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Abstract 
Supply Chain Risk Management (SCRM) has become integral to firm governance and risk 

interdependencies, despite limited attention, significantly impact risk analysis and mitigation. Recurrent 

risks, resulting from consistent disturbances, generate chronic losses and are critically affected by other 

related risks. This work enhances the assessment of chronic losses with interdependent risks, building 

upon an existing Bayesian Belief Network (BBN) approach for risk interdependencies in SCRM, 

combining expected utility theory to address the complex, interconnected nature of risks. This work 

advocates a change in existing approaches to properly evaluate chronic losses often underestimated due 

to decision makers’ expectations. The research shows that the impact of recurrent risks may be 

underestimated by other approaches based on their frequency, undermining confidence in mitigation 

strategies. This work not only presents a novel approach to risk assessment, but also highlights the 

importance of studying causal interdependencies, and emphasizes the need to consider low-probability 

and high-impact risks but also recurrent, seemingly minor risks in SCRM processes. 
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1 Introduction 
Disruptions like the COVID-19 pandemic, the terrorist attacks against the World Trade Center, and the 

natural disaster in Japan in 2011 have increased the interest of researchers and practitioners in the topic 

of Risk Management (RM) (Duong et al., 2022). Whilst risk is an ancient concept that has been studied 

since the beginning of the 20th century, RM has only recently emerged as a topic of interest, and it is 

conceived as a structured process aimed at coping with risks affecting organisations (Baloch et al., 

2023). In particular, such a process aims not only to prepare firms for facing large and unpredictable 

disruptions but also to target recurrent operative risks that commonly affect an organisation 

(Ravulakollu et al., 2018). 

Contemporary to the increasing relevance of RM, Supply Chain Management (SCM) has established 

itself as a critical task for ensuring the firm’s capability to be competitive in the market (Shenoi et al., 

2018; Thatte et al., 2013). The union of these topics gave rise to the concept of Supply Chain Risk 

Management (SCRM), which aims to deal with risks afflicting the supply chain, also called Supply 

Chain Risks (SCRs) (de Oliveira et al., 2017). 

As highlighted by various authors, the literature on RM and SCRM has largely disregarded the study 

of risk interdependencies, which has hidden massive importance for effective risk analysis and 

mitigation (Ho et al., 2015; Fan & Stevenson, 2018). The relevance of such a topic is even higher in the 

context of SCRM because of the growing interdependency among the different entities of the chain. 

In particular, recurrent risks, which result from disturbances with a consistent impact over time, 

generate chronic losses and are critically affected and amplified by other related risks and this issue is 

even more perceivable in practice (Tukamuhabwa et al., 2017). Indeed, by talking with a senior SCRM 

professional who has been working for several software and consultancy companies providing SCM 

solutions to large companies in many industries (for example, automotive and aerospace), it was 

perceivable the importance of chronic losses, which are, however, often “invisible” to the top 

management. In his opinion, companies tend to accept chronic losses as “the cost of the business”. This 

underlines how much these losses are underestimated, often not even quantified, and kept unchanged 

because accepted as they are. The issue starts with the (lack of) identification of chronic losses and then 

their assessment. Furthermore, he (the senior SCRM professional) asserted the importance of studying 

new methodologies that can help in the identification of chronic losses. Their proper assessment will 

raise the awareness of the decision makers and improve associated mitigation strategies. 

The research approach we are going to propose aims to consider this practical issue and the work here 

presented introduces an approach to properly considering risk interdependences, by reducing the 

potential biases introduced by decision makers. The perception of risk is subjective and is affected by 

several factors (Sasaki & Sakata, 2021); the interdependence of risks makes their assessment even more 

difficult (Fang et al., 2013; Mogre et al., 2016). Recurrent risks are critically affected and boosted by 

other related risks (Tukamuhabwa et al., 2017). The impact of recurrent risks is often underestimated, 

and one major reason truly refers to their frequency (Rivers & Arvai, 2007). Decision makers, and in 
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general people, get used to common risks, and this reduces their perception of danger, thus creating a 

vicious circle: less attention, and increasing frequency (Rivers & Arvai, 2007). Recurrent risks are often 

the most detrimental that, if accumulated over the years, result in huge losses for companies 

(Tukamuhabwa et al., 2017). 

These risks should also be considered from a multi-actor perspective. Different supply chain actors may 

have varying perceptions of risks due to differing operating contexts and processes (Mwesiumo et al., 

2021; Ravulakollu et al., 2018). This variation necessitates an analysis of domino dynamics within the 

supply chain (Ravulakollu et al., 2018). Drawing on theories of cognitive psychology and neuroscience, 

Slovic et al. (2004) highlighted that humans comprehend risks through both analytic and experiential 

systems. The analytical system considers logical, data-driven decisions, while the experiential system 

involves intuitive, quick decisions not easily accessible to conscious awareness. People's perception of 

risk is influenced by their emotions towards potential outcomes, especially their dread or fear of 

unknown outcomes (Slovic et al., 2004). Effective risk management strategies must therefore account 

for these subjective perceptions and interdependencies to mitigate the cumulative impacts of risks 

across the supply chain. 

A proper technique for modelling and analysing risk interdependencies and recurrent risks is needed 

(Mogre et al., 2016; Qazi et al., 2018). Among the various available methods, Bayesian Belief Network 

(BBN) has been indicated as one of the most promising tools for the study of risk interrelationships 

(Sharma & Sharma, 2015). BBNs are based on the famous Bayes' theorem and on the concept of 

conditional probability, which seems appropriate for modelling the concept of interdependency between 

risks (e.g., Qazi et al., 2017). In addition, this tool presents several features that make it suitable for the 

analysis of risk by considering such interdependencies. 

Among the multiple applications of the BBN to different areas of interest in SCRM, the general 

approach developed by Qazi et al. (2018) seems to be one of the most promising. The key role of 

expected utility theory within this approach emphasizes the importance of the expectations of the 

decision makers within the risk assessment. Theoretical insights from works related to such a theory 

suggest that expectations reflecting a homeostatic attitude towards SCRM can lead to the 

underestimation of the impact of chronic losses (Rivers & Arvai, 2007).  

This work proposes a BBN as a proper technique for the study of such interdependencies and moves 

from current applications of BBNs, by proposing a novel approach, to show how the impact of recurrent 

risks, which determine chronic losses, may be underestimated due to the decision maker's homeostatic 

attitude. The following analysis will be particularly relevant for practitioners because it will make 

available a reliable approach for measuring risk impact and highlighting the hidden effects of chronic 

losses that affect firm performance. 

High-Frequency High-Impact (HF-HI) and Low-Frequency High-Impact (LF-HI) are primary targets 

in companies’ strategies since considered by far the most disruptive (Chopra & Sodhi, 2004; Oke & 

Gopalakrishnan, 2009). Anyway, High-Frequency (seemingly) Low-Impact (HF-LI) risks, if kept 
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monitored over time with the other concurrent risks, may reveal huge losses for firms’ profitability that, 

in light of this, would redefine their priorities (Fang et al., 2013; Sheffi & Rice, 2005). In this sense, the 

present work draws attention to HF-LI risks that, together with the already well-known HF-HI and LF-

HI risks, are accountable for heavy losses. Managers are consequently encouraged to look at risks with 

high frequency since HF may lower risk perception, and then, the proper evaluation of their real impact 

and interdependency with the others. 

The paper is organized as follows. In Section 2, a review of the current state of the art on SCRM and 

risk interdependence is presented by focusing at the end on the implementation of BBNs for SCRM. In 

Section 3, the setting of the research and its objective, including the theoretical background supporting 

the main aim of the paper, are stated. In Section 4, the research methodology for chronic loss assessment 

is described. In Section 5, the results of the analyses are presented and in Section 6 they are discussed. 

In Section 7, theoretical and managerial contributions, limitations and potential for future research are 

provided. 

 

 

2 Literature review 
The literature review below presents the main concepts of this work and provides an overview of the 

state of the art of SCRM, by introducing the key role played by risk interdependencies and BBNs. 

