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Abstract

Nowadays, modern Big Stream Processing Solutions (e.g. Spark, Flink) are

working towards being the ultimate framework for streaming analytics. In or-

der to achieve this goal, they started to offer extensions of SQL that incorporate

stream-oriented primitives such as windowing and Complex Event Processing

(CEP). The former enables stateful computation on infinite sequences of data

items while the latter focuses on the detection of events pattern. In most of

the cases, data items and events are considered instantaneous, i.e., they are

single time points in a discrete temporal domain. Nevertheless, a point-based

time semantics does not satisfy the requirements of a number of use-cases. For

instance, it is not possible to detect the interval during which the temperature

increases until the temperature begins to decrease, nor for all the relations this

interval subsumes. To tackle this challenge, we present D2IA; a set of novel ab-

stract operators to define analytics on user-defined event intervals based on raw

events and to efficiently reason about temporal relationships between intervals

and/or point events. We realize the implementation of the concepts of D2IA on

top of Flink, a distributed stream processing engine for big data.

Keywords: Big Stream Processing, Complex Event Processing, User-defined

Email addresses: ahmed.awad@ut.ee (Ahmed Awad), riccardo.tommasini@ut.ee
(Riccardo Tommasini), samuele.langhi@ut.ee (Samuele Langhi), mahmoud.shoush@ut.ee
(Mahmoud Kamel), emanuele.dellavalle@polimi.it (Emanuele Della Valle),
sherif.sakr@ut.ee (Sherif Sakr)



1. Introduction

Streaming data analytics has become relevant as never was before. Together

with Data Volume and Variety, the raise of Data velocity is forcing many orga-

nizations to embrace the real-time paradigm shift. A data stream, which is an

unbounded sequences of partially-ordered data, is a convenient abstraction when

data naturally comes over time, e.g., data from a sensor network. Intuitively,

the unbounded nature of streams impacts the way data-systems handle query-

answering. Information needs to become continuous, i.e., from an unbounded

input an unbounded output is expected. To this extent, a new generation of

Stream Processing engines (SPE) for Big Data (BigSPE) is emerging to process

vast, heterogeneous, and noisy data streams [16].

SPEs are commonly classified into Data Stream Management Systems (DSMSs)

and Complex Event Processing (CEP) [10] systems. The state-of-the-art on

DSMSs and CEPs is vast and includes a variety of Domain Specific Languages

(DSL) to analyse data streams. Most of these DSLs are declarative and expose

special operators to deal with streams’ unboundedness. In particular, most of

DSMSs adopt time-based windows to slice the input streams into finite por-

tions, upon which they can perform stateful aggregations [11]. On the other

hand, CEP engines employ regular languages to detect events patterns over

streams [12] using Non-deterministic Finite State Automata (NFSA).

Listing 1.1: DSMS query in EPL

1 select avg ( va l )

2 from Temperature#time (5m)

3

4 output every 5 min ;

Listing 1.2: CEP query in EPL

1 insert into Fire

2 select ∗

3 from pattern

4 [ Smoke −> Temperature ( val >40) ] ;

Listing 1.1 and Listing 1.2 show a DSMS and a CEP query, respectively.

The former calculates the average temperature over the last 5 minutes, while
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the latter emits a fire event whenever it detects a smoke event followed-by a

temperature event that reports a value higher than 40. Both listings make use

of an industrial DSL called Event Processing Language (EPL) 1. EPL combines

DSMS and CEP features into a hybrid solution that is very expressive. Inter-

estingly, existing EPL implementations like Esper2 and OracleCEP3 can only

scale-up. While vertical scalability is sufficient for a variety of use-cases, Big

Data applications often call for fault-tolerant and horizontally-scalable BigSPEs.

Nonetheless, the need for democratizing Big Data brought many BigSPEs to

adopt SQL-like DSL for stream processing.

In this paper, we advocate that the trade-off between expressiveness and

scalability led BigSPEs to design APIs and DSLs that do not meet the expec-

tations raised by the centralized solutions [16].

Nevertheless, such expressiveness is crucial in several applications like the

following air traffic scenario inspired to Bombardier’s C Series jetliner. Such

plane, designed in 2015, is fitted with 5,000 sensors that generate up to 10 GB

of data per second. Many events are continuously produced during flights, e.g.,

changes in altitude, speed, and heading of an aircraft. In such a scenario, we can

be interested in detecting those events during which a plane is in cruising mode

and performs a change in altitude which is more than 10%. We can use EPL to

design a solution for this scenario (cf Listing 1.3). However, to the best of our

knowledge, solutions like Flink or Spark Streaming do not provide such feature

out-of-the-box and require some customization to be used. Indeed, while the

query above requires to process events that have a duration, existing BigSPEs

adopt a point-based time semantics.

The literature on Stream Processing contains many examples that acknowl-

edge the limitations of a point-based time model vs an interval-based one. The

latter has a richer semantics than the former and can still represent point events

1https://docs.oracle.com/cd/E13213_01/wlevs/docs20/epl_guide/overview.html
2http://www.espertech.com/
3https://docs.oracle.com/cd/E17904_01/doc.1111/e14476/
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without loss of generality [3].

Listing 1.3: Example encoded in EPL

1 create schema AltitudeChange as (starts long , endts long ,

2 init_alt long , fin_alt long);

3

4 create schema CruisePeriod as (onts long , offts long)

5 starttimestamp onts endtimestamp offts;

6

7 insert into AltitudeChange

8 select minby(ts). value as init_alt , maxby(ts). value

9 as fin_al , maxby(ts).ts as endts , minby(ts).ts as starts

10 from Altitude#time (30 minutes) output every 30 minutes;

11

12 insert into CruisePeriod select onts , offts

13 from CruiseMode

14 match_recognize ( measures a.ts as onts , b.ts as offts

15 pattern (A B)* defines

16 A as A.value=’On’, B as B.value=’Off ’);

17

18 select ac.* from AltitudeChange as ac , CruisePeriod cp

19 where ac.during(cp) and

20 abs(ac.fin_alt - ac.init_alt) / ac.init_alt >= 0.1);

In the remainder of the paper, we address the problem of enabling expressive

yet horizontally scalable stream processing. To this extent, we designed and

implemented D2IA (Data-driven Interval Analytics), a novel family of operators

that enables interval events generation and reasoning. This paper is an extension

of a previous one presented in [6] adding the following contributions:

• The paper provides two implementations of the D2IA operator family,

based on alternative design decisions, on a large-scale stream processing

systems, i.e., Apache Flink;
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• It presents a systematic and comparative evaluation of the alternative

implementations using a well-known reference benchmark for stream pro-

cessing, i.e., Linear Road Benchmark;

• It discusses about the portability of the approach in relation with other Big

SPEs and how the trend towards a StreamingSQL can foster expressive

yet horizontally-scalable stream processing;

• It improves the general presentation of the paper and includes a more

detailed background section.

