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Abstract

More and more often, geometric specifications (such as straight-
ness, roundness, flatness, cylindricity, free-form profiles and surfaces)
appear as requirements for machined items in technical drawings.
Typically, Coordinate Measuring Machines (CMM) are used to in-
spect the machined feature and the cloud of measured points is used
to check whether the machine item should be scrapped or not. In
fact, the measured points are used to compute the form error with
reference to the specific tolerance under study. The estimated error
is usually affected by uncertainty which depends on both the sample
size (number of points measured on a given profile/surface - which
mainly affects the sampling costs) and the sampling strategy (posi-
tion of the points on the profile/surface). The present research work
focuses on the second issue and investigates the performance of several
existing sampling strategies and the ones achieved by two newly pre-
sented approaches. These new approaches explore advantages arising
by including considerations provided by the manufacturing process in
the sampling strategy design. Throughout the paper, a real case study
concerning flatness tolerance is used as reference.

Keywords: sampling strategy, geometric tolerance, measuring, CMM,
variable selection, PCA

1 Introduction

Inspection of geometric tolerances is a complex task because geometric errors
are related to three-dimensional features and estimation of this type of errors
is usually based on a cloud of points that has to be measured on the machined
surface. CMMs (Coordinate Measurement Machines) are the most diffused
instruments for 3D measurement in the mechanical field, because of their
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accuracy and flexibility. Recently, approaches for geometric shape monitoring
have been proposed in the SPC (Statistical process control) literature [1, 2].
These approaches assume that, for each specific nominal geometry (circle,
cylinder, line, plane, etc.), a given set of points is measured via CMM on
the new machined item. These points are then elaborated for inspection or
monitoring purposes, where inspection deals with deciding whether or not
the machined item is conforming to requirements (by computing the form
error and comparing it with the specified tolerance limit), while monitoring
is aimed at detecting an out-of-control state of the manufacturing process
(using approaches as the one presented in xxxxx).

In order to perform either inspection or monitoring or both, a basic issue
consists in selecting the measurement strategy, which consists in solving two
main issues. The first consists in selecting the sample size of the cloud of
points that has to be measured, while the second issue consists in selecting
the exact position of each measured point. This paper deals with this second
issue, which will be referred to as sampling strategy in the following. The se-
lection of a sampling strategy becomes more and more relevant as the sample
size decreases. In fact, when the cloud of points is particularly dense (i.e.,
thousands of points), the required tolerance is well estimated despite of the
exact position of each sampled points. However, on-line applications of toler-
ance estimation require reduced sample size (because measurement costs are
directly related to the number of points that have to be measured). When
the sample size is reduced, the exact position of the measurement points
play a relevant role. Most of the approaches proposed in the literature and
in the international standard , e.g., ISO 12781 for flatness [3], suggest the
use of strategies which are defined a priori, despite of the specific manufac-
turing process which has been used to produce the feature. Examples are
the uniform, random or quasi-random (e.g., Hammersley sequence [4]) dis-
tribution of the sample points on the surface that has to be inspected. All
these sampling strategies will be referred to as “a-priori strategies”.

A second approach proposed in the literature consists in adopting “adap-
tive sampling strategies” [5, 6, 7, 8]. Adaptive sampling is a multi-step
methodology, which starts with a low density, usually uniformly spaced,
sampling of the feature of interest. Given information collected in this start-
ing sample, the adaptive algorithm selects the next sampling points. The
procedure is iterated until a required precision of the tolerance estimate is
achieved. Although effective, adaptive sampling strategies are hard to im-
plement in traditional CMMs, and this is probably why they did not receive
great attention in the literature and in industrial practice.

Given that each feature is obtained with a specific process, a different
approach to sampling strategy consists in considering that each particular
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production process leaves a particular “fingerprint” on the machined surface.
This fingerprint will be referred to as the “manufacturing signature”. As
an example, consider the increase in the diameter of cylindrical parts which
can be observed when workpieces are obtained by turning. This particular
signature is due to an inflection of the workpiece while the tool is moving
far from the spindle. The manufacturing signature can be defined as the
systematic pattern which characterizes all the features machined with a given
process. This systematic pattern will be obviously “masked” by additional
random noise caused by the natural variability of the process (e.g., due to
vibrations, dirt, non homogeneous material, etc.).

The knowledge of the manufacturing signature can obviously aid the se-
lection of a proper sampling strategy. In [9, 10], geometrical features are
modeled via Discrete Fourier Transform (DFT) and models identified are
then used to select a sampling strategy, with reference to an economical ob-
jective function. However, these approaches focus mainly on dimensional in-
spection of geometric features (e.g., the diameter of cylindrical components)
and the specific model adopted, namely DFT, induces a uniformly spaced
sampling strategy.