 

2.1 Supply chain risk management and risk interdependencies 

The relevance of SCM to the creation of competitive advantage for organisations is no longer disputed. 

However, if on the one hand, SCM can be a source of strategic benefits for companies, on the other 

hand, supply chain problems may significantly affect firm performance, disrupting or delaying material, 

information, and cash flows (Chopra & Sodhi, 2004). In addition, various trends in managing the supply 

chain, including outsourcing, supply base rationalisation, and just-in-time have increased supply chain 

exposure to risk (Fan & Stevenson, 2018). 

Given the high significance of supply chain problems and the increasing exposure to the risk of supply 

chains, the concept of SCRM has been introduced as a separate topic of interest, emerging from the 

intersection of RM and SCM (de Oliveira et al., 2017). Whereas RM deals with any type of risk, SCRM 

is concerned with the risks affecting the flow and activities within the chain of the firms, also called 

SCRs. In particular, Tang (2006) defined SCRM as “the management of supply chain risks through 

coordination or collaboration among the supply chain partners so as to ensure profitability and 

continuity”.  

There is a lack of consensus within the literature about the structure of the SCRM process: the number 

of steps involved, their names, and their objectives (Çıkmak & Ungan, 2022; de Oliveira et al., 2017; 

Khan et al., 2020). However, two prominent reviews (Ho et al., 2015; Fan & Stevenson, 2018) 

advocated that the SCRM process can be divided into four steps: 
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1. SCR identification “involves gaining insights into any threat, uncertainty, vulnerability, and 

unexpected event that can become a source or trigger for risk to materialise” (Tran et al., 2018). 

This stage is critical for managing SCRs because it enables the identification of all significant 

activities within the organisation and all the risks from these activities (Neiger et al., 2009). 

This step requires early judgment by the company, consisting of defining whether an SCR is 

significant and thus requiring further assessment and mitigation (Fan & Stevenson, 2018). 

2. SCR assessment consists of analysing specific risk indicators through either qualitative or 

quantitative approaches to obtain individual and aggregated risk scores supporting the SCR 

mitigation and other management decisions (Tran et al., 2018). Researchers have focused on 

the assessment of two main indicators: the probability of risk occurrence and the impact of risk 

consequences. However, despite the importance of such parameters, additional risk indicators 

should be evaluated, including the interdependencies between risks (Choudhary et al., 2023). 

Indeed, SCRs are dependent events, as they depend on each other in terms of both likelihood 

of occurrence and severity of impact (Tran et al., 2018). Previously, researchers largely 

disregarded these aspects, by individually considering risks thus underestimating the potential 

impact on SCRM of their interrelationships (Fan & Stevenson, 2018). Recently, an extensive 

review of methodologies and applications in risk assessment within supply chains highlighted 

key parameters for assessing risks, considering their interdependence (Choudhary et al., 2023). 

These parameters include avoidance, cost, impact intensity, impact time, detectability, 

likelihood, risk exposure and expected utility. Among these, three parameters are particularly 

crucial for understanding interdependence and recurrent risks: impact intensity, which 

evaluates the severity of the risk event's effect on supply chain operations; impact time, which 

considers the duration over which the risk event's impact persists within the supply chain; and 

expected utility, which captures the value obtained conditional on the risk’s influence (i.e., 

while the risk level goes high, taking these risks may be associated with a potential higher 

return). 

3. SCR mitigation involves the development of appropriate countermeasures to control SCRs 

(Tran et al., 2018). The goal of this stage is to select and implement the best set of mitigation 

measures, that is, a mitigation strategy or policy to manage a previously identified and assessed 

SCR. Indeed, mitigating SCRs rarely involves a single action; rather, it consists of developing 

a plan with multiple mitigation steps. In these conditions, collaboration is essential in SCR 

mitigation as well as in the previous phases, as strategies of a buying firm often affect its 

suppliers with coordinated joint efforts, co-development of strategic relational capabilities and 

sharing of resources before, during, and after major incidents (Friday et al., 2018; Mwesiumo 

et al., 2021; Shahid et al., 2023). This perspective emphasizes that collaboration, integration 

and cooperation are elements critical to achieving supply risk mitigation. 
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4. SCR monitoring is the process of constantly updating SCR information and the selected 

treatment plan. Risk is never a static phenomenon; it needs to be constantly monitored to 

evaluate how it has changed and whether corrections to the mitigation strategy are necessary 

(Fan & Stevenson, 2018). 

 

The four steps of the SCRM process advocate the relevance of the topic of risk interdependencies, 

however, in most of the existing SCRM processes and frameworks, risks are assumed to be independent 

during the SCR assessment phase (Zhang, 2016). 

Consequently, the mitigation treatment plans only reflect the characteristics of individual risks, 

neglecting the existence of possible risk interrelationships (Ravulakollu et al., 2018). Risks are not 

independent, and interconnections often exist between individual risks (Bhalaji et al., 2021; Chopra & 

Sodhi, 2004; Pellegrino et al., 2024; Qazi & Simsekler, 2022; Qazi et al, 2023). 

Understanding how risk factors are connected is indeed crucial for industries because dealing with the 

main risks – causal risks – can prevent the ripple effects, eliminating the effect of interconnected risks. 

Ranking of the risk factors will also provide clear guidance for industrial practitioners and researchers 

in prioritizing their efforts to mitigate the most impactful risks first, ensuring a more resilient supply 

chain (Bhalaji et al., 2021; Qazi et al, 2023). 

There is a risk of overlooking “causality among risks in a network setting and prioritize risks regarding 

their network-wide propagation impact” (Qazi et al., 2023), considering those risks as tail distributions 

and ignoring critical risks connected to them (Qazi et al., 2023). Therefore, there is a need to develop 

models that can capture the interdependencies among SCRs (Dubey et al., 2019; Ho et al., 2015; 

Pellegrino et al., 2024; Qazi & Simsekler, 2022; Qazi et al, 2023). As stated by Smith et al. (2021), 

most measures focus on individual supply-chain participants and relationships with specific supply-

chain partners rather than on the supply chain as a whole, failing to address contextual dynamics of 

interconnectedness in multi-actor systems (Ravulakollu et al., 2018). Indicators of SCR (stability) offer 

a broader perspective but are less developed and tend to receive less attention from supply chain 

managers (Smith et al., 2021).  

The presence of risk interdependencies is particularly evident in SCRM. Since a supply chain is, by 

definition, a system of multiple entities connected through material, information, and monetary flows, 

supply chain partners are influenced by connected firms and their associated risks (Bugert & Lasch, 

2018). Moreover, supply chains are becoming increasingly interdependent due to recent trends such as 

outsourcing and globalisation (Wei et al., 2010). 

Risk interdependency is defined as the existence of a possible precedence relationship between a couple 

of risks, which affects either the probability of occurrence or the risk impact (Zhang, 2016). Identifying 

and assessing risk interdependencies are crucial for the management of SCRs for two main reasons. 

First, the study of risk interrelationships enables the recognition of the hidden influences of certain risks 

in connection with other risks that may cause substantial damage (Pfohl et al., 2011). Having an 
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overview of the cumulative risk impact is necessary; analysing risks independently prevents us from 

getting the whole picture of the risks, which may lead to their overall underestimation (Straube et al., 

2016). Second, the analysis of risk interdependencies is of crucial importance for the selection of the 

most appropriate mitigation strategy, since an action that mitigates one risk can, positively or more 

importantly adversely, affect another (Bhalaji et al., 2021; Chopra & Sodhi, 2004; Qazi & Simsekler, 

2022; Qazi et al., 2023). 

In the last years, the benefits of the assessment of risk interdependencies have been recognised, and 

researchers have started employing innovative techniques for this critical task (Choudhary et al., 2023). 

