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To Sergio, our teacher and friend



Introduction

Sergio (Angelo, Ernesto) Albeverio was born on January 17, 1939 in Lugano, Ticino,
Switzerland. His parents were Luigi and Olivetta (Brighenti) Albeverio.

In 1958 he started his studies in mathematics and physics at Eidgenössische Tech-
nische Hochschule (ETH) in Zürich, ending in 1962 with a Diploma (Master) in
theoretical physics, in the area of statistical mechanics (generalized Ising models)
under the supervision of Markus Fierz and David Ruelle.

During his Ph.D. in the “Seminar für Theoretische Physik” heworked on problems
related to the axiomatic approach to quantum field theory. In 1966 he got the Dr. rer.
nat. (Ph.D.) under the supervision of Res Jost and Markus Fierz with a work on
a model of quantum mechanical scattering theory with singular interactions, while
working as their Assistant.

At that time, ETH was still a small university with a limited number of students.
About 6000 students were enrolled there and no more than 20 people were affiliated
to the Theoretical Physics Seminar in Hochstrasse 60 in Zürich. Arthur Jaffe wrote
a beautiful article about Hochstrasse 60.1 He was touched by the unique charm
of this place, which was also an exceptional working environment. Moreover, a
paper published by IHES explained that Hochstrasse 60 was one out of three or four
environments in the world where theoretical physics had an exceptional quality and
it was strongly influenced by mathematical physics. Outstanding scientists worked
there and had a deep impact on the student Sergio Albeverio. The first professor
in theoretical physics at the ETH was Wolfgang Pauli. His successors were two of
his former assistants, Markus Fierz (former coworker of Pauli, well known for his
work in quantum field theory and general relativity) and Res Jost (well known for
his work on scattering theory, the inverse problem, and axiomatic quantum field
theory). At that time, David Ruelle (well known for his work on dynamical systems,
statistical mechanics and scattering in axiomatic quantum field theory) also worked
at the Seminar as a Privatdozent.

It was at ETH that Sergio first met Philippe Blanchard, who was a student in
one of the courses he taught, and later Ludwig Streit. The Seminar für Theoretische

1 See https://www.arthurjaffe.com/Assets/documents/ETH_First_Visit.htm.
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Physik was a very international environment, not without its ownmulticultural Swiss
charm. Sergio came from Ticino, the Italian-speaking part of Switzerland, Philippe
Blanchard came from France, and Ludwig Streit from Austria. The three were to
become long time collaborators and good friends; Blanchard is also the godfather of
Albeverio’s daughter Mielikki.

[P. Blanchard] “I want to mention the importance of Res Jost, an exceptional human, crucial
for our scientific career and development. He was not only an excellent scholar but also a
wonderful person.”

PhilippeBlanchard describes the seminar as “Un endroi heureux et un espace extraor-
dinaire”. Hochstrasse 60 really was a place where one was happy and where excep-
tional things happened. The institute was located in a very narrow street that went
downhill.

[P. Blanchard] “At one point I parked my car there in winter … I put the handbrake on and
went to the institute to discuss things with Res Jost. At some point, a couple of policemen
came in and asked Jost if he knew a certain Philippe Blanchard … [and said] that my car had
gone downhill. Fortunately, nobody got killed or hurt. They wanted to confiscate my license
and put me on trial. Jost …told them that it did not make any sense to confiscate my license
as … my accident only happened because I did not park correctly and that consequently
the only reasonable thing to do was to disallow me from parking. The policemen … finally
decided not to prosecute me.”

[L. Streit] “Fierz was Sergio’s advisor for his thesis. He was also a “homme de lettres”,
fascinating, with a very distinct sense of humor, and always open. One day, while walking
up from the main physics building to the lecture halls, Fierz asked me: “Do you know by any
chance how one measures cosmological distances? Come to my office and I shall give you
a private lecture about it”. Actually, he could have given me a private lecture on a baroque
author as well.”

[P. Blanchard] “Before his lectures, Fierz would often tell me that he hadn’t had time to
prepare the lecture and that although he wasn’t sure what his lecture was going to be about,
he had an idea. Then, when the lecture started, he would talk about what seemed to be
hundreds-year-old physical problems. The lectures contained at least as much information
as if he had prepared his course. Zurich really had incredibly talented people at that time.”

With Philippe Blanchard and Ludwig Streit, Sergio Albeverio shared his interest
in Quantum Mechanics and the stochastic approach to Quantum Field Theory.
They solved fundamental problems together, creating new scientific connections and
schools in many countries, e.g. France, Japan and Portugal and, last but not least,
Germany. Working as professors at Bielefeld University (from 1977 to 1979), they
all started to realize their dream of developing a collaborating community between
the institutes of Physics and Mathematics. With the appointment of Sergio as full
Professor inBochum in 1979 and later inBonn in 1997, this project continued leading
to the co-creation of the Institute BiBoS.

As Dr. rer. nat., Sergio spent the academic year 1967–1968 at Imperial College
(IC) London, where he was a lecturer (giving a course on multi particle systems) at
the invitation of Paul Matthews, Abdus Salam and Ray F. Streater. Ray motivated
Sergio to study theworks of JamesGlimmandArthur Jaffe on the constructive theory
of fields and to give lectures on this subject.
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He started to do this with great enthusiasm, but due to the poor health of his
parents he decided to return to Lugano, to be near to them, taking up a mathematics
and physics teacher job at the local high school. Tragically, both parents passed away
within fewmonths, terrible blows for Sergio. Hiswell-known capability of communi-
cating complex problems to experienced as well as non-experienced scientists might
depend not only on his generosity in sharing his thoughts and new ideas (which was
so often mentioned when interviewing his colleagues) but also on this unexpected
part of his life.

[T. Lindstrøm] “He’s willing to share and he can explain things to you in a way that he sort
of reasons with you. He can orientate his explanation to your own needs.”

[M. Röckner] “When he started to give lectures, I was immediately fascinated by the way
he explained the subject and I had to work very hard, because I wasn’t able to understand
many of the things he said. One thing I knew was that he had a deep knowledge of the
topics. Moreover, the way he presented them was somehow motivating to go deeper into the
subject.”

In the fall of ‘69 Sergio left Lugano spending first a couple of months at the ETH
Zürich, before crossing the ocean to work at Princeton University. He was accompa-
nied by the artist Solvejg Manzoni, whom he married shortly after. Sergio spent the
years 1970 and 1971 in the Departments of Mathematics and Physics as associate
researcher with Arthur S. Wightman and Edward Nelson. There he met Barry Simon
and Elliot Lieb, who definitely influenced him and who strengthened his interest
in linking mathematics and physics, a task to which he dedicated his whole scien-
tific life. Sergio was particularly influenced by Edward Nelson and his stochastic
approach to quantum mechanics (stochastic mechanics theory) and quantum field
theory. In theUShemet other established and promising scientists, includingRaphael
Høegh-Krohn, who soon became one of his main friends and collaborators.

[F. Gesztesy] “Sergio came with a guest. Now you can almost guess who he was, he was
Raphael Høegh-Krohn. We all know he is one of the longtime collaborators of Sergio’s.
Raphael was a bear of a man—imagine the biggest Russian bear—and he instantly broke
the ice by putting his arm around my shoulders, which was quite impactful because in those
days I was really shy and, I mean, that really changed everything.”

The development of the stochastic approach to quantum physics they dealt with in
Princeton motivated Sergio and Raphael to extend the theory of Dirichlet forms to
infinite dimensions. This idea began to form when Sergio visited Raphael in Oslo in
1972 and later between 1974 and 1977. They understood the importance of Dirichlet
forms, linking techniques coming from potential analysis to those of stochastics.

The intense collaboration of Sergio and Raphael in Oslo produced outstanding
results in several areas of infinite dimensional analysis and mathematical physics,
leading to important applications in quantum field theory. In those years they devel-
oped new theories that nowadays are associated to their names, such as the mathe-
matical construction of Feynman path integrals, the study of point interactions, the
development of non-standard analysis. The combined efforts of the two researchers,
deeply linked by their common interests and ideals, although very different in char-
acter, culminated in their famous paper of 1977, in which they laid the foundations
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of Dirichlet forms in infinite dimensions. The novel techniques in this work found
manifold applications, e.g. in quantum field theory and in the construction of Malli-
avin calculus. This intensive collaboration lasted until the sudden premature death
of Raphael Høegh-Krohn in 1988.2

[S. Albeverio] “It was a particular constellation, with Raphael I had so much in common.
In mathematics and physics we had a similar background, even if we came from different
schools (Oslo and Aarhus Universities and Courant Institute for Raphael). We had namely
the same taste and orientation, we did not have to discuss much to agree. I learned a lot
from Raphael both in science and culture. I was also humanly enriched by the close contact
with him. He was passionate, slept very little. Together we did the kind of very hard work
you can only do when you are enthusiastic and in complete agreement.”

The environment at Oslo University was outstandingly rich and the discussions
Sergio had with Jens Erik Fenstad, professor in logic—with whom Sergio shared
an interest in philosophy too—and his Ph.D. student, Tom Lindstrøm, also led to
new research and a joint book on non-standard analysis. Moreover, Sergio collabo-
rated with a Norwegian student of Raphael’s, Helge Holden, and a former student of
Ludwig Streit’s, Fritz Gesztesy, writing a joint book on solvable models in quantum
mechanics. Even after leaving Oslo, Sergio shared with Raphael many students and
coworkers.

During their period in Oslo, Sergio and Raphael also had an active exchange
with the scientific community of the Soviet Union, in particular with Felix Berezin,
Roland Dobrushin, Israel Gelfand, Robert Minlos, Yakov Sinai, Anatoly Vershik
and Viktor Maslov. This was enhanced by many invitations to undertake research
visits and participate in conferences and schools in the Soviet Union. The connection
lasted many years and is still active in the new millennium with joint works with
Minlos—on Ising models, Gibbs measures and quantum lattice systems—and with
many other mathematicians from former Soviet Union. After moving to Germany in
1977, Sergio supported and collaborated with many researchers of the former Soviet
Union in the framework of BiBoS, SFB-projects, von Humboldt grants as well as
Volkswagen and DFG collaboration grants. Part of them later became professors in
the UK, Germany and Scandinavia, and enriched mathematics and science in their
later developments.

[A. Khrennikov] “[…] After this Sergio invited me to come for an Alexander von Humboldt
fellowship and this opportunity was my way to science because otherwise I would not be a
scientist anymore, since in Russia there was no possibility. Here I would like to underline
that I was not alone. Sergio has really helped many, many scientists from Russia, Ukraine
and all other republics of former Soviet Union in that really terrible time.”

2 For a description of the outstanding results of Raphael. Høegh-Krohn see the two volumes:
Ideas and Methods in Mathematical Analysis, Stochastics, and Applications: In Memory of

Raphael Hoegh-Krohn (1938-1988), Volume 1.
Ideas and Methods in Quantum and Statistical Physics: In Memory of Raphael Hoegh-Krohn

(1938–1988), Volume 2.
By S.Albeverio, H.Holden, J.E. Fenstad, T. Lindstrøm (eds). CambridgeUniversity Press, 1992.

These volumes contain also the article by Sergio “ On the scientific work of Raphael Høegh-Krohn”.
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It is therefore no surprise that in 2002 the Norwegian Academy of Science awarded
Sergio the title of Doctor honoris causa in Mathematics on the occasion of Niels H.
Abel’s 200th birthday, and that in 2019 the University of Stockholm honoured him
in the same way.

In the Soviet Union Sergio also met a big Italian community working in statistical
mechanics, coming especially from Rome. This and further strong connections with
the Italian scientific community later lead to nominations to professorships for chiara
fama at the University of Rome and University of Trento (that he was not able to
accept) and long stays at those places as well as e.g. at Scuola Normale Superiore
(Pisa) andSISSA (Trieste).He currently belongs to thePh.D. board of theDepartment
of Mathematics of the University of Milan (Università degli Studi). In 2021 he
was elected as Foreign Member of the Accademia Nazionale dei Licei (Rome) and
member of the Academia Europaea (London).

In Princeton Sergio had already started a long-life friendship with the Italian
physicists and mathematicians Gian Fausto Dell’Antonio and Francesco Guerra.