A true attempt to link the manufacturing signature to the selection of
the sampling strategy has been proposed in [11, 12]. This method, called the
“Extended Zone” (EZ), is a two-step approach: in the first step, a parametric
model of the signature is identified and estimated by using linear regression.
In the second step, sampling point are selected in order to minimize the
variance of the regression model coefficients.

In this paper we will further investigate the advantages obtainable by
selecting a sampling strategy which is based on information related to the
manufacturing signature. In particular, we will explore the use of a tech-
nique adopted to select variables in multivariate statistical analysis. This
technique, known as Principal Component Variables (PCV) selection will be
adapted to the specific problem at hand (i.e., defining a sampling strategy
of geometrical tolerances) and described in Section 2.1. In order to define
the sampling strategy, a second and new approach will be proposed in this
paper. This approach will be based on using the signature to identify the
points that mainly influence the geometrical tolerance and will be referred
to as “Extreme Points Selection” (EPS). This approach will be presented
in Section 2.2. Eventually, Section 2.3 will present a comparison of all the
different approaches (a polar grid which represents the ISO standard, Ham-
mersley sequence, PCV, EPS) with reference to a real case study related to
flatness of surfaces obtained by face turning.
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1.1 Case study

Figure 1: The original sampling strategy for the manufactured disks.

The case study consists of planar surfaces obtained by face turning. The
test item are a set of 130 austempering iron disks of 90 mm diameter. 120
points were measured on each disk, as shown in Figure 1: this sampling
strategy can be considered as a “rectangular grid”. To sample the surface a
“Zeiss Prismo VAST HTG” CMM was used; whose main characteristics are:

• Maximum permissible error [13]: MPEE = 2 + L/300 µm

• Maximum permissible error [13]: MPEP = 1.8 µm

For each machined feature, the whole set of 120 points was used to esti-
mate the flatness tolerance by using a Minimum Zone (MZ) algorithm; the
standard uncertainty for this reference value is about 0.7 µm (according to
previous experimental studies on similar features).

Figure 2 shows the surface obtained by averaging the 130 measured sur-
faces. The presence of a signature is quite evident: the surface, that nomi-
nally should be a flat plane, is concave. Some reasons can be suggested for
this behavior: the axis of the lathe used to machine the surface were perhaps
not perpendicular, or some strange inflection of the tool may have happened.

2 Sampling Strategy for Flatness: the Stan-

dard

The international standard ISO 12781 [3] defines requirements for a sam-
pling strategy that is intended to be used for estimating flatness. Because
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Figure 2: The average surface observed in the real case study (all the dimen-
sions shown are in [mm]).

harmonic content of the surface is considered to be the main contributor
to flatness error, the standard proposes some sampling strategy which are
constituted of densely sampled profiles, giving rise to polar grid, rectangular
grid, union jack, triangular grid and parallel profiles extraction. Depend-
ing on the particular geometry, a point extraction strategy is also suggested
(for instance, disks should be inspected by means of a polar grid extraction
strategy).

Unfortunately, profile measurement can not be easily performed when
common CMM with touch trigger probe are used. Moreover, sampling thou-
sands of points with a touch trigger CMM would require a very long time,
so sample size has to be reduced. Given the sample size, in order to com-
pare different measuring strategies with the one assumed by the standard, a
polar-like positioning of measurement points has been considered.

2.1 A PCA-based selection: the Principal Component
variables (PCV)

Principal Components Analysis (PCA) is one of the best known methods
to reduce the dimensionality of a multivariate data set, while preserving as
much as possible of the variability present in the data set. An exhaustive
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description of PCA can be found in standard text as [14]. When dealing
with geometric tolerances, it has been shown that PCA can aid determin-
ing the systematic pattern characterizing a set of machined items, i.e., the
manufacturing signature [15]. In this case, the points sampled on a given
profile or surface can be modeled as a multivariate random vector of size p.
Therefore the p components of the random vector (or p variables) are related
to the p location at which the data are collected on profiles and/or surfaces.
In particular, with reference to flatness specification, the p-variate random
vector shows the values observed along the z direction observed at p different
locations in the x− y plane (shown in Figure 2) .

