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Abstract. Large deflections in thin plates introduce a nonlinear membrane-flexural coupling
which significantly modifies the plate behaviour under transversal and in-plane loading. This
effect is often important when considering metamaterial plates with periodically distributed
heterogeneities or holes. In this work, we employ the asymptotic homogenization technique
to study the effective nonlinear behaviour of periodic Föppl-von Kármán plates in the static
regime. Then, we validate the method by simulating the nonlinear response of the perforated
plate (backplate) which is present in a micro-electro-mechanical microphone to limit the dis-
placements of the vibrating membrane.
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1 INTRODUCTION

When the out-of-plane deflection of a plate is sufficiently large with respect to its thickness,
non-negligible membrane deformations and membrane forces can arise. These latter can play a
significant role in the transversal equilibrium of thin plates. The simplest theory that accounts
for the coupling between the membranal and flexural behaviour is the non-linear model of Föppl
and von Kármán [1] where the equilibrium of thin plates is studied under the hypothesis of small
strains and moderately large displacements.

The nonlinear membrane-flexural coupling is often important when considering periodically
perforated plates since the presence of holes increases the compliance and hence the holed
plate undergoes larger displacements than the homogeneous one. The numerical simulation of
such periodic structure is expensive from the computational point of view, not only due to the
fine mesh required to discretise the complex geometry, but also due to the nonlinearity of the
analysis.

Asymptotic homogenization is a mathematical technique that allows studying the effective
behaviour of media with periodic heterogeneities, which can be voids or different materials [2].
For fully linear problems, the method allows to obtain explicit expressions of the homogenized
properties of periodic solids [3, 4, 5] and plates [6, 7] both in the static and dynamic regime.
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Figure 1: Jig geometry (left) with a close-up view of the capsule (middle) containing the MEMS
microphone; (c) model of the structural part: backplate, membrane and solid base.

As discussed in [8], the two-scale asymptotic homogenization can be extended to the partic-
ular nonlinear problem described by the Föppl-von Kármán model. As the size of the unit cell
tends to zero, the homogenization approach allows to study the global buckling and the post-
bifurcation regime of thin plates [9], with a significant advantage in terms of computational
time.

In this work, we summarize the asymptotic homogenization of Föppl-von Kármán plates
in the static regime. Then, we validate the method by analyzing the nonlinear behaviour of a
perforated plate with reference to a specific application for a Micro-Electro-Mechanical-System
(MEMS) microphone.

Figure 1 shows, on the right, the mechanical part of the MEMS microphone which is com-
posed of a thin silicon membrane (in green) whose transversal displacement is limited by a thin
silicon-nitride plate (the backplate, in grey). Figure 1 shows also a solid portion of the cham-
ber (in yellow) where the microphone is located. The whole MEMS is packaged in a capsule
(middle) which is placed on portable devices, such as smartphones. To assess the reliability of
the microphones, drop tests are usually performed on a dummy device, also called jig, shown
on the left in Figure 1.

Accidental drops may lead to a complete failure of the MEMS microphone, which is caused
by the combined effect of

• the air overpressure acting on the microphone components due to the fall, which is pro-
voked by the airflow passing through a narrow duct that connects the MEMS chamber
with the exterior environment;

• the relative displacements of the microphone anchors due to the propagation of stress
waves generated by the first impact (and subsequent impacts) of the jig against the ground.

As explained in [10], experimental guided free-fall tests are not resolutive for a complete
understanding of the physical phenomena. Finite element analyses are thus mandatory to un-
derstand under which conditions the MEMS microphone fails.
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(a) (b)

Figure 2: (a) Simplified geometry of the backplate, loaded on the blue-shaded area, with bound-
ary conditions: black portion is clamped, green portion can only slide horizontally and red por-
tion is inward displaced. (b) Unit cell of the backplate.

