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Aim: To identify the effect of single nucleotide polymorphism (SNP) interactions on the risk of toxicity
following radiotherapy (RT) for prostate cancer (PCa) and propose a new method for polygenic risk score
incorporating SNP-SNP interactions (PRSi).
Materials and methods: Analysis included the REQUITE PCa cohort that received external beam RT and
was followed for 2 years. Late toxicity endpoints were: rectal bleeding, urinary frequency, haematuria,
polimi.it
, valerie.
ohnson),
sscher@-
udhury),
medma.
ori.mi.it
s), Barry.
ma.sosa.
, Debbie.
.ac.uk (C.

http://crossmark.crossref.org/dialog/?doi=10.1016/j.radonc.2021.03.024&amp;domain=pdf
https://doi.org/10.1016/j.radonc.2021.03.024
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:nicolarares.franco@polimi.it
mailto:michelacarlotta.massi@polimi.it
mailto:francesca.ieva@polimi.it
mailto:andrea1.manzoni@polimi.it
mailto:anna.paganoni@polimi.it
mailto:paolo.zunino@polimi.it
mailto:liv.veldeman@ugent.be
mailto:piet.ost@ugent.be
mailto:valerie.fonteyne@uzgent.be
mailto:valerie.fonteyne@uzgent.be
mailto:cjt14@leicester.ac.uk
mailto:tr104@leicester.ac.uk
mailto:ajw51@leicester.ac.uk
mailto:kj91@leicester.ac.uk
mailto:maarten.lambrecht@uzleuven.be
mailto:karin.haustermans@uzleuven.be
mailto:gert.demeerleer@uzleuven.be
mailto:dirk.deruysscher@maastro.nl
mailto:dirk.deruysscher@maastro.nl
mailto:ben.vanneste@maastro.nl
mailto:evert.vanlimbergen@maastro.nl
mailto:ananya.choudhury@nhs.net
mailto:rebecca.m.elliott@manchester.ac.uk
mailto:Elena.sperk@umm.de
mailto:marlon.veldwijk@medma.uni-heidelberg.de
mailto:Carsten.herskind@medma.uni-heidelberg.de
mailto:Carsten.herskind@medma.uni-heidelberg.de
mailto:barbara.avuzzi@istitutotumori.mi.it
mailto:Barbara.Noris@istitutotumori.mi.it
mailto:riccardo.valdagni@istitutotumori.mi.it
mailto:David.Azria@icm.unicancer.fr
mailto:marie.pierre.farcy.jacquet@chu-nimes.fr
mailto:muriel.brengues@icm.unicancer.fr
mailto:Barry.Rosenstein@mssm.edu
mailto:Barry.Rosenstein@mssm.edu
mailto:richard.stock@mssm.edu
mailto:ana.vega@usc.es
mailto:miguelelias.aguado@usc.es
mailto:paloma.sosa.fajardo@sergas.es
mailto:paloma.sosa.fajardo@sergas.es
mailto:amd24@medschl.cam.ac.uk
mailto:lf370@medschl.cam.ac.uk
mailto:Sarah_Kerns@URMC.Rochester.edu
mailto:Debbie.Payne@manchester.ac.uk
mailto:Debbie.Payne@manchester.ac.uk
mailto:j.chang-claude@dkfz-heidelberg.de
mailto:p.seibold@Dkfz-Heidelberg.de
mailto:Catharine.West@manchester.ac.uk
mailto:Tiziana.rancati@istitutotumori.mi.it
https://doi.org/10.1016/j.radonc.2021.03.024
http://www.sciencedirect.com/science/journal/01678140
http://www.thegreenjournal.com