Based on PCA, several variable selection methods have been proposed in
the literature [16, 17, 18]. The main idea behind these selection procedures
is to retain just few variables (i.e., few points) among the initial set of p vari-
ables (i.e., an initial set of points sampled with a dense inspection strategy)
while retaining most of the variability observed in this initial set. Among
the different approaches for Principal Component variable selection, it has
been shown that the RM method is able to achieve effective results at low
computational costs [19] and this is why we will refer to this approach in this
paper. The RM method [19, 20] is based on an optimality index aimed at
selecting a subset of k variables (i.e., a subset of locations) which preserving
most of the information contained in the whole set of p original variables (lo-
cations). In particular, the RM method is based on computing a similarity
index between the subspace spanned by the original set of p variables and
the one spanned by the selected subset of dimension k. This similarity index
is based on the definition of ”angle” between two matrices A and B, which
is defined by the angle cosine, referred to as ”matrix correlation” between
matrices A and B and given by:

cos (A,B) =
< A,B >

||A|| · ||B|| (1)

where < A,B >= tr(ATB) is the inner product of two matrices while
||A|| =

√
tr(ATA) is the norm [20].

With reference to a set of geometric features inspected at p locations, let
X represent the n × p matrix containing, in the ith row, the set of p data
observed on the ith item (i = 1, ..., n). Assume that the matrix X has been
column-centered, as usually done in PCA, i.e., assume that the average path
observed over the p locations has been subtracted by the original data. Let K
denote the matrix obtained by selecting a subset K of k columns of X. The
RM indicator is defined as the cosine of the angle between the original data
matrix X and the matrix whose columns are obtained by regressing each
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of the p original columns on K (i.e., orthogonally projecting the original
columns in the subspace K of Rn spanned by K)

RM = cos (X,PKX) =

√
tr (XTPKX)

tr (XTX)
(2)

where PK is the matrix of orthogonal projections on K. A different meaning
of RM can be seen introducing (rm)i as the multiple correlation coefficient
between the ith PC (computed on the original data matrix X) and the k
variables in K:

RM =

√∑p
i=1 λi (rm)2

i∑p
i=1 λi

(3)

where λi is the eigenvalue of the covariance matrix of X associated to the ith

principal component (note that the eigenvalue λi, ∀i, does not depend on the
choice of K). In this case RM can be interpreted as a weighted average of
the squares of the multiple correlations between the PCs and the k selected
variables, where the weights λ′is are the PCs variances.

An exact identification of the best subset of k variables would require an
exhaustive enumeration of all the possible subset of size k that can be found
starting from the original set of p variables. Unfortunately, this exhaustive
enumeration requires a prohibitive computational time. Therefore, different
heuristic algorithms have been proposed [20]. In particular, the present pa-
per will investigate performance obtainable by using a simulated annealing
algorithm for subset selection (a freely available software can be found among
packages running with “R” [21]).

This sampling strategy will be referred to as “Principal Component Vari-
ables” (PCV) in the following.

2.2 Extreme Points Selection (EPS)

When estimating form error via the Minimum Zone algorithm (MZ), only few
points held all the information needed, namely the “essential subset” [22].
For instance, when the form error concerns circularity, the MZ algorithm
requires one to compute the radial distance between two concentric circles
containing among them all the observed data and having the least radial
separation. In this example, only four points define the inscribed and the
circumscribed circles required to characterize the MZ estimate of the form
error. These four points constitute the essential subset (ES).
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If a manufacturing signature is present, points in the ES will tend to
appear approximately in the same position. In fact, the manufacturing sig-
nature is defined as the systematic pattern characterizing all the items pro-
duced with a specific process. When all the machined items have the same
systematic pattern, it is likely that the ES will be constituted by a specific
subset of points which are always in the same positions.

Figure 3: Extreme point histogram.

Therefore, the proposed procedure consists in identifying these subset of
relevant points by using a (dense) sampling strategy on a first set of machine
items. Assuming n items have been sampled in p locations, define:

eij =





1 if the sampling point corresponding to the jth location belongs

to the essential subsets (i.e., it an extreme point) for the ith part;

0 otherwise

(4)

where i = 1, 2, . . . , n and j = 1, 2, . . . , p. Define

Ej =
n∑

i=1

ei,j (j = 1, 2, . . . , p) , (5)

then Ej is a counter for the number of times that the jth location resulted
an extreme point (i.e., affected the form error estimate). Eventually, we can

8



simply rank Ej’s, so that E[1] ≤ E[2] ≤ · · · ≤ E[p], and given k < p sampling
locations have to be selected, locations corresponding to E[1], E[2], . . . , E[k]

will be selected. Clearly, this point selection methodology corresponds to
choosing the points which correspond to the highest values in an EPS his-
togram, i.e., an histogram showing the occurrences of extreme points at each
location.

Figure 3 shows the EPS histogram in the case of our flatness case study,
where the ordinate represents the number of times each location corresponded
to an “extreme” point (i. e., the point influenced the form error estimate) in
the whole set of n = 130 disks in the reference sample.