The remainder of the paper is organized as follows. Necessary background

is introduced in Section 2. Concepts behind D2IA are presented in Section 3.

Section 4 describes the implementation details, and Section 5 presents the eval-

uation. Related work is discussed in Section 6, and a discussion on the relation

between D2IA and competing alternatives is presented in Section 7. We finally

conclude the paper in Section 8.

2. Background

In this section, we summarize the state-of-the-art on DSMS and CEP pre-

senting the main concepts that are required to understand the content of the

paper.

2.1. Data-Stream Management Systems

S2R

R2R S2S

R2S

Relations Event 
Streams

Figure 1: Operators of the Continuous Query Language [4]
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Data-Stream Management Systems (DSMS) are an extension of Database

Management Systems to process data streams. As mentioned in Section 1,

data streams differ from traditional data because they are unbounded. The

Continuous Query Language (CQL) is a query model that extends traditional

database query languages to deal with the unboundedness of the data [4]. Fig-

ure 1 summarizes CQL’s model. Stream-to-Stream (S2S) transformations are

generally stateless queries. Additionally, three families of stateful operators

allow moving from stream to relation and vice-versa, i.e., Stream-to-Relation

(S2R) operators that produce a relation from a stream, e.g., windows; Relation-

to-Relation (R2R) operators that produce a relation from one or more other

relations, e.g., relational algebra; and Relation-to-Stream (R2S) operators that

produce a stream from a relation, e.g., RStream, which will be explained shortly.

Windows are the canonical S2R operators that slice an unbounded stream

into finite chunks [4, 11, 15]. Window operators can be time-based or data-

driven (also known as frame [13]).

Time-based windows divide the streams into intervals of the same width.

In case of Time-Based Sliding Windows the intervals can overlap. These win-

dows are used to monitor phenomena whose duration is known or can be derived

from the application domain. For instance, in case of a smart home application,

we can decide to monitor the temperature in the last 15 minutes, knowing the

transitory will not exceed the window width. On the other hand, data-driven

windows are used when the duration of a phenomena is unknown, but it can

be estimated from the input data. In the same smart-home application, we can

count the number of people currently in the house to decide to turn on or off

the air conditioning.

Several data-driven windows have been discussed in literature, but a general

formulation of their specification is missing. In the following, we list those

cases that are relevant from the content of the paper, i.e., data-driven based on

aggregations called Frames [15]: (i) Threshold Frames divide the stream into

intervals whenever an attribute of a stream element goes higher (lower) than a

given threshold. (ii) Delta Frames divide the stream into intervals whenever
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an attribute of a stream element changes by more than amount x. That is, we

can find two elements within the interval such that the difference between their

attribute values is higher (lower) than x. (iii) Boundary Frames divide the

streams into intervals until an attribute of the stream elements remains within

one of the predefined boundaries.

The original R2S operator family includes three operators that create a data

stream out of a relation, i.e.,: (a) The result stream (RStream) that outputs

all elements at a certain instant in the source relation. (b) The insert stream

(IStream) outputs all new entries w.r.t. the previous instant. (c) The delete

stream (DStream) outputs all deleted entries w.r.t the previous instant.

2.2. Complex Event Processing

Complex event processing aims at the identification of patterns that rep-

resent complex events over input (raw event) streams (pattern-matching) [12].

Patterns are analogous to regular expressions over strings. They are defined as

sequences of event types and evaluated using NFSA against the input streams.

As mentioned in the introduction, BigSPEs adopt a point-based time se-

mantics using a unique timestamp. Therefore, for backwards compatibility, we

consider the Raw Events as instantaneous too (cf Definition 1).

Definition 1 (Raw Event). A raw event is an instantaneous and atomic no-

tification of an occurrence of interest at a point in time.

We represent a Raw Event as a triple < id, payload, ts > where id is an

identifier of the event source, payload is simply a list of key-value pairs, and ts

is the timestamp at which the event was generated.

An Interval Event is derived from a sequence of events using pattern match-

ing (cf Definition 2). The pattern is expressed using event types, which are

determined by id and payload. For instance, consider the following pattern

FireEvent = SmokeEvent followed-by HighTemperatureEvent.
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Definition 2 (Interval Event). An interval event is an event derived by the

composition of one or more events. It has a temporal duration which is defined

in terms of two time points, start and end.

The resulting interval event also has a payload like a raw event (Defini-

tion 1), but also includes a duration. The payload of the interval event is a

function of the input events’ payloads, but its specification is up to the de-

veloper in terms of selection and aggregation functions. To this extent, we

introduce two auxiliary functions that support the custom payload creation: (i)

keys :: payload -> [keys], which returns the keys present in the payload and;

(ii) val :: payload, key− > value to retrieve the value associated to a given key.

On the other hand, the reasoning about the duration should be more rigor-

ous. We calculate it as the difference between end, which is the timestamp

of the event that terminates the pattern-matching, and start, which is the

timestamp of the event that initiated it (e.g.,FireEvent.start=SmokeEvent.ts;

FireEvent.end=HighTemperatureEvent.ts) Moreover, Allen’s interval Algebra [2]

is probably the most known formalism to deal with temporal reasoning. The

algebra contains 13 binary relations intervals for representing temporal informa-

tion and addresses the problem of reasoning about such intervals. The problem

of computing all the relation closure is NP-Hard [24], but many fragments have

been identified where reasoning about time can be efficient [21].

3. Operators for User-defined Intervals Analytics

In this section, we present a family of operators for analytics contextual

reasoning about events called D2IA. D2IA allows generating data-driven Inter-

val Events from Raw Events, and reasoning about time interval using Allen’s

Algebra. In particular, D2IA is designed to offer:

R.1 Event Generation, i.e., the operators must enable interval generation

via event detection and vice versa.