[F. Guerra] “I met Sergio when I arrived in Princeton in September 1970. I was immediately
impressed by his great humanity. […] He spontaneously helped me and my family in the
settlement. In 1971 E. Nelson held a high-level special course on Euclidean quantum field
theory. Sergio’s help was crucial. In particular, his personal notes of the course were a true
masterpiece. […] I learned Nelson’s Euclidean theory from Sergio’s explanations and his
fundamental notes.”

Gianfausto Dell’Antonio invited him to spend the year 1973 in Naples at the Institute
of Theoretical Physics, University of Naples there he worked on constructive field
theory and stochastic mechanics, under the lasting influence of his Princeton period.

[G. Dell’Antonio] “We became friends in Naples. Then there were countless encounters.
Sergio is able to present his very complicated works in a simple way. 65 years of friendship.”

[R. Figari] “Sergio’s presence in Naples was fundamental for my scientific career. Everything
came from him: scientific problems and collaborators.”

The frequent visits in Italy soon spread from southern to northern Italy. Starting with
the new millennium, for several years Sergio had, in parallel to his Professorship in
Bochum and later in Bonn, an assignment at the University of Trento.

[G. Da Prato] “I have met Sergio many times and I have had many scientific discussions
with him. I learned from Sergio the theory of Dirichlet forms in infinite dimensions and the
stochastic quantization, thanks to the various discussions we had and also through a course
he taught when I invited him in Pisa”.

[L. Tubaro] “When we understood who he was, we invited him to our conferences, which he
attended several times. In the early 2000s I invited him in Trento. He gave a course there.
Some of my Ph.D. students actually studied with him”.

[A. Teta] “Although we have never written a work together, we have always been friends
and scientifically very close.”

[S. Albeverio] “ In Oslo and in Italy I have always felt like being at home”.

From 1972 to 1977 Sergio was also a guest in France, where together with Raphael
Høegh-Krohn he visited several research institutes, including the University and
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CNRS in Aix-Marseille (Luminy) invited by Daniel Kastler and Raymond Stora.
They started a long standing collaboration with mathematicians and physicists in
Marseille and Philippe Blanchard on topics from quantum physics to representation
theory and stochastic modeling. In particular they started a program of extending the
interplay of Laplacian perturbed by potentials with Gaussian measures and Poisson
measures to the consideration of pseudo differential operation and infinitely divisible
laws. Later, being Professor in Bielefeld, Bochum and Bonn, Sergio engaged several
generations of collaborators, extending his research to the theory of S(P)DEs with
non-Gaussian additive noise. Further, he found the desired applications to quantum
field theory as well as to many other areas, including neurobiology and finance.

In 1977 he got a position as Associate Professor in the Department of Mathe-
matics, University of Bielefeld (in the section Analysis/Potential Theory). Having
as colleagues Philipp Blanchard and Ludwig Streit at the Physics Department,
the research connection between the Mathematics and Physics Departments was
strengthened by involving scientists from all over the world. The theory of Dirichlet
forms in infinite dimension, started in Oslo together with Raphael Høegh-Krohn, was
shared with doctoral students, like e.g. Michael Röckner, who was later appointed as
Full Professor in Bielefeld and continued and enlarged the school on this and many
other topics.

[M. Röckner] “I wouldn’t be the scientist and probably also not the person I am today without
Sergio because he had so much influence on my scientific life and on the development of my
personality and character. He was just a pure inspiration from the first day.”

In 1979 Sergio was appointed as a Full Professor at the Faculty of Mathematics of
Ruhr-University Bochum. This soon made the city Bochum an international center
for every level students and visitors inMathematics and Physics coming from all over
the world. Indeed, Sergio contributed to widen the department’s connections with
the USA, U.K., Italy, France, Poland, Portugal, Scandinavia, Soviet Union, Spain,
Bulgaria, Chekia, China (Beijing, Wuhan), Japan (Kyoto, Osaka, Tokyo, Kyushu,
Hiroshima, Nagoya, Nara, Sendai), Mexico (CINVESTAV), Russia (St. Petersburg,
Moscow), Saudi Arabia (Dharhan), Tunisia (Tunis), Ukraine, Uzbekistan, thanks
to many projects funded by institutions like the Deutsche Forschungsgemeinschaft,
European Community, Alexander V. Humboldt Society, JSPS, VolkswagenStiftung

[A. Khrennikov] “I came to Bochum and there I met such a friendly and unusual scientific
school [...] I think Sergio’s school was really unique.”

[Y. Kondratiev] “Sergio belongs to the older generation of great mathematicians like
Skorokhod and so on. The role of Sergio in my scientific life is deep and special. I would
like to stress that Sergio was also a prominent example of a deep scientist with wide areas
of interests. I am always happy to discuss with Sergio not only particular mathematical
problems, but also several aspects in psychology, philosophy, history, and physics. It is my
honor to call Sergio my teacher and friend.”

[S. Paycha] “Sergio’s characterizing feature is that he sprinkles all over science. He’s a
delicate person and I think that’s also why he can work with so many people because he’s
very respectful and very delicate and I think he has left his footprint in so many areas, but
a very delicate footprint and very deep for this delicacy. If I may add, you see you are many
women. I’m a woman. There are not many women in math. I think he supported women. […]
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He is very careful to be inclusive. He takes everybody with him. Women tend to step back
and he takes them back in.”

This activity was then continued in 1997 at the University of Bonn where he moved
as Full Professor together with all the members of his Stochastics and Mathematical
Physics Group. In Bonn he also created with Volker Jentsch the Interdisziplinäres
Zentrum für Komplexe Systeme (IZKS) of the University of Bonn, working on
complex systems, stochastic traffic models, models of urban development and other
applications of mathematics and of the theory of extreme events.

Furthermore, he was also a founding member of the Excellence Cluster in Mathe-
matics, which then gave rise to the Hausdorff Center for Mathematics (HCM), where
he is still leading many scientific projects. As Professor Emeritus he is a focus of
present research at HCM.

[M. Röckner] “Another point that I want to stress is, of course, what is called Sergio’s
family. This is a huge family. All of us belong to this family, but many other people belong
to this family. When he organized conferences (and he organized so many conferences—
unbelievable) he always linked his family to other groups and families all the time. […] I
would like to mention that he is still influencing young people; as you know in Bonn he is
working with very young people again.”

The present volume contains an absolutely non-exhaustive collection of papers
aiming to describe some of the main research areas where Sergio gave significant
contributions.

We start with “Wick powers in stochastic PDEs: an introduction” by Giuseppe Da
Prato andLucianoTubaro. This article gives a clearmathematical description ofWick
powers, an important tool in constructive field theory, certainly one of the first scien-
tific interests of Sergio,whichwas initiatedby a lecture ofEdwardNelson at Princeton
University. At the same time Nelson’s influence led Sergio to study the emergent
theory of stochastic mechanics. To this regard the article “The Albeverio-Høegh-
Krohn paradox in Nelson stochastic mechanics” by Francesco Guerra presents one
of Sergio’s contributions in this area.

During the fruitful collaboration with Raphael Høegh-Krohn outstanding results
in different areas were obtained. The development of the theory of Dirichlet forms
in infinite dimensions is one of the most famous. The article “Energy Forms and
Quantum Dynamics” by Ludwig Streit presents the origins of the physical applica-
tions, while “The emergence of non-commutative potential theory” by Fabio Cipriani
describes the consecutive developments related to potential theory.

Dirichlet forms also opened up for studying quantum mechanical systems with
point interactions.

A generalization of Sergio’s point interactions and its applications is presented in
“Contact interactions and Gamma convergence” by Gianfausto Dell’Antonio. The
mainmethodology and results concerning the three-particle interaction are illustrated
in the article by Rodolfo Figari and Alessandro Teta “On the Hamiltonian for three
bosons with point interactions”.
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The theme of constructive quantum fields was taken up again by Sergio Albeverio
and Raphael Høegh-Krohn in their studies in a mathematical rigorous way. In partic-
ular, themathematical theoryofFeynmanpath integral is attributed to their pioneering
book published in 1976. The article “Mathematical theory of Feynman path integrals”
by SoniaMazzucchi gives an overview of Sergio’s contributions, while “Gauge theo-
ries in low dimensions: reminiscences of work with Sergio Albeverio” by Ambar
Sengupta discusses the application of functional integration techniques to Gauge
Theories.

The search of new and powerful mathematical techniques allowing to tackle the
unsolved problems in quantumfield theory led SergioAlbeverio andRaphael Hoegh-
Krohn to the study of non-standard analysis in collaboration with Jens Erik Fenstad
and Tom Lindstrøm. A survey of Sergio Albeverio’s work in this area is presented in
“The Allure of Infinitesimals: Sergio Albeverio and Nonstandard Analysis” by Tom
Lindstrøm.

“Sergio’s work in statistical mechanics: from quantum particles to geometric
stochastic analysis” byAlexeiDaletskii, YuriKondratiev andTanja Pasurek discusses
some of Sergio’s contributions to quantum statistical mechanics and related areas.

A review of Sergio Albeverio’s research in hydrodynamics in another setting is
presented in “Hydrodynamic Models” by Benedetta Ferrario and Franco Flandoli,
where bidimensional Euler and Navier-Stokes equations with space-timewhite noise
are investigated from the point of view of statistical mechanics. Recent results in
this field are also presented in “On strong solution to the 2d stochastic Ericksen-
Leslie system: aGinzburg-Landau approximation approach” by ZdzislawBrzezniak,
Gabriel Deugoué and Paul André Razafimandimby.

Some results on the theory of stochastic PDEs related to pseudo–differential
operators developed by Sergio are contained in the paper “Stability properties of
mild solutions of SPDEs related to Pseudo Differential Equations” by Vidyadhar
Mandrekar and Barbara Rüdiger.

Sergio’s analysis of stochastic processes extends to other types of state spaces, like
p-adics and, more generally, non-Archimedian ones. The paper “Random Processes
on non-Archimedian Spaces” by Witold Karwowski describes Sergio’s work and its
relation with other approaches. According to his method, Lévy processes on p-adic
numbers and other non-Archimedean spaces are constructed from semigroups in the
sense of a study of Chapman-Kolmogorov equations.

Considered the huge number of Sergio’s publications and the limits in time and
space, some other areas of Sergio’s activities have to be necessarily left out. They
are partly listed at the end of Sergio’s interview, to which we refer.

A second Springer Volume, titledGeometry & Invariance in Stochastic Dynamics
(2021) and written by both young and long-time collaborators of Sergio, collects the
proceedings of the Verona Conference 2019, also related to Sergio’s 80th birthday.

The editors of the present volume sincerely thank the authors of all contribu-
tions. Their generous effort was fundamental in creating this special volume dedi-
cated to Sergio Albeverio’s incredible adventure in Science. Many thanks also to the
colleagues who agreed to be interviewed. Their touching testimonies enriched the
historical and human memory of Sergio’s scientific career.
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We also thank Marina Reizakis from Springer-Verlag for her enthusiastic incen-
tive to undertake this project as well as for her mediation work among the Verona
conference participants, which eventually led to the shared choice of the title of the
present volume.

Finally, we thank Sergio Albeverio for his discreet and delicate support to this
book.
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Wick Powers in Stochastic PDEs:
An Introduction

Giuseppe Da Prato and Luciano Tubaro

For the eighty years of Sergio

Abstract UsingWick polynomialswe define a two-points function : xnN :, n, N ∈ N

and prove the existence of the limit limN→∞ : xnN :=: xn :. We also give a simple proof
of the Nelson estimate.

Keywords Wick powers · Stochastic quantization · Nelson estimate ·White noise

Mathematics Subject Classification 37L55 · 60J65 · 60H40

1 Introduction

Consider the following stochastic differential equation in the Hilbert space H =
L2(0, 2π) (norm | · |, inner product 〈·, ·〉),

dX = [
1
2 (Xξξ − X) − X3

]
dt + dW (t), X (0) = x ∈ L2(0, 2π), (1.1)

where ξ ∈ [0, 2π ], X is 2π periodic, W (t) is a cylindrical Wiener process and Xξξ

denotes the second derivative of X with respect to ξ .
Denote by (ek)k∈Z the complete orthonormal system of L2(0, 2π),
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2 G. Da Prato and L. Tubaro

ek(ξ) = 1√
2π

eıkξ , ξ ∈ [0, 2π ], k ∈ Z

and define
W (t) =

∑

k∈Z
βk(t)ek,

where (βk(t))k∈Z is a family of standard Brownian motions mutually independent in
a filtered probability space (�,F , (Ft )t≥0,P).