2.3 Experimental results

With reference to the real case study, five measuring strategies are compared.
The first two strategies are “a-priori” strategies, namely the Hammersley
(H) and the polar grid (which represents the ISO-like procedure for flatness
error estimation and will be labeled ISO in the following). The remaining
three procedures are all signature-based points extraction strategies: the EZ
procedure [11, 12] and the two procedures (PCV and EPS) proposed in this
paper. Let i denote the ith flatness surface obtained by face turning an
austempering iron disk (i = 1, . . . , n = 130). For each surface, a MZ flatness
form error estimate was firstly computed by using the whole set of p = 120
points represented in Figure 1. For each item i (i = 1, . . . , 130) this value of
the form error is taken as reference. As a matter of fact, the estimate of the
MZ form error for the same item will be different from this reference value
when just a subset of k < p = 120 locations are considered in the form error
computation. In particular, the estimated error associated to this subset of
points is usually lower than the reference one. In fact, when only few points
out of the whole set of data are selected, it is unlikely that these points are
just the extreme ones. This is why the performance indicator of the selection
procedure is computed as the difference between the reference form error
(computed by using the whole set of data) and the error computed by using
just the specific subset chosen by the sampling strategy (H, ISO, EZ, PCV,
EPS) for each machined item. Obviously the best procedure will be the one
which allows one to achieve the minimum performance indicator.

Figure 5 shows the comparison of errors obtained by comparing the polar
strategy (ISO) and Hammersley procedure (H) for different values of the sub-
sample size k = [9, 13, 19, 25, 33]. For each value k, the different sampling
strategies are applied to all the flat surfaces (i = 1, 2, ,̇n = 130) under study
and a final 95% confidence interval of the median performance indicator is
computed (as shown in ). Here the median is used because the computed
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Figure 4: Performance comparison: polar (ISO) vs. Hammersley (H) strate-
gies as a function of the number of selected points k.

performance indicators are not normally distributed. As shown in Figure 5,
the Hammersley sequence induces always a median indicator which is greater
than the one obtained by using a polar-grid (ISO) approach. Therefore, the
ISO procedure should be preferred to the Hammersley’s one in the specific
case under study.

Figure2.3 shows the comparison of this ISO (polar) strategy with the
signature-based sampling methods (EZ, PCV, EPS). Here again, the figure
reports the 95% confidence intervals on the median indicator obtained by
using the different approaches for subset size ranging from 9 to 33. Figure2.3
shows that, with the exception of samples of size 9 and 13, all the signature-
based strategies perform always better than the ISO-based approach. In
particular, the EPS approach proposed in this paper outperforms all the other
methods, despite of the actual value of the sample size k = [9, 13, 19, 25, 33].

Eventually, Figure 6 shows the position of the points chosen by the dif-
ferent signature-based sampling strategies (for the sample size k = 33). As
clear from this pictures, all these sampling strategies tend to concentrate
sampling points at the center and on the borders of the machined surface,
according with the signature pattern shown in Figure 2. This well-behaved
pattern is particularly clear for the EPS algorithm, which resulted to be the
best approach.
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Figure 5: Performance comparison: polar (ISO) vs. signature-based strate-
gies (EZ, PCV, EPS) as a function of the number of selected points k.

Figure 6: Pattern of the selected locations with different sampling strategies.
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3 Conclusions

In the present paper, we showed that sampling strategies which account for
the information coming out from the manufacturing process can be very effec-
tive for inspecting items when geometrical form tolerance are of interest. In
particular, information coming out from the manufacturing process is sum-
marized in what we called the manufacturing signature, i.e. the systematic
pattern which characterizes all the features machined with a given process. A
new sampling strategy proposed in this paper (the Extreme Points Selection
strategy) was shown to outperform different approaches proposed in the lit-
erature and in the ISO standard. Since measurement costs are proportional
to measurement time, techniques aimed at obtaining small systematic errors
in geometrical tolerance estimates while reducing the number of sampled
points can be effectively used in industrial practice. The main limitation
behind the application of these methods is that if the signature changes
without any advice (for instance because of a sudden change in the machine
tool) these techniques can become “dangerous”, because they can suggest the
measurement of points which are no more relevant to describe the system-
atic pattern of machined items. Therefore a signature monitoring technique
should always to be used when applying one of these methods [23, 2]. These
approaches basically consist of a first step in which the signature model for
an in-control process is identified. Coefficients characterizing the in-control
model are then monitored using multivariate control charting. Therefore,
any instability of the manufacturing signature results in unusual values of
the model coefficients which, in turn, generate an out of control alarm.
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