimating all LCEs can be im-



Fig. 12. MLCE of isotropic case with nonlinear ad-hoc model and
nonlinear damper, sensitivity to amplitude of initial perturbation.

plemented without the explicit Jacobian matrix in ana-
lytical form, by resorting to effective and accurate meth-
ods based on finite differences;

• the problem of helicopter ground-resonance, formulated
without a priori linearization of the blade motion or
equivalently by general-purpose multibody dynamics,
results in a limit-cycle oscillation, whereas the conven-
tional linear, time-periodic analysis simply indicates in-
stability;

• the presence of a limit-cycle instability when consid-
ering a certain type of nonlinear lead-lag damper pre-
sented in the literature is confirmed also when the mo-
tion of the blades is not linearized.
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