R.2 Analytical Features, i.e., the operators must enable (a) stateful aggre-

gations, for example employing temporal/physical/data-driven windows,
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a5 a4 a3 a2 a1

b5 b4 b3 b2 b1

c5 c4 c3 c2 c1

HeIE

HoIE

Lowercase = Raw events
Uppercase = Interval events
Match-i = match events
HoIE = Homogeneous interval events
HeIE = Heterogeneous interval events

...

...

...

A4 A4

B4. B3.

A3 A2

B2.

A5A6

B5.B6.

..

match 5
match 4

match 3

match 2..

Interval Operator

Figure 2: D2IA overview: Homogeneous/Heterogeneous Interval Event generators consume

events streams and produce interval events.

and they must allow (b) the definition of contextual variables and parti-

tioning of the stream.

R.3 Stream Reasoning, i.e., the operators must enable reactive reasoning

about interval events.

Figure 2 exemplifies a pipeline in which Raw Events from two input streams

are transformed into Interval Events using interval generators and fed into an

interval operator that reasons about the interval events.

To design D2IA, we followed Codds principles for language design: Min-

imality, i.e., a language must provide only the necessary constructs avoid-

ing alternative equivalent expressions; Symmetry, i.e., any language construct

must always express the same semantics regardless of the usage context, and

Orthogonality, i.e., any combinations of language constructs should be appli-

cable [9, 22].

Figure 3 summarizes the spectrum of the streaming language operators ex-

tending the CQL model proposed by Arasu et al. [4] with three new families of

operators, i.e., Stream-to-Interval (S2I), Interval-to-Interval (I2I), and Interval-

to-Stream (I2S) operators. D2IA allows detecting patterns of instantaneous
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I2S
S2I

I2I

S2R

R2R S2S

R2S

Relations Event 
Streams

Interval 
Events

Figure 3: Stream-Event-Interval Event Models and Operators

events to compose interval events (S2I); it enables efficient reasoning about

interval events using Allen’s Algebra [2] (I2I). Finally, it allows instantaneous

event generation and aggregation from intervals (I2S).

3.1. Events Generators

Event generators represent a family of D2IA operators which are responsible

for creating interval events out of a stream of instantaneous events and vice

versa. In particular, the interval generator transforms the input stream(s) into

the output stream based on a pattern specification.

Definition 3 (Homogeneous Interval Event Generator). A homogeneous

interval event generator is defined as a tuple < ET,MinO,MaxO,Window >

where:

• ET refers to the type of the event on which the interval is defined.

• MinO indicates the minimum number of event instances to match.

• MaxO indicates the maximum number of event instances to match. Also,

wild card ∗ can be used to make no upper-bound on the number of occur-

rences.

• Window: specifies a maximum time interval to wait for the match to val-

idate between successive events. An example is 5 seconds,

A homogeneous Interval Event is generated when one or more events of

the same type are observed in succession. Similarly to regular expressions, a

homogeneous event interval has the form A{min,max}, where A is the event type.

Example. Assume a temperature event on the form Temperature < sensor, temp

, ts > which refers to the sensor ID that generated the event, the temperature
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temp reading and the timestamp ts for the reading. We can define an homoge-

neous event interval as shown by Listing 3.1.

Listing 3.1: Warm interval with absolute condition

1 IntervalTemperature=HoIE.Event(Temperature ). Occurrence (2,5)

2 .Window(Within.of(5,seconds ))

Definition 4 (Heterogeneous Interval Event Generator). A heterogeneous

interval event generator is defined as a tuple < ET1, ET2, ES > where:

• ET1 refers to the type of the start event for the interval;

• ET2 refers to the type of the end event for the interval;

• ES refers to a set of event types not to be observed within the interval.

An Heterogeneous Interval Event is generated when one or more (raw) events

of different types are observed in succession. Differently from Homogeneous

Events, D2IA requires that the start and the end of the intervals are specified.

Moreover, instances of other event types might be required not to be observed

within the interval. As an example of a heterogeneous interval generation,

consider the following example.

Example. Assume a critical temperature event that notifies when the temper-

ature is too high. Moreover, consider a Smoke event that notifies the presence

of smoke in a room. Finally, consider an event from the cooling system that

notifies it is started. We can define an heterogeneous event interval as shown

by Listing 3.2.

Listing 3.2: Heterogeneous Interval Generation

1 FireRisk=HeIE.Start(CriticalTemperature ). Exclude(Cooling)

2 .Until(Smoke)

The whole FireRisk event is a heterogeneous interval delimited by a Criti-

calTemperature and Smoke events, which have different types. Moreover, the
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two event instances should not be interrupted by a Cooling event to determine

the risk of fire in the room.

Last but not least, we conclude this section by introducing the dual operator

of interval generator. Indeed, as Figure 3 indicates, D2IA allows the space of

instantaneous events to be returned back from the space of interval events (I2S).

The instantaneous events generator responsible to generate instantaneous

events out of interval events.

Definition 5 (Instantaneous Event Generator). The instantaneous events

generator is defined as < ETI,ETR, TS > where:

• ETI refers to the type of the Interval Event.

• ETR refers to the type of the instantaneous event.

• TS is a temporal selector that defines the output timestamp. In particular,

we consider the following alternatives: (i) now assigns the current system

time; (ii) earliest assigns the start timestamp; (iii) latest assigns the end

timestamp;

3.2. Analytical Operators

35 34 35 36 35 36 35 38 38 3838
Raw events of temperature 
readings: ... ... ...

1) Interval with absolute 
condition temp >= 35

2) Interval with relative condition: 
start(temp >=35), subsequent 
(temp >= Last.temp)

3) Delta interval of more than 2 
degrees change: at least two events 
with condition start(true), 
subsequent(|temp–Min.temp|>= 2)

4) Aggregate interval with average 
temperature below 35 degrees

20 21 26 27 36 37 38 39 40 4129

Warm (36.34,26,29) Warm (36.4,36,40)

Warm (38,26,29) Warm 
(36,36,37) Warm (38,38, ?)

Delta (38,27,29) Delta (38,38, ?)

Aggregate(35,20,27)

Aggregate (35,36,36)

Aggregate (35,38,38)

Figure 4: Homogeneous interval events for the different data-driven frames

Stateful aggregations and filters are analytics features typical of DSMSs.

