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A B S T R A C T

When addressing product quality standards in manufacturing lines, a critical issue is the identification of the
parameters that define the quality of the final product and their tracking. The problem of process control under
inconsistent working condition of an automatic machinery, i.e. when some parameters are highly variable, is
still quite unexplored in literature. This objective becomes even more challenging when the most important
process variables are not directly measurable. This paper demonstrates that it is possible to achieve quality
control by coupling a soft sensor, whose predictive model is a neural network, with an anomaly detector. The
methodology has been applied to automatic machinery placed in a manufacturing line, where high variability
in production rate has an important effect on the measured physical variables. This makes automated and
accurate quality control difficult, due to the fact that in this test case the data collected are accelerometers
signals, extremely sensible to variation in machine productivity by definition. It is shown that this approach
outperforms many other classification methods (Support Vector Machines, Ensemble Bagged Tree, Discriminant
Analysis, K-nearest neighbours and the direct application of a Neural Network) proposed in the past, achieving
satisfactory results evaluated on the basis of four metrics (Accuracy, precision, recall and 𝐹1-score), even
if anomalous data have been collected in a limited number of machine’s working points. In particular, an
accuracy over 92% has been reached also for production rates where only nominal conditions are collected.
This procedure exceeds the direct training of a neural network (accuracy of 57.6% at new production rates),
as well as the application of shallow methods based on the extraction of dimensionless features (around 35%
in accuracy at new production rates).
. Introduction

The attention to quality control strategies has seen a substantial rise
n the past few decades (Mitra, 2016). Many factors have contributed
o this phenomenon: the elevated production rates of modern manu-
acturing lines, the tense competition in the global market, the need
o guarantee a sustainable process, the high price of energy and raw
aterials are only few examples which explain why industries must

ut waste in production more than ever (Albers et al., 2016). Hence,
he urgency in the search of innovative and efficient systems capable
f detection in anomalous working conditions which can lead to pro-
uction of low quality outcomes. Ideally, those systems should work in
eal time (so that they can immediately warn when the line is producing
oor quality outputs), while being cheap and easily replaceable.

The identification of the critical process variables (CPVs), also called
ey quality variables (Yuan et al., 2020), i.e. the group of physical
uantities that must be tracked to assure the compliance of the final
utput, is, in many cases, everything but a banal task. This is because in
he manufacturing industry it is not always clear which are the reasons
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behind defects and dedicated investigations are necessary most of the
time (Murua et al., 2020). Consider Fig. 1. If the reasons behind the
output products’ defects are clear, or the prior knowledge over the
process is sufficient to define the CPVs, it is quite easy to take action at
the correct workstation to adjust the product quality. If that is not the
case, further investigation must be performed. Subsequently, the most
important CPVs to assure product quality should be identified.

When they have been finally assessed, a sufficient number of sensors
must be employed to make the tracking of the CPVs possible. Not all
of the CPVs are always accessible for measurement. Sometimes the
machineries do not offer enough space to fit a sensor in, or the en-
vironment might be particularly harsh, as it might happen in chemical
plants. In all those cases, estimating the CPV in other ways could be
helpful (Zhu et al., 2020; Rege et al., 2002).

1.1. Problem statement

In an industrial context, a system able to compute a variable by
means of the available measurements and a predictive model is called
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Fig. 1. Recommended procedure for the identification of the critical process parameters, to correct the responsible workstation.
soft sensor. This expression is derived from the words software and
sensor. After all, these systems are nothing more than algorithms that
yield data same as their physical equivalents (Kadlec et al., 2009).

To select the most suitable predictive model, it is crucial to distin-
guish between two main classes of soft-sensors: model-driven and data-
riven. The model-driven ones rely on first-principles models (Hsiao
t al., 2021), hence assuming that the phenomena underling the process
re stable and known, which is usually not the case. In all those
ituations where the relationships among variables are complex or
nclear, data-driven models are a valuable option. As a drawback,
hey require the collection of information from the machinery during
roduction (Kano and Nakagawa, 2008). Furthermore, it is worth
entioning that examples of soft sensors based on numerical models
o exist in literature (Guo et al., 2019).

In general, the low-cost associated to soft sensors compared to their
ardware counterparts, the simplicity of employment on top of the
lready existing systems and the capacity of estimating values in real
ime, whereas some physical sensors would require long time before
ielding results, make their usage appealing in many fields (Fortuna
t al., 2005).

The presented research deals with data-driven soft sensors, based
n machine learning (ML) algorithms. A ML model can be trained to
ecognize peculiar characteristics in the data, such as the most frequent
on-nominal working conditions or, in general, situations deviating
rom standards. In industrial field, gathering a training set can be
articularly troublesome when the working conditions of the process
re highly variable, which means that many working points should be
xplored. In this context, a working point can be defined as a unique
ombination of all the parameters that affect the system. Clearly, the
atter model behaves differently in distinct working points, determining
ignificant changes in the overall response. The associated risk is that
he system could not be able to generalize for new working points not
resent in the training set.

.2. State of the art

In data-driven approaches, this problem is usually addressed as the
uality between interpolation and extrapolation. The first refers to the
rediction of values that fall inside the training set, whereas the second
oncerns the predictions outside the boundary of the dataset (McCart-
ey et al., 2020).