In particular, the anchor displacements have been carefully modeled in [11] with special
regard for the backplate, which has been shown to exhibit significant nonlinear effect due to
the combined membrane (the anchor imposed motion) and transversal loading (air pressure and
contact with the membrane). In this framework, asymptotic homogenization could be useful to
reduce the computational cost of the many simulations of the MEMS backplate, corresponding
to different combinations of imposed displacements and pressure.

2 HOMOGENIZATION OF NONLINEAR THIN PLATES

Let us consider a non-homogeneous plate having mid-surface Ω, as the central portion of the
backplate of Figure 2a, which is characterized by the periodic repetition of a unit cell Y ε (see
Figure 2b). The plate thickness hε(x) and material properties are assumed to vary periodically.

In the hypothesis of scale separation, i.e., when the ratio ε between the characteristic sizes of
the unit cell and of the macroscopic domain is sufficiently small, the effective behaviour of the
periodic plate can be studied through asymptotic homogenization.

Assuming linear-elastic materials and moderately large displacements, the equilibrium of the
periodic plate is governed by the set of equations{

∇ ·Nε + qε = 0

∇ · (∇ ·Mε) +∇ · (Nε · ∇wε) + pε = 0
in Ω. (1)

In (1) pε and qε are, respectively, the transversal and membrane applied loads, and

Nε = N ε
11e1 ⊗ e1 +N ε

22e2 ⊗ e2 +N ε
12e1 � e2,

Mε = M ε
11e1 ⊗ e1 +M ε

22e2 ⊗ e2 +M ε
12e1 � e2.

in Ω, (2)

where e1 and e2 are the unit vectors of the reference frame x1 − x2. In equation (2), N ε
11, N

ε
22

and N ε
12 are the normal and shear membrane forces, while M ε

11,M
ε
22 and M ε

12 are the bending
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and torsional moments. For elastic plates, the tensors Nε and Mε can be expressed as functions
of the in-plane displacement vector uε = u1e1 + u2e2 and of the out-of-plane displacement
component wε through

Nε = Aε :

(
ε(uε) +

1

2
∇wε ⊗∇wε

)
and Mε = −Bε : ∇⊗∇wε in Ω, (3)

with ε(uε) denoting the symmetric part of the displacement gradient ∇uε. In equation (3), Aε

and Bε are the plate membrane and flexural stiffnesses, which can be expressed in terms of the
Young’s modulus Eε and the Poisson’s coefficient νε as

Aε = Dε
ph

ε and Bε = Dε
p

(hε)3

12
, with Dε

p =
Eε

1− (νε)2
[(1− νε)I + νεI⊗ I] . (4)

According to the two-scale asymptotic homogenization technique, we introduce the fast vari-
able y = x/ε and the re-scaled unit cell Y = Y ε/ε of the periodic plate. For any field f(x,y)
we denote by ∇xf and ∇yf the gradients of f with respect to the slow and fast variables, re-
spectively, so that ∇f = ∇xf + ε−1∇yf . Similarly, the symmetric part of the displacement
gradients with respect to x and y are denoted by εx and εy. The solution of problem (1) is
searched assuming the following expansions

uε(x) = u0 (x,x/ε) + ε u1 (x,x/ε) + o(ε)

wε(x) = w0 (x,x/ε) + ε w1 (x,x/ε) + ε2w2 (x,x/ε) + o(ε2)
in Ω, (5)

where the fields ui(x,y), wi(x,y) are defined on Ω × Y and are Y−periodic with respect the
second variable. The plate thickness and the material properties are assumed to vary only at the
micro-scale, which means

hε(x) = h (x/ε) , Aε(x) = A (x/ε) , and Bε(x) = B (x/ε) in Ω, (6)

while the external loadings can also exhibit a variation within the macroscopic domain, i.e.,

qε(x) = q (x,x/ε) and pε(x) = p (x,x/ε) in Ω. (7)

All the fields h(y),A(y),B(y),q(x,y) and p(x,y) are defined on Ω× Y and are Y−periodic
with respect the fast variable y.