Since D2IA aims at providing a unifying set of operation, it includes the following
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analytical operators, which can be combined with the aforementioned event

generators:

• V alue: refers to either a constant value, an expression, or an aggregation

over the event payload’s attribute value. Possible aggregation functions

are: min, max, avg, etc. aggregates are computed over the matched raw

events.

• KeyBy: specifies an attribute in the event’s payload to group event in-

stances.

• Condition: defines a filter condition over the event instances. Conditions

are expressed w.r.t. event’s payload attributes and can be either absolute,

relative, or aggregate. Absolute conditions compare an attribute of any

event instance in a sequence with a constant value. Relative conditions

compare the values of two attributes in the sequence of event instances.

Finally, aggregate conditions compare the aggregated value of an attribute

in the sequence of event instances with a constant value.

Listing 3.3: Critical temperature interval with absolute condition

1 Warm=HoIE.Event(Temperature ). Occurrence (2,5)

2 .Within(5,seconds)

3 .Value(Aggregate.avg(Temperature.temp))

4 .KeyBy(Temperature.sensor)

5 .Condition(Conditions.greaterOrEqual(Temperature.temp ,35))

Example. Completing the Temperature example, we can define an event in-

terval with warm temperature using an absolute condition. In Listing 3.3, the

interval generator is instructed to generate an interval event of type Warm. An

instance of that interval event is generated upon observing 2 to 5 instances of the

Temperature event. These instances have to be observed within 5 seconds from

each other and each temperature event instance must have its temp value grater

than 35. The generated interval instance will have its value as the average of

the temperature readings of the matching Temperature event instances.
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Example. We can also define a Warm event interval to be detected when the

temperature keeps increasing after an alerting threshold using a relative condi-

tion as shown in Listing 3.4, an event interval of type Warm is defined on the

same stream of Temperature events with the same time window. However, the

relative condition indicates that the first matching Temperature event must

have its reading greater than 35. Each succeeding matching event must have its

reading greater than or equal to the previously matching event in the pattern.

The value of the generated event interval will be the maximum temperature value

from the matched raw events. In both cases, keyBy is used to group the raw

events, temperature events in these cases, by their sensor id. Figure 4 shows a

stream of temperature events on the top, for the same sensor, and the differ-

ent matches and event intervals generated for the two cases on rows 1 and 2,

respectively.

Listing 3.4: Critical temperature interval with relative condition

1 Warm=HoIE.Event(Temperature ). Occurrence (2,5)

2 .Within(5,seconds ).Value(Aggregate.max(Temperature.temp))

3 .KeyBy(Temperature.sensor)

4 .Condition(Conditions.greaterOrEqual(Sequence.first(

5 Temperature.temp ) ,35)). Condition(Conditions

6 .greaterOrEqual(Sequence.current(Temperature.temp),

7 Sequence.last(Temperature.temp))

Example. Finally, it is possible to define an event interval using a delta frame

which observes whether the temperature reading increases by more than 2 de-

grees. This can be defined as shown in Listing 3.5 or as an aggregate frame

of, e.g., average temperature threshold of 35 degrees can be defined shown in

Listing 3.6. In these interval definitions, we keep adding events to the interval as

long as the conditions to trigger are met. Example matches for the delta frame

are illustrated on row 3 in Figure 4. Examples of matches to the aggregate

interval definition are shown in row 4 in Figure 4. The first interval spans the

time from 20 to 27 as the average of temperature readings was less than or equal
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to 35. Other two singleton intervals are defined at times 36 and 38 respectively.

Listing 3.5: Delta interval

1 Delta=HoIE.Event(Temperature ).KeyBy(Temperature.sensor)

2 .Occurrence (2, Occurrences.Unbounded)

3 .Value(Aggregate.max(Temperature.temp))

4 .Condition(Conditions.greaterOrEqual(Math.absolute

5 (Math.minus(Sequence.current(Temperature.temp),

6 Aggregate.min(Temperature.temp ))) ,2))

Listing 3.6: Aggregate interval

1 Aggregate=HoIE.Event(Temperature ).KeyBy(Temperature.sensor)

2 .Occurrence (1, Occurrences.Unbounded)

3 .Value(Aggregate.avg(Temperature.temp))

4 .Condition(Conditions.lessOrEqual(

5 Aggregate.avg(Temperature.temp), 35))

3.3. Stream Reasoning

Event Interval Operators is a family of D2IA operators which is based on

Allen’s interval relationships [2]. These operators can reason about interval

temporal relationships occurring between the generated interval events. The

interval operator is a binary operator that takes as one input, a stream of interval

events and as the other input, either another interval stream or a point-based

event stream, but not both. The operator produces composite interval events

whenever a match is found between two interval events as per Definition 6.

Definition 6 (Composite Interval Event Generator). A Composite Inter-

val Event Generator is defined as < IE1, IE2, A > where:

• IE1, IE2 refer to the interval event types to reason about.

• A refers to a list of temporal relationships to match between the interval

events in the scopes.
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The resulting composite interval event corresponds to the union of the input

intervals, i.e., (start=min(IE1.start,IE2.start), (end=max(IE1.end,IE2.end))).

Listing 3.7 shows an example of an interval operator that works on temper-

ature and smoke interval streams. In this specification, we assume two input

streams of intervals TemperatureDelta and SmokeThreshold. Based on the

specification, a new stream of Match is generated for each pair of input intervals

where a TemperatureDelta interval occurs during a Smokethreshold interval.

As a result, the generated Match is the union of the two intervals.

Listing 3.7: Interval operator specification

1 Match=IntervalOperator.Event1(TemperatureDelta)

2 .Event2(SmokeThreshold)

3 .Relation ([ Relations.During ])

Grossniklaus et al [15] defined data-dependent predicates that character-

ize the structure of a frame and, thus, influence the computation performance.

Therefore, to the extent of computing temporal interval relationships, we define

our frames to consider maximal intervals. This assumption, formalized in Defini-

tion 7, is relevant because it allows performance gain by minimizing the number

of interval events to compare. Thus, our operator provides I2I transformation

as shown in Figure 3.

Definition 7 (Maximal Interval). Let I be the set of all possible interval in-

stances generated by an interval generator. An interval i = [s, e] ∈ I is maximal

iff ∀j = [s, e] ∈ I, j 6= i : i.e < j.s ∨ i.s > j.e ∨ i.e = j.s ∨ i.s = j.e.