Regression and interpolation approaches in a changing environment

re first addressed by Worden in Worden et al. (2002). The topic of

2

systems under inconsistent working conditions has been addressed in
literature mainly in the problem of fault diagnosis of bearing and wind
turbines. In fact, the vibration introduced at different rotating speeds
of those systems is highly unpredictable, and the modelling of such a
phenomenon has been addressed by an active group of researchers.
However, none of them focused on the possible application on qual-
ity control. In McBain and Timusk (2009) showed how is possible
to interpolate among statistical distribution parameters to adapt the
decision boundaries at different rotational speeds. In Sohaib and Kim
(2020) proposed an approach based on a bispectrum analysis followed
by a convolutional Neural Network (CNN). In Hasan et al. (2020)
further investigated this approach by implementing a multitask-aided
transfer learning, to improve the robustness of the model. In Chen
et al. (2019), a recurrent neural network combined with an attention
mechanism is proposed by Chen et al. to detect and classify a fault in
wind turbine operating at variable speed. In Li et al. (2020) a model-
based approach coupled with a power spectral density allowed to
extract faulty characteristics for variable speed wind turbines. Looking
at industrial applications, it is worth mentioning some methods based
on the extraction of dimensionless parameters, which are claimed to be
rather robust against speed variation, as in Lei et al. (2009), Zhang et al.
(2013), Qin et al. (2018). In particular, it will be shown in Section 4
that the use of dimensionless parameters lead to poor results in the case
under study.

1.3. Paper contributions

In this paper, five main contributions can be identified compared to
state of the art:

• The research focuses on quality control of industrial machinery.
In literature, most of the papers are focused on fault detection.
Therefore, it is essential to fit these techniques in the field of
quality control.

• The paper addresses a relevant lack in literature, that is, quality
control under highly inconsistent working conditions.

• The time domain series are directly fed into the convolutional and
recurrent neural network, without any specific feature extraction.
However, to so, a general approach based on resizing is defined,
to account for variations in the observations size due to the
inconsistent working conditions.

• To make possible the application of this technique in highly

inconsistent working conditions, the definition of general rules
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to collect the training set and to develop algorithm architecture
are crucial. The proposed method for the experimental campaign,
conducted at meaningful working points, allows to limit the
overall number of experiments conducted.

• The proposed methodology can work for whichever combination
of input data, regardless of the data are one or more among
aggregated variables, signals, images per manufacturing cycle.

This paper copes with this issue in manufacturing by introducing a
ovel methodology for the collection of the training set and the update
f the soft sensor, as well as a predefined structure for a neural network.
his methodology has proven to be more robust compared to similar
ystems found in literature and it opens new scenarios related to the
se of deep learning in process monitoring for quality control purposes.
his novel approach is applied to an automatic machinery test case,
o compare the performances with respect to the other methods in
iterature.

The paper is structured as follows. The methodology suggested for
he collection of the training set (by monitoring of the machinery in
ction at specific working points), is presented in Section 2, where a
escription of the recommended neural network’s structure and the
rocess for uploading of the soft sensor are included. Section 3 intro-
uces a machinery which the methodology has been applied to. This
hould allow the reader to implement the same methodology in other
ontexts. In Section 4, the results obtained are presented and evaluated.
he paper concludes with a few comments in Section 5.

. Proposed methodology

This paper proposes a methodology for the building of a soft sensor
or quality control purposes, in case the production machinery to be
onitored is characterized by highly inconsistent working conditions.

Consider the common situation where an automated quality control
ystem is required to evaluate the quality of each product so to reduce
he volume of non-compliant ones manufactured. Eventually, the defect
nalysis showed that there is a correlation between the issues and a
pecific CPV, that cannot be directly measured and the construction of
dedicated soft sensor is required.

This task becomes rather complex in case the machinery works
n highly inconsistent conditions, for instance when there are sensible
ariations in a machine’s production rates. As highlighted in Section 1,
cientific research that dealt with these problems in an automated
roduction line were based on the extraction of some dimensionless
arameters (Lei et al., 2009; Zhang et al., 2013; Qin et al., 2018).
hose should be suitable for being applied in this context. However,

n Section 4, the results obtained after their evaluation showed they
re not applicable in the case study.

The construction of a soft sensor starts with the selection of avail-
ble measurement sensors that will produce the input data. Sometimes
achinery come with sensors already mounted. If the information

lready available are evidently not sufficient, the adoption of more sen-
ors should be considered. In general, accelerometers or other sensors
ble to acquire the dynamics of a system represent a good solution. It
as been proven that vibrational signals collected during a production
rocess carry relevant information about the process itself (Bruwer
t al., 2007).

The selection of the sensors to use is not a straightforward task. This
ould be modelled as an optimization problem; however, the enormous
umber of variables (the possible sensors, their position, their number
tc.) to consider and their effect on machine learning models make a
igorous approach to the problem impossible. Therefore, to accomplish
his task, one must rely on previous experience, or work on a numerical
odel of the machine, if available (Bono et al., 2022a).
3

.1. Training set collection

Since the value of the CPVs must be tracked, it is required to collect
ataset from a machine to make the training of the soft sensor possible.
owever, considering the entire working region of the machine is in
ost of the cases unfeasible. One should then contemplate a sub-group

f working points to evaluate. For the sake of clarity, a working point
s a unique combination of input parameters, for example the system’s
peed, pressure, products’ weight etc. Consider Fig. 2, where the work-
ng region of a generic manufacturing machine regulated by two input
arameters is shown. 𝑥𝑖 is the 𝑖th input parameter, whereas 𝑥𝑖𝐿 and
𝑖𝑈 are the lower and the upper boundary values for that variable,

espectively. If the system counts 𝑁 parameters, it is recommended to
onsider all the vertices of the 𝑁-dimensional hyper-cube defined by all
he upper and lower limits, hence a number of 𝑊 = 2𝑁 working points.
his is a considerable reduction in the number of different working
onditions that need to be acquired.