A recent literature review conducted by Choudhary et al. (2023) identified several SCR assessment 

techniques, highlighting those that appeared most frequently: Fuzzy sets, Analytic hierarchy processes 

and their extensions, Analytic network processes, Bayesian networks, Failure mode and effect analysis, 

Grey theory, Conditional value at risk, Interpretive structural modelling, Delphi technique, TOPSIS, 

DEMATEL, Mean-variance method, Fault-tree analysis. Similarly, Bugert and Lasch (2018) carried 

out a literature review aimed at identifying and presenting the available quantitative techniques and one 

of the criteria used for the evaluation of the selected techniques was the capability to account for risk 

interdependencies. With this study, the authors identified six main techniques – Petri Nets (PN), System 

Dynamics (SD), Discrete Event Simulation (DES), Interpretive Structural Modelling (ISM), Input-

Output Modelling (IOM), Bayesian Belief Network (BBN) – appropriate for describing and studying 

risk interdependencies, which are individually detailed below. 

• Petri Nets (PN) is a graphic technique used for the specification, analysis, and design of 

discrete event systems (Aloini et al., 2012). More specifically, a PN can be considered a 

bipartite graph consisting of four different types of elements: places, transitions, arcs, and 

tokens. Places represent possible states or conditions of the system, while transitions 

correspond to events that are connected to places through arcs. The actual system state at a 

certain time is represented by tokens (Bugert & Lasch, 2018). 

• System Dynamics (SD) is a modelling approach used for analysing complex and dynamic 

systems. This technique assumes that the structure of a system consists of a set of elements (or 

variables) that interact with each other through delayed cause-and-effect relationships and 

information feedback (Bugert & Lasch, 2018). 

• Discrete Event Simulation (DES) represents the dynamic behaviour of a system as a discrete 

sequence of events in time. Its high flexibility and ability to model dynamic systems make this 

technique particularly suitable for supply chain planning problems (Bugert & Lasch, 2018). 

• Interpretive Structural Modelling (ISM) is a qualitative and interpretive method that 

generates solutions for complex systems through the structural mapping of complex 

interconnections of elements (Pfohl et al., 2011). Starting from a complex system characterised 
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by multiple interdependencies between elements, the ISM methodology can be used to derive 

a well-structured directed graph (Bugert & Lasch, 2018). 

• Input-output modelling (IOM) was introduced by Leontief, who used this technique to study 

the effect of consumption shocks on an interdependent economic system (Bugert & Lasch, 

2018). Specifically, Leontief’s original model computes the total output production of a sector 

as the sum of the final demand for that sector and the demand from other sectors. Subsequently, 

this technique has been extended to assess impacts and manage system risk (Wei et al., 2010). 

• Bayesian Belief Network (BBN) is a particular typology of Bayesian Networks (BNs). It is a 

graphical model in the form of a directed acyclic graph in which nodes represent domain 

variables and arcs between nodes represent probabilistic dependencies (Cooper & Herskovits, 

1992). The interdependencies among elements are represented in the form of conditional 

probabilities. This technique has been applied in a wide range of fields, including SCRM.  

 

2.2 Bayesian Belief Networks 

A BN is a “probabilistic graphical model that provides interpretability of the explored domain by 

extracting and manifesting dependences, independences, and causal relationships among variables 

representing the domain” (Lerner & Malka, 2011). 

BNs arise from the concept of Bayesian probability, also called the degree of belief. Its main difference 

from the concept of classical probability is that it is not necessary to perform repeated trials to compute 

Bayesian probability. Indeed, instead of being measured, the latter is updated after additional 

observations according to Bayes’ theorem. Specifically, the degree of belief in an event or hypothesis 

(H) is updated, given the background knowledge (c) and the additional evidence observed (E), 

according to the formula: 

 
𝑃(𝐻|𝐸, 𝑐) =

𝑃(𝐻|𝑐) ∗ 𝑃(𝐸|𝐻, 𝑐)
𝑃(𝐸|𝑐)

 (1) 

The concept of belief updating is also called Bayesian inference. Each element of the formula can be 

defined as in Niedermayer (2008). 𝑃(𝐻|𝐸, 𝑐) is the posterior probability, that is, the probability of the 

analysed event after considering the effect of the additional evidence on the background knowledge. 

𝑃(𝐻|𝑐) is the prior probability to be updated or, more specifically, the probability of 𝐻 considering 𝑐 

alone. The term 𝑃(𝐸|𝐻, 𝑐) is called likelihood, and it represents the probability of evidence considering 

𝐻 and 𝑐. Finally, the denominator of the formula, 𝑃(𝐸|𝑐), represents the probability of evidence 

assuming 𝑐 alone. This term is independent of 𝐻 and can be considered a normalising or scaling factor. 

Another important concept in Bayesian mathematics is conditional independence between events. By 

definition, two events A and B are conditionally independent given a third event C when, given the 

knowledge that C occurs, the knowledge that B occurs provides no information about the probability 
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of A to occur and the knowledge that A occurs provides no information about the probability of B to 

occur. Formally:  

 
(𝐴 ⫫ 𝐵)|𝐶 ⇔ 𝑃(𝐴 ∩ 𝐵|𝐶) = 𝑃(𝐴|𝐶) × 𝑃(𝐵|𝐶) (2) 

By introducing the concepts of Bayesian inference and conditional independence, it is possible to 

provide a mathematical formulation for BNs. A BN for a set of 𝑛 variables 𝑋 = {𝑥!, 𝑥", … , 𝑥#}	consists 

of a network structure 𝐵$ that encodes a set of conditional independence assertions about variables in 

𝑋 and a set of conditional probability distributions 𝛩 (Heckerman, 2008).  

The network structure 𝐵$, is a directed acyclic graph because it does not contain directed cycles. The 

nodes of 𝐵$ are in one-to-one correspondence with the variables within 𝑋 (Heckerman, 2008). Edges 

connecting two nodes in 𝐵$ show the existence of causal interdependence between the corresponding 

variables, while a lack of a possible edge represents conditional independence between the 

corresponding variables (Lerner & Malka, 2011). 

The second element of the BN consists of a set of parameters, 𝛩, including the conditional probability 

between two variables linked with each arc of 𝐵$ and the prior probabilities of the root nodes. Variables 

belonging to 𝑋 can be either continuous or discrete, but in most cases, they are assumed to have a 

limited set of possible states. The conditional probabilities define the relationship between the states of 

parent and child nodes, and they are usually gathered in specific conditional probability tables. 

A topic of interest within the BN literature is how to build the BN. In particular, two main approaches 

may be adopted to construct a BN: 

• Use belief: the structure and parameters of the BN are identified through expert judgments, 

which are also defined as beliefs. For this reason, the obtained graphs are usually known as 

Bayesian Belief Networks (BBNs). 

• Learn the network from data: The structure and parameters of the BN are retrieved from a 

dataset of real-world observations. 

Both methods present advantages and drawbacks. By adopting a BBN, the interdependencies among 

variables are conceptually significant since they directly derive from the experts' knowledge; however, 

results from the usage of the network are inevitably affected by the collected qualitative judgments. On 

the contrary, learning a BN from data facilitates the identification of statistically relevant 

interdependencies since they are retrieved from real-world observations. The drawback of this approach 

is that the found relationships are not necessarily meaningful from a conceptual point of view. In 

addition, learning the BN from data requires a sufficiently large and reliable dataset to obtain acceptable 

results and it necessitates a stronger computation effort to be implemented than the BBN option. 

BBNs present multiple advantages in terms of the representation and analysis of risks. First, since BBNs 

are probabilistic tools, they are appropriate for dealing with the uncertain nature of risks (Çıkmak & 

Ungan, 2022; Sharma & Sharma, 2015). Second, as underlined by Heckerman (2008), BBNs can be 
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used to model the causal relationships between variables, allowing a better understanding of the 

problem domain and the prediction of the consequences of interventions. This is the main strength of 

BBNs in the study of risk interdependencies (Çıkmak & Ungan, 2022; Qazi & Simsekler, 2022; Qazi 

et al, 2023). In addition, BBNs enable the combination of expert judgments and statistical data to model 

risks. In fact, prior probabilities defined by experts' beliefs can be updated through the rules of Bayesian 

inference when empirical observations are available (Amundson et al., 2014; Sharma et al., 2022). 