Let us write Eq. (1.1) in the following mild form

X (t) = et Ax −
t∫

0

e(t−s)AX3(s) ds + WA(t), (1.2)

where1

Ax = 1
2 (xξξ − x), x ∈ {y ∈ H 2(0, 2π) : y(0) = y(2π), yξ (0) = yξ (2π)}

and

WA(t) =
t∫

0

e(t−s)AdW (s) =
∑

k∈Z
ek

t∫

0

e− 1
2 (t−s)(1+|k|2)dβk(s). (1.3)

It is easy to see that the stochastic convolution WA(t) is a Gaussian random
variable in L2(0, 2π) with mean 0 and covariance operator

C(t) = C(1 − et A), t ≥ 0

where
C = − 1

2 A−1.

Notice that

Cek = 1

1 + |k|2 ek, k ∈ Z,

so thatC(t) is a trace class operator. Moreover, one can see that the Gibbs probability
measure (on L2(0, 2π))

ν(dx) = Z−1 exp

⎧
⎨

⎩
−1

2

2π∫

0

x4(ξ) dξ

⎫
⎬

⎭
μ(dx), (1.4)

1 H2(0, 2π) is the usual Sobolev space.
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where

Z =
∫

L2(0,2π)

exp

⎧
⎨

⎩
−1

2

2π∫

0

y4(ξ) dξ

⎫
⎬

⎭
μ(dy)

andμ is theGaussianmeasurewithmean 0 and covariance operatorC , is the invariant
measure of the Markov semigroup associated to the process X (t).

It is not difficult to solve Eq. (1.2) by a fixed point argument, see e.g. [8].
Try now to generalize this result to the two dimensional case by considering the

equation

dX =
[
1

2
(�ξ X − X) − X3

]
dt + dW (t), X (0) = x (1.5)

in the Hilbert space H = L2((0, 2π)2). Proceeding as before we consider the com-
plete orthonormal system (ek)k∈Z2 in L2((0, 2π)2),

ek(ξ) = 1
2π eı〈k,ξ〉, k = (k1, k2) ∈ Z

2, ξ ∈ [0, 2π ]2

and define
W (t) =

∑

k∈Z2

βk(t)ek,

where (βk(t))k∈Z2 is a family of standard Brownian motions mutually independent
in (�,F , (Ft )t≥0,P).

Again, we write Eq. (1.5) in mild form

X (t) = et Ax −
t∫

0

e(t−s)AX3(s) ds + WA(t), (1.6)

where

Ax = 1
2 (�ξ x − x), x ∈ {y ∈ H 2((0, 2π)2) : y, yξ1 , yξ2 periodic in ξ1, ξ2}

and

WA(t) =
t∫

0

e(t−s)AdW (s) =
∑

k∈Z2

ek

t∫

0

e− 1
2 (t−s)(1+|k|2)dβk(s). (1.7)

But in this case the operator

C = − 1
2 A−1

is not of trace class. In other words the stochastic convolution WA(t) is not a well
defined random variable with values in L2((0, 2π)2). One can easily see that it is



4 G. Da Prato and L. Tubaro

well defined and Gaussian in every Sobolev space H−ε((0, 2π)2) with ε > 0; thus,
it is natural to try to solve Eq. (1.6) in this space. However, a problem will arise
since the nonlinear term x3 is not well defined in H−ε((0, 2π)2) which is a space of
distributions.

For this reason the function x3 is replaced by the following one

:x3:= lim
N→∞

([xN ]3 − 3ρ2
N xN

)
,

where
xN =

∑

|k|≤N

〈ek, x〉ek

and

ρN = 1

2π

⎡

⎣
∑

|k|≤N

1

1 + |k|2

⎤

⎦

1/2

.

One can show that the limit above does exists in L2(H, μ) whereH is a suitable
extension of the space H and μ is a Gaussian measure of covariance C , see Sect. 3
below for details. In thiswaywehave changed the original problemwith the following
one

dX = [
1
2 (�ξ X − X)− :X3:] dt + dW (t), X (0) = x . (1.8)

This is the so called renormalization procedure. This choice is physically justi-
fied in quantum field theory and somebody believes that it is natural even in other
situations as: reaction diffusion and Ginzburg–Landau equations, see e.g. [3].

In the pioneering papers devoted to the stochastic quantisation amodified equation
was studied

⎧
⎪⎨

⎪⎩

dX = −1

2

(
C−εX + λC1−εXn

)
dt + C

1−ε
2 dW (t)

X (0) = x ∈ H,

(1.9)

where ε > 0, see Jona Lasinio and Mitter see [14, 15]: for further developments the
reader can look at [4, 7, 9, 16]. For a different approach, based on Dirichlet forms
and Malliavin calculus, see [2, 17] respectively.

Equation (1.8) in dimensions 2 was solved in suitable Besov spaces in [5]. In
dimensions 3 the problem is more challenging, it requires the theory of rough paths
and its developments, see [12, 13]. For the existence of the equivalent of Gibbs
measure (1.4) see [1].

In the past few years, some attention has been payed to the so called stochastic
quantisation, see Parisi and Wu [18], in order to compute integrals of the form
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∫

H

f (x) ν(dx)

where ν is the invariant measure of (1.8) defined as (1.4), using the ergodic theorem

∫

H

f (x) ν(dx) = lim
T→∞

1

T

T∫

0

f (X (t)) dt.

The renormalization has a long story, also in connection with the constructive
field theory in the euclidean framework, see Glimm and Jaffe [10], Simon [19] and
references therein.

In this paper we shall describe the renormalization of the power and the Nel-
son estimate, following essentially the ideas in Simon [19]. We shall proceed sim-
ilarly as in [6], where we presented a reformulation of the theory in the space
H−α((0, 2π)2), α > 0, but here we prefer to enlarge the space L2((0, 2π)2) intro-
ducing the product space

H =
∏

k∈Z2

Rk, Rk = R,

identifying H with 2(Z2) ⊂ (R2)∞ and setting

μ =
⊗

k∈Z2

N(1+|k|2)−1 ,

where N(1+|k|2)−1 represents the one-dimensional Gaussian measure with mean 0
and variance (1 + |k|2)−1. This is essentially equivalent to work in the space of
distributions, but it avoids for instance the use of the Minlos theorem.

Let us describe the content of this paper. In Sect. 2 we shall define for every integer
n the Wick product :φn: with respect to the Gaussian measure μ. As shown here, this
definition corresponds, roughly speaking, to subtract to φn some divergent term.

In Sect. 3 we give a new (at our knowledge) simpler proof of the Nelson estimate.
It allows to define the Gibbs measure

ν(dφ) = exp{− 1
2 〈1, :φ4:〉}

∫

H
exp{− 1

2 〈1, :ψ4:〉} μ(dψ)

μ(dφ). (1.10)

2 Wick Polynomials

Let H = L2(O) be a complex Hilbert space, where O := [0, 2π ] × [0, 2π ]. The
scalar product and the norm in H are respectively denoted by 〈·, ·〉 and | · |.
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We consider the self-adjoint operator Q in H defined by

Qeh = λheh, λh = (1 + |h|2)−1, h ∈ Z
2,

where (eh)h∈Z2 is the orthonormal basis in H ,

eh(ξ) = 1
2π ei〈h,ξ〉, ξ ∈ O, h = (h1, h2).

For all N ∈ N we set2

QN x =
∑

|h|≤N

λh〈x, eh〉eh .

We embed H inH := R
Z
2
,

H → R
Z
2
, x =

∑
∈ H �→ j (x) = (xh)h∈Z2 ,

with xh = 〈x, eh〉 and consider the measures μ,μN inH defined as

μ =
⊗

h∈Z2

Nλh , μN =
⊗

|h|≤N

Nλh .

Note that Tr Q = ∞, whereas Tr Q1+ε < ∞, ∀ ε > 0. The following asymp-
totic behaviour of ρN is basic

ρ2
N = O(log N ). (2.1)

It follows from

1

(2π)2

∑

|h|≤N

1

1 + |h|2 ∼
N∫

0

r

1 + r2
dr = 1

2
log(1 + N 2).

2.1 Approximations

For all x ∈ H , N ∈ N we set

xN (ξ) =
∑

|h|≤N

〈x, eh〉eh(ξ), ξ ∈ O.

2 {|h| ≤ N } = {h ∈ Z
2 : |h| ≤ N }.
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Obviously xN ∈ L∞(O). It is useful to express xN (ξ), ξ ∈ O, in terms of the
white noise function of those elements of H of norm 1, because then several com-
putations with the Wiener’s chaos becomes easy.3 To this purpose, write

xN (ξ) =
〈

x,
∑

|h|≤N

eh(ξ) eh

〉

=
〈

Q−1/2x,
∑

|h|≤N

λ
1/2
h eh(ξ) eh

〉

= W∑
|h|≤N λ

1/2
h eh(ξ) eh

.

We note that, by the Parseval identity we have

∣∣
∣∣∣∣

∑

|h|≤N

λ
1/2
h eh(ξ) eh

∣∣
∣∣∣∣

2

= 4π2
∑

|h|≤N

λh = 4π2 Tr QN = ρ2
N .

Then we write
xN (ξ) = ρNWηN (ξ), ξ ∈ O,

where

ηN (ξ) = 1

ρN

∑

|h|≤N

λ
1/2
h eh(ξ) eh, ρ2

N =
∑

|h|≤N

λh,

so that
|ηN (ξ)| = 1, N ∈ N. (2.2)

Note moreover that

〈ηN (ξ1), ηN (ξ2)〉 = 1

ρ2
N

∑

|h|≤N

λh eh(ξ1)eh(ξ2)

= 1

ρ2
N

γN (ξ1 − ξ2), ξ1, ξ2 ∈ O, N ∈ N, (2.3)

where
γN =

∑

|h|≤N

λh eh, N ∈ N, ξ ∈ O. (2.4)

We set also
γ =

∑

h∈Z2

λh eh . (2.5)

Clearly γ ∈ L2(O) and it is easy to see that it coincides with the kernel of the
integral operator Q,

3 For all f, g ∈ H such that | f | = |g| = 1 we have
∫
H Hn( f ) Hn(g) dμ = [〈 f, g〉]n .
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Qx(ξ) =
∫

O

γ (ξ − ξ1) x(ξ1) dξ1, x ∈ H, ξ ∈ O. (2.6)

Notice that γ is not bounded but it belongs to L p(O) for all p ≥ 1. We have in
fact

Proposition 2.1 For all p ≥ 2 we have

|γ |L p(O) ≤ (2π)
p−2
2

[
∑

h∈Z2

(
1

1 + |h|2
) p

p−1

] p−1
p

=: ap. (2.7)

Proof Let us consider the mapping

� : {λ j
}
j∈Z2 →

∑

h∈Z2

λheh .

Then
� : 1(Z2) → L∞(O), with norm (2π)−1,

� : 2(Z2) → L2(O), with norm 1.

By the Riesz–Thorin theorem if p > 2 and q = p
p−1 we have

� : q(Z2) → L p(O), with norm less or equal to (2π)
p−2
2 ,

and the conclusion follows. �
Let us estimate for further use |γ − γN |L p .

Lemma 2.2 If p ≥ 2, we have

|γ − γN |L p(O) ≤ bpN
− 2

p , (2.8)

where bp = (p − 1)(2π)
p−2
2 .

Proof We have in fact

|γ − γN |L p(O) ≤ (2π)
p−2
2

∑

|h|≥N

(
1

1 + |h|2
) p

p−1

≤ (2π)
p−2
2

+∞∫

N

2r

(1 + r2)
p

p−1

dr

= (p − 1)(2π)
p−2
2 (1 + N 2)

− 1
p−1

≤ (p − 1)(2π)
p−2
2 N− 2

p . �
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Let us finally recall a basic hypercontractivity estimate, see [11] (also [6]).