In this work, a design of experiments approach (for example the
ne proposed in Zăvoianu et al., 2021) is not useful. In fact, in indus-
rial cases where complex measurements (such as accelerations) are
ollected from a machinery, with the objective of evaluating its be-
aviour in producing compliant outputs, different unpredictable factors
an modify the system response. Therefore, implementing a design of
xperiment approach would require the evaluation of a higher number
f working points. However, evaluating only the vertices of the hyper-
ube is effective in constructing the quality control system, as shown
n Section 4.

Before training the soft sensor, it is important to assign target values
f the CPV to each working point of the machine. During this proce-
ure, collecting data related to anomalous working conditions might be
on trivial, but it is crucial for the training of a supervised mechanism.
n the case of a classification problem, these values can be assigned
hrough manual labelling by an expert that can evaluate the quality
ith a visual inspection, instead, in case of a regression problem,

he CPV can be measured with specific equipment. For this reason,
his operation can become very costly, but it is fundamental for the
onstruction of the entire quality control system. In most manufacturing
ines, the production of a non-compliant output is a time-dependent
henomenon that arises after a limited number of production cycles.
n this case, the collection of anomalous working conditions becomes
asier.

.2. Model for the soft sensor

The quality control system that this paper proposes is suitable when
soft sensor for the CPV estimation is required. In an industrial context,

he physical modelling of machinery can be relatively time consuming,
hereas they might not be always able to interpret the reasons behind a
efect. Besides, data-driven models are appealing for their deployment
eadiness, although the collection of the training set is needed, with all
he problems associated to produce experiments and data collection.
eep learning models, in the form of neural networks, are among the
ost flexible data-driven approaches. They can take, as input, objects

rom different feature spaces, elaborate separately the information and
hen merge the knowledge so as to get a unique output. Because of
his, the soft sensor recommended in this proposed methodology for the
stimation of the CPV is a neural network. In the most general case,
his neural network must feature three main input branches (Fig. 3),
ccording to the type of the available data. Moreover, different inputs
equire a specific type of preprocessing, i.e. all the steps necessary to
ring the raw data in a desired form. Two types of preprocessing are
ssential here:

• Scaling: this process is mainly described by an operation that
transforms all the values according to a defined rule, so that all
scaled data have the same degree of influence on the training
process. In this way the method is immune to the choice of
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measurement unit (Kosti et al., 2012; Pal and Sudeep, 2016).
Many approaches to perform a scaling operation can be found in
literature.

• Resizing: since neural networks accept as input only objects of
pre-defined shape, in many cases an adjustment of the input size
is required. Resizing is one way to carry out this operation. It
consists of a linear interpolation in case of 1D data, a bi-linear
interpolation in case of 2D objects, and so on.

he input data are treated separately, according to their dimension, in
oth preprocessing and in the types of layers dedicated to their study.
vidently, the network might count only two or even one single branch,
f, for instance, there are only 1 dimensional data (i.e. signals). The
hree branches are:

1. The first branch takes as inputs all the single values, that is, all the
values that are considered constant for a single manufacturing
cycle, as well as all the machinery’s input parameters (𝑥1,… , 𝑥𝑁 )
that define the working points, as described in Section 2.1.
All these instances are all 0-dimensional by definition. Every
0-D input must be then independently scaled. Eventually, a
dropout layer acts as a regularizer. It helps the network in finding
general patterns, by randomly dropping a portion of the input
features. (Srivastava et al., 2014)

2. The second branch elaborates the signals if they are present. Since
at different working points the number of samples might vary,
it is suggested to resize them to a common length (Hashemi,
2019) before applying a scaling method. Then, the signals are
elaborated by a combination of convolutional and recurrent lay-
ers, a structure firstly proposed for natural language processing.
Recurrent layers are heavily prone to noise, while convolutional
4

layers present de-noising properties, so that the unique local
patterns in the inputs have less influence on the network’s
performances. (Sainath et al., 2015). The convolutive block can
be obtained by alternating 1D (Separable) Convolutional layers
and maxpooling layers. The recurrent block can be built by using
one (or more) Gated Recurrent Unit (GRU) or Long short-term
memory (LSTM) layers. (Yu et al., 2019; Cho et al., 2014)

3. In the case images or other 2D objects are available, a third
branch made of 2D-convolutional layers should be implemented.
Resizing and scaling must be applied here as well.

The output �̂� represents the CPV to predict. If its value is a single
r more continuous numbers, the problem will be a regression. If the
PV can assume only a defined set of classes, the problem will be a
lassification. Regardless of the CPV’s nature, the structure of the neural
etwork does not change, which is a significant advantage compared to
ther machine learning methods. It is also evident that the nature of the
etwork can be adjusted according to the data available and the task
equired, without modifying the described methodology.