Moreover, Bayesian inference can be used to determine the probability of risk that may not be observed 

directly (Çıkmak & Ungan, 2022; Qazi et al., 2018). Sensitivity analyses can be performed to explore 

different scenarios, allowing for both forward propagation analysis (cause-effect) and backward 

propagation analysis (effect-cause) (Choudhary et al., 2023; Çıkmak & Ungan, 2022; Qazi et al, 2023). 

Another advantage arises from the ability of BBNs to represent interdependencies graphically in a way 

that is easy to understand for humans (Çıkmak & Ungan, 2022; Qazi et al., 2023; Wiegerinck et al., 

2013). 

Despite these multiple advantages, some limitations should be taken into account during the application 

of BBNs. A key issue is confidence in experts' beliefs (Amundson et al., 2014). Indeed, the outputs of 

the model will inevitably be affected by the qualitative inputs provided; therefore, superficial judgments 

or wrong beliefs may lead to misleading results. Another limitation of this tool is its static nature. BBNs 

are weak in the portrayal of dynamic features, unlike similar techniques presented in this section (Bugert 

& Lasch, 2018). To overcome this drawback, BBNs may be combined with more dynamic methods. 

Amundson et al. (2014) indeed suggested combining BBNs and system dynamics to evaluate long-term 

policies and run scenario analyses in varying contexts. 

 

2.3 Bayesian Belief Networks in SCRM 

In the past decade, many researchers have applied BBNs to SCRM (Badurdeen et al., 2014; Bugert & 

Lasch, 2018; Garvey et al., 2015; Qazi et al., 2017). Sometimes, academics focus on a specific area of 

SCRM, such as procurement, transportation, manufacturing, information management, and project 

management. In other cases, researchers developed a general SCRM framework based on the use of 

BBNs. 

Bugert and Lasch (2018) asserted through their study the advantages of BBNs in identifying and 

assessing risk interdependencies. Indeed, they stated that “the inherent strength of the BBN modelling 

technique is the consideration of risk interdependencies and the possibilities to also take risk 

propagation into account” (Bugert & Lasch, 2018). Other researchers have supported this argument 

(Çıkmak & Ungan, 2022; Qazi & Simsekler, 2022; Qazi et al, 2023). According to Qazi et al. (2018), 

this technique integrates graph theory tools, thanks to the definition of conditional probabilities, that 

enable visualising interdependencies and modelling their strengths effectively, which is a characteristic 

still missing in other graphical tools like PN and ISM. For these reasons, BBNs have gained the growing 

interest of researchers in modelling SCRMs. 
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Badurdeen et al. (2014) were among the first to propose an SCRM process entirely based on BBNs. 

The approach starts with risk identification through the development of a comprehensive SCR 

taxonomy and an SCR network map, reflecting the interdependencies between all the categories of risk. 

The goal of the approach is to support the decision maker in identifying the relevant SCRs and their 

interdependencies for the construction of the BBN structure. In the final stage of the approach, the risk 

analysis phase, the obtained BBN is explored to gain risk insights. 

Garvey et al. (2015) developed an analytical approach to model risk propagation across the supply 

chain. The supply network is represented through a graph whose nodes are the firms of the supply chain 

and edges represent the flow of material, information, and money between the organisations. For each 

node of the supply network, the related SCRs are identified and modelled as binary variables. Each risk 

variable assumes the value of “0” if it does not occur or the value corresponding to the related cost if it 

occurs. Once the definition of the BBN is completed, the propagation of each risk node is computed 

through specific indicators. 

Qazi et al. (2017) made use of BBNs to create their SCRM process. The element of newness compared 

to previous works is that their approach considered and evaluated mitigation strategies. The relevant 

SCRs and their sources are identified through the FMEA procedure, while experts' judgments are used 

to elicit the risk interdependencies, the conditional probabilities, and the loss value associated with each 

risk. Once the BBN has been developed, Bayesian inference is used to compute the expected impact of 

each SCR, which is a function of its probability to occur and the associated loss. For the risk mitigation 

stage, two scenarios are considered: in scenario 1, risk mitigation strategies and associated costs are not 

pre-defined; in scenario 2, the strategies and their costs are already established as a result of the FMEA 

procedure. In scenario 1, risks are prioritized using a metric derived from Game Theory, the Shapley 

Value, to identify the most critical SCRs to be treated. Under scenario 2, the optimal set of mitigation 

actions is selected according to a specific objective function and under a budget constraint. 

The following study of Qazi et al. (2018) is considered particularly relevant as introduced an innovative 

combination of BBNs and expected utility theory to address the complex, interconnected nature of 

SCRs. The novelty of the study lies in its ability to capture probabilistic relationships between various 

risk events using BBNs, highlighting the interdependencies and propagation of risks within a supply 

chain network. The integration of an expected utility framework further enhances the model by 

evaluating and comparing risk mitigation strategies based on both the probabilities of risk events and 

the utilities associated with different outcomes, thereby providing a decision support tool for identifying 

the most effective risk mitigation strategies. 

Furthermore, Laurila-Pant et al. (2019) applied the BBN approach to incorporate stakeholders' views 

into environmental decision-support processes. The approach quantifies and visualizes variability in 

stakeholder values, linking this information to a larger decision-analytic influence diagram.  

Another work, conducted by Liu et al. (2021), proposed a robust Dynamic Bayesian Network (DBN) 

approach to estimate disruption risks propagating along the supply chain. The DBN approach focuses 
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on worst-case scenarios and uses nonlinear programming and simulated annealing algorithms to handle 

data scarcity and estimate disruption risks. The robust DBN approach addresses the ripple effect in 

supply chains, providing a novel method for disruption risk assessment in scenarios with limited data. 

The study of Hosseini & Ivanov (2022) focused on disruptions, in particular the COVID-19 pandemic, 

to assess the impact on supply chains and their performance. This model consists of three layers – 

disruption triggers, risk events, and consequences – and enables the estimation of the probability of 

outcomes on identified triggers and events. By capturing the causal relationships between these 

elements, it is possible to achieve a more detailed understanding of disruption impacts compared to 

traditional models. 

According to the recent literature on BBNs, the study of Qazi et al. (2018) is particularly significant for 

this research, as it can be beneficial to evaluate risk interdependence and recurrent risks using the 

expected utility theory. Given the high relevance of this article, an independent section (2.3.1) is 

inserted to present it in-depth. 

 

2.3.1 The considered reference BBN approach for SCRM 

The study of Qazi et al. (2018) is an example of a general SCRM approach. Multiple contributions 

make this article relevant to the analysed literature. Indeed, this paper not only describes a complete 

SCRM process accounting for the interdependencies between SCRs, but it also introduces a Weighted 

Net Evaluation (WNE) for risk mitigation aimed at managing the compromise between the efficacy of 

potential mitigation strategies and their costs, considering the decision maker's risk appetite. In 

particular, the efficacy of the mitigation strategies is evaluated through the expected utility theory, 

which is a measure of the risk level characterising the BBN.  

The approach proposed by Qazi et al. (2018) follows the major steps below: 

• context definition; 

• risk identification; 

• risk analysis; 

• risk evaluation and treatment; 

• risk monitoring and review. 

The approach developed by Qazi et al. (2018) focuses on group sessions to identify risks and develop 

a causal network. In particular, the informants are asked to link each performance measure with the 

corresponding risks that are in turn linked to causal factors. Subsequently, subject experts are 

interviewed to define the strength of risk interdependencies, that is, the conditional probabilities.  