Definition 7 ensures that the temporal relationships between the sorted ele-

ments of the same interval stream is always ij < ij+1 for j ≥ 0. The benefit of

this property is that we can efficiently calculate temporal relationships between

pairs of interval instances of the left IE1 and the right IE2 interval streams

without having to explicitly compare timestamps of each pair. This is a stateful

comparison that requires maintaining the transitivity table while comparing the

intervals. Like for stream-to-stream join, we must make use of windowing to
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...Interval 
Stream A ...

Interval 
Stream B ......

A1 A2 A4A3

B3B2B1

A1 A2 A3 A4

B1 A1 di B1 A2 > B1 A3 > B1 A4 > B1

B2 A1 o B2 A2 o B2 A3 > B2 A4 > B2

B3 A1 < B3 A2 o B3 A3 d B3 A4 > B3

A d B: A occurs during B,  A di B: B occurs during A, 
A > B: A occurs after B,     A < B: A occurs before B, 
A o B: A overlaps with B

Figure 5: Interval-interval and interval-point temporal relationships.

perform the comparison statefully. Sorting the windows’ elements by the start

timestamp allows us to utilize the transitivity of temporal relationships [2] to

efficiently compute the temporal inter-relationships between interval instances.

For the cases where we have to compare the timestamps of intervals, we rely on

the efficient set-theoretic approach presented by Georgala et al. [14].

Example. Consider the two interval streams A and B in Figure 5. The dashed

rectangles represent the content of a window over each stream. Note that it is not

necessary that the width of the windows to be the same. Within each window,

the content is sorted by the timestamp. As per Definition 7, the intervals are

either before, after or meet each other. Suppose that we want to define the

temporal relationships between contents of the window on stream A and the

content of the window on stream B. Namely, we need to find the relationship

between A1, A2, A3, A4 on the one hand and B1, B2, B3 on the other hand. The

näıve way to implement that is to perform 12 comparisons. A more efficient way

is to infer the type of inter-stream interval relationships utilizing the nature of

intra-stream interval relationship. Looking at the right table in Figure 5, when

we compare A1 with B1, using their start and end timestamps, we can find

that A1 contains B1, i.e., A1 di B1. As we learn this relationship, we can

deduce the temporal relationship between the other A intervals and B1. Since

any interval Ai, i > 1 will always occur after A1, we can deduce the same

relationship between those intervals and B1. This is represented with navy blue

cells in the table. By comparing A1 and B2, we find that A1 overlaps with B2,

i.e.,A1 o B2. We can not infer an exact relation between other intervals in the
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A stream and B2 because B2 ends after A1 does. When we compare A2 and

B2, we still find A2 o B2. However, we can find that A2 ends after B2. Thus,

we can deduce that future intervals of A will always occur after B2. Finally,

we have to compare each A interval with B3. in this way and for this example,

all navy blue comparisons have been deduced without need to actually compare

the intervals.

4. Implementation

In this section, we present how we implement D2IA on top of a scalable

infrastructure, i.e., Apache Flink, which is a fault-tolerant and a scalable dis-

tributed stream processing engine. Flink supports stateless and stateful stream

processing; it supports several types of windows, queryable state, and, recently,

also complex event processing.

4.1. CEP-based Implementation

In [6], we realized a proof-of-concept of S2I operators on top of Flink’s CEP

library. We extended that proof-of-concept into a full validation prototype that

we will describe in the following. The idea behind this implementation is starting

from a CEP engine and extending it with data-driven windowing capabilities

(e.g. frames).

Flink CEP approaches pattern matching by means of constructing a non-

deterministic finite automaton (NFA). The implementation faithfully follows

the approach presented by Agrawal et al. [1]. For the pattern specified, an NFA

is derived and at runtime, the library tries to find matches to the pattern by

instantiating the NFSA for each incoming event. Upon reaching an accepting

state, the library declares a match and delivers the collection of events matched

to the pattern and invokes the user-defined code to formulate the complex event

that will be generated on the respective stream.

In the context of D2IA, S2I transformations can be achieved by defining the

interval as the result of the pattern match. We use a so-called looping pattern
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to define the Occurrence property of the interval specification. Relative and

absolute conditions are implemented via so-called IterativeConditions. For

the absolute condition case, we use the where filter, whereas with the relative

condition, we use the until filter. The former keeps accepting matches as long

as the condition is true. The until filter specifies a stop condition for the

looping pattern.

To compute the aggregate value of the interval, we leverage the feature in

FlinkCEP that returns a sequence of all the matched raw events. We use the

first and last elements of the sequence to obtain the timestamps that consti-

tute interval’s endpoints. Then, we create an instance of the interval type and

populate its properties and add it to the respective stream, see Figure 2.

For the generation of maximal intervals, we employ the skip past last

event strategy. That is, Flink CEP will consume all events contributing to

the current intervals and will skip matching them to new intervals, that is no

overlapping of intervals. The choice of maximal intervals boosts the performance

as the library will maintain at most one partial NFSA per unique key at runtime.

Flink CEP defines a within property. However, the semantics is different

from our intention. It tries to find the match within the time window specified

in the property. If no match is found, the partial NFSA is dropped by the

end of the window. However, in our settings, the within property is limiting

the time span between two consecutive raw events contributing the the inter-

val, cf. Definition 3. So, we implement the within semantics as part of the

IterativeCondition.

As an example, in Figure 6 we are interested to find threshold intervals over a

stream of temperature readings, for those events that have a temperature above

35 degrees. Moreover, we are interested in building maximum intervals. The

figure shows on the left the HoIE specification. The CEP operator takes this

specification as input. On the right, Figure 6 shows an instance of the finite-state

machine at runtime. Event-by-event, the machine checks whether the element

validates the matching condition. The operator state is updated for each partial

match, while any event that does not respect the threshold breaks the match
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HoIE.Event (Temperature ).Occurrence (2,*)
.Value (Aggregate. max(Temperature.temp))
.KeyBy(Temperature.sensor)
.Condition(Conditions.greaterOrEqual(Temperature.temp,35))  

CEP Operator

Partial 
match
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2 or more

Match

temp < 35

   temp >= 35    temp < 35

temp >= 35

No 
match

temp < 35

...

Figure 6: Interval generation using Flink’s CEP library. Arrows indicate the valid transition

across states.

and causes the automaton to restart. Intermediate stages are persisted within

the state storage to guarantee fault tolerance. For matching results the opening

and closing events are used to compute the window boundaries, as indicated by

the dashed lines.