Theorem 2.3 Let n,m ∈ N, and u ∈ L2
n(H, μ) (the Wiener chaos of order n). Then

we have

⎛

⎝
∫

H

|u(x)|2mμ(dx)

⎞

⎠

1
2m

≤ (2m − 1)
n
2

⎛

⎝
∫

H

|u(x)|2μ(dx)

⎞

⎠

1
2

. (2.9)

2.2 Wick Polynomials

For any n, N ∈ N and any x ∈ H define

:xnN:(ξ) = √
n! ρn

N Hn(WηN (ξ)), ξ ∈ O, (2.10)

where Hn is the Hermite polynomial of order n.4

In particular we have

:x1N:(ξ) = xN (ξ),

:x2N:(ξ) = [xN (ξ)]2 − ρ2
N ,

:x3N:(ξ) = [xN (ξ)]3 − 3ρ2
N xN (ξ),

:x4N:(ξ) = [xN (ξ)]4 − 3ρ2
N [xN (ξ)]2 + 6ρ4

N .

2.3 Existence of limN→∞ :xnN:

Let us start with a few useful identities. By the embedding of H inH defined in the
beginning of Sect. 2, in the sequel we use both notations such that

∫
H ·μ(dx) and∫

H ·μ(dx).

Lemma 2.4 We have ∫

H

| :xnN: |2 μ(dx) = 4π2 n! ρ2n
N . (2.11)

Proof Taking into account (2.10) we have

4 Let F(t, ξ) = e− t2
2 +tξ , ξ ∈ R, and write F(t, ξ) = ∑∞

n=0
tn√
n! Hn(ξ), t, ξ ∈ R. For any n ∈ N,

Hn is called the Hermite polynomial of degree n.
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∫

H

| :xnN: |2 μ(dx) = n! ρ2n
N

∫

O

dξ

∫

H

H 2
n (WηN (ξ)) dμ = 4π2 n! ρ2n

N .

�

This Lemma shows that we cannot expect that there exists the limit

lim
N→∞ :xnN: in L2(H, μ; H).

We are going to show that for any z ∈ H , there exists instead the limit (Theo-
rem 2.6)

lim
N→∞〈:xnN:, z〉H in L2(H, μ),

and the limit
lim
N→∞ :xnN: in L2(H, μ; D((−A)−ε), ∀ ε > 0,

see Theorem 2.8.

Lemma 2.5 For any z ∈ H we have

∫

H

|〈:xnN:, z〉|2μ(dx) = n!〈γ n
N ∗ z, z〉. (2.12)

Proof Write

∫

H

|〈z, :xnN:〉|2μ(dx) =
∫

H

∣∣∣
∣∣∣

∫

O

〈:xnN (ξ):, z(ξ)〉dξ

∣∣∣
∣∣∣

2

μ(dx)

= n!ρ2n
N

∫

O×O

z(ξ)z(ξ1)dξdξ1

∫

H

Hn(WηN (ξ)(x))Hn(WηN (ξ1)(x))μ(dx)

= n!ρ2n
N

∫

O×O

z(ξ)z(ξ1) [〈ηN (ξ), ηN (ξ1)〉]n dξdξ1

= n!
∫

O×O

γ n
N (ξ − ξ1)z(ξ)z(ξ1)dξdξ1

= n!〈γ n
N ∗ z, z〉. �

Theorem 2.6 Let M > N and z ∈ H. Then we have
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∫

H

|〈z, :xnN: − :xnM:〉|2μ(dx) = n!〈(γ n
M − γ n

N ) ∗ z, z〉. (2.13)

Moreover there exists cn > 0 such that

∫

H

|〈z, :xnN: − :xnM:〉|2μ(dx) ≤ cn
N

|z|2. (2.14)

Therefore there exists :xnN:∈ H such that

lim
N→∞〈z, :xnN:〉H := 〈:xn:, z〉H, in L2(H, μ). (2.15)

Proof Let N > M, and set

LN ,M =
∫

H

|〈z, :xnN:〉 − 〈z, :xnM:〉|2μ(dx).

Then we have

LN ,M = n!ρn
M

∫

O×O

z(ξ)z(ξ1)dξdξ1

×
∫

H

[
ρn
M Hn(WηM (ξ)(x)) − ρn

N Hn(WηN (ξ)x)
]

× [
ρn
M Hn(WηM (ξ1)(φ)) − ρn

N Hn(WηN (ξ1)(x))
]
μ(dx)

× n!
∫

O×O

z(ξ)z(ξ1)

{
ρ2n
M [〈ηM(ξ), ηM(ξ1)〉]n − ρn

Mρn
N [〈ηM(ξ), ηN (ξ1)〉]n

− ρn
Mρn

N [〈ηM(ξ), ηN (ξ)〉]n − ρ2n
N [〈ηN (ξ), ηN (ξ1)〉]n

}
dξdξ1

= n!
∫

O×O

[
γ n
M(ξ − ξ1) − 2γ n

N (ξ − ξ1) + γ n
N (ξ − ξ1)

]
z(ξ)z(ξ1)dξdξ1

= n!〈(γ n
N − γ n

M) ∗ z, z〉.

Therefore (2.13) is proved.
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It remains to prove (2.14). We have in fact

|γ n
M − γ n

N |L1(O) ≤
n−1∑

j=0

∫

O

|γM − γN | |γ j
M | |γ n−1− j

N | dξ.

Using the Hölder estimate, and taking into account (2.7) and (2.8), we obtain

|γ n
M − γ n

N |L1(O) ≤
n−1∑

j=0

|γM − γN |L2(O)|γM | jL4 j (O)
|γM |n−1− j

L4(n−1− j)(O)

≤ 2b2
N

n−1∑

j=0

a j
4 j a

n−1− j
4(n−1− j),

which implies (2.14) and consequently (2.15). �
Remark 2.7 :xn: does not belong to L2(H, μ; H). In fact by (2.12) we have

∫

H

| :xn: |2μ(dx) =
∑

k∈Z2

∫

H

|〈ek, :xn:〉|2μ(dx) = n! Tr [Q⊗n] = +∞.

However we are able to define Qε :xn: as an element of L2(H, μ; H) for any
ε > 0, as the next Theorem shows.

The following result can be proved as Theorem 2.6.

Theorem 2.8 Let M > N. Then we have

∫

H

|Qε :xnN: −Qε :xnM: |2μ(dx) = n!
(
∑

k∈Z2

1

(1 + |k|2)1+2ε

)n

. (2.16)

Thus there exists the limit

lim
N→∞ Qε :xnN:= Qε :xn:, in L2(H, μ; H). (2.17)

3 The Nelson Estimate

We fix now an even integer n ∈ N and set

U (x) = 〈:xn:, 1〉H, UN (x) = 〈:xnN:, 1〉H, x ∈ H.
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By Lemma 2.2 there exists a > 0 such that

‖U −UN‖L2(H,μ) ≤ a√
N

, ∀ N ∈ N. (3.1)

Since U,UN ∈ L2
n(H, μ), by Theorem 2.3 it follows that

‖U −UN‖L p(H,μ) ≤ apn√
N

(3.2)

Moreover let cn > 0 be such that Hn(θ) ≤ −cn . Then there exists b > 0 such that

UN (x) ≥ −b(log N )n, x ∈ H. (3.3)

Proposition 3.1 For any p ≥ 1 we have e−U ∈ L p(H, μ).

Proof It is enough to prove the proposition for p = 1. We first note that,

∫

H

e−Udμ =
+∞∫

0

μ(e−U > t)dt =
+∞∫

0

μ(U < − log t)dt. (3.4)

Set
F(t) = μ(U < − log t), t ≥ 0,

and notice that if u(x) < − log t we have

U (x) ≤ − log t < − log t + 1 ≤ −b(log N (t))n ≤ UN (t)(x), (3.5)

provided N (t) is chosen such as

−b(log N (t))n ≥ − log t + 1,

that is

N (t) = exp

{(
log t−1

b

)1/n}
. (3.6)

Now, by (3.5) it follows by the Markov inequality that for any p ≥ 2,

F(t) = μ(U ≤ − log t) ≤ μ
(|U −UN (t)| ≥ 1

) ≤ ‖U −UN (t)‖p
L p(H,μ).
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By (3.2) and (3.6)

F(t) ≤ a p pnpN (t)−p/2 ≤ a p pnp exp

{

− p

2

(
log t − 1

b

) 1
n

}

.

Finally, we choose p = p(t) such that for some M, λ > 0,

F(t) = μ(U < − log t) ≤ Mt−(λ+1), t > 0, (3.7)

and so, by (3.4), we see that
∫
H e−Udμ < +∞. �

Proposition 3.2 We have

lim
N→∞

∫

H

eUN μ(dx) =
∫

H

eUμ(dx). (3.8)

Proof Let N0 ∈ N be fixed and set

V (x) = min
{
U,UN0

}
, VN (x) = min

{
UN ,UN0

}
.

Then we have
‖V − VN‖L2(H,μ) ≤ ‖U −UN‖L2(H,μ),

and
VN (x) ≥ −b(log N )n.

Now, arguing as in the proof of Proposition 3.1 (see (3.7)), we find

∫

H

e−VN0 dμ ≤
∫

H

e−V dμ ≤ 1 + M

λ
,

and the conclusion follows. �

Final Remark. In a recent paper by Sergio Albeverio et al. with the title: Non-local
Markovian symmetric forms on infinite dimensional spaces, ArXiv:2006.13571v2
[math.PR], a general formulation on the non-local type stochastic quantisation is
considered. There, the above considerations are performed by embedding the state
spaces into Rn , which is analogous to the present article.
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The Albeverio–Høegh-Krohn Paradox
in Nelson Stochastic Mechanics

Francesco Guerra

Dedicated to Sergio Albeverio on the occasion of his eightieth
birthday.

Abstract We discuss an important paradox introduced by Albeverio and Høegh-
Krohn in the frame of the stochastic formulation of quantum mechanics proposed
by Nelson. The solution of the paradox is based on subtle stability properties of the
stochastic processes associated to quantum states. Then we recall the handling made
by Fermi of very short range interactions, in atomic physics and nuclear physics, in
order to explain the spectroscopic shifts of the very high levels of alkaline atoms
immersed in an extraneous gas, and the effects of slow neutrons in inducing artificial
radioactivity on massive nuclei.

Keywords Stochastic mechanics · Quantum ground state · Excited states ·
Stability properties · Short range potentials

1 Introduction

In the first part of this paper, I will discuss about Nelson stochastic mechanics and
the Albeverio–Høegh-Krohn paradox.

Since localized potentials play a basic role in the explanation of the Albeverio–
Høegh-Krohn paradox, in the second short part, I will include some considerations
on historical aspects related to the topics of zero range quantum interactions, which
have been also an important subject in the research by Albeverio.
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Of course, the treatment here will be very short and schematic, with emphasis on
some historical and pedagogical aspects.

The paradox I am alluding to is formulated in a short sentence in the paper “A
remark on the connection between stochastic mechanics and the heat equation”, by
Albeverio and Høegh-Krohn [1]. Here we see the front page of the original 1973
preprint, issued at the Institute of Theoretical Physics of the University of Naples, as
shown by the signature of the IBM typewriter held there by comparison with other
preprints at approximately the same time.

I discussed these topics with Raphael and Sergio in 1973, while Sergio, after a
stay in Princeton and Oslo, was visiting in Naples, under invitation by Dell’Antonio,
with the support of the INFN (Italian National Institute for Nuclear Physics), and
Raphael was participating to a small meeting on quantum field theory there. Some of
the participants to the Naples meeting, as Robert Schrader, Lon Rosen, and myself,
in few days reached the conference on Constructive quantum field theory, organized
in Erice by Velo and Wightman [2].

I have a vivid remembrance of our enthusiasm during this period, when quantum
field theory was being confirmed as THE theory of elementary particles, in the form
leading to the Standard Model, and probabilistic methods were proving to be very
useful in QUANTUMfield theory, in the shape of the so called Euclidean (Quantum)
Field Theory, with applications not only at the mathematical constructive level [3,
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4], but also as a basis for the modern renormalization group, and the investigation of
critical exponents.

The short sentence in theAlbeverio–Høegh-Krohn paper reads “that in the station-
ary case for higher eigenvalues the stochastic mechanics equation has several solu-
tions, namely those obtained by starting the process in one or some of the domains
given by the hypersurface φ(x) = 0”. This hypersurface is made by the points where
the quantummechanical density is zero. Therefore, the paradox points to the fact that
in some cases there are more solutions in the stochastic mechanics scheme than those
provided by quantum mechanics. This of course would be a disaster for stochastic
mechanics. The paper [1] is also very important from an historical point of view
because it can be seen as the starting point for the extensive research by the Authors
about Dirichlet forms (see for example [5]).