The resulting BBN consists of 𝑁 interdependent binary risks, denoted as 𝑅% with 𝑗 ∈ {1,… ,𝑁}, and 𝑀 

performance measures, denoted as 𝑚& with 𝑙 ∈ {1, … ,𝑀}, and 𝑀 < 𝑁. For every combination of 

performance measure values, a state, 𝑠' ∈ {𝑔𝑜𝑜𝑑, 𝑏𝑎𝑑}(, is defined. In total, there are 𝐼 = 2( states 

that the network can assume.  
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The next step is the definition of the utility function, 𝑢:	{𝑔𝑜𝑜𝑑, 𝑏𝑎𝑑}( → [0,1]. In particular, experts 

have to associate each possible state of the network with a utility value on the unit interval. In this way, 

the expected utility of the network can be computed as:  

 
𝐸𝑈 =R𝑝'𝑢(𝑠')

)

'*!

 (3) 

where 𝑝' is the probability that the network assumes the state 𝑠'. 

Once the network structure and parameters have been defined, the risk mitigation stage can start. First, 

decision makers must define a set of mitigation actions, denoted as 𝑎 ∈ {1,… , 𝐴}, that can reduce the 

probability of occurrence of some risks. These actions can be combined in any way to form a mitigation 

strategy denoted as 𝜎+. In total, there are 𝐾 = 2, mitigation strategies available. At this stage, the WNE 

score of a mitigation strategy is computed. This score function aims to manage the trade-off between 

the efficacy of a mitigation strategy, considering the decision maker’s risk propensity, and its cost of 

implementation. 

 
𝑊𝑁𝐸(𝜎+) = (1 − 𝛼)R𝑝'(𝜎+)𝑢(𝑠')

)

'*!

+ 𝛼𝑣(𝐶+) (4) 

where 𝑝'(𝜎+) is the new probability of the state 𝑠' after 𝜎+ is implemented, 𝑣(𝐶+) is the utility value 

associated with the cost of implementation, 𝐶+, and 𝛼 defines the level of risk propensity of the decision 

maker. In particular, if 𝛼 < 0.5, the decision maker is reluctant to take risks (risk-averse), while if 𝛼 >

0.5, the decision maker tends to take risks (risk-taker).  

If 𝛼 = 0.5, the decision maker is risk-neutral. Having defined how the outcome of the implemented 

mitigation strategies is evaluated, the problem of strategy selection can be formulated as: 

 
𝑚𝑎𝑥(.!/0)	𝑊𝑁𝐸(𝜎+)	𝑠. 𝑡. 𝐶+ ≤ 𝐶̅ (5) 

where 𝐶̅ is the budget available for strategy implementation. 

During the risk monitoring and review phase, a focus group session is conducted to communicate the 

results of the process. As SCRM is a continuous process, the approach is repetitively applied by using 

the information gained during previous iterations. 

 

 

3 Theoretical background 

The analysis of the state of the art highlighted the key role of BBNs in an effective assessment of the 

interdependencies among SCRs. The contributions presented above indicate that the study of Qazi et 

al. (2018) seems to be a significant application of BBN to SCRM.  

Qazi et al. (2018) used probability-impact matrices to evaluate the criticality level of risks and risk 

sources of the BBN to support decision makers in selecting optimal strategies. For the development of 

such matrices, risk likelihood is assumed to be the posterior probability of the worst state of each risk, 
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which is obtained through Bayesian inference. However, the assessment of risk impact is much more 

complex. The authors have approximated the risk impact with the percentage decrease of expected 

utility obtained by instantiating the risk node in its worst state and taking as a reference point the average 

case: 

 
𝐼𝑚𝑝𝑎𝑐𝑡	(𝑅') =

𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑	𝑈𝑡𝑖𝑙𝑖𝑡𝑦2"*345	73$8 − 𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑	𝑈𝑡𝑖𝑙𝑖𝑡𝑦2"*9:;$<	73$8
𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑	𝑈𝑡𝑖𝑙𝑖𝑡𝑦2"*345	73$8

 (6) 

 

Qazi et al. (2018) study set the reference point on the average expected utility, equation (6). The average 

case seems reasonable at first glance since it can be considered a proxy of the decision maker’s 

expectations (or probabilistic beliefs) about future outcomes. However, some risk types do not fit well 

with this approach: recurrent risks are a clear example. HF risks significantly affect the expectations 

and risk aversion of decision makers (Rivers & Arvai, 2007). Decision makers tend to mitigate LF-HI 

risks while accepting recurrent minor disturbances because they are accustomed to those circumstances, 

which increases their risk aversion. Therefore, the average case as a reference point for recurrent risks 

considers a scenario where risks are kept frequent, and a low expected utility is accepted. This implies 

that the expected utility in the average case is relatively closer to the worst case rather than to the best 

one, that is when risk is completely avoided or mitigated, thus keeping the impact (Ri) indicator small. 

An accurate assessment of risk impact is thus crucial, according to the Qazi et al. (2018) approach, to 

support decision makers in selecting the optimal strategies for risk mitigation, which is by the way a 

major goal of many studies on SCRM. 

 

The relationship between expected utility and a selected reference point is not a new topic in the 

literature. Kahneman and Tversky (1979) developed an innovative theory, the prospect theory, an 

alternative to the expected utility theory for decision making under risk. A decision maker faces risk 

when they can associate probabilities to the possible feature outcomes; whereas uncertainty stands for 

a situation where the probabilities estimation is not workable. Decision making under risk represents a 

choice between prospects. A prospect (𝑥!, 𝑝!; 𝑥", 𝑝";…; 𝑥#, 𝑝#) yields an outcome 𝑥' with a probability 

𝑝', where 𝑝! + 𝑝" +⋯+ 𝑝# = 1, the expected utility of such a prospect can be computed as: 

 
𝐸𝑈(𝑥!, 𝑝!; 𝑥", 𝑝";…; 𝑥#, 𝑝#) = 𝑝!𝑢(𝑥!) + 𝑝"𝑢(𝑥") + ⋯+ 𝑝#𝑢(𝑥#) (7) 

where 𝑢(𝑥') defines the level of utility associated with outcome 𝑥'. 

According to the expected utility theory, a purely rational decision maker should always select the 

prospect corresponding to the maximum expected utility. However, Kahneman and Tversky (1979) 

observed through empirical experiments that this is not always true. For this reason, they formulated 

the prospect theory. 

The main result of the prospect theory was the development of a new utility function, which, according 

to the authors, should approximate the preferences of the decision makers under risky conditions better 
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than the expected utility theory. One of the features of this new utility function is that it is defined on 

deviations from a reference point. This characteristic derives from the observation that people are likely 

to evaluate outcomes in terms of gains and losses rather than as final states of wealth. A consequence 

of this feature is that a shift in the reference point can change the utility perceived by the decision maker. 

In the original formulation of the prospect theory, the reference point corresponded to the status quo, 

that is, the current level of the decision maker's wealth. However, Kőszegi and Rabin (2006) proposed 

a new version of the prospect theory, in which the reference point was associated with the expectations 

of the decision maker. The authors defined expectations as the probabilistic beliefs that the decision 

maker held in the recent past about future outcomes. Expectations depend on the notion of personal 

equilibrium, which is a condition when a person correctly predicts the environment they face and their 

reactions to this environment.  

In many cases, the status quo and expectations are interpreted as equal since people usually expect the 

status quo to be maintained in the future. However, there are situations in which these perspectives 

differ and the status quo, as a reference, seems to be inappropriate (Kőszegi & Rabin, 2006). Workers, 

for instance, tend to perceive a wage reduction as a loss, even if it does not cause changes to their status 

quo. Indeed, the salary reduction leads to a reduction of the expected gain rather than a real loss of the 

current workers’ welfare. In this case, the loss perception is justified only when expectations are used 

as a reference point. 

Resuming the above discussion on recurrent risks and chronic losses, this is especially true. In such a 

context, individual perceptions play a key role in the prediction of expected outcomes (Ravulakollu et 

al., 2018). Humans consider both logical data-driven decisions and intuitive quick decisions. Therefore, 

their perception of risk is influenced by their emotions towards potential outcomes, especially their 

dread or fear of unknown outcomes (Slovic et al., 2004). 