4.2. Window-Based Implementation

A different approach to D2IA implementation is the extension of a DSMS

with pattern matching features. Therefore, we realized the S2I operators on

top of Flink’s stream processing libraries that provide DSMS operators such as

windowing and stream-to-stream joining.

A stream-to-stream join operator receives two input streams and requires a

window operator to bound the scope of the computation. We chose a time-based

tumbling window to slice the input streams into finite portions. The elements

belonging to these fixed intervals are delivered to a ProcessWindowFunction

that applies the application-specific logic and emits the results.

As discussed in Section 3.3, we use the time frames to generate interval

events with maximal intervals only. Therefore, it is very likely for an interval

to span over two or more tumbling windows as shown in Figure 7. To alleviate
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Figure 7: Tumbling window-based interval generation using Flink’s ProcessWindowFunction

this limitation, we make use of the so-called Keyed State in Flink. Keyed state

allows applications to maintain arbitrary state per unique key over data streams.

Access to the state is allowed through so-called rich transformations. In our

case, we buffer partial matches to intervals in a keyed state. So, whenever Flink

signals a completion of a tumbling window, we retrieve the state, if any, and

add the content of the new window to it, sort the whole set by their timestamp

and then programmatically apply the interval generation logic on the elements.

Whenever an interval is found, it is emitted on the respective stream and the

rest of the elements, if any, are put back in the keyed state to be retrieved with

the next invocation of the ProcessWindowFunction. Our implementation with

example intervals can be found on the project repository4.

As an example, in Figure 7, we are interested in finding threshold intervals

over a stream of temperature readings where the readings are above 35 degrees.

The interval reports the maximum reading observed as its value. Assuming a

tumbling window of 10 seconds width, Flink groups the data as shown at the

bottom of the figure. With the end of each window, Flink invokes the process

window function. In this case, data are sorted by their timestamp. Then,

from the element at timestamp 26 the beginning of a new interval is detected.

However, by the end of the processed elements, it is not clear whether the

interval has ended, as the following element, e.g. the one with timestamp 30

4https://github.com/DataSystemsGroupUT/ICEP
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might still belong to the same interval. Thus, the partial match of elements 26

and 27 are stored in Flink’s keyed state. In the mean time, Flink is collecting

elements for the next tumbling window. Similarly, at the end of the new window,

process window function is invoked again. At the beginning, the partial interval

is restored from the keyed state and the elements of the new window are added

to it. By processing the event with timestamp 39, we observe that the interval

has been completed, as the temperature drops below the threshold. At this

time, the interval on the top of the figure is emitted on the respective interval

stream. The element with timestamp 39 is discarded and nothing is stored back

in the keyed state and the process continues with the next tumbling window.

5. Evaluation

In this section, we present the evaluation of the two alternative D2IA imple-

mentations, i.e., CEP-based and Window-Based, against a baseline implemen-

tation on top of Esper. We have chosen Esper as the state of the art centralized

stream processing engine that provides a declarative language to express queries.

We have encoded the different interval specifications as EPL queries. These EPL

queries are listed in Appendix Appendix A.

5.1. Setup

We have conducted our experiments on a Flink cluster running Flink version

1.8.1 with 3 workers where each worker can host up to 3 task managers. Each

task manager has a single task slot with a single core running at 2.0 GHz. Each

worker has a maximum of 24 GB of main memory. Esper was running on a

single node with the same amount of main memory. We ran Esper version 8.0

We used the dataset of the linear road benchmark5. Linear Road is a simu-

lation of a large metropolitan city which is 100 miles wide and long and consists

of 10 parallel expressways. Each tuple in the data set describes a car ID, its

5http://infolab.stanford.edu/stream/cql-benchmark.html
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speed, road, direction and the timestamp of the record. The data set contains

around 24M tuples.

We have used Kafka as a data source. More specifically, we have setup 3

Kafka brokers, coordinated by 1 Zookeeper instance. Then, we have created a

partitioned topic, with 9 partitions and a replication factor of 1, and uploaded

the dataset to Kafka partitioned by the car ID.

In our experiments with Flink, we have evaluated with parallelism 1, 3, 6, and 9.

With each setup, we were dividing the main memory among the task managers.

That is, if we run with parallelism 1, we allocate the whole 24 GB to the task

manager. If we run with parallelism 9, each task manager is allocated 2 GB of

main memory. The reason for fixing the total amount of memory available, is

to better isolate the effect of parallelism on the performance.

The rationale behind this setup is to learn when a scalable implementation

(Flink) will be able to outperform a centralized implementation (Esper) [20].

5.2. Experiments

In our evaluation, we created four different homogeneous interval specifica-

tions as presented in Listings 5.1- 5.4. We partition the data by car ID and put

the conditions on the speed attribute. For each of the interval specifications, we

were concerned with generating maximal intervals. This is to ensure that the

results can be used to compare the different implementations.

Listing 5.1: Threshold interval with absolute condition over linear road data set to find inter-

vals in which speed ≥ 50

1 ThresholdAbs=HoIE.Event(Speed). KeyBy(Speed.carID)

2 .Occurrence (2, Occurrences.Unbounded)

3 .Value(Aggregate.max(Speed.value ))

4 .Condition(Conditions.greaterOrEqual(

5 Sequence.current(Speed.value ) ,50))

Listing 5.2: Threshold interval with relative condition over linear road data set to find intervals

in which average speed ≥ 67
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1 Aggr=HoIE.Event(Speed). KeyBy(Speed.carID)

2 .Occurrence (2, Occurrences.Unbounded)

3 .Value(Aggregate.max(Speed.value ))

4 Condition(Conditions.greaterOrEqual(Speed.value ,30))

5 .Condition(Conditions.greaterOrEqual(

6 Sequence.current(Speed.value ) ,1.1* Sequence.last(Speed.value )))

Listing 5.3: Delta interval over linear road data set to find intervals in which average speed

≥ 67

1 Aggr=HoIE.Event(Speed). KeyBy(Speed.carID)

2 .Occurrence (2, Occurrences.Unbounded)

3 .Value(Aggregate.avg(Speed.value ))

4 .Condition(Conditions.greaterOrEqual(

5 Math.absolute(Sequence.current(Speed.value) -

6 Sequence.first(Speed.value )) ,5))

Listing 5.4: Aggregate interval over linear road data set to find intervals in which average

speed ≥ 67

1 Aggr=HoIE.Event(Speed). KeyBy(Speed.carID)

2 .Occurrence (2, Occurrences.Unbounded)

3 .Value(Aggregate.avg(Speed.value ))

4 .Condition(Conditions.greaterOrEqual(

5 Aggregate.avg(Speed.value ) ,67))

For the window-based implementation, we experimented with different win-

dow sizes. We experimented with window of size 10, 100, and 1000 seconds.