Replacing (5), (6) and (7) into the governing equations (1), (3) and (4) one obtains a sequence
of differential problems to be solved for each order of the parameter ε. In particular, it is possible
to prove that the fields u0, w0 and w1 are independent of y, namely

u0(x,y) = U0(x), w0(x,y) = W 0(x) and w1(x,y) = W 1(x) in Ω× Y, (8)

while the leading terms of the membrane forces and moments are given by

N0(x,y) = a
0(y) :

(
εx(U0(x)) +

1

2
∇xW

0(x)⊗∇xW
0(x)

)
M0(x,y) = −b0(y) : ∇x ⊗∇xW

0(x)

in Ω× Y. (9)
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For each point x ∈ Ω of the homogenized plate, equation (9) allows to reconstruct the local
membrane forces and moments within the re-scaled unit cell Y . Their evaluation is obtained by
combining the homogenized displacements U0(x),W 0(x) with the so-called stress localization
tensors a0(y) and b0(y), whose components are given by

a0ijhk(y) = (ei � ej) : A(y) : (eh � ek + εy(αhk(y)))

b0ijhk(y) = (ei � ej) : B(y) : (eh � ek −∇y ⊗∇yβ
hk(y))

in Y, (10)

for i, j ∈ {1, 2}. In equation (10), αij(y) and βij(y) are the solutions of the following linear-
elastic problems

αij(y)→


∇y · [A : (εy(αij) + ei � ej)] = 0 in Y
αij periodic on ∂Y
[A : (εy(αij) + ei � ej)] · n anti-periodic on ∂Y

, (11)

βij(y)→


∇y · (∇y ·Mij) = 0 in Y
βij, n ·Mij · n periodic on ∂Y
∇yβ

ij · n, (∇y ·Mij) · n +∇y(t ·Mij · n) · t anti-periodic on ∂Y
, (12)

where Mij = B : (−∇y ⊗∇yβ
ij + ei � ej), while n and t are the unit normal and tangential

vectors of the cell boundary. The function αij(y) (resp. βij(y)) is the in-plane (resp. out-
of-plane) displacement field of the plate unit cell Y when it is subject to a uniform membrane
eigenstrain (resp. eigencurvature) ei � ej and periodic boundary conditions.

The homogenized equilibrium equations of the nonlinear plate read{
∇x · 〈N0〉+ 〈q〉 = 0

∇x · (∇x · 〈M0〉) +∇x · (〈N0〉 · ∇xW
0) + 〈p〉 = 0

in Ω. (13)

where we have introduced the average operator over the re-scaled unit cell

〈�〉 =
1

|Y |

∫
Y

� dy. (14)

Through equation (9), the average plate forces and moments can be expressed as〈
N0
〉

= A0 :

(
εx(U0) +

1

2
∇xW

0 ⊗∇xW
0

)
〈
M0
〉

= −B0 : ∇x ⊗∇xW
0

in Ω, (15)

where A0 = 〈a0〉 and B0 = 〈b0〉 are the homogenized membrane and bending stiffness of the
plate.

As can be seen from (13), the homogenized plate obeys the Föppl-von Kármán theory. In
particular, the homogenized stiffnesses A0 and B0 of the plate are obtained by the solution of
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(a) eigenstrain e1 � e1 (b) eigenstrain e2 � e2 (c) eigenstrain e1 � e2

(d) eigencurvature e1 � e1 (e) eigencurvature e2 � e2 (f) eigencurvature e1 � e2

Figure 3: Contours of the displacement magnitude of the solution of the membrane cell prob-
lems (a,b,c) and of the out-of-plane displacement of the solution of the flexural cell problems
(d,e,f).

linear-elastic cell problems and are therefore independent of the nonlinear behaviour of the
plate. This result is due to the particular nonlinearity considered in the Föppl-von Kármán
model, and may not remain true when considering different kinds of geometrical or material
nonlinearities.

Note that, even if from (4) one has B = Ah2/12, in general, the homogenized membranal
and flexural stiffness of the plate are no more related, i.e., B0 6= A0h2/12.