Rivers and Arvai (2007) made an important contribution to this topic by studying the impact of chronic 

losses on expectations in the context of the prospect theory. The authors carried out an experiment 

comprising three groups of respondents. One group, chronic losers, was exposed to chronic financial 

losses as part of a controlled, multi-round gambling simulation. Groups two and three were exposed to 

chronic wins and random outcomes, respectively, as part of the same gambling simulation. The results 

of this study showed that subjects who have suffered recurrent failures tended to lower their 

expectations and increase their level of loss aversion. 

 

 

4. Methodology 
Taking the stand from the existing knowledge on BBNs for SCRM, this work advocates a change in 

existing approaches to properly evaluate recurrent risks, which determine chronic losses and are often 

underestimated due to the decision maker's expectations (Rivers & Arvai, 2007). We propose a novel 
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approach to assess the risk impact on different scenarios when considering recurrent risks and their 

interdependence with other risks. 

 

4.1 Proposed SCRM approach  

The proposed research approach is centred on the comparison of two distinct approaches for the 

evaluation of risk impact within the general SCRM approach based on the use of BBNs developed by 

Qazi et al. (2018).  

The approach suggested by Qazi et al. (2018), reported in equation (6), at first glance, seems reasonable 

because it reflects the willingness to compare the worst case, in which risk occurrence is certain, with 

the average or expected case. However, such an approximation could determine potential distortion 

when treating recurrent risks. As mentioned earlier, using the average case as the reference point for 

the computation of the decrease in expected utility will likely lead to an underestimation of the impact 

of HF risks.  

The approach proposed in this work that overcomes this drawback considers the percentage decrease 

of utility from the best case, that is when the risk does not occur with certainty: 

 
𝐼𝑚𝑝𝑎𝑐𝑡	(𝑅') =

𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑	𝑈𝑡𝑖𝑙𝑖𝑡𝑦2"*=8$<	73$8 − 𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑	𝑈𝑡𝑖𝑙𝑖𝑡𝑦2"*>:;$<	73$8

𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑	𝑈𝑡𝑖𝑙𝑖𝑡𝑦2"*=8$<	73$8
 (8) 

To avoid any misunderstanding in the following pages, the Qazi et al. (2018) impact measure (equation 

(6)) will be labelled as the benchmark approach, while the above impact measure (equation (8)) will be 

indicated as the proposed approach. The difference between such methods involves the setting of the 

reference point for the computation of the expected loss of utility. Whilst the benchmark approach uses 

the expected utility of the average case, the proposed approach uses the best case for the reference point. 

Although the difference between the two approaches could seem minimal, however conceptually the 

difference is significant because it stems from the limitations of BBNs by reducing the biases introduced 

in the process by decision makers, who are people and their arguments, even though reasoned, are 

mostly based on their personal experience (Kőszegi & Rabin, 2006). Therefore, the main novelty of 

this work is mainly conceptual rather than computational, and in the results (Section 5), it will become 

clear. 

To effectively compare the benchmark and proposed approaches, the BBN developed by Qazi et al. 

(2018) in their case study was used. Therefore, the two approaches were compared based on the same 

case study to verify whether the adoption of these distinct approaches can lead to different results 

regarding the evaluation of risk impact, especially for recurrent SCRs. This enabled to directly compare 

the impact of different risks and identify those mostly underestimated by the benchmark approach.  

 

4.2 The sample 

The selected company is called Aero, a leading global supplier of products, solutions, and services like 

rolling bearings, seals, mechatronics, services, and lubrification systems. Aero has 120 manufacturing 
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units, operates in 29 countries, and serves a wide range of industries such as automotive, marine, 

aerospace, and renewable energy. 

The BBN developed for Aero is constituted of 50 nodes, including the node for the computation of the 

expected utility of the network and the five performance variables: quality, timeliness, market share, 

profit, and sustainability.  

Figure 1 shows the full risk network, together with the interrelationships between mitigation strategies 

and risk nodes. The mitigation strategies were evaluated during the risk treatment stage, considering 

different levels of risk propensity and budget constraints.  

 

 
Figure 1: BBN of the Aero case: the network of interacting risks, risk sources and potential strategies 

[retrieved from Qazi et al. (2018)]. 

 

4.3 The BBN structure  

The GenLe Modeler software (Bayes Fusion LLC, 2020) was applied to rebuild the Bayesian structure, 

starting with the information provided by the paper of Qazi et al. (2018). The GenLe Modeler is a tool 

for artificial intelligence modelling and machine learning with BNs and other types of graphical 

probabilistic models (Bayes Fusion LLC, 2020). The interface of this software is very intuitive and 

user-friendly. It allows the exploitation of all the features of BNs from the update of probabilities 

through Bayesian inference to the development of sensitivity and what-if analyses. Among the 

functionalities of this software, there is the possibility of learning the BN from a dataset given as input 

to a specific learning algorithm.  
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The unavailability of the conditional probability tables complicated the rebuilding of the original BBN. 

The authors were contacted and requested to share the complete dataset, but they replied that this was 

not possible because of confidentiality. 

To provide an estimation for missing parameters due to the unavailability of conditional probabilities, 

it was necessary to test different datasets. A structured approach was followed for such a task, consisting 

of four steps: 

• defining the datasets to be tested; 

• testing the datasets by computing the posterior probability of each node; 

• computing the absolute deviation for each node; 

• selecting the dataset minimizing the Mean Absolute Deviation (MAD). 

Nine different datasets were tested to identify the one that best approximated the missing parameters. 

The best dataset is available under request. Once the BBN construction was completed (Figure 1), the 

probability and the two impact measures of each node of the network were computed.  

Following the example of Qazi et al. (2018), nodes were positioned in the probability-impact matrix to 

evaluate their level of criticality. However, to get a significant comparison among risks, the nodes were 

divided according to two different classifications. 

• By type: distinguishing between parent, intermediate, and child nodes. 

• By level: according to the hierarchical position of the node within the BBN. Specifically, 

performance variables (i.e., quality, timeliness, market share, profit, and sustainability) belong 

to Level 0, whereas nodes directly connected with them are gathered in Level 1. Level 2 nodes 

are those linked with Level 1 variables and Level 3 nodes are parents of Level 2 nodes. 

Once the BBN was implemented in GenLe (Bayes Fusion LLC, 2020), all the nodes were categorized, 

and the two measures of risk impact (benchmark and proposed approach) were computed for all the 

variables of the BBN. All types of risks (HF-HI, LF-HI, HF-LI, LF-LI) were included in the Aero case 

and their impact, for the benchmark and proposed approach as well, was assessed to detect whether 

there were differences between risks according to their classification, by type and by level.  

 

 

5 Results 
The proposed approach proved to be effective in properly evaluating chronic losses without introducing 

biases to the other variables (risks). The results of this analysis are reported in Table 1, where the column 

Delta represents the difference between the risk impact computed with the proposed approach and that 

obtained using the benchmark approach. 