The larger the window size, the less number of tumbling windows Flink needs

to generate and thus less processing overhead in triggering the process win-

dow function and access to the state, cf. Figure 7. Yet, with larger windows,

there could be a higher latency in reporting intervals. On the other hand, for

the CEP implementation, there is no mechanism offered to control the level of

batching elements and passing them to the automata to find a match. From

24



our experiments, this is done on an record-by-record basis.

We compare the results based on the throughput, processed records per sec-

ond. We compute the metric by dividing the total processed records, 24M

tuples, by the total runtime of the job needed to process them in each setup.

We repeated each experiment three times and computed the average runtime to

calculate the throughput.

5.3. Results

Figure 8 shows the throughput in records per second for the different im-

plementations/configurations of the respective interval specifications from list-

ings 5.1- 5.4. We also show the effect of increasing parallelism on the throughput

of both window-based and CEP-based implementations. The horizontal line in

each sub-figure represents the throughput of Esper for the respective interval

specification.

In general, the window-based implementation outperforms CEP-based im-

plementation. Starting from parallelism 3, the window-based implementation

outperforms Esper. In the case of a threshold interval with absolute condition,

the window-based implementation outperforms Esper for parallelism 1 (Fig-

ure 8a)

For the window-based implementation, by increasing the window size, we

observed an enhancement of the throughput. This can be understood as the

overhead of invoking the window function by Flink will be less and also the

overhead of sorting the elements in the window. However, in a production set-

ting, the larger the window size, the more the delay in reporting about detected

intervals.

The magnitude of throughput increase, though, varies from one interval spec-

ification to the other. Threshold interval with relative condition (Figure 8b),

delta interval (Figure 8c) have gained the most from increasing the parallelism.

For both interval specifications, the throughput almost doubles with each in-

crease in the parallelism for all the window sizes.

The same can be said about the aggregate interval (Figure 8d), although
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Figure 8: Throughput for the different queries with 1, 3, 6, and 9 workers

might not be clear on a logarithmic scale, for all window sizes. On the other

hand,

The CEP implementation, in general, performs worse than Esper. Only
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Figure 8: Throughput for the different queries with 1, 3, 6, and 9 workers (cont.)

for the interval with relative condition, the CEP implementation outperforms

Esper starting from parallelism 6. We were expecting better performance for

CEP on the interval with absolute condition, as the condition is checked on each
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record individually. The actual results contradicts our expectations. By further

investigations, we observed memory leakage within the CEP library of Flink as

old matches and partial matches were not cleaned.

Scalability-wise, the window-based implementation benefits more from in-

creasing the level of parallelism than the CEP-based implementation does. This

is inherently due to the underlying window and CEP operators respectively.

6. Related Work

In this section, we present the work related to D2IA considering the state

of the art in complex event processing. Table 1 summarizes the comparison of

D2IA with related work. It shows that D2IA’s implementations on top of Flink

supports all operators from Figure 3, while in the state of the art, only EPL

supports all the operators but only in a centralized scenario. Moreover, in the

following we briefly describe other CEP engines that are worth mentioning due

to their expressiveness.

Feature EPL TP- ISEQ ETALIS CEDR Flink Flink

/System Stream +D2IA

Operator

S2R + − − − − + +

R2R + − − − − + +

R2S + − − − − + +

S2S + − + + + + +

S2I + + − − − − +

I2S + + + + − − +

I2I + − − − − − +

Scalability − N/A − − − + +

Table 1: Operators coverage and scalability comparison

TPStream [18] introduced a stand alone operator that finds temporal re-

lationships among intervals. TPStream allows defining homogeneous intervals

with absolute conditions only. D2IA interval generation operators cover both ho-

mogeneous with absolute and relative conditions and heterogeneous intervals.
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ISEQ [19] is an operator for reasoning about event intervals using Allen’s

temporal relationships. ISEQ assumes the existence of intervals and does not

provide means to define them. Compared to our work, we allow the user to

define the intervals from raw (point) events. Moreover, we support both homo-

geneous and heterogeneous intervals, allow rich conditions on matching events,

and calculating aggregations over values of raw events.

CEDR [7] is an event streaming system that embraces an interval-based

temporal stream model to unify query language features, handles out-of-order

event delivery, and defines correctness guarantees as well as operator semantics.

CEDR’s events have a validity interval, which indicates the range of time when

the tuple is valid from the event provider’s perspective. This is used to retrieve

events which are still valid at query time. This case can be seen as an example

of interval algebra reasoning. However, Allen’s operators are not explicit in the

language.

ETALIS [3] is an event-driven approach for Complex Event Processing. The

language semantics is based on a logic programming. ETALIS represents events

as facts and translates complex event patterns into logic rules. Thus, complex

events are derived from simpler ones. ETALIS language is very expressive.

Although it is possible to express and derive interval relationship across events,

ETALIS does not provide any interval event generation mechanism. Events

must adopt a two-timestamps temporal model. Moreover, the language does

not exploit events ordering for optimizing reasoning about event interval.

7. Discussion

The implementations used for D2IA validation makes use of the Flink’s low-

level streaming APIs, state management, and CEP. Despite being declarative,

these APIs are embedded into programming languages and, thus, they are not

completely portable to alternative systems, e.g., Spark or Kafka Streams.

Nevertheless, the support for SQL-based specification of data processing

pipelines has been gaining attention by distributed data processing systems [5,
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23, 17]. A declarative approach to specify processing logic may reach a wider

range of users who are able to specify jobs without the need to be programmers.

Moreover, SQL abstractions would foster a better unification between processing

static data and streaming data [8].

Among the BigSPE systems, Flink was one of the early providers of SQL

on streams through another Apache project, i.e., Apache Calcite, which can

enforce general optimizations on the processing logic that are hard to be envi-

sioned by the developer at job specification time. Interestingly, Apache Flink

supports pattern matching over data streams since version 1.8.0, implementing

the standard Match Recognize SQL Clause using its CEP library.