.3. Training of the soft sensor

Once the model has been designed, data corresponding to the
anufacturing cycles must be collected as explained in Section 2.1.
ach manufacturing cycle, namely the measurements coming from
he production of one single piece manufactured, is associated to an
bservation. Then the data must be partitioned into training, validation
nd test sets. Finally, the model is fitted onto the training set and
ts performance are evaluated through the validation set at every
raining epoch. The model performance can be further enhanced by
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Fig. 4. Graphical representation of the product quality Vs time elapsed after maintenance.
Fig. 5. Arrangement of the quality control system. Starting from the soft sensor, the monitoring system is created by coupling the pre-trained neural network and the anomaly
detection system.
tuning some of the model’s hyper-parameters, by using, for example,
a Bayesian optimization, where the objective function is the validation
loss. Finally, the evaluation of the loss on the test set is crucial to avoid
overfitting on both training and validation sets.

Eventually, with reference to Fig. 2, one can empirically verify that
the performance of the soft sensor worsens rapidly by operating far
from the training points, which is a clear indication that the classifier
struggles in extrapolation. To cope with this drawback, it is recom-
mended to abandon the idea of achieving an accurate prediction of
the CPV in the new working points and to construct a quality control
system on top of the soft sensor, as described in the upcoming sections.

2.4. Acquisition of new nominal points

While it is evidently not possible to collect anomalies at every
possible working point, during the regular functioning of the machine
one can expect the production of compliant outputs for a certain

number of manufacturing cycles. Only after a time the output will

5

become non-compliant, due to the wear of components, loosening of
tolerances etc.

This condition is synthetically explained in Fig. 4. This means that,
after maintenance, it should in theory be possible to collect a certain
number of nominal manufacturing cycles in totally new working points,
which are the ones of the machine during the regular production. If this
assumption is accepted, the intelligent quality control system may be
updated with new data after every successful maintenance operation.
This second acquisition of data is considered as not mandatory and
it is made to strengthen the algorithm with new nominal data that
comes from normal functioning of the machine, helping the algorithm
in generalizing the quality control for more working points.

2.5. Quality control set up

To achieve quality control for new working points as well, the
capabilities of neural networks and the flexibility of a multivariate
Gaussian distribution are coupled by means of transfer learning. The

method is summarized in Fig. 5:
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1. Transfer learning: The last layer of the trained neural network
is removed. Thus, once a new manufacturing cycle enters the
network, it is not converted into a number (regression) or a
category (classification), but it exits as an object characterized
by meaningful features. The observations mapped into the re-
duced space generated by the neural network are called ‘‘early
predictors’’ from now on. The dimensions of this new reduced
space depend on the size and the type of the neural network’s
penultimate layer.

2. Anomaly detection system: All the manufacturing cycles avail-
able (nominal and non-nominal) pass through the pre-trained
neural network and exit as early predictors. By applying the
anomaly detection method, a multivariate Gaussian distribu-
tion is fitted onto the nominal early predictors, while the non-
nominal early predictors (anomalies) are used to select a proper
threshold probability.

3. Monitoring procedure: The coupling of the pre-trained neural
network and the anomaly detector make up the final quality
control system. In this way, every new manufacturing cycle will
be flagged as nominal or non-nominal.

4. System updating: The collection of a certain amount of man-
ufacturing cycles after every maintenance of the machine (the
exact number will depend on the typology of the process to be
monitored), regarded as nominal, will be used for the update
of the multivariate Gaussian distribution, whereas the weights
of the pre-trained neural network are frozen. In this way, an
increasing number of the machine’s working points will be ac-
counted for.

The quality monitoring system built in this way can manage a
ide variety of input data, while being robust in therms of significant
ariation of the operating conditions. To evaluate the performance of
his arrangement, it is applied on a real test case described in the next
ection.

. Test case description

Since the objective of the work is to realize a quality control system
hat can be applied in an automated production line, the approach
s tested on a real case, where the estimation of products’ quality is
eeded. In this context, before implementing an automatic control sys-
em, the output quality was evaluated with spot-checks three times per
ay, by means of a destructive process. When a product is found non-
ompliant, all the products manufactured in two successive spot-checks
re discarded. This procedure was time-consuming and led to the waste
f many manufactured pieces, generating relevant economical losses.

The machine considered is a stamping system for thin metal sheets.
t consists of a rotating machine (from now on ‘‘Wheel’’), with an
orizontal axis of rotation, equipped with ten identical subsystems
amed ‘‘stamping units’’. For the sake of clarity, a CAD model of the
ntire system is reported in Fig. 6.

The stamping unit is characterized by four bodies ( A⃝, B⃝, C⃝ and D⃝)
hat move across a plane parallel to the wheel’s axis of rotation, and a
‘fixed’’ body (called die) ( E⃝), rigidly linked to the wheel. The Punch D⃝
resses the metal sheet against body E⃝ to shape the metal sheet into
he desired form.

The four moving bodies are connected in the following way: body
A is connected with the wheel by means of bearing 1⃝; bearing
2⃝ connects B⃝ to body A⃝; body C⃝ is an hydraulic cylinder mounted

on body A⃝ and it acts a force on body B⃝; the punch D⃝ is linked with
body B⃝ by means of a spherical joint.

The punch can perform little rotations in all the directions during
machine operation, in order to prevent damage of the entire structure in
case of irregular alignments. However, during maintenance activities,
its position is tightly regulated by means of six bolts with rubber tips 3⃝.

Finally, the system is driven by a cam which imposes a motion

law to the entire machine, allowing the stamping unit to pass from

6

Fig. 6. Overview of machine considered in the test case.