SNP interaction-aware PRS for radiotoxicity Radiotherapy and Oncology 159 (2021) 241–248
Keywords:
Prostate cancer
Radiotherapy
Late toxicity
Genetic risk factors
SNPs
Epistasis
nocturia, decreased urinary stream. Among 43 literature-identified SNPs, the 30% most strongly associ-
ated with each toxicity were tested. SNP-SNP combinations (named SNP-allele sets) seen in �10% of
the cohort were condensed into risk (RS) and protection (PS) scores, respectively indicating increased
or decreased toxicity risk. Performance of RS and PS was evaluated by logistic regression. RS and PS were
then combined into a single PRSi evaluated by area under the receiver operating characteristic curve
(AUC).
Results: Among 1,387 analysed patients, toxicity rates were 11.7% (rectal bleeding), 4.0% (urinary fre-
quency), 5.5% (haematuria), 7.8% (nocturia) and 17.1% (decreased urinary stream). RS and PS combined
8 to 15 different SNP-allele sets, depending on the toxicity endpoint. Distributions of PRSi differed signif-
icantly in patients with/without toxicity with AUCs ranging from 0.61 to 0.78. PRSi was better than the
classical summed PRS, particularly for the urinary frequency, haematuria and decreased urinary stream
endpoints.
Conclusions: Our method incorporates SNP-SNP interactions when calculating PRS for radiotherapy tox-
icity. Our approach is better than classical summation in discriminating patients with toxicity and should
enable incorporating genetic information to improve normal tissue complication probability models.
� 2021 The Authors. Published by Elsevier B.V. Radiotherapy and Oncology159 (2021) 241–248 This is an
open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Recent efforts attempted to include individual patient genetic
data in Normal Tissue Complication Probability (NTCP) models
[1,2]. As with any predictive model, a clinically useful genetic-
based NTCP model requires a sufficient number of common
variants, given that each likely has a small effect on risk of compli-
cations. Radiogenomic studies are finding an increasing number of
common (i.e. seen in > 1% of the population) single nucleotide
polymorphisms (SNPs) that can be combined to derive a polygenic
risk score (PRS). A PRS is calculated as a sum of phenotype-
associated risk alleles, usually weighted by the effect sizes esti-
mated from a genome-wide association study [3,4,5]. There is also
increasing awareness that epistasis, or SNP-SNP interactions, affect
polygenic susceptibility to common human diseases [6,7]. These
interactions occur when a combination of two or more SNPs affect
a phenotype more/differently than the effect seen with an individ-
ual gene. Epistasis is considered an ubiquitous component of the
genetic architecture of common human diseases with complex
interactions being more important than the effects of any single
common genetic variant [7]. Epistasis is also likely to affect risk
of radiation toxicity, but to date genetically-based NTCP models
have not accounted for SNP interaction effects.

Here we aim to identify the combined effect of several SNPs on
late radiotherapy toxicity and propose a novel scoring method to
summarise genetic information that incorporates epistatic effects.
Our work builds on the results of a previous study where SNPs
identified as affecting risk of late radio-induced toxicity were con-
firmed by external independent validation [8]. There, the authors
considered a pool of 43 SNPs associated with late radiotherapy tox-
icity from the literature. The SNPs were then filtered through a
Deep Sparse AutoEncoder (DSAE), and those that were most rele-
vant in separating patients with toxicity were selected for each
toxicity endpoint. Within the present work, we start from these
selected SNPs and propose a new method for deriving PRSs for late
toxicity that account for SNP-SNP interactions (termed PRSi) while
preserving interpretability, i.e. allowing users to understand why
certain predictions are made. Indeed, our proposed PRSi shows
which SNPs and alleles are included, whether they increase or
decrease the risk of toxicity and their combined effect sizes.
Materials and methods

Population

We included REQUITE prostate cancer patients recruited before
radiotherapy between April 2014 and October 2016 in eight coun-
tries (Belgium, France, Germany, Italy, the Netherlands, Spain, UK,
US) and treated with external beam radiotherapy (with/without
hormonal therapy, with/without a previous prostatectomy, no
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brachytherapy) who had complete 2-year follow-up. Details on
the REQUITE population are published [9]. REQUITE was approved
by local Ethical Committees and registered at www.controlled-tri-
als.com (ID ISRCTN98496463).
Outcome endpoints

Toxicity endpoints were scored using CTCAE v4.0 by health pro-
fessionals and using patient reported outcome (PRO) question-
naires. The following endpoints were considered: late rectal
bleeding grade � 1 (CTCAE), late urinary frequency grade � 2
(CTCAE), late haematuria grade � 1 (CTCAE), late nocturia
grade � 2 (PROs) and late decreased stream grade � 1 (PROs).
Detailed information on toxicity endpoint definitions can be found
in the Supplementary Material (Section A).
SNP selection

For each toxicity endpoint, we considered the top 30% most rel-
evant SNPs according to [8], among the 43 initially included in that
study. Specifically, these are the SNPs found the most effective in
separating patients with/without toxicity [8].
Statistical methods

To identify the combined effect of several SNPs on each out-
come separately, we exploited the methodology proposed in [10].
Thanks to that, we were able to summarize a patient’s genetic
information into a risk (RS) and a protection (PS) score that respec-
tively indicate an increase or decrease in the risk of late toxicity. To
build RS and PS we first identified a relevant set of high-order SNP-
SNP interactions, termed SNP-allele sets.