 

Table 1: Resulting differences between the benchmark and proposed approaches. 
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Node Name 
Node 

Identifie
r 

Type Leve
l 

Probability 
of the worst 

state 

Impact 
(Benchmark

) 

Impact 
(Proposed

) 
Delta 

Corporate 
Governance N1 Parent 3 25.0% 1.57% 2.08% 0.51% 

RM Culture N2 Intermediat
e 3 39.0% 1.89% 3.04% 1.16% 

Regulatory 
Changes N3 Parent 3 10.0% 0.30% 0.34% 0.04% 

Unexpected Events 
(Supplier) N4 Parent 3 10.0% 0.06% 0.07% 0.02% 

Lack of Control 
(Aero) N5 Parent 3 5.0% 2.35% 2.46% 0.11% 

BCM Culture N6 Intermediat
e 3 61.0% 0.04% 0.09% 0.06% 

Unexpected Events 
(Aero) N7 Parent 3 10.0% 0.07% 0.07% 0.00% 

ICT System 
Disruption (Aero) N8 Parent 3 5.0% 0.11% 0.11% 0.00% 

Investment in Loss 
Prevention and 
Sustainability 

N9 Parent 1 20.0% 6.76% 8.30% 1.54% 

Break of Code of 
Conduct N10 Intermediat

e 2 29.8% 2.43% 3.42% 0.99% 

ICT system 
Disruption 
(Supplier) 

N11 Parent 3 5.0% 0.07% 0.07% 0.00% 

Strikes (Supplier) N12 Parent 3 10.0% 0.21% 0.22% 0.02% 
Human Error 
(Supplier) N13 Parent 3 10.0% 0.21% 0.22% 0.02% 

Human Error 
(Aero) N14 Parent 3 5.0% 0.41% 0.43% 0.02% 

Strikes (Aero) N15 Parent 3 5.0% 0.41% 0.43% 0.02% 

Aero Disruption N16 Intermediat
e 2 11.4% 1.83% 2.07% 0.24% 

Fatal Accident N17 Intermediat
e 2 4.0% 3.16% 3.28% 0.13% 

Pollution N18 Intermediat
e 2 12.0% 2.50% 2.83% 0.33% 

Labour Related 
Disease N19 Intermediat

e 2 7.0% 2.37% 2.53% 0.16% 

Lack of Control 
(Supplier) N20 Parent 3 10.0% 2.00% 2.22% 0.22% 

Human Related 
Issues (Supplier) N21 Intermediat

e 3 23.2% 0.99% 1.28% 0.29% 

Lack of Procedures 
(Aero) N22 Intermediat

e 3 39.0% 1.83% 2.97% 1.14% 

Supplier Disruption N23 Intermediat
e 2 11.4% 1.62% 1.83% 0.20% 

Human Related 
Issues (Aero) N24 Intermediat

e 3 12.5% 1.49% 1.71% 0.22% 

Financial Issues 
(Aero) N25 Parent 2 1.0% 0.30% 0.30% 0.00% 

Aero Quality vs. 
Competitors 
Quality 

N26 Intermediat
e 1 45.9% 12.45% 20.82% 8.37% 

Aero Problem with 
EHS N27 Intermediat

e 1 36.7% 6.09% 9.29% 3.20% 

Communication 
Plan N28 Parent 2 20.0% 0.56% 0.69% 0.13% 
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Lack of Procedures 
(Supplier) N29 Parent 3 10.0% 1.21% 1.34% 0.13% 

Supplier Quality 
Problem N30 Intermediat

e 2 21.1% 6.89% 8.58% 1.69% 

Aero Internal 
Quality Problem N31 Intermediat

e 2 22.2% 7.06% 8.89% 1.84% 

Suppliers 
Manufacturing 
Problem 

N32 Intermediat
e 2 16.4% 1.18% 1.40% 0.22% 

Financial Issues 
(Supplier) N33 Parent 2 10.0% 0.17% 0.19% 0.02% 

Aero 
Manufacturing 
Problem 

N34 Intermediat
e 2 16.3% 1.77% 2.10% 0.33% 

Strikes (Logistic) N35 Parent 2 5.0% 0.34% 0.35% 0.02% 
Unexpected Events 
(Logistic) N36 Parent 2 5.0% 1.12% 1.18% 0.06% 

Aero EHS Risks N37 Intermediat
e 1 29.4% 7.02% 9.67% 2.65% 

Customer Pressure 
on Delivery N38 Parent 1 50.0% 2.89% 5.63% 2.73% 

Internal and 
External Issues N39 Intermediat

e 1 39.7% 16.02% 24.03% 8.01% 

Change in 
specification by 
customers 

N40 Parent 1 20.0% 6.22% 7.65% 1.43% 

Supplier Problem N41 Intermediat
e 1 13.0% 2.18% 2.49% 0.31% 

Aero Problem N42 Intermediat
e 1 12.1% 3.22% 3.65% 0.43% 

Logistic Problem N43 Intermediat
e 1 12.3% 2.89% 3.29% 0.40% 

Aero Price vs. 
Competitors Price N44 Parent 1 90.0% 2.60% 20.99% 18.40

% 
Supplier Problem 
with EHS N45 Parent 1 10.0% 4.18% 4.63% 0.45% 

Quality N46 Child 0 33.8% 39.23% 49.36% 10.14
% 

Timeliness N47 Child 0 7.0% 19.96% 21.14% 1.18% 

Market Share N48 Child 0 70.1% 15.74% 38.47% 22.73
% 

Profit N49 Child 0 59.9% 19.72% 37.99% 18.27
% 

Sustainability N50 Child 0 34.0% 11.18% 16.03% 4.84% 
 

The first fact noticeable from Table 1 is that the Delta value (last column) is, for construction, higher 

than or equal to zero for all the nodes of the network. This means that the risk impact computed with 

the benchmark approach is always lower than or equal to the impact measured by the proposed 

approach. This fact is a consequence of the different estimations of the reference point. Indeed, the 

reference point set by the proposed approach (i.e., the expected utility when the node is instantiated in 

its best state) is higher than or equal to the reference assumed by the benchmark approach (i.e., the 

expected utility of the average case). 

At this stage, the next step was to understand the risks that were mostly underestimated and whether 

there was a correlation between risk underestimation and the frequency of their occurrence. Looking at 
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the numerical results of the analysis, it was decided to correlate the Delta value with the Node Level 

and the Probability of the worst state. The Pearson correlation coefficient was used to evaluate the 

correlation between these variables (Table 2). 

 

Table 2: Resulting in Pearson correlation coefficients. 
 Probability of the worst state Level 

Delta 0.79716 −0.60411 
 

The correlation analysis has shown that there is a strong positive correlation between Delta and the 

Probability of the worst state since their Pearson correlation coefficient is equal to 0.797, thus higher 

than 0.7, while the correlation between Delta and Node Level is only moderate (between 0.3 and 0.7) 

since the absolute value of these variables' coefficient is equal to 0.604.  

Therefore, we can state that the difference between the benchmark and proposed impact measures 

increases as the risk likelihood increases, and it is more significant for nodes belonging to lower levels, 

i.e., closer to the nodes for the computation of the expected utility of the network. 

By analysing all the different nodes in Table 1, it is noticeable that the impact of the node Aero Price 

vs. Competitors Price (N44) is heavily underestimated by the benchmark approach. Indeed, the Delta 

value for this node is 18.40%, which is equivalent to around 708% of the risk impact computed using 

the benchmark approach. This fact shows evidence of the previous considerations on the relationship 

between Delta, Probability of the worst state, and Level. Aero Price vs. Competitors Price is indeed a 

recurrent risk (the Probability of the worst state is equal to 90%) and it belongs to Level 1. 

 

 

6 Discussion 
The results of the analysis described above confirmed the theoretical intuitions presented in the previous 

sections. The adoption of the benchmark approach may lead to an underestimation of the impact of 

some risks. In particular, the results of this work have demonstrated that HF risks, located close to the 

expected utility function of the network, are more likely to be underestimated.  

These insights confirmed the link between recurrent risks and the concept of chronic losses studied by 

Rivers and Arvai (2007). Indeed, it was shown that when using the benchmark approach, recurrent risks 

have the effect of lowering the expectation of the decision makers, which reduces the perception of 

their impact (loss). 

Because of the result difference between the benchmark and proposed approaches, the considerations 

of the decision makers and the consequent selection of mitigation strategies are significantly affected 

by the method used to assess risk impact. This drawback is noticeable by applying the probability-

impact matrix to evaluate the criticality of risks. 
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Figure 2 compares the probability-impact matrices, including all the parent nodes, obtained using the 

benchmark and the proposed approaches. When using the approach suggested by Qazi et al. (2018), 

N44 (Aero Price vs. Competitors Price) does not seem critical. Indeed, despite being the risk with the 

highest likelihood of occurrence, its impact is lighter than other risks such as N9 (Investment in Loss 

Prevention and Sustainability) and N40 (Changes in Specification by Customers). The result completely 

changes if the proposed approach is adopted. N44 becomes the most critical parent node of the network 

in terms of both impact and likelihood. 