Fig. 7. Stamping unit in open configuration.

open configuration (represented in Fig. 7), where the metal sheet is
loaded by means of a conveyor belt, to close configuration (Fig. 8), that
corresponds to the condition in which the punch presses the material
over the die. Once the operation has been carried out, the unit returns
to the open position to let the unloading of the finished product.

From previous analysis (both numerical and experimental) on this
machinery, it was understood that the primary cause of non-compliant
products is the alignment between the two surfaces of the punch D⃝ and
the die E⃝. This quantity represents the CPV of the process, and it was
noted that a direct measurement through sensors was not feasible. A
soft sensor is consequently needed to detect the alignment condition
of the bodies, so as to verify the presence of non-nominal working
conditions.
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Fig. 8. Stamping unit in closed configuration.

Fig. 9. Front-rear misalignment.

Fig. 10. Left–right misalignment.

Two different types of misalignments were observed; they have
been named in accordance with the operator’s position during the
maintenance of the unit: in Fig. 9 the front-rear misalignment (mis𝐹𝑅),
and in Fig. 10 the left–right misalignment (mis𝐿𝑅).

An accelerometer was chosen to be used on body B⃝ of the stamping
unit, mounted as shown in Fig. 8 with a red arrow, to acquire real-
time information from the machine. The accelerometer signal will be
employed as input for the soft sensor. Consistently with what it is
explained in Section 2, the choice of type and location of this sensor
has been carried out by means of a numerical approach, by running

simulations on a virtual model of the stamping unit.

7

Fig. 11. Example of cycles collected at 400 ppm.

Table 1
Overall number of cycles for production rate, pressure and alignment condition.

Nominal 𝑀𝑖𝑠𝐹𝑅 𝑀𝑖𝑠𝐿𝑅
Pressure [bar]

1.5 2 2.5 3 1.5 2 2.5 3 1.5 2 2.5 3
Ra

te
[p

pm
] 400 283 260 258 221 269 262 254 239 249 251 245 253

500 294 235 265 243 246 257 245 253 251 232 234 264
600 145 166 173 196 184 186 186 179 190 191 193 183
800 201 231 239 264 261 246 239 246 247 255 247 252

A summary of the manufacturing cycles collected during some
experiments, to simulate different working and alignment conditions
for the stamping unit, is reported in Table 1. The machine counts two
main parameters that have a relevant impact on the machine behaviour
(thus influencing the vibration measurement of the accelerometer): the
hydraulic circuit’s pressure and the production rate. The first parameter
determines the force applied to body B⃝, in turn influencing the vertical
force that pushes on the sheet, whereas the second one regulates the
wheel’s velocity. Generally, the pressure might vary from 1.5 to 3 bar,
while the production rate ranges between 400 and 800 parts per minute
(ppm). The subgroups of parameters considered for the experiments are
1.5, 2, 2.5, and 3 bar for the pressures and 400, 500, 600 and 800 ppm
for the production rates.

Considering that the sampling frequency of the accelerometer is
constant for different tests, the production rate influences the cycles’
length, i.e. the number of samples acquired from the accelerometer in
a single manufacturing cycle. The presence of different shapes for the
input signals represents a major issue for a neural network, since it
must always be fed with tensors of fixed size. An example of the time
histories acquired at different production rates are shown in Figs. 11
and 12. To simulate the two misalignment conditions, the bolts with
rubber tips 3⃝ are loosened, a feeler gauge 0.05 mm thick is placed
between the punch and the die, and then the bolts are tightened again.
In case of mis𝐷𝑂 misalignment, the gauge is positioned on the operator
side (as shown in Fig. 9), instead, for mis𝐿𝑅 condition, it is placed on
the right-hand part of the die (consistently with Fig. 10).

4. Test case results

In the considered case, the machine can work in two different faulty
conditions determined by the two possible misalignments between
punch and die. The objective is to understand when the product results
non-nominal, without being interested in distinguishing the type of
misalignment. Hence, an anomaly detector is necessary to discriminate
when the machine deviates from the nominal condition.
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Fig. 12. Example of cycles collected at 800 ppm.

From previous experience in the development of a quality control
ystem for this machine with different approaches (Bono et al., 2022b),
t has been understood that the production rate has a big impact on
he performance of the algorithms, since it is difficult to generalize
he machine’s behaviour for different values of this parameter. On the
ontrary, the pressure has shown to have a negligible effect on the
lassifiers’ performances. For this reason, the proposed approach is
pplied with the objective of generalizing the monitoring at different
roduction rates.

In the following paragraphs, the results obtained with this novel
pproach are compared with the algorithms and methodologies found
n literature (Lei et al., 2009; Zhang et al., 2013; Qin et al., 2018),
elying on the use of dimensionless features in order to generalize
esults for a mechanical system working at different rotating speeds.
n particular, the parameters adopted are: Skewness coefficient, Kurtosis

coefficient, clearance factor, shape factor, impulse factor and crest factor.
The information coming from these features are put together to develop
shallow learning models, as described in the related works. Instead
for deep models, the input are the raw acceleration measurement and
process variables (i.e. pressure and production rate), as highlighted in
Fig. 3. The output for all the models is the condition which the system
is working at (i.e. Nominal, 𝑀𝑖𝑠𝐹𝑅, 𝑀𝑖𝑠𝐿𝑅). The dataset adopted for
the following results is the one described in Section 3.