Fig. 1 illustrates our methodology. At the patient level, each SNP
is considered a trichotomic categorical variable with values of 0, 1
or 2 indicating absence, heterozygosity or homozygosity of the
considered minor allele (Fig. 1a). In the case of imputed values,
we round to the closest integer. Starting from there, we derive
SNP-allele sets, which indicate the simultaneous presence of mul-
tiple SNP-allele combinations. Of note, SNP-allele sets can include a
variable number of SNPs, from 2 to the maximum number of SNPs
considered.

SNP-allele sets were identified using a methodology developed
previously [10], which was specifically designed to find high-order
interaction terms in imbalanced binary classification settings with
categorical covariates. Indeed in our context, for each toxicity end-
point, the dataset consists of N (genome, outcome) pairs
D ¼ fðx1; y1Þ; :::; ðxN; yNÞg where, for each patient i 2 f1; :::;Ng,
xi 2 RJ is the vector containing the values {0,1,2} of the J SNPs con-

http://creativecommons.org/licenses/by-nc-nd/4.0/


Fig. 1. An illustration of the methodology used to generated polygenic risk scores incorporating SNP-SNP interactions (PRSi). (a) Data are available for multiple SNPs for
patients identified as with (red) or without (blue) radiotherapy toxicity. (b) Our algorithm computes frequent (arbitrarily defined as seen in � 10% of patients) SNP-SNP
combinations, termed SNP-allele sets, associated with radiotherapy toxicity (i.e. the minority class). For example both the first and the third patient have a SNP2 value of 2
(i.e. homozygosity of the minor allele) and SNP10 value of 0 (i.e. homozygosity of the major allele). We call this SNP2 = 2, SNP10 = 0 combination a SNP-allele set. As a further
example both the fifth and the sixth patient have SNP2 = 1, SNP5 = 2, SNP10 = 1 and SNP23 = 2: this is another SNP-allele set. (c) SNP-allele sets are transformed into patient-
specific features, with a ‘‘1/yes” value if the patient harbours the considered SNP-allele set and a ‘‘0/no” value if the patient does not. Odds ratios are calculated for each SNP-
allele set on the risk of toxicity. (d) Lists of risk SNP-allele sets associated with increased (risk) and decreased (protection) toxicity probability are generated. (e) Risk Score
(RS) and Protection Score (PS) are calculated for each patient as the frequency in an individual’s genome of SNP-allele sets in the ‘‘Risk List” and in the ‘‘Protection List”, thus
generating a table as in the Figure. Patients with toxicity should have RS near 1 and PS near 0, the converse for patients without toxicity. RS and PS data are fit to a logistic
regression model to estimate weights for RS and PS for calculating the final PRSi. The distribution of PRSi should be different for patients with and without toxicity. The more
separated the two distributions are, the better the PRSi is discriminating patients with toxicity.
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sidered for that specific endpoint, while yi 2 f0;1g indicates the
absence (yi ¼ 0, red in Fig. 1a) or presence (yi ¼ 1, blue in Fig. 1a)
of the endpoint. We search for SNP-allele sets s that occur in
patients with toxicity with a frequency of at least 10%, and store
them in a list S (Fig. 1b). Note that from now on we use bold letters
for SNP-allele sets, as they involve multiple SNPs, while capital let-
ters denote lists of SNP-allele sets. The cutoff frequency of 10% was
arbitrarily chosen to select SNP-allele sets that would be common
in a real-world patient population. For each s 2 S we compute its
frequency in both the majority (patients without toxicity, yi ¼ 0)
and the minority (patients with toxicity, yi ¼ 1) classes. This allows
us to compute an odds ratio (OR, defined as the ratio of the two fre-
quencies) for each SNP-allele set (Fig. 1c.)