3 NUMERICAL EXAMPLE

To validate the non-linear homogenization of Föppl-von Kármán plates, we refer to the prac-
tical application of MEMS microphones, devices which are commonly used in smartphones.

To this purpose, we consider a simplified geometry of the backplate, shown in Figure 2a.
The thickness is assumed uniform and equal to 3 µm, while the constituent material is modeled
as isotropic with Young’s modulus E = 169 GPa and Poisson’s ratio ν = 0.3.

3.1 Homogenization of the inner region

The central portion of the backplate, a rectangle of size 582.4 µm × 600 µm, is periodically
perforated by circular holes of radius R = 9.5 µm according to a rhomboidal pattern. Figure
2b shows a close-up view of the unit cell Y ε of the periodic region.

To characterize the effective homogenized behaviour of the periodic structure, one has to
solve the membrane (11) and flexural (12) cell problems by finite element analysis. Figures 3
a, b and c show the solution of cell problems α11, α22 and α12, associated (respectively) to a
uniform horizontal and vertical longitudinal eigenstrain, and to a uniform angular eigenstrain.
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In the second row, the solution of the flexural cell problems β11, β22 and β12 associated to
uniform imposed bending (Figure 3 d,e) and torsional (Figure 3 f) eigencurvatures are reported.

On the basis of the solution of the cell problems, the stress localization tensors a0 and b0

can be computed through equation (10). Finally, the homogenized membrane and bending
stiffnesses A0 and B0 of the backplate perforated region are obtained by averaging the tensors
a
0 and b0 over the re-scaled unit cell Y .

3.2 Validation of the homogenized properties

The simplified backplate of Figure 2a is numerically simulated through the commercial finite
element software COMSOL Multiphysics. The results are then compared with those obtained
when the inner perforated region is replaced by an equivalent homogenous plate, whose prop-
erties are obtained through the asymptotic homogenization technique.

With reference to the colours used in Figure 2a, in the following example, the backplate is
constrained as follows: the normal rotation is fixed equal to zero on the whole exterior boundary;
the black portion of the boundary is fixed; the green portion of the boundary can only slide in
the horizontal direction; the red portion of the boundary is subjected to an inward horizontal
imposed displacement u, bringing the backplate in compression.

3.2.1 Linear buckling analysis

As a first example, we perform a linear buckling analysis of the backplate to determine the
critical value of the imposed displacement ucr, which defines the condition from which non-
trivial equilibrium configuration w(x) 6= 0 arises. The critical value reads ucr = 0.0947 µm for
the holed backplate and ucr = 0.0933 µm for the homogenized one, showing an error of 1.48%.

Figure 4 shows the comparison between the first buckling mode of the backplate modeled
with the real geometry and through homogenization: a good agreement between the two so-
lutions can be observed. It should be noted that this result may not remain true for loading
conditions that activate the localized buckling mode of the perforated region, which cannot be
captured by the homogenization procedure.

3.2.2 Nonlinear static analysis

With reference to the application in MEMS microphones, we consider a nonlinear numerical
simulation of the backplate. Initially, a constant pressure p = 10 kPa is applied on the blue
circular region of radius 260 µm shown in Figure 2a with fixed boundary. Then, keeping con-
stant the applied transversal load, we apply an inward imposed displacement u, monotonously
increasing from 0 to 1 µm. The values chosen for the transversal and membrane load are of the
same order of magnitude as those employed in the simulation of the guided free-fall in [10, 11].

The numerical simulation of the model with the real geometry requires 50 minutes, while
the homogenized one takes only one minute and a half, showing a reduction of the 97% of the
computational time.
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(a) (b)

Figure 4: Contour of the out-plane displacement of the first buckling mode under imposed
displacement u. (a) Real backplate; (b) homogenized model.

Real plate

Homogenized plate

(a) (b)

Figure 5: (a) Maximum deflection of the plate versus imposed displacement for the model with
real geometry (markers) and the homogenized one (continuos line); (b) Relative error between
real and homogenized solution versus imposed displacement.

Figure 5a shows the maximum out-of-plane displacement of holed backplate (black mark-
ers) and the homogenized one (green line) due to monotonously imposed displacement u. A
satisfactory agreement between them is obtained with an error always lower than 3%, see Fig-
ure 5b. Due to the nonlinear membrane-flexural coupling of the Föppl-von Kármán theory, the
deflection of the plate is magnified as u increases. Note that the numerical analysis is performed
in the post-buckling phase since ucr � 1 µm.

A good agreement is also obtained in terms of the spatial variation of the plate deflection as
shown in Figure 6: the contour of the homogenized displacement well approximates the real
one in the whole loading range.

In view of the application in MEMS microphones, one is also interested in the evaluation

1581



David Faraci and Claudia Comi

(a) Real model, u = 0 µm (b) Real model, u = 0.5 µm (c) Real model, u = 1 µm

(d) Homog. model, u = 0 µm (e) Homog. model, u = 0.5 µm (f) Homog. model, u = 1 µm

Figure 6: Contour of the out-of-plane displacement for imposed displacements of 0 µm (a,d),
0.5 µm (b,e) and 1 µm (c,f). First row: model with real geometry, second row: homogenized
one.

of the stress state in the backplate to assess whether or not the material fails. To this purpose,
one has to reconstruct the local fields of the membrane forces and moments starting from the
solution of the homogenized plate and using equation (9).

As an example, Figure 7 compares the real distribution of the bending moment M11 in the
central portion of the perforated backplate for an imposed displacement u = 1 µm (figure
7a) with that computed in the middle of the homogenized backplate and reconstructed through
equation (9) on the unit cell (Figure 7b). A good qualitative agreement between the two distri-
butions is obtained. As expected, a concentration of the bending moment M11 is observed in
correspondence to the circular holes, in the point indicated with a black circle in Figure 7. The
evolution of M11 at this point as a function of the imposed displacement u is shown in Figure
8a, with black markers for the real backplate and with a continuous line for the homogenized
one. The homogenization procedure gives a good estimate, with a maximum error of 8% (see
Figure 8b).

The same procedure can be followed to reconstruct the local field of the plate membrane
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(a) (b)

Figure 7: Contour of the bending moment M11 in the case u = 1 µm. (a) Close-up view of the
central region of the real plate; (b) local field in the middle of the homogenized plate.

Real plate

Homogenized plate

(a) (b)

Figure 8: (a) Evolution of the bending moment M11, as a function of the imposed displacement
u, at the point marked in Figure 7 in the central region of the backplate; (b) relative error
between the real bending moment and those obtained through homogenization.

forces, as shown in Figure 9a for the internal force N11, evaluated at the black point depicted in
Figure 7. Initially, due to the applied transversal load, the plate is stretched in the x1−direction,
showing a positive value of N11. As the right edge is displaced inward, the plate undergoes
compression and N11 monotonously decreases and changes sign for u ' 0.4 µm. A good
agreement between the homogenized (continuous) and the real (markers) backplate can be ob-
served, as shown by their difference in Figure 9b.

4 CONCLUSIONS

In this work, we apply asymptotic homogenization to the nonlinear plate model proposed by
Föppl and von Kármán. This allows us to study the effective behaviour of a periodically per-
forated backplate, which is employed in MEMS microphones and undergoes transversal loads
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Real plate

Homogenized plate

(a) (b)

Figure 9: (a) Evolution of the normal membrane force N11, as a function of the imposed dis-
placement u, at the point marked in Figure 7 in the central region of the backplate; (b) difference
between the real and the homogenized values.

and anchor-imposed displacements. The homogenization procedure allowed us to obtain satis-
factory results for nonlinear analyses in the post-buckling regime, both in terms of displacement
and local stress state.

Regarding the specific application considered, the next step would be the modelling of the
contact between the MEMS membrane with the perforated backplate. As observed by numer-
ical simulation of the real microphone, the region where the membrane touches the backplate
involves a large number of cells so qualitatively good results are expected using homogenization
also for this loading condition.
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