In this case, to scale data, z-score transformation is applied by using
the following formula:

𝑧 =
𝑥 − 𝜇
𝜎

(1)

In this way the signals’ distribution and each dimensionless feature will
display a mean of zero and a standard deviation of one. This proce-
dure is applied for all adopted algorithms; furthermore, for supervised
ones, the label (Nominal, 𝑀𝑖𝑠𝐹𝑅, 𝑀𝑖𝑠𝐿𝑅) corresponding to the working
condition is associated to each time signal.

These three categories may be further classified as compliant class
(Nominal) and non-compliant class (abnormal, namely 𝑀𝑖𝑠𝐹𝑅, 𝑀𝑖𝑠𝐿𝑅),
so that four possible outcomes can occur for every observation. Even-
tually, four values are derived by testing every classifier:

• True nominal (TN): number of nominal observations correctly
predicted as nominal.

• True abnormal (TA): number of abnormal observations correctly
predicted as abnormal.

• False nominal (FN): number of abnormal observations wrongly
predicted as nominal.

• False abnormal (FA): number of nominal observations wrongly
predicted as abnormal.
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And from these values four metrics are employed, to compare the
performances of the classifiers (Hossin and Sulaiman, 2015):

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝑇𝑁 + 𝑇𝐴
𝑇𝑁 + 𝑇𝐴 + 𝐹𝑁 + 𝐹𝐴

(2)

𝑟𝑒𝑐𝑎𝑙𝑙 = 𝑇𝐴
𝑇𝐴 + 𝐹𝑁

(3)

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝐴
𝑇𝐴 + 𝐹𝐴

(4)

𝐹1𝑠𝑐𝑜𝑟𝑒 =
2 ∗ 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑟𝑒𝑐𝑎𝑙𝑙
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙

(5)

In this test case, it is important to evaluate these metrics at the different
production rates of the machine, since the challenge of the task is in
obtaining high classification performances at production rates not used
for training the algorithm.

4.1. Shallow learning

By following the procedure described at the beginning of this sec-
tion, four different shallow models have been built on top of dimen-
sionless features:

• Discriminant analysis (DA): Discriminant analysis (DA) is a
method based on the probabilistic assumption that all the obser-
vations for a specific class are realization of a normal probability
distribution. If a classification problem is considered with a num-
ber of classes equal to g, the idea is to fit a multivariate Gaussian
distribution (with dimension m) for each class in the training
set; then these distributions are used to determine separation
boundaries between classes in the feature space.

• K-nearest neighbours (KNN): This method is based on the idea
to classify a new observation by looking at the K neighbours,
i.e. the K nearest data-points in the dataset. The algorithm works
by computing the distance between each data-point and the new
observation, and it finds the probability of the points being similar
to the new data.

• Support-vector machine (SVM): Support Vector Machine (SVM)
is a method used for binary classification problems, but it can be
extended also to multi-class problems by considering one binary
classification at a time (i.e. by applying an SVM while considering
only two classes at every step). The core idea of this algorithm
is to search for a classification boundary, able to separate two
classes of objects. This is done in an iterative fashion, by using
the observations closer to the decision boundary, that take the
name of ‘‘support vectors’’.

• Ensemble bagged tree (EBT): Decision trees are classifiers which
operate by recursively partitioning the feature space. A decision
tree is made up of nodes and branches. Except for the initial
node and the test nodes (i.e. nodes without outgoing branches),
every node counts one incoming branch and two (or sometimes
more) outgoing branches. This means that, in decision trees, each
decision node splits the feature space into two or more subspaces.
In binary decision trees, the discrimination takes the form of a
yes/no question. A new observation is classified by navigating it
from the root to an ending leave, so that its attributes are iter-
atively tested along the procedure (Rokach and Maimon, 2009).
More decision trees are usually collected in a form of ensemble
learning, as it happens for boosting aggregation (Bagging). In Bag-
ging, more weak classifiers are trained on different subgroups of
data, created by taking samples uniformly and with replacement
from the original dataset. (Sexton and Laake, 2009)

Each observation is characterized by six features and the models are
trained by considering just observation at lower and upper limit (re-
spectively 400 and 800 ppm) for the production. During training, each

model undergoes a Bayesian optimization procedure (implemented
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Fig. 13. Data-points at 500 and 600 ppm. First three principal components.
in python Scikit-learn package) to find the best hyperparameter val-
ues (Yang and Shami, 2020) that permit to obtain a higher overall
accuracy level. Depending on the considered model, different hyper-
parameters are contemplated. To run this optimization technique, a
maximum number of iterations of 30 (for each model) and a callback
to stop the procedure if two successive iterations show a difference
in accuracy lower than 0.001. For DA, the solver is set to svd, the
shrinkage parameter is optimized; for KNN, the number of neighbours,
the algorithm used to compute the nearest neighbours and the weight
function are considered; for SVM, the kernel function is the main
hyperparameter (linear kernel seems to be the best one in this case); for
DT, Gini function is adopted to measure the quality of a split, instead
different hyperparameters are optimized: the minimum number of data
points to split a decision node or to obtain a leaf node and the maximum
number of leaf nodes.

The models are trained considering 80% of the data available at
the two boundary production rates (400 and 800 ppm), and then, they
are evaluated for the remaining partition at these rates. Moreover, the
metrics are also computed for the other two production rates (500
and 600 ppm). The performances of shallow methods are reported in
Table 2. By looking at this table, it is possible to infer that the SVM
model obtained the best performances at 400 and 800 ppm, instead
when dealing with production rates not present in the training set, the
four models are not able to work properly showing high classification
error. This behaviour can be interpreted with the plot in Fig. 13, where
the three principal components calculated on the dataset at 500 and
600 ppm are represented: the different working conditions are not
well separated by just considering dimensionless features. Therefore,
a different approach should be adopted to cope with this issue.