Then,

i. We subdivide S into two lists, SR ¼ fs 2 S with ORs > 1g and
SP ¼ fs 2 S with 0 < ORs < 1g, of risk and protection SNP-
allele sets, which we respectively rank by descending and
ascending OR.

ii. From each list (SR and SP) we extract the top K most relevant
SNP-allele sets, starting from the one with highest
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(respectively, lowest) OR and including the next most diverse
ones. The driving idea is to avoid redundancy and keep SNP-
allele sets that carry different information. For details on
how this diversity is defined see the Supplementary Material
B or refer to [10]. This selection process leaves us with two
filtered lists, LR and LP , each of length K (Fig. 1d).

iii. For each patient i we define the scores RSi (respectively PSi),
as the percentage of risk (protection) SNP-allele sets in LR
(LP) that appear in his genome (Fig. 1e).

iv. To evaluate the predictive capability of RS and PS we fit a
logistic model (Fig. 1f) of the form:
P yi ¼ 1ð Þ ¼ 1
1þ expð� cþ aRSi þ bPSið ÞÞ ; ð1Þ
where a, b and c are the model parameters. We would
expect the a coefficient associated with RS to be positive
(as it represents an increased risk of belonging to the minor-
ity class of patients with toxicity), and b to take negative
values (as PS should be protective with respect to the toxi-
city outcome).
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v. Once obtained the two scores’ coefficients of the fitted
model (a and b), we consider them as weights to define a
combined polygenic risk score (Fig. 1g) incorporating SNP-
SNP interactions (PRSi):
Table 1
Conside
separat

Late

rs14
rs80
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rs76
rs10
rs17
rs80
rs17
rs73
rs70
rs17
rs11
rs10

Table 2
Perform
in the th
by thres
..

Patie
With

(%
K
a
b
c
AUC
Sens
Spec
OR*
Prob

cu
PRSi ¼ aRSþ bPS ð2Þ

We analyse the PRSi performance in separating the two classes

through the area under the Receiver Operating Characteristics
(ROC) curve (AUC).

For each endpoint we must choose a value for the parameter K
and the number of SNP-allele sets considered per score. As we have
no prior knowledge on the optimal K , we repeat the procedure
from point (ii) to point (v) through a range of values
(K ¼ 1; :::;15) that ensure both interpretability and readability of
the SNP-allele sets lists; then for each endpoint independently,
we pick the one K guaranteeing the highest classification
performance.

Results

Cohort

REQUITE enrolled 1,681 prostate cancer patients who were
treated with external beam radiotherapy without brachytherapy.
There were 1,436 patients with complete 2-year follow-up avail-
able for analysis. Forty-nine patients were excluded because of
red SNPs for each toxicity endpoint. SNPs selected for SNP-allele sets learning for
e between patients with/without late toxicity symptoms. ..

Urinary Frequency grade � 2 Late Haematuria grade � 1 Late Nocturia grade

1799618 rs10101158 rs10969913
75565 rs708498 rs77530448
591436 rs77530448 rs62091368
273496 rs17055178 rs11219068
969913 rs147596965 rs264651
99983 rs7366282 rs1799983
98701 rs10969913 rs8098701
599026 rs12591436 rs7366282
66282 rs79604958 rs11122573
8498 rs8098701 rs17055178
055178 rs845552 rs17599026
122573 rs7829759 rs10497203
209697 rs10209697 rs6432512

ance of Logistic Models fitted with RS and PS. Results of logistic models for the 5 co
ird row. The fitted values for a and b are reported together with their 95% confiden
holding the predicted probabilities in the logistic model using the cutoff that maxim

Late Urinary Frequency
grade � 2

Late Haematuria
grade � 1

Late No
grade �

nts 1,334 1,343 1,250
toxicity N
)

56 (4.2%) 74 (5.5%) 223 (17

15 13 8
13.25 ± 3.86 9.63 ± 3.43 3.22 ± 1
�5.37 ± 2.62 �4.60 ± 2.53 �3.82 ±
�3.27 �3.13 �1.32
0.78 0.71 0.61

itivity* 67.9% 71.6% 77.6%
ificity* 77.9% 60.2% 38.6%

7.456 3.818 2.171
ability
toff

5.1% 4.5% 17.6%
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an intrinsic higher risk of exhibiting radiation toxicity, due to their
co-morbidities (patients with a diagnosis of systemic lupus erythe-
matosus, rheumatoid arthritis and other collagen vascular dis-
eases). Cohort details are described in the Supplementary
Material, Table E1.
Polygenic risk score incorporating SNP-SNP interactions

The analysis presented below was carried out through an algo-
rithm developed by the authors in Python 3.7. More details can be
found in [10] and the code is available upon request.