2 Quantum Mechanics and Stochastic Mechanics

There are many ways to see the connection between stochastic mechanics and quan-
tum mechanics. The simplest way is to show how to associate a stochastic process to
each quantum state. For the sake of simplicity, we consider the elementary case of
the harmonic oscillator. The quantum state space is given by square integrable wave
functions on the real line

H � ψ : R � x → ψ(x),
∫

|ψ(x)|2 dx < ∞. (1)

The Hamiltonian is given by

H = p2

2m
+ V (q), (2)

the potential is here given by

V (x) = 1

2
mω2x2, (3)

p, q are the momentum and the position represented by the operators

(pψ)(x) = −i�
∂ψ

∂x
, (4)

(qψ)(x) = xψ(x), (5)

m is the mass andω a constant. To any normalized wave function evolving according
to Schrödinger equation
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i�
∂

∂t
ψ(x, t) = (Hψ)(x, t), (6)

we associate a stochastic process t → q(t) as follows.
First of all let us make the transition to the so called Madelung equations [6]. By

defining
ψ(x, t) = ρ(x, t)

1
2 e

i
�
S(x,t), (7)

the Schrödinger equation for the complex wave function ψ(x, t) is equivalent to the
following couple of equations for the real functions ρ(x, t) and S(x, t)

∂

∂t
ρ(x, t) + ∇ · (ρv) = 0, (8)

∂

∂t
S(x, t) + (∇S)2

2m
+ V − �

2

2m

�
√

ρ√
ρ

= 0, (9)

where v(x, t) = ∇S(x, t)/m.

The first of the Madelung equations is nothing but a continuity equation, assuring
the particle conservation. The second is a quantum generalization of the Hamilton–
Jacobi equation of classical mechanics, where to the classical potential V (x) a new
potential has been added, called the quantum De Broglie potential for well founded
historical reasons.

For each quantum state, the associated stochastic process q(t), according to Nel-
son [7–10], is constructed through the following procedure.

The density of the process is given exactly by ρ(x, t) = |ψ(x, t)|2, so that at each
time we have for the averages

E(F(q(t), t)) =
∫

F(x, t)ρ(x, t) dx . (10)

The kinematics of the process is described by the Ito forward stochastic differential
equation

dq(t) = v+(q(t), t) dt + dw(t), (11)

which replaces the classical definition of the velocity

dq(t) = v(t) dt. (12)

The Brownian motion dw(t) is normalized so that

E(dw(t)|q(t) = x) = 0, (13)

E(dw(t)dw(t)|q(t) = x) = �

m
dt. (14)
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There is a system of forward v+, backward v−, current v, osmotic u velocity fields
defined by

v+(x, t) = lim
�t→0

(�t)−1
E(q(t + �t) − q(t)|q(t) = x), (15)

v−(x, t) = lim
�t→0

(�t)−1
E(q(t) − q(t − �t)|q(t) = x), (16)

v(x, t) = 1

2
(v+(x, t) + v−(x, t)) = 1

m
∇S(x, t), (17)

u(x, t) = 1

2
(v+(x, t) − v−(x, t)) = �

2m
∇ log ρ, (18)

where �t is a vanishing positive time increment, E(.|q(t) = x) is a conditional
expectation, and the expression for the osmotic velocity is a consequence of Bayes
Theorem. Of course, here ∇ is simply given by the derivative ∂/∂x , since the system
is one-dimensional.

It turns out that for the acceleration field a(x, t) defined by

a(x, t) = 1

2
((D+D− + D−D+)q(t))(x, t), (19)

the following dynamical equation is verified

ma(x, t) = −∇V (x), (20)

where V (x) is the potential, identical to Newton second principle of dynamics. We
have introduced the forward and backward derivation operators

D+F(x, t) = lim
�t→0

E(F(q(t + �t), t + �t) − F(q(t), t)|q(t) = x)/�t, (21)

D−F(x, t) = lim
�t→0

E(F(q(t), t) − F(q(t − �t), t − �t)|q(t) = x)/�t. (22)

It turns out that

D+ = ∂

∂t
+ v+(x, t) · ∇ + �

2m
�, (23)

D− = ∂

∂t
+ v−(x, t) · ∇ − �

2m
�, (24)

where � is the Laplacian. Moreover, the dynamical equation for the acceleration
a(x, t) is completely equivalent to the second Madelung equation.

This ends the procedure of association of aNelson stochastic process to a quantum
state. But of course, Nelson motivation for the introduction of stochastic mechanics
was much more ambitious. In fact one can easily show that stochastic mechanics is
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a completely independent theory. The two starting points are the assumption of the
Ito stochastic differential equation, and the stochastic second principle of dynamics.
Then, through the mild assumption that the current velocity field is a gradient, it can
be immediately verified that the wave function can be defined so that the Schrödinger
equation follows, from the dynamical assumptions. In a sense, the dynamical scheme
introduced by Nelson is able to predict the existence and the form of the quantum
De Broglie potential, as a simple consequence of the involved stochastic processes.

One can even introduce a stochastic variational principle (Guerra–Morato–
Nelson) of Lagrangian type, so that the gradient assumption for the current velocity
field is no longer necessary, see [9, 11]. The right equation of motion follows.

3 The Paradox

Now let us introduce the paradox, already foreshadowed in the first Nelson paper,
which seems to seriously undermine the one way connection between Schrödinger
states and Nelson processes. For the harmonic oscillator, consider the ground state
wave function ψ0(x). It is given as an easily calculated Gaussian form [10]. In this
case the association is perfect. All features of the ground state process q0(t) can
be explicitly given, in particular its stationary Gaussian density, and the transition
probabilities. Take now the first excited state, which is of the form ψ1(x) = xψ0(x)
with the proper normalization. Here in the notation we take away irrelevant time
oscillating terms. Also in this case the association is perfect. The Nelson process
does never cross the origin, where there is a node for the wave function. Call q1(t)
the process associated to the first excited state. All its features are perfectly well
known, including the transition probabilities, as shown for example in [12, 13].

Albeverio–Høegh-Krohn statement of the paradox, as recalled at the end of the
Introduction, in this case is equivalent to the following. For a value of the parameter
ε, 0 ≤ ε ≤ 2, introduce the stochastic process qε(t), where the drifts are exactly the
same as for q1(t), while the density is given by ρε(x) = (2 − ε)ρ1(x) for x ≤ 0, and
ρε(x) = ερ1(x) for x ≥ 0. Notice that the change from ρ1(x) to ρε(x) is a simple
rescaling for x < 0 or x > 0. As a consequence, the osmotic velocity, which depends
only on ∇ρ/ρ is coherently given by the same value for both processes. Therefore
the statement according to which “in the stationary case for higher eigenvalues the
stochastic mechanics equation has several solutions” is perfectly true. However this
does not mean that we have several stochastic processes associated to the same quan-
tum state. As a matter of fact, in Nelson scheme we must have ρ(x, t) = |ψ(x, t)|2,
and here this is true only in the case ε = 1, where the qε process is exactly the q1
process. We leave as an exercise to determine the wave function (and the potential)
to which the generic qε process is associated.

Amild extension of the Albeverio–Høegh-Krohn reasoning leads to the following
statement of a paradox pointing in the opposite direction: the possibility that different
wave functions correspond to the same stochastic process.
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Let us now consider the modified wave function ψ2(x) = |x |ψ0(x). It seems that
the stochastic process q2(t) associated to ψ2 is the same as q1. In fact, the two
processes have the same density, and the same drifts for x > 0 and x < 0. But the
twowave functionsψ1 andψ2 are completely different and have a different evolution
according to Schrödinger equation.

Therefore, it seems that the same stochastic process is associated to twocompletely
different wave functions The paradox is very precise, clean and simple to understand,
and in a sense astonishing. It seems that Nelson must relinquish his claims. Only the
nodeless ground state has a precisely defined associated stochastic process.

As any well thought paradox, the investigation on the way out leads to a deeper
understanding of the underlying structure, in this case stochastic mechanics.

4 Quantum and Stochastic Stability

Clearly, the problem with the nodes has to do with the singular nature of the drifts
at x = 0, in our case. The difficulty is very simple. The dynamical equations should
be valid also at x = 0, but we can not operate there, because of the singularities in
the drifts.

However, we can invoke the physical continuity of quantum mechanics in the
Hilbert space metric. We sketch the complete argument.

The problem is at x = 0. Let us regularize ψ2(x) = |x |ψ0(x) in the form
ψ ′

2(x, ε) = √
x2 + ε2ψ0(x), with the help of a small parameter ε. There is no singu-

larity in the drifts at x = 0, while S(x) = 0 but for irrelevant time oscillating term.
A simple calculation shows that the De Broglie potential now acquires a term

�
2

2m

�
√
x2 + ε2√
x2 + ε2

= �
2

2m

ε2

(x2 + ε2)2
. (25)

By insisting that q2(t) stays stationary in the limit ε → 0, we have to take into
account the contribution to the effective potential coming from the piece of the De
Broglie potential that we have calculated. It turns out that this contribution is zero for
x 
= 0, while it becomes infinite for ε → 0 at x = 0. Therefore, an infinite barrier
appears at x = 0 and the paradox disappears. In fact, with the infinite barrier, the two
wave functions ψ1 and ψ2 are completely equivalent.

In conclusion, we see that the node problem is simply solved by invoking quantum
and stochastic stability.

As a matter of fact, Carlen has shown how to deal with processes with singu-
lar drifts in stochastic mechanics in the fundamental paper [14], an output of his
Princeton Thesis, by using suitable limiting procedures.

On the other hand, in [15], we have introduced a large class of stochastic processes
with singular drifts by starting from processes associated to regular drift, introducing
a suitable metric, and taking the closure.
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The procedure exploited here, for avoiding the Albeverio–Høegh-Krohn paradox,
is a simple empirical procedure whose complete justification relies on the rigorous
methods of [14, 15].

Let us now make an additional short observation.
Stochastic mechanics is a creation of Nelson, but there are precursors, notably

Fényes [16] and Weizel [17].
Fenyeswas involved in the study of the statisticalmodels for atoms andmolecules,

of the type introduced by Thomas [18] and Fermi [19]. So it seems that statisti-
cal atomic models provided a stimulating atmosphere also for the development of
stochastic mechanics.

5 Slow Electrons and Slow Neutrons in Rome 1934

Our final remarks are devoted to some considerations on the introduction of very
localized interaction in atomic physics and nuclear physics, in Rome 1934, by Fermi,
which are worth to be known.

Wewill deal with slow electrons in Rome in the Spring of 1934, and slow neutrons
in the Fall of the same year.

At the beginning of 1934, Amaldi and Segrè in Rome, are involved in very impor-
tant spectroscopic research on a phenomenon they have discovered: the behavior of
the high level absorption series of alkaline vapours in the high pressure atmosphere of
extraneous gases (essentially Nitrogen and Hydrogen) [20]. The point is that higher
order Bohr orbits (or quantum states) contain a high number of molecules of the
extraneous gas, which strongly perturbs the energy levels.

Fermi gives a theoretical framework for the interpretation of the phenomenon, and
finds a very general connection between the displacement of the high energy levels
under the action of the extraneous gas and the limiting cross section of electrons
against molecules of the extraneous perturbating gas at extremely low energy [21].
Fermi knew well the behavior of slow electrons (when the De Broglie wave length is
much higher than the potential range). He knew in particular that in some cases the
cross section increases enormously with the decrease of the velocity of the electrons,
as for example with Mercury, due to complex quantum resonance effects.

We can consider a page, 162, of his paper on Nuovo Cimento [21] dedicated to
slow electrons. We can not resist to the temptation to compare it with a page, 208,
of a different article of some months later, dedicated to the completely different
phenomenon of slow neutrons [22].
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Fermi exploits the same quantummechanical treatment, and in particular the same
figure, for completely different phenomena, where completely different particles and
forces are involved (electrons with electromagnetic forces, neutrons with nuclear
forces). However, in each case the slowness produces an enormous increment of the
cross section.