The training times, considering the Bayesian optimization proce-
dure, in seconds for the different shallow methods are: 19 s for DA, 16
s for KNN, 6290 s for SVM and 874 s for EBT. instead, the prediction
times for the entire test set: 41 ms for DA, 37 ms for KNN, 12 ms for
SVM and 799 ms for EBT.

4.2. Neural network

To apply the proposed methodology (Section 2), it is necessary
to train a neural network by considering data referred to the two
9

boundary working points, which are in this case the upper and lower
limit for the production rates (respectively 400 and 800). To cope
with the irregular number of samples at distinct production rates, the
‘‘resizing approach’’ is applied, so to always have the same number of
samples, corresponding to the dimension of longest ones (i.e. data at
400 ppm). The architecture of the ANN adopted for this soft sensor
is represented in Fig. 14. Consistently with the structure prescribed in
Fig. 3 the network is characterized by two different branches: the first
one is devoted to the analysis of accelerometer signals by means of
two 1D convolutional blocks (convolutional layer followed by a pooling
layer), whereas the second carries out the analysis of pressures and
production rates, by applying a dropout layer to reduce the effect of
their particular relationship in the training set. Then a concatenate
layer merges together the tensors coming from the two branches, before
the final classification is realized by means of a dense layer.

This network is the result of the Bayesian hyperparameter proce-
dure. In neural networks, two families of hyperparameters are present:
structural hyperparameters, that define the overall architecture of the
model, and optimizer hyperparameters, that influence the quality and the
speed of the training procedure. The optimizer hyperparameters are
chosen by adopting an ADAM optimizer, a batch size of 128, a max-
imum number of epochs of 100 and a callback that stops the training if
the accuracy does not improve in 10 epochs. Instead the structural ones
are optimized to obtain the previously described architecture. These
hyperparameters are the dimensions of convolutive layers, the dropout
rate (considered a unique value for all the dropout layers) and the
recurrent dropout rate in the GRU layer.

Eventually, the neural network achieves an accuracy of 99.8% in
training at (400 and 800 ppm), hence it is possible to conclude that
not only the resizing looks suitable for the analysis of periodic signals,
but also that neural network in this case outperforms shallow methods.
On the other hand, when the model is tested on the data at 500 and
600 ppm the accuracy drastically reduces respectively to 57.4% and
57.8%. The detailed metrics for the application of the neural network
are described in Table 2. Considering that this is a triple classification,
these results in test are not dramatic nor sensational, but they are
certainly far from an acceptable outcome that could be used for an
automatic control quality system. The training time (including the
overall optimization procedure) is 39420 s, whereas the times elapsed

in prediction for the entire test set is 824 ms.
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Fig. 14. Neural network’s structure for the soft sensor.
Fig. 15. Confusion matrices for observation in the test set at different production rate.
.3. Application of the proposed methodology

Nominal points at the four rates can be acquired during normal op-
rations of the plant, just after maintenance to be sure they correspond
o nominal conditions. To develop the anomaly detector, it is necessary
o get access to some anomalies at two ‘‘boundary’’ production rates
to train a neural network), but only then many nominal points at
ntermediate rate are used to fit the anomaly detector. However, to
erify the effectiveness of the approach, the latter is also tested with
bnormal data at intermediate speeds.

Then, the dataset (Table 1) is partitioned in the following way:

• Fitting set : 70% of the nominal observations at each speed.
• Threshold set : composed of 20% of the nominal observations at

each speed and 80% of abnormal observations at the two limit
velocities.

• Test set : used to verify the hypothesis that this algorithm can
generalize results at different speed. It is composed by 10% of
nominal observations at each speed, 20% of abnormal observation
at the two limit velocities and all data related to anomalous
conditions at 500 and 600 ppm.

The process pipeline consists in the following steps:

1. The neural network described in Fig. 14 is trained (nominal and
abnormal data at 400 and 800 ppm).
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2. The last layer of the neural network is removed, so that the
outputs are the early predictors.

3. The data-points at 400 and 800 ppm, plus all the cycles regarded
as nominal from the production line (at every available interme-
diate rate, then 500 and 600 ppm) pass through the pre-trained
neural network, so that to extract the early predictors, that are
now vectors of 32 meaningful features.

4. The fitting set is used for the definition of the multivariate
Gaussian distribution.

5. The threshold set is used to define the threshold probability,
accordingly with the procedure proposed in An and Liu (2019).

6. The system could now be deployed on the production line for
making predictions on new cycles. Its performance is verified on
the test set.

7. Once the machinery is stopped for maintenance and activated
again, the system saves a certain number of new cycles as
nominal and the process could start again from step 3.

Eventually, after the application of the anomaly detector fed with
early predictors, this method leads to satisfactory results. The perfor-
mances in terms of accuracy evaluated on the test set are: 98.4% at
400 ppm, 92.4% at 500 ppm, 92.1% at 600 ppm and 96.3% at 800 ppm.
The detailed metrics for the application of the proposed methodology
are described in Table 2 and confusion matrices for the different speeds
are reported in Fig. 15. The training time to fit the Gaussian distribution
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Fig. 16. Accuracies at the different speeds as function of the probability threshold.
Table 2
Metrics for shallow learning methods (DA, SVM, KNN, EBT), neural network (NN) and
proposed methodology (PM).