Although Flink’s Match Recognize is still in its infancy within Flink SQL,

it is worth to discuss how it relates with D2IA, as it seems they are trying

to answer the same research question: how to increase the expressiveness of

BigSPE combining CEP and DSMS.

MR D2IA

Time Based Windows Within, Frames

Measures Value

Partition KeyBy

Regular Language Regular Language + Negation

Point Based Time Interval Based Time

Table 2: Comparison of language clauses between Match Recognize and D2IA

Table 2 provides an high-level features comparison between Match Recognize

as it appears in Flink SQL and D2IA. Both of the approaches provide the means

for windowing but while D2IA users have access to expressive data-driven win-

dows (i.e., Frames), Match Recognize is limited to traditional temporal win-

dows. For anything that is related to aggregations, both Match Recognize and

D2IA expose flexible selection operations (i.e., Value and Measures respectively).

Moreover, both of the approaches take parallelism into account. For the case

of event pattern detection, both D2IA and Match Recognize use a simple regu-
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lar language that consists of next, Kleen’s star. Additionally, D2IA allows the

detection of absent event using negation for heterogeneous interval events, and

Allen’s algebra. Finally, a main difference between the two approaches regards

the time model. Match Recognize keeps Flink’s single timestamp approach. On

the other hand, D2IA employs an interval-based temporal model.

Listing 7.1 shows a general template for the translation of a homogeneous

interval specification, while heterogeneous ones cannot be implemented due to

the absence of negation.

Listing 7.1: Flink SQL Match Recognize template for the homogeneous interval generation

1 Select Key , sts , ets , val from tbl

2 Match_Recognize(

3 Partition By Key

4 Order By timestamp

5 Measures A.Key as Key , First(A.timestamp) as sts ,

6 Last(A.timestamp) as ets ,

7 valOperator(A.value) as val

8 After Match skipStrategy

9 Pattern (A{minOccurs , maxOccurs} B)

10 Define

11 A as condition ,

12 B as true)

The term tbl in Listing 7.1 refers to the continuous table wrapping the source

event stream, cf. Definition 3. The elements of the generated interval are the

start timestamp (sts), the end timestamp (ets) and the value computed over the

elements of the interval (val). The pattern part enforces the number of occur-

rences required by the interval specification. The pattern term B is redundant

and is just added to fulfill the current limitation in Flink’s implementation of

the Match Recognize for greedy patterns. valOperator in line 7 refers to the

function used to compute the value of the interval. The condition term in line 11

reflects the condition imposed on the elements being matched, either absolute or
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relative conditions. Moreover, the within property of the interval specification

is encoded as part of the condition. This is imposed by checking the difference

of the timestamps of the successive events.

8. Conclusion

In this paper, we presented a family of operators to specify event inter-

vals over data streams and to reason about their temporal relationships (D2IA).

D2IA supports event intervals derived from a single source stream by means

of aggregations over timestamped events (homogeneous), and event intervals

derived from two or more sources (heterogeneous). In addition to our former

work, we extensively evaluated two D2IA implementations based on alternative

abstractions on top of Apache Flink. We evaluated and compared the two im-

plementations systematically using the Linear Road Benchmark to assess their

scalability. Last but not least, we discuss the relation between D2IA and SQL

Match Recognize within the context of the upcoming research trend on declar-

ative stream processing using SQL.
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Appendix A. EPL Translations for Evaluation Queries

Listing Appendix A.1: EPL Translation for Q1

1 create context SegmentedByKey

2 partition by key from SpeedEvent;

3 @name(’ThresholdAbsolute ’)

4 context SegmentedByKey

5 select * from SpeedEvent

6 match_recognize (

7 partition by key

8 measures first(A.timestamp) as first_ts ,

9 last(A.timestamp) as last_ts , max(A.value) as value ,

10 count(A.value) as count , first(A.key) as key

11 after match skip past last row

12 pattern (A{2,})

13 interval 10 seconds or terminated

14 define

15 A as A.value >= 50

16 );
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Listing Appendix A.2: EPL Translation for Q2

1 create context SegmentedByKey

2 partition by key from SpeedEvent;

3 @name(’ThresholdRelative ’)

4 context SegmentedByKey

5 select * from SpeedEvent

6 match_recognize (

7 partition by key

8 measures max(max(A.value),C.value) as value ,

9 first(A.key) as key , last(A.timestamp) as last_ts ,

10 C.timestamp as first_ts , count(A.value) as counter

11 after match skip past last row

12 pattern (C A+)

13 interval 5000 seconds or terminated

14 define

15 C as C.value >= 30,

16 A as (A.value > C.value * 0.1)

17 and (A.value > prev(A.value ,1) +

18 (prev(A.value ,1)*0.1))

19 )

Listing Appendix A.3: EPL Translation for Q3

1 create schema ResultStream (value double ,

2 first_ts long , last_ts long , key string)

3 starttimestamp first_ts endtimestamp last_ts;

4 create context SegmentedByKey

5 partition by key from SpeedEvent ,

6 key from ResultStream;

7 context SegmentedByKey

8 create variable long last_time = 0L;

9 context SegmentedByKey insert into ResultStream
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10 select * from SpeedEvent#expr(timestamp >last_time)

11 match_recognize (

12 partition by key

13 measures

14 (sum(A.value )+C.value )/( count(A.value )+1) as value ,

15 C.timestamp as first_ts , last(A.timestamp) as last_ts ,

16 first(A.key) as key

17 after match skip past last row

18 pattern (C A+)

19 interval 5000 seconds or terminated

20 define

21 A as (Math.abs(A.value - C.value) >= 5)

22 )

23 context SegmentedByKey

24 on ResultStream(first_ts >last_time)

25 set last_time = last_ts;

26 @name(’Delta ’) select * from ResultStream;

Listing Appendix A.4: EPL Translation for Q4

1 create context SegmentedByKey

2 partition by key from SpeedEvent;

3 context SegmentedByKey

4 insert into ResultStream

5 select avg(value) as value ,

6 first(timestamp) as first_ts ,

7 last(timestamp) as last_ts ,

8 key as key , count (*) as counter

9 from SpeedEvent#expr_batch(avg(value) < 67.0, false);

10 @name(’Aggregate ’) select value ,

11 first_ts , last_ts , key

12 from ResultStream(value >=67.0 and counter >=2);
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