Filtering of the top 30% most relevant SNPs among the 43 ini-
tially included in [8] resulted in groups of 13 SNPs for each of
the five toxicity endpoint as listed in Table 1.

Tables 2 and 3 summarise the quantitative results describing
the logistic regression models’ parameters and performances and
the PRSi distributions for the five endpoints. Fig. 2 shows the iden-
tified SNP-allele sets and the PRSi performance for one of the four
urinary endpoints. Fig. 3 shows the results for the bleeding end-
point. Figures for the other endpoints are in the Supplementary
Material (Figs. C1, C2 and C3). To benchmark and highlight the per-
formance and the value of our method for generating PRSi, Supple-
mentary Material (Section D) show the AUC results for PRS
estimates obtained using a classical summation approach without
SNP-SNP interactions. The benchmark PRS was computed for each
endpoint using the same 13 SNPs used to build the PRSi.
each toxicity endpoint. The SNPs in the table are those identified as relevant in [8] to

� 2 Late Decreased Urinary Stream grade � 1 Late Rectal Bleeding grade � 1

rs10209697 rs62091368
rs1799983 rs4775602
rs17362923 rs264631
rs673783 rs17599026
rs8098701 rs11122573
rs77530448 rs76273496
rs6535028 rs17362923
rs7366282 rs10969913
rs845552 rs6535028
rs1045485 rs10209697
rs76273496 rs141799618
rs17055178 rs8098701
rs11122573 rs1045485

nsidered toxicity endpoints. The values chosen for the hyperparameter K are reported
ce intervals. (*) The rows Sensitivity, Specificity and OR, refer to the metrics obtained
izes the Youden index. The value of such cutoff is also reported in the table (last row).

cturia
2

Late Decreased Urinary Stream
grade � 1

Late Rectal Bleeding
grade � 1

1,234 1,366
.8%) 211 (17.1%) 160 (11.7%)

15 12
.57 7.04 ± 1.94 3.73 ± 1.84
1.57 �4.51 ± 1.66 �2.48 ± 1.66

�1.63 �2.16
0.68 0.63
64.9% 75.6%
65.6% 45.5%
3.529 2.593
18.8% 10.3%



Table 3
Comparison of PRSi distribution between patients with and without toxicity. Comparison of the polygenic risk score incorporating SNP-SNP interactions (PRSi) distribution for
patients with and without toxicity (separately for each of the 5 considered toxicity endpoints). The PRSi medians in the two classes are reported and compared with the Wilcoxon
test for independent samples; the p-value of such test is reported (third row). The distribution of the score as a whole is also compared in the two classes using the Kolmogorov-
Smirnov two-samples test; p-values of the latter are reported in the table (last row). ..

Late Urinary Frequency
grade � 2

Late Haematuria
grade � 1

Late Nocturia
grade � 2

Late Decreased Urinary Stream
grade � 1

Late Rectal Bleeding
grade � 1

Median (patients with
toxicity)

0.611 0.740 �0.149 0.168 0.208

Median (patients without
toxicity)

�0.357 0.033 �0.224 �0.133 0.001

Wilcoxon p = 5.76e-13 p = 9.73e-10 p = 3.48e-07 p = 2.35e-16 p = 8.73e-08
Kolmogorov-Smirnov p = 3.39e-10 p = 1.41e-06 p = 1.44e-04 p = 1.41e-14 p = 6.52e-06

Fig. 2. Results for grade � 2 late urinary frequency. Panel (a): SNP-allele sets participating in the definition of Risk Score (RS); panel (b) SNP-allele sets participating in the
definition of the Protection Score (PS). In both cases, each row identifies a SNP-allele set, with SNPs running along columns. Different colours correspond to different alleles of
each single SNP in the SNP-allele set. Note that SNP-allele sets are, in general, defined by different numbers of alleles. For example, the first Risk SNP-allele set (starting from
top) is defined through 8 alleles (rs141799618 = 0, rs8075565 = 1, rs12591436 = 2, rs1096913 = 0, rs17599026 = 0, rs808498 = 2, rs11122573 = 0 and rs10209697 = 0) while
the last one involves 4 alleles only (rs12591436 = 1, rs76273496 = 0, rs17599026 = 1 and rs7366282 = 0). Each SNP can participate in the definition of multiple SNP-allele sets
(e.g. rs10209697 is included in 7 SNP-allele sets for RS and in 7 SNP-allele sets for PS). Panel (c) ROC curve for the logistic model described in Equation 1 and calculated with
best-fit parameters a and b reported in Table 1. AUC and the point in the ROC curve identifying the best probability cutoff value (according to the Youden index) are also
reported; panel (d) Box-plot representation for the distribution of the polygenic risk score incorporating SNP-SNP interactions (PRSi) for patients with and without toxicity
calculated using equation (2). The red-dashed line represents the thresholding value for the PRSi related to the probability cutoff in Table 2: patients with a score above this
threshold will have a predicted probability, according to equation 1, that is above the cutoff, and viceversa.

Fig. 3. Results for grade � 1 late rectal bleeding. Panels read as in Fig. 2.
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Toxicity model results

Fifty-six of 1,334 available patients (4.2%) experienced late
urinary frequency grade � 2. Risk and protection SNP-allele sets
identified as described previously are reported in Fig. 2a and b
(here K ¼ 15). The logistic model fitted using the corresponding
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RS and PS has parameters behaving as expected: the a coefficient
associated with RS is positive (13.25, p = 1.36x10-11) while the b
coefficient associated with PS is negative (-5.37, p = 5.61 � 10�5).
The model has good discrimination power with an AUC of 0.78
(Fig. 2c), further details on the model performance can be found
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in Table 2. Finally, as shown in Fig. 2d and reported in Table 3, the
PRSi computed with the fitted a and b results in significantly
different distributions in the two classes of patients with and
without toxicity (median PRSi 0.611 vs �0.357, Wilcoxon
test for independent samples p-value = 5.76x10-13; two-sample
Kolmogorov-Smirnov test p-value = 3.39x10-10).

Late haematuria grade � 1 was seen in 74 of 1,343 available
patients (5.5%). Identified risk and protection SNP-allele sets are
reported in Supplementary Fig. C1, here using K ¼ 13. Supplemen-
tary Figs. C1c and C1d report details on the fit of the logistic model
and PRSi distributions.

Late nocturia grade � 2 was seen in 223 of 1,250 available
patients (17.8%). Risk and protection SNP-allele sets (K ¼ 8)
together with details on the ROC curve for the logistic model and
PRSi distributions are presented in Supplementary Fig. C2.

There were 211 of 1,234 (17.1%) patients who experienced late
decreased stream grade � 1. Identified risk and protection SNP-
allele sets are presented in Supplementary Figs. C3a and C3b,
K ¼ 15. Supplementary Figs. C3c and C3d describe the ROC curve
for the logistic model and the PRSi distributions.

One hundred and sixty of 1,366 available patients (11.7%) had
late rectal bleeding grade � 1. Identified risk and protection SNP-
allele sets are presented in Fig. 3a and b, K ¼ 12, while Fig. 3c
and d show the ROC curve for the logistic model and the PRSi
distributions.

Discussion and conclusions

Risk of radiotherapy toxicity is influenced by both environmen-
tal and genetic factors. In terms of genetics, the radiosensitivity of
most individuals can be considered a complex trait with a contin-
uous range of variation that is not explained by the segregation of a
single gene. The application of PRSs could help in estimating before
treatment an individual patient’s susceptibility, thus allowing per-
sonalised treatments that improve health outcomes [11]. PRSs are
being tested for clinical utility for individualised preventative man-
agement with particular promise for identifying increased risks of
cardiovascular diseases and breast cancer [12,13], and might sim-
ilarly be used for radiotherapy outcomes.

GWAS-identified loci tend to have small individual effects, and
PRS are needed for prediction. Some researchers highlight a need
to move beyond simple weighted sums of risk alleles [14]. While
there is currently little evidence for including SNP-SNP interactions
in PRS, there is a recognised need to explore alternative modeling
strategies [15]. A comprehensive search for SNP-SNP interactions
among � 300,000 SNPs with minor allele frequencies � 0.15 found
no evidence for a role across 10 human diseases [16], highlighting
the challenge of achieving adequate statistical power.

In this paper we present a methodology to tackle this complex
scenario. Based on [10], our approach can identify high-order inter-
action terms while maintaining the model dimensionality under
control. While machine learning has already been proposed as a
promising alternative for estimating the overall genetic risk in
the presence of high-order interactions [17,18], the additional
value of our PRSi is the readability and interpretability of the
results. The algorithm returns two lists of SNP-allele sets whose
length is specified by the user and that can be easily inspected.
These lists are used to define the RS and PS. The two scores are then
weighted with coefficients that have a clear and straightforward
meaning in building the PRSi for new patients.