DA SVM KNN EBT NN PM

400

Accuracy 81,8% 97,5% 95,9% 94,8% 99,8% 98,4%
Precision 87,1% 98,2% 96,9% 96,2% 100,0% 98,5%
Recall 88,5% 98,4% 97,6% 96,9% 99,8% 99,5%
F1score 87,8% 98,3% 97,3% 96,5% 99,9% 99,0%

500

Accuracy 39,7% 39,9% 40,2% 41,1% 57,4% 92,5%
Precision 40,7% 41,1% 41,1% 41,5% 57,1% 92,5%
Recall 89,9% 89,7% 90,2% 91,2% 96,8% 99,6%
F1score 56,0% 56,3% 56,5% 57,1% 71,8% 95,9%

600

Accuracy 31,9% 31,4% 33,5% 35,1% 57,8% 92,2%
Precision 34,8% 35,0% 36,9% 37,9% 56,4% 91,9%
Recall 70,8% 69,8% 71,7% 73,4% 99,1% 99,9%
F1score 46,7% 46,7% 48,7% 50,0% 71,9% 95,7%

800

Accuracy 82,9% 97,8% 95,3% 95,1% 99,8% 96,3%
Precision 83,5% 98,4% 96,6% 97,1% 99,7% 95,5%
Recall 95,9% 98,7% 97,1% 96,4% 100,0% 100,0%
F1score 89,3% 98,6% 96,9% 96,8% 99,9% 97,7%

and then set the threshold is 1.1 s, while the time to deploy it on the
test set is 5 ms.

Some considerations can then be inferred:

• This arrangement leaves the performances at the UR (800) and
LR (400) untouched, with respect to the neural network devel-
oped, but overcomes the problem of considering intermediate
production rates.

• At 500 and 600 ppm the only limit is that the system misclassifies
the 𝑚𝑖𝑠𝑙𝑟 for nominal points; since the accelerometer is placed
in driver-operator direction (and in fact all misdo are correctly
labelled), this might be due to a lack of information rather than
a limit of this approach.

• The probability threshold chosen in this way is suitable to obtain
good performances at each speed, but evidently intermediate
rates (500 and 600 ppm), for which the nominal observations are
only theoretically available, seem penalized with respect to the
two boundary speeds (400 and 800 ppm).

Regarding the last point, in the dataset, abnormal observations
at intermediate rates are present, and then it is possible to evaluate
and visualize how the performance, at different speeds, changes for
different threshold values of the multivariate Gaussian (Fig. 16). Evi-
dently, there is a range of probability thresholds (the region highlighted
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in blue colour), which minimizes the number of misclassifications at
the different speed; however, the threshold chosen with the presented
algorithm (step List 5 of the procedure pipeline), represented by the
dashed vertical line in Fig. 16, belongs to this region, showing that the
proposed methodology is robust indeed. In particular, the curve at 500
and 600 ppm in Fig. 16 have been realized by having anomalies as
well, which is obviously not the case when the quality control system
has been just developed (as stated in Section 2.5). At the beginning,
only nominal points are collected in different working points. However,
when maintenance is required, the system can flag the last manufactur-
ing cycles as anomalies, collecting them at different production rates
of interest. In this way, the curves in Fig. 16 can be effectively drawn,
and the threshold can be set to a value which maximizes the overall
accuracy (intended as mean value of the accuracy at each production
rate).

5. Conclusions

In this paper, a novel approach to address the problem of quality
control for machines working under highly inconsistent condition is
proposed. The system relies on the application of a soft sensor and
the use of its pre-trained neural network to extract meaningful features
for feeding an anomaly detection system. The procedure to collect a
limited, but meaningful dataset, is reported as well. The methodology
has been applied to a real test case, i.e a workstation of a manufacturing
line characterized by significantly variable working conditions. This
made it possible to prove how this method has shown to be effective
in a situation where other methods based on simple feature extraction
failed.

With this work, it was highlighted how some approaches developed
for fault detection in machines cannot be applied in a quality control
context. This is proven in Table 2, where the metrics for the different
algorithms are compared. In the reported test case, the solution allows
to move from a spot-check quality control (performed every 4 h) to real
time monitoring. The economic impact of the monitoring system can
be quantified in terms of the number of non-compliant outputs, which
passes from around 18% to less than 1%. This surely demonstrates
that investment related to implementation of the acquisition system,
the collection of the training set and development of the algorithm
are justified. Moreover, the approach looks easily adaptable on a wide
variety of quality control problems where the collection of a training
set appears troublesome and finally, it adequately allows to overcome
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the limits underlined in previous works on similar topics (Bono et al.,
2022b).

A future development of this work might address the application
of the proposed methodology on other case studies, to validate or
improve the procedure itself. Moreover, it might be stated that having
a multivariate Gaussian distribution is not the best possible choice
for the anomaly detector. The time required to fit the Gaussian is
strictly related to the number of features. In this work, the neural
network allows to generate a low dimensional feature space by means
of the early predictors (transfer learning) and, for this reason, the
computational time related to fitting the Gaussian is competitive. How-
ever, future works must involve the evaluation of different models as
anomaly detectors, possibly to increase the extrapolation capabilities of
the quality control systems.

Moreover, the use of Generative Adversarial Networks (GANs) and
Autoencoders look promising in other research fields, and therefore
those methods should necessarily addressed by future works.
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