 

 
Figure 2. Probability-impact matrices for parent nodes using the benchmark and proposed 

approaches. 

 

A similar discrepancy in results may be found by adopting the probability-impact matrices to compare 

the positioning of nodes belonging to Level 1, as shown in Figure 3. By using the benchmark approach, 

N44 is one of the nodes with the smallest impact within this level. On the contrary, by adopting the 

proposed approach, it is noticeable that the impact of this node becomes one of the highest.  

In the comparison of these matrices, it is important to highlight the positioning of N26 (Aero Quality 

vs. Competitors Quality) and N39 (Internal and External Issues). These nodes appear to be critical in 

both matrices despite the change in risk impact measurement because of their high Delta values: 8.37% 

for N26 and 8.01% for N39. This example clearly shows that the benchmark and the proposed 

approaches do not always yield different results. 
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Figure 3. Probability-impact matrices for Level 1 nodes using the benchmark and proposed 

approaches. 

 

These comparisons show that adopting the benchmark approach to develop the probability-impact 

matrix may lead managers to inappropriate mitigation decisions. They may decide to accept an HF-LI 

risk to save resources for treating other disturbances when, in reality, the mitigation of such risks would 

lead to a more significant improvement in firm performance. 

Most times, a vicious cycle is created: non-mitigated recurrent risks lower the expectations of the 

decision makers, which reduces the perception of their chronic loss and encourages managers to 

continue accepting them. As admitted by Kőszegi and Rabin (2006), an actual definition of expectations 

does not exist; expectations are based on the concept of personal equilibrium, which is a subjective and 

emotional condition of the human decision maker. This means that misleading beliefs can bring huge 

biases to the evaluation of risks and the selection of mitigation strategies. The graphical representation 

of this misleading cycle is reported in Figure 4. 

 
Figure 4. Vicious cycle deriving from the use of the benchmark approach. 
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The risk impact measurement approach suggested by Qazi et al. (2018), despite being coherent with the 

concept of expectation, is not completely reliable because it poses the problem of chronic loss 

underestimation and the vicious cycle originating therefrom. Therefore, the adoption of the proposed 

approach should be considered. Setting the reference point on the expected utility of the best case 

circumvents the problem of lowered expectations and breaks the vicious cycle described above.  

 

 

7 Conclusions 

The present work starts by analysing the state of the art of SCRM and risk interdependencies. Then, it 

focuses on recurrent risks characterised by a high impact over time, which determine chronic losses. 

This work mainly contributes to raising attention to chronic losses, still often underestimated by the top 

management, and proposing an approach for the evaluation of their impact when it comes to 

interdependent risks. 

Proper methodologies for risk identification first and then risk quantification are still limited. This work 

takes inspiration from the existing approach of Qazi et al. (2018) of BBNs for risk interdependencies in 

SCRM to consider, not underestimate, recurrent risks and keep properly monitoring the others as well. 

Qazi et al. (2018) approach is considered particularly relevant as introduced an innovative combination 

of BBNs and expected utility theory to address the complex, interconnected nature of SCRs. The key 

role of expected utility theory within this approach emphasizes the importance of the expectations of 

the decision makers within the risk assessment (Choudhary et al. 2023), hence it can be beneficial to 

evaluate risk interdependence and recurrent risks. Theoretical insights from works related to such a 

theory suggest that expectations reflecting a homeostatic attitude towards SCRM can lead to the 

underestimation of the impact of chronic losses (Rivers & Arvai, 2007). Slovic et al. (2004) highlighted 

that people's perception of risk is influenced by their emotions towards potential outcomes, especially 

their dread or fear of unknown outcomes. Therefore, recurrent risks are often given for granted inside 

companies, and it is necessary to raise awareness of this issue, so thereby proper mitigation strategies 

can be then implemented and take into account risk interdependencies and subjective perceptions of 

decision makers. 

This work moves from current applications of BBNs by proposing a reliable approach for measuring 

risk impact and highlighting the hidden effects of chronic losses that affect firm performance. Indeed, 

the initially considered approach from Qazi et al. (2018), the benchmark approach, relies on the 

expectations of decision-makers, but it does not consider their homeostatic attitude towards SCRM, 

which, especially for recurrent risks, may lead to the underestimation of the risk impact. Because of this 

underestimation, a vicious cycle starts, that is, recurrent risks are not mitigated because they are not 

perceived as critical, the constant presence of HF risks lowers the expectations of the decision makers, 

and consequently, their impact appears even more insignificant. The adoption of the proposed approach 

can break this misleading cycle and prevent the persistent underestimation of chronic losses. 
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7.1 Theoretical contributions 

This work contributes to the literature in several ways.  

The main contribution is given by the proposed novel approach, which assesses the risk impact of 

interdependent risks by evaluating more accurately recurrent risks often underestimated due to the 

decision maker's expectations (Rivers & Arvai, 2007). Therefore, this work introduces an approach 

properly considering risk interdependences and chronic losses and reducing the potential biases 

introduced by decision makers. 

As a consequence, this work highlights the importance of studying causal interdependencies and 

emphasizes the need to consider not only HF-HI and LF-HI risks but also recurrent, seemingly minor, 

risks in SCRM processes. The results of this work prove that the impact of recurrent risks, which 

determine chronic losses, may be underestimated due to the decision maker's homeostatic attitude, as 

their expectations are lowered. 

In addition, this work applies the prospect theory and tested it in the SCRM environment to better assess 

the impact of recurrent risks. Therefore, this work by comparing the benchmark with the proposed 

approach, is implicitly comparing two theories – expected utility theory and prospect theory – and 

showing that depending on the contexts one can fit better than the other.  

 

7.2 Managerial contributions 

Several implications can be derived from this work to the advantage of practitioners and managers.  

First, this work recommends the use of BBNs as a quantitative method for effective risk assessment 

considering risk interdependencies. By using such a tool, practitioners can obtain a full understanding 

of the risk domain and conduct useful analyses.  

Second, the research approach proposed by this work, besides offering a reliable measure of risk impact, 

has shown how the impact of recurrent risks can be concealed by the expectations of decision makers, 

reflecting their homeostatic attitude. In recent years, practitioners have directed their attention towards 

HF-HI and LF-HI risks, since SCRM has often been described as a process of building a firm's 

capabilities for dealing with large disruptions that could affect the flows of the supply chain (Bode & 

Macdonald, 2017). However, this work has remarked that even recurrent and apparently minor risks 

may have a decisive impact on company performance. Hopefully, after reading these pages, more 

managers will turn their attention to chronic disturbances and their hidden effects on firm performance. 

 

7.3 Limitations and Future Research 

The limitations of the present work suggest the direction for future research based on this work. 

This work has focused on the use of BBNs for the representation and analysis of risk interdependencies. 

It may be interesting to examine how the larger category of BNs can be used for this scope. Future 

research could try to retrieve the risk network structure from empirical data by applying one of the 
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multiple learning algorithms available for BN construction. Indeed, such an approach removes one of 

the major limitations of BBNs: the confidence in experts’ beliefs. However, as mentioned above, the 

interdependencies statistically detected through the learning algorithms are not necessarily meaningful 

from a conceptual viewpoint. Alternatively, future researchers can combine these approaches through 

the tuning process to obtain a risk network which is statistically and conceptually meaningful. Another 

limitation of BBNs is that they are weak in the portrayal of dynamic features (Bugert & Lasch, 2018), 

and as said before, to overcome this drawback, BBNs may be combined with more dynamic methods. 

The second main limitation of the present work is the methodology applied to set the conditional 

probability tables used by Qazi et al. (2018) for the Aero case study that were unavailable from the 

original paper. Hence, a test for missing parameters was carried out thus introducing a potential bias in 

data evaluation. It would be valuable to replicate the comparison between the benchmark and proposed 

approaches using the original dataset of the case study.  

Finally, the same research approach may be applied to a completely different case study to further 

validate the obtained results. 
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