While methods are being developed to improve the detection of
interaction in genome-wide scans [19], another approach is to start
with a smaller candidate gene list [20]. Here, to develop our
methodology we chose to consider only 13 SNPs for each endpoint
and only used SNPs previously identified with different radiother-
apy toxicity endpoints [10]. The method can in principle be scaled
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to any number of SNPs nonetheless. The computational workload
will obviously increase more than linearly with the number of
SNPs, but the high computational burden is restricted to the devel-
opment phase (i.e. the identification of SNP-allele sets, steps (i) and
(ii) in the workflow presented in the Section ‘‘Statistical methods”).
All the other steps do not require high power computation, and cal-
culation of the PRSi for new patients can be readily done with a
pocket calculator or a spreadsheet.

One interesting aspect of our methodology is that the genotype
at one locus can be a risk factor when coupled to a genotypes at
other loci or a protective factor when coupled with a genotype at
another loci. For example, Fig. 2a shows that the SNP
rs141799618 appears with the same allele in 7 risk SNP-allele sets
and in 7 protective SNP-allele sets - but in each of them it is accom-
panied by different alleles from other SNPs.

Another relevant characteristic of the algorithm is the enforce-
ment of a lower bound on the frequency of SNP-allele sets consid-
ered to build the Scores (at least 10% of patients with toxicity).
This, together with the diversity-based SNP-allele sets selection
(see Supplementary Material B), avoids overfitting and fosters gen-
eralizability of the derived PRSi and its performance on newcohorts.

The performance of the PRSi was evaluated through its discrimi-
native power and the obtained results are encouraging. Additionally,
the PRSi demonstrated its superiority in terms of AUC with respect to
a traditional PRS where only additive contributions of the single SNPs
are considered (late urinary frequency: 0.78 vs 0.65, late haematuria:
0.71 vs 0.63; Results shown in Table D.1 in Supplementary Material).
Moreover, the parameters associated to Risk and Protection Scores in
the PRSi preserve their statistical significance thanks to the limited
number of covariates introduced in the logistic regression model, fact
that is instead unlikely in PRSs with an extremely high number of
interactions (Supplementary Material D).

Within the present work, we only considered genetic markers,
without explicitly accounting for other clinical/treatment factors,
such as radiation dose, treated volumes, and comorbidities. How-
ever, we do not see this as a significant limitation, but rather a
choice grounded on the underlying hypothesis of this study. In
the modern radiotherapy scenario, doses to healthy tissues after
radiotherapy for prostate cancer are reduced to the minimum
and patients suffering from late toxicity are a significantly small
portion of the population. In this perspective, we hypothesized that
genetic variants are the main factors that determine late toxicity.
Therefore, the results proposed in the paper aim at demonstrating
the predictive and descriptive capability of SNP-allele sets only.
Additional insights on the matter can be found in Section E of
the Supplementary Material. There, we partially investigated the
interplay between the PRSi and other clinical factors, by evaluating
the model performance over several subpopulations. The corre-
sponding results are promising, and the proposed score seems to
behave robustly, coherently with our preliminary hypothesis.

An important further step will be to include the PRSi into inte-
grated normal tissue complication probability models, together with
validated dosimetric and clinical risk factors, to prove its added value
as a radiosensitivity biomarker. In fact, the approach presented here
is extremely flexible and the PRSi can be easily included in larger
models to potentially aid prediction. A further possibility is the adap-
tation for radiotherapy treatment for patients with high PRSi, which
could for example entail either a decreased prescription dose or the
use of specific aid devices like rectum spacers [21,22].

A limitation of themethod here exploited is that it heavily builds
upon data and not on prior biological knowledge. Therefore, evalu-
ation of different cohorts would be highly desirable to enhance reli-
ability. Of note, the data-driven discovery of epistasis/statistical
interaction does not necessarily imply interaction at the biologi-
cal/mechanistic level. Nonetheless, results from this kind of analy-
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ses can be considered hypothesis-generating, thus inspiring new
experiments to evaluate epistasis at the biological level [23].

In summary, our method incorporates SNP-SNP interaction
effects in the definition of a PRS for radiotherapy toxicity. Our
approach is better than using classical summation in discriminat-
ing patients with toxicity, particularly for 3 out of 5 endpoints. It
should improve the ability of incorporating genetic information
into normal tissue complication probability models.
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