There is no doubt that the familiarity with slow electrons produces a very
favourable conceptual atmosphere for the consideration of the effects of slow neu-
trons.
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Moreover, in these spectroscopic research, in particular with the extraordinary
case where Mercury is involved as perturbating gas, Pontecorvo is strongly involved
[23]. No doubt that Pontecorvo will play a very important role also in the discovery
of the slow neutron effect, in the Fall of 1934.

Even if the Fermi local potential is confined in a very small region, nevertheless
it can have dramatic effects. Let only recall that for Cadmium, the absorption cross
section for slow neutrons can be hundredths of time larger that the geometric cross
section, due to quantum nuclear resonance phenomena.

This lesson coming from very far in time, but with Fermi as lecturer, must be
considered very carefully by the numerous people involved in the important topic of
studying quantum mechanical very short range interactions.
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Energy Forms and Quantum Dynamics

Ludwig Streit

Abstract We reviewDirichlet formmethods for the formulation of quantumdynam-
ics where in many cases perturbations of the Laplacian are much more singular than
e.g. the Kato class.

Keywords Dirichlet forms · Quantum physics · Polymer models

1 Introduction

In the 1960s Sergio and I both embarked on lifelong expeditions into the world of
mathematical physics, first getting acquainted at the famous “Hochstrasse” in Zurich.
Arthur Jaffe, a couple of years later, gives a vivid and illustrated account of this very
special place, saying “… The experiences that unfolded over those ten weeks in
Zürich shaped much of my scientific life …” [1]. He was not the only one …

At our time there, the quest for a mathematically sound fundamental theory of
matter, combining quantization and relativity, was in the doldrums, in spite of the
fact that “elementary particle physics”, invoking heuristic arguments and uncon-
cerned with inconsistencies, was eminently successful, producing, e.g. in the realm
of quantum electrodynamics, numerical results of impressive precision.

Mathematical physics on the other hand looked in vain for relativistic quan-
tum (field) theories that could do more than describe the trivial dynamics of non-
interacting bosons or fermions. As Jost wrote in his book on quantum field theory
[2]: “We had very compelling reasons for not mentioning any models except free
fields. No interesting models are known …”.

The crux of thematter was encoded inHaag’s theorem [3]which states—in simple
terms—that the mathematical framework of the above mentioned “free fields” is
inadequate to describe realistic interactive dynamics. Unknown representations of
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the dynamical variables, fields and other observables, were needed to construct the
dynamics.

The latter, in quantum physics, is to be given as a unitary group, its self-adjoint
generator H , the “Hamiltonian”, shouldmodel the energy of the system.Heuristically
this would be attempted by a “perturbative” ansatz

H = H0 + V

where the positive self-adjoint operator H0 would describe the dynamics of free
particles, and V their interaction. If V were in a suitable sense small w.r. to H0,
H too would then be self-adjoint and methods of perturbation theory would admit
reliable approximate calculations. Unfortunately this is far from being the case in
quantum field theory, not even in various interesting models in the much simpler
non-relativistic quantum mechanics.

How to replace this perturbative construction of dynamics? There were, both in
the same year of 1960, two papers that were suggesting a different approach [4,
5]. Araki’s paper had the charm of mathematical rigor, while the paper of Coester
and Haag rather appealed to the physicists’ intuition. Their common feature was to
invoke the lowest energy eigenstate (“ground state” or “vacuum”), substituting it,
instead of the interaction energy V, to define the dynamics in canonical quantum
field theories.

I was intrigued with these papers at the time, if only for lack of alternatives, and
was musing about how to reduce this ansatz to ordinary non-relativistic quantum
mechanics, again eliminating the potential V as a dynamical input by the choice of
a suitable ground state, such as e.g. of the harmonic oscillator. And what if I used
some excited state of the harmonic oscillator instead, what kind of dynamics would I
get then? At the time that earned me the comment “good question” from my advisor,
and things stopped there for me—until Sergio and Raphael came around with their
seminal paper [6] of 1976. It was on quantum field theory in terms of a ground state
measure and I was fortunate that they generously shared their insights on what this
would produce for the simpler case of non-relativistic quantum mechanics.

2 Dirichlet Forms for Quantum Mechanics

The framework for quantum non-relativistic dynamics in terms of the ground state
was laid out in [7]. Schroedinger theory in its typical form will have a Hilbert space
L2 (Rn, dx) and in suitable units the energy operator H is a perturbation of the
Laplacian �x by a “potential” V (x)

H = −�x + V (x) (1)

chosen such that the operator H is self-adjoint and semi-bounded.
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Fixing constants such that H ≥ 0, we single out a zero-energy solution of the
Schroedinger equation:

(−�x + V (x)) ψ0(x) = 0. (2)

Under very general conditions on V this function will be without zeroes, and we
proceed to construct the so-called ground state representation of Schroedinger theory
by the isomorphism

U : ϕ ∈ L2
(
R

n, dx
) ↔ f ∈ L2

(
R

n, ψ2
0 (x)dx

)

by setting
f (x) = ϕ(x)/ψ0(x).

A straightforward calculation shows that

∫
ϕ(x) (−�x + V (x)) ϕ(x)dx =

∫
∇ f (x) · ∇ f (x)ψ2

0 (x)dx

i.e.
(ϕ, Hϕ)L2(Rn ,dx) = (∇ f,∇ f )L2(Rn ,ψ2

0 (x)dx) .

Under the unitary map U, the operator H = −�x + V takes the form

H ′ := ∇∗∇,

no more mention of a potential here, the interaction is encoded in the measure

dμ(x) := ψ2
0 (x)dx .

In fact from ψ0 we can recuperate the potential by Eq. (2):

V (x) = �ψ0

ψ0
. (3)

So far so good for “well-behaved” potentials V ; the interesting question is now
the inverse one. Starting from the expression

(
f, H ′ f

) :=
∫

Rn

∇ f (x) · ∇ f (x)dμ(x),

for what measuresμwill this produce a unique self-adjoint positive operator H ′, and
by the inverse unitary map to L2 (Rn, dx), a Schroedinger energy operator H? The
answer to that, in [7] and subsequent studies, produced aswe shall see a vast extension
of admissible quantum dynamics, way beyond traditional perturbation theory.
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Specifically, for a positive Radon measure μ on R
n , we can define

ε( f, g) =
∫

Rn

∇ f (x) · ∇g(x)dμ(x)

for f, g ∈ C1
0 (Rn), continuously differentiable functions with compact support.

When will this definition give rise to unique self-adjoint operators H ′ and H , via

ε( f, g) =: (
f, H ′g

)
?

This is the case whenever the form ε is has a closure ε̄ on L2 (dμ), equivalently
when the gradient ∇ is a closable operator from L2 (dμ) to L2 (dμ)

⊗
R

n. It then
has a densely defined adjoint ∇∗, and there is a unique self-adjoint operator H ′, with

H ′ = ∇∗∇.

To connect with the standard Schroedinger ansatz as in (1) consider absolutely
continuous measures

dμ(x) = ρ(x)dx

with
ψ0(x) := √

ρ(x).

We can ask for conditions on ρ or ψ0 such that the measure μ is admissible in the
above sense.

A simple sufficient criterion for admissibility is ln ρ ∈ D (∇) because then, with
β(x) = ∇ ln ρ

∇∗ := −∇ − β

is a densely defined adjoint of the gradient, hence the form ε is closable. For f ∈
C2
0 (Rn)

H ′ f = (−� − β · ∇) f.

The condition β ∈ L2(dμ)
⊗

R
n amounts to ∇ψ0 ∈ L2(dx)

⊗
R

n , but this
admissibility condition can be weakened considerably, a restricted local integrability
condition is sufficient as in the following theorem [7].

2.1 Very Singular Interactions

Theorem 1 Let dμ = ψ2
0dx with ψ0 ∈ L2

loc(R
n, dx) and non-zero almost every-

where, with partial derivatives ∂iψ0 ∈ L2
loc(R

n − N , dx) for some closed null set
N ⊂ R

n.
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Then there are unique self-adjoint operators, H ′ with D(H ′) ⊂ D(ε̄) ⊂ L2(dμ)

with
ε̄( f, g) = (

f, H ′g
)
,

and H on L2(dx), with

ε̄( f1, f2) = (ϕ1, Hϕ2) with ϕi = fiψ0

whenever f1 ⊂ D(ε̄) and f2 ∈ D(H ′).

Example 1 For n = 3 and g ≥ 0 the function

ψ0(x) =
√

g

2π

e−g|x |

|x | (4)

satisfies the conditions of the above theorem, with N = {0} . ψ0(x) ∈ L2(dx), mak-
ing it an eigenstate

Hψ0 = 0.

On the other hand one finds (in the sense of distributions)

�ψ0(x) = g2ψ0(x) − √
4πgδ(x),

so that for functions ϕ vanishing at zero

Hϕ = (−� + g2
)
ϕ

acts like the “free Hamiltonian”−�, shifted by a trivial constant g2. The bound state
ψ0 is thus the result of a “zero-range interaction”. These kinds of interactions—aka
“pseudopotentials”—are often invoked more or less heuristically as limits of short
range interactions with bound state energy E0 = −g2, but the definition of a potential
even in the sense of distributions will fail as one sees from (3). On the other hand,
using the ground state representation as above, one can even extend the formalism
to one of n particles with zero-range interactions, setting

ψ0 (x1, . . . , xn) = const.
∑

i<k

e−g|xi −xk |

|xi − xk | . (5)

For much more on such singular perturbations see e.g. [8], and its extensive list
of references.
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2.2 Barriers

Example 2 Under suitable conditions on the potentialV ground statewave functions
do not have zeroes. So what if one chose e.g. not the ground state e0 of the harmonic
oscillator Hamiltonian, but the following one

ψ0 (x) = e1(x) = const. x exp

(
− x2

2

)
?

As it turns out, the construction outlined above will have all the odd numbered
Hermite functions e2n+1 as eigenvectors (all of them with e2n+1(0) = 0), as well as
their symmetrizations e2n+1(|x |), with the same energy. Hence, equivalently, one can
choose the one sided functions e(+)

2n+1(x) and e(−)
2n+1(x) as a complete set of eigenvec-

tors, restricting e2n+1 to the positive and negative half-line, respectively. So the effect
of the zero is to decompose the problem; with

H = H (+)
⊕

H (−)

acting on
L2(R) = L2(R+)

⊕
L2(R−).

Sufficient for such a separation is that ψ0 (x) = O (|x |) at least on one side of
zero; ψ0 (x) = O (|x |α) with α < 1 would not have this effect. A generalization of
separating barriers for quantum dynamics (and diffusions) inRn can be found in [9];
and a remarkable application to the Titius–Bode law of planetary spacings in [10].

2.3 Approximation by Regular Perturbations

For many computations in quantum mechanics such as e.g. of scattering matrices it
is helpful to approximate singular interactions by more regular ones in a controlled
fashion.

Technically one might want to approximate Hamiltonians H arising from energy
forms

( f, H ′g) =
∫

Rn

∇ f (x) · ∇g(x)ψ2 (x) dx

by sequences of the usual, perturbative form, Hn = � + Vn which would arise from
smoother ground states ψn . Strong resolvent convergence in particular is of interest
because of its relevance for spectra and wave operators.

Theorem 2 [11] Consider an increasing sequence of admissible ψn ∈ L2
loc(R

n),
n = 1, 2, . . . ,∞, such that 0 < ψ1 ≤ ψ2 ≤ . . . ≤ ψn ↗ ψ∞ for almost all x in R

n.

Then the corresponding operators Hn converge to H∞ in strong resolvent sense.



Energy Forms and Quantum Dynamics 35

There is an analogous theorem also for decreasing sequences [11].
Coming back to the zero range “pseudopotentials” with ground states as in equa-

tions (4) and more generally (5), it would be very helpful to be able to approximate
these dynamics reliably using standard potentials. This can be done on the basis of
the above theorem as follows.

Example 3 Approximating the ground state (4) by the sequence

ψn(x) = const.
e−g|x |

|x | + n−1
,

the conditions of the above theorem are fulfilled and for n = 1, 2, . . . we obtain a
sequence of approximating Hamiltonians

Hn = −� + Vn

with well-defined potentials

Vn = �ψn

ψn
.

3 Back to Quantum Field Theory

The stumbling block for the construction of interacting relativistic quantum fields
was—and to some extent still is—the need to find appropriate substitutes for the
Gaussian “vacuum measures”, ground states that are at the heart of the (bosonic)
free field models.

Finding suchmeasures would be a task for the developing discipline(s) of stochas-
tic and infinite dimensional analysis, and in 1975 Klauder directed my attention to
Hida and the budding research area of White Noise Analysis. Its fundamental con-
cept is a probability measure μ on the space S′(Rn) of Schwartz distributions with
characteristic function

C( f ) =
∫

S∗(Rn)

dμ (ω) exp (i 〈ω, f 〉) = exp

(
−1

2

∫
f 2(t)dt

)
f ∈ S(Rn).

In finite dimensional analysis spaces S and S∗ of test and generalized functions
form a Gelfand triple

S(Rn) ⊂ L2(Rn, dt) ⊂ S∗(Rn).

Likewise a space denoted by (S) of smooth “Hida test functions” can be con-
structed within the Hilbert space (L2) ≡ L2(S∗, dμ), and by duality a Gelfand triple
with corresponding space (S)∗ of generalized functions:
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(S) ⊂ (
L2

) ⊂ (S)∗ .

This construction can e.g. be found in [12]. Elements  of (S)∗ are charac-
terized by the fact that their action F(z, f ) ≡ 〈

, ez f
〉
on exponential functions

ez f ≡ eiz〈ω, f 〉 ∈ (S) is an entire function of 2nd order growth in z, and continu-
ous in f. For details on this see e.g. [13]. This criterion is particularly useful since
objects like F(z, f ) are often computed more or less heuristically in various fields
of physics, often under the name of “source functionals”; Feynman integrals are a
prominent example which acquire rigorous mathematical meaning once the above
conditions are satisfied.

As formeasures on the space S∗(Rn), there is an important theorembyKondratiev,
stating that, as in finite dimensional analysis, positive  ∈ (S)∗ are indeed measures
[14]. For any such  there is a unique measure ν on the Borel sets of (S)∗ such that

〈
, e f

〉 =
∫

S∗(Rn)

exp (i 〈ω, f 〉) dν (ω) .

Coming back to quantum field theory, starting in the late sixties, there finally
was some progress on this front—“constructive quantum field theory” began to pro-
duce ground state measures for Euclidean Bose fields—would they be in the Hida–
Kondratiev class? For the free field this could be verified by direct computation using
the characterization theorem. For non-trivial models such as the Hoegh-Krohnmodel
[15], P(ϕ)2, and others [16], there exist moment bounds [17, 18] for the Euclidean
fields ϕ, such as

E
(
ϕn( f )

) ≤ an (n!)1/k ‖ f ‖n (6)

for some fixed positive m and k ≥ 2. Hence by the above characterization theorem
and Kondratiev’s, the expectations of these fields are expectations with respect to a
white noise measure. These measures furthermore admit local Dirichlet forms [19]
and the ensuing stochastic partial differential equations (“stochastic quantization”)
[20].

4 Dirichlet Forms for the Edwards Model

In thememorable year of 1968 Jost assembled a stellarworkshop inVarenna, focusing
on the budding successes and techniques of constructive quantum field theory. It was
there that Varadhan presented his construction of the Edwards model in two spatial
dimensions [21].

Informally, in the Edwards model, the Wiener measure dμ0 has an additional
weight factor
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dμg(x) = 1

Z
exp

⎛

⎝−g

T∫

0

ds

T∫

0

dtδ (x(s) − x(t))

⎞

⎠ dμ0(x) (7)

suppressing self-intersections x(s) = x(t) of the paths, with

Z = E

⎛

⎝exp

⎛

⎝−g

T∫

0

ds

T∫

0

dtδ (x(s) − x(t))

⎞

⎠

⎞

⎠ .

The self-intersection local time

L =
T∫

0

ds

T∫

0

dtδ (x(s) − x(t))

becomes increasingly singular for higher-dimensional Brownian motion [22]. In
particular a proper definition has to pass through a regularization of the Dirac dis-
tribution, renormalizations, and limit taking. A common regularization is by the
replacement

δε(x) := 1

(2πε)d/2
e− |x |2

2ε , ε > 0,

Lε(T ) :=
T∫

0

dt

T∫

0

ds δε(x(t) − x(s)), (8)

others would use |t − s| > ε to control the singularity at t = s.
Varadhan showed for the centered local time

Lc
ε = Lε − E(Lε)

the existence of Lc
0 = limε↘0 Lc

ε and that

Z = E
(
exp(−gLc

0)
)

< ∞,

so that for the centered local time theEdwardsmodel ford = 2becomeswell-defined.
Muchmore recently we extended this result to fractional Brownianmotion x(t) =

B H (t) where B H is a centered Gaussian process with covariance

E(B H
t B H

s ) = δi j

2

(
t2H + s2H − |t − s|2H

)
, i, j = 1, . . . , d, s, t ≥ 0, 0 < H < 1.

TheEdwardsmodel can be constructed [23] for dimensions d andHurst parameter
H as long as Hd ≤ 1.
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So what about a local Dirichlet form on the L2(dμ) space with the Edwards
measure μ? There again Sergio et al. [24] showed the way. For the Varadhan model,
i.e. for d = 2 and the authors show the existence of a local Dirichlet form and of a
diffusion process whose invariant measure is the two-dimensional Edwards measure
[25].

Following once again the lead of Sergio, wemanaged to extend this result [25, 26]
to fractional Brownian motion for Hd ≤ 1 and more recently to fractional Brownian
loops and trees.

5 Conclusion

Looking back now it is patent that I have been learning from Sergio throughout my
professional life—ad multos annos, dear master and friend.
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The Emergence of Noncommutative
Potential Theory

Fabio E. G. Cipriani

Abstract We review origins and developments of Noncommutative Potential The-
ory as underpinned by the notion of energy form. Recent and new applications are
shown to approximation properties of von Neumann algebras.
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1 Introduction

Our intent here is to trace some of the main steps of Noncommutative Potential
Theory, starting from the seminal works by Albeverio and Hoegh-Krohn [2, 3]. The
point of view adopted in treating Potential Theory it is essentially the one of Dirichlet
forms, i.e. the point of view of Energy. The justification for this is that, not only the
motivating situations to develop a potential theory on operator algebras came from
Mathematical Physics but also that the concept of Energy seems to have a unifying
character with respect to the different aspects of the subject.

The present exposition is thought to be addressed to researcher not necessarily
familiar with the tools of operator algebras and, in this respect, we privileged the
illustration of examples and applications instead to provide the details of the proofs.

In this presentation several aspects of the theory has been necessarily sacrificed
and for them we refer to other presentations [27, 28]. In particular, the construction
of Fredholm modules and Dirac operators from Dirichlet forms and the realization
of Dirichlet spaces as instances of Connes’ Noncommutative Geometry [42] can
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be found in [27, 31, 34, 46, 94, 97] while the study of energy states, potentials
and multipliers of noncommutative Dirichlet spaces has been initiated in [35]. The
details of the theory on KMS symmetric Markovian semigroups on C∗-algebras can
be found in [28].

The recent developments of the theory of noncommutative Dirichlet forms show
a not rare situation inMathematics in which a theory born to solve specific problems,
as time goes by, applies to, apparently far away, others. In this respect we review in
Sect. 7 the recent close relationships among spectral characteristics of noncommu-
tative Dirichlet forms and approximation properties of von Neumann algebras such
as Haagerup Property (H), amenability and Property (T). In particular a new charac-
terization of the Murray–von Neumann Property (�) is proved in terms of absence
of a Poincaré inequality for elementary Dirichlet forms.

2 Commutative Potential Theory

2.1 Classical Potential Theory

Classical Potential Theory concerns properties of the Dirichlet integral

D : L2(Rd ,m) → [0,+∞] D[u] :=
∫

Rd

|∇u|2 dm

as a lower semicontinuous quadratic form on the Hilbert space L2(Rd ,m), which is
finite on the Sobolev space H 1(Rd). The associated positive, self-adjoint operator is
the Laplace operator

� = −
d∑

k=1

∂2
k D[u] = ‖√�u‖22

which generates the heat semigroup e−t� whose Gaussian kernel

e−t�(x, y) = (4π t)−d/2e− |x−y|2
4t

is the fundamental solution of the heat equation ∂t u + �u = 0. TheBrownianmotion
(�, Px , Bt ) is the stochastic processes associated to the semigroup by the relation

(e−t�u)(x) = Ex (u ◦ Bt )

which is also directly connected to the Dirichlet integral by the identity
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D[u] = lim
t→0+

Em(|u ◦ Bt − u ◦ B0|2)
2t

.

The polar sets, i.e. those sets which are avoided by the Brownian motion, can be
characterized as those which have vanishing electrostatic capacity, defined in terms
of the Dirichlet integral itself as

Cap(A) := inf{D[u] + ‖u‖22 : u ∈ H 1(Rn), 1A ≤ u}

for any open set A ⊆ R
n and then as

Cap(B) := inf{Cap(A) : B ⊆ A, A open}

for anyothermeasurable set B ⊆ R
n . The heat semigroup isMarkovian on L2(Rn,m)

in the sense that it is strongly continuous, contractive, positivity preserving and
satisfies e−t�u ≤ 1 whenever u is a real function such that u ≤ 1. By these prop-
erties it can be extended to a contractive and positivity preserving semigroup on
any L p(Rn,m) for p ∈ [1,+∞] which is strongly continuous for p ∈ [1,+∞) and
weakly∗-continuous for p = +∞. TheMarkovianity of the heat semigroup is equiv-
alent to the following property, also called Markovianity, of the Dirichlet integral

D[u ∧ 1] ≤ D[u] u = ū ∈ L2(Rn,m)

which can be easily checked using differential calculus and the definition of the
Dirichlet integral.All others aboveproperties canbeprovedby the explicit knowledge
of the Green kernel of heat semigroup which, for d ≥ 3 at least, equals

�−1u(x) =
∫

Rd

G(x, y)u(y)m(dy) G(x, y) = cd · |x − y|2−d .

2.2 Beurling–Deny Potential Theory [10, 22, 53, 58, 75, 99,
100]

Aturningpoint in the development of potential theorywas representedby two seminal
papers by Beurling and Deny [9, 10]. They developed a kernel free potential theory
based on the notion of energy on general locally compact measured spaces (X,m).
The whole theory relies on the notion of regular Dirichlet form which is required to
be a lower semicontinuous quadratic functional on L2(X,m) satisfying

• Markovianity:

E : L2(X,m) → [0,+∞] E[u ∧ 1] ≤ E[u]
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• regularity: F ∩ C0(X) is a form core uniformly dense in C0(X)

and where the form domain F := {u ∈ L2(X,m) : E[u] < +∞} is assumed to be
L2-dense. The lower semicontinuity ofE on L2(X,m), being equivalent to the closed-
ness of the densely defined quadratic form (E,F) on L2(X,m), implies the existence
of a nonnegative, self-adjoint operator (L , D(L))which generates aMarkovian semi-
group e−t L on L2(X,m).

2.2.1 Beurling–Deny Decomposition

One of the first fundamental results in the Beurling–Deny analysis concerns the
structure of a general regular Dirichlet form: these can be uniquely realized as a sum
of three Markovian forms (each of which not necessarily closed)

E = Ed + E j + Ek

where the jumping part has the form

E j [u] =
∫

X×X\�X

|u(x) − u(y)|2 J (dx, dy)

for a positive measure J supported off the diagonal �X of X × X , the killing part
appears as

Ek[u] =
∫

X

|u(x)|2 k(dx)

for some positive measure k on X and the diffusion part is strongly local in the sense
that

Ed [u + v] = Ed [u] + Ed [v]

whenever u is constant in a neighborhood of the support of v.
Two turning point in the development of Potential Theory took place on the

probabilistic side when Fukushima associated a Hunt stochastic process (�, Px , Xt )

to a regular Dirichlet form in such a way that

E[u] = lim
t→0+

E(|u ◦ Xt − u ◦ X0|2)
2t

u ∈ F

andwhenSilverstein introduced the notion of extendedDirichlet space, especially for
the connections with the boundary theory and the random time change of symmetric
Hunt processes.

The process is a stochastic dynamical system which represents the semigroup
through
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(e−t Lu)(x) = Ex (u ◦ Xt ).

Abasic tool in the development of the Beurling–Deny theory of a regular Dirichlet
form (E,F) is the capacity one associates to it exactly in the same way we have seen
above in the case of Dirichlet integrals. A key point to construct the associated
stochastic processes is the fact that the regularity property of the Dirichlet form
allows to prove that the capacity associated to it is in fact a Choquet capacity which
implies that Borel sets are capacitable.

From the point of view of the process, the three different summands of the
Beurling–Deny decomposition have a nice and useful probabilistic interpretation:
the measure J counts the jumps of the process, the measure k specifies the rate at
which the process is killed inside X and a Dirichlet form is strongly local if and only
if the associated process is a diffusion, i.e. it has continuous sample paths. In Sect. 5.2
we will show an independent, algebraic way to prove the above decomposition of
Dirichlet forms.

3 Operator Algebras

3.1 C∗-Algebras as Noncommutative Topology
[6, 54, 89, 105]

A C∗-algebra is A is a Banach ∗-algebra in which norm and involution conspire as
follows

‖a∗a‖ = ‖a‖2 a ∈ A.

This notion generalizes topology in an algebraic form in the sense that, by a
theorem of Gelfand, a commutativeC∗-algebra A is isomorphic to the algebraC0(X)

of continuous functions vanishing at infinity on a locally compact Hausdorff space
X , called the spectrum of A. In C0(X) the product of functions is defined pointwise,
the involution is given by pointwise complex conjugation and the norm is the uniform
one.

The simplest example of a noncommutative C∗-algebra is the full matrix algebra
Mn(C) where the product is the usual rows-by-columns, the involution of a matrix
A is defined as its matrix adjoint A∗ and the norm ‖A‖ is given by the operator norm
(the largest singular value of A, i.e. the square root of the largest eigenvalue of A∗A).

Finite dimensional C∗-algebras are isomorphic to finite direct sums of full
matrix algebras. The simplest examples of noncommutative, infinite dimensional
C∗-algebras are those of the algebra B(h) of all bounded operators and its subalge-
bra of all compact operators K(h) on an infinite dimensional Hilbert space h, the
norm being the operator one.

A morphism α : A → B between C∗-algebras A, B is a norm continuous ∗-
algebras morphism. A first example of the deep interplay that the algebraic and
the analytic structures on a C∗-algebra give rise, is the fact that ∗-algebra morphisms
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are automatically norm continuous. Morphisms between commutative C∗-algebras
C0(X) and C0(Y ) correspond to homeomorphisms φ : Y → X by α( f ) = f ◦ φ.

A morphism of type π : A → B(h) is called a representation of A on the Hilbert
space h. It is called faithful if it is an injective map and in this case A can be
identified with the C∗-subalgebra π(A) ⊆ B(h). Any C∗-algebra admits a faithful
representation.

A C∗-algebras is, in particular, an ordered vector space where the closed cone is
given by

A+ := {a∗a ∈ A : a ∈ A}.

When A is represented as a subalgebra of some B(h), the positive elements of A
are positive, self-adjoint operators on h. In C0(X), the positive elements are just the
nonnegative functions.

3.2 von Neumann Algebras as Noncommutative Measure
Theory [55, 84, 89]

A von Neumann algebra M is a C∗-algebra which admits a predual M∗ as a Banach
space in the sense that (M∗)∗ = M .

Any commutative, σ -finite1 von Neumann algebra is isomorphic to the algebra
of (classes of) essentially bounded measurable functions L∞(X,m) on a measured
standard space (X,m) with L1(X,m) as predual space. This commutative situation
forces to regard the theory of von Neumann algebras as a noncommutative gener-
alization of Lebesgue measure theory. Even if this is a fruitful point of view, other
natural constructions suggest to look at the theory as a generalization of Euclidean
Geometry and as a generalization of Harmonic Analysis.

The simplest example of a noncommutative von Neumann algebra is that of the
space B(h) of all bounded operators acting on a Hilbert space h having dimension
greater than one. The predual of B(h) is given by the Banach space L1(h) of trace-
class operators on h and the duality is given by

〈A, B〉 := Tr(AB) A ∈ B(h), B ∈ L1(h).

All C∗-algebras are isomorphic to norm-closed subalgebras of some B(h) and
all von Neumann algebras are isomorphic to subalgebras of some B(h), closed in
its weak∗-topology. A first fundamental results of von Neumann asserts that for any
subset S ⊆ B(h), its commutant

S′ := {a ∈ B(h) : ab = ab, for all b ∈ B(h)}

1 A von Neumann algebra is σ -finite if all collections of mutually disjoint orthogonal projections
have at most a countable cardinality. von Neumann algebras acting on separable Hilbert spaces are
σ -finite (the converse being in general not true).
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is a von Neumann algebra. A second fundamental result of von Neumann asserts
that an involutive subalgebra M ⊆ B(h) is a von Neumann algebras iff it is weakly∗-
closed and iff it coincides with its double commutant M = M ′′ := (M ′)′. A key
aspect is that for an involutive subalgebra M ⊆ B(h) its weak∗-closure coincides
with its double commutant (M ′)′.

The center of a von Neumann algebra is defined as

Center(M) := {x ∈ M : xy = yx, y ∈ M}.

and M is called a factor if its center reduces to the one dimensional algebra C · 1M
of scalar multiples of the unit of M .

3.3 Weights, Traces, States and the GNS Representation
[54, 89]

A positive functional on a C∗-algebra A is a linear map τ : A → C such that

τ(a) ≥ 0 a ∈ A+.

These are automatically bounded and are called states when having norm one.
In case A has a unit, a positive functional is a state as soon as τ(1A) = 1 as it
follows from 0 ≤ a ≤ ‖a‖A · 1A. Positive functionals are noncommutative analog
of finite, positive Borel measures on locally compact spaces: in fact, by the Riesz
Representation Theorem, a positive functional on a commutative C∗-algebra C0(X)

corresponds, via Lebesgue integration, to a finite, positive Borel measure m on X

τ(a) =
∫

X

a dm a ∈ C0(X),

which is a probability if and only if τ is a state. To accommodate the analog of
possibly unbounded positive Borel measures, one has to consider weights on A
defined as functions τ : A+ → [0,+∞] which are homogeneous and additive in the
sense

τ(λa) = λτ(a), τ (a + b) = τ(a) + τ(b) a, b ∈ A+, λ ≥ 0.

If a weight is everywhere finite, then it can be extended to a positive linear func-
tional on A. A weight is called a trace if it is invariant under inner automorphisms
in the sense

τ(uau∗) = τ(a), a ∈ A+

for all unitaries u ∈ Ã = A ⊕ C (recall that A is a two-sided ideal in Ã). This is
equivalent to require that τ is central in sense that
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τ(a∗a) = τ(aa∗) a ∈ A.

If τ is finite this reduces to

τ(ab) = τ(ba) a, b ∈ A.

A weight is faithful if it vanishes τ(a) = 0 on a ∈ A+ only when a = 0. In the
commutative case, faithful weights correspond to fully supported positive Borel
measures.

A weight is densely defined if the ideal Aτ := {a ∈ A+ : τ(a∗a) < +∞} is dense
in A. If a trace is lower-semicontinuous, than it is semifinite in the sense that

τ(a) = sup{τ(b) ∈ A+ : b ≤ a} b ∈ A+.

On a von Neumann algebra, a weight is normal if

τ(sup
i∈I

ai ) = sup
i∈I

τ(ai )

for any net {ai : i ∈ I } ⊂ A+ admitting a least upper bound in A+. The predual
Banach space M∗ of a von Neumann algebra M can be shown to the space of all
normal continuous functionals on M . A von Neumann algebra is said to be finite
(resp. semi-finite) if, for every non-zero a ∈ A+, there exists a finite (resp. semi-
finite) normal trace τ such that τ(a) > 0 and it is said properly infinite (resp. purely
infinite) if the only finite (resp. semi-finite) normal trace on A is zero. On a semi-finite
von Neumann algebra, there exists a semi-finite faithful normal trace.

In this exposition we will be essentially concerned with semi-finite von Neumann
algebras and in particular with those which are σ -finite in the sense that they admit a
faithful, normal state. If h is a separableHilbert space, then any vonNeumann algebra
A ⊆ B(h) is σ -finite. In fact, for any Hilbert base {ek ∈ h : k ∈ N}, a faithful, normal
state is provided by

τ(x) :=
∑
k∈N

(ek |xek)h x ∈ A.

In a way similar to the one by which a probability measure m on X give rise
to the Hilbert space L2(X,m) and to the representation of continuous functions in
C0(X) as multiplication operators on it, a densely defined weight τ on a C∗-algebra
A give rise to a Hilbert space L2(A, τ ) on which the elements a ∈ A act as bounded
operators. This is called the Gelfand–Neimark–Segal or GNS-representation of A
associated to τ .

In fact, the sesquilinear form x, y �→ τ(x∗y) on the vector space A, satisfies the
Cauchy–Schwarz inequality

|τ(x∗y)|2 ≤ τ(x∗x)τ (y∗y) x, y ∈ Aτ
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and a Hilbert space L2(A, φ) can be constructed from the inner product space Aτ by
separation and completion. Since Aτ is an ideal of A, the left regular action b �→ ab
of A onto itself give rise to an action of A onto Aτ and then to a representation of A on
the GNS Hilbert space. If τ is faithful, the identity map of A give rise to an injective,
bounded map A → L2(A, τ ) and if A is unital, the vector ξφ ∈ L2(A, τ ) image of
the identity 1A ∈ A, allows to represent the state φ by τ(x) = (ξτ |xξτ )2. This vector,
uniquely determined by this property, is cyclic in the sense that Aξτ = L2(A, τ ) and
separating in the sense that if a ∈ A and aξτ = 0 then a = 0.

The vonNeumann algebra L∞(A, τ ) := (πGNS(A))′′ ⊆ B(L2(A, τ )) obtained by
w∗-completion, is called the von Neumann algebra generated by τ on A. The GNS-
representation can then be extended to a normal representation of L∞(A, τ ). As
notations are aimed to suggest, this is a generalization of the usual construction of
Lebesgue–Riesz measure theory.

In the case of the trace functional Tr on K(h), the associated GNS space is
L2(K(h),Tr) = L2(h) the space of Hilbert–Schmidt operators on which compact
operators in K(h) act by left composition.

The Hilbert space of the GNS representation of a faithful trace is naturally
endowed with a closed convex cone L2+(A, τ ), which provides an order structure
on L2(A, τ ). It is defined as the closure of Aτ . In the commutative case A = C0(X),
this is just the cone of square integrable, positive functions. L2(X,m). The construc-
tion of a suitable closed, convex cone from a faithful state on a C∗-algebra or from
a faithful normal state on a von Neumann algebra will be done later on.

We conclude this sectionmentioning that a noncommutative integration theory for
traces on C∗-algebras has been developed in [85, 98] giving rise to an interpolation
scale of spaces L p(A, τ ) between the vonNeumann algebra L∞(A, τ ) and its predual
L1(A, τ ). The elements of this spaces can realized as closed operators on L2(A, τ ).

3.4 Morphisms of Operator Algebras [89]

The most obvious notion of morphism to form a category of C∗-algebras is certainly
that of continuous morphisms of involutive algebras. However, this category risks to
have a poor amount of morphisms. For example, if α : A → B is a morphism and B
is commutative then α(ab − ba) = α(a)α(b) − α(b)α(a) = 0 so that if the algebra
generated by commutators [a, b] := ab − ba is dense in A then α = 0. This is the
case for example of A = K(h) or more generally for the so called stableC∗-algebras.

We illustrate now a much more well behaved notion of morphism between C∗
and von Neumann algebras, i.e. completely positive map (an even more general and
fundamental notion of morphism is that of Connes correspondence, which we will
meet later on in this lectures). This notion is of probabilistic nature in the sense that,
among commutative von Neumann algebras, completely positive maps are just the
transformations associated to positive kernels. Notice, en passant, that another basic
tool in operator algebra theory which is of clearly probabilistic nature is the notion
of conditional expectation. See discussion in [42, Chap. 5, Appendix B].
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Beside to any C∗-algebra A we may consider its matrix ampliations A ⊗ Mn(C),
n ≥ 1. A linear map T : A → B is said to be completely positive, or CP map, if its
ampliations

T ⊗ In : A ⊗ Mn(C) → B ⊗ Mn(C)

are positive for any n ≥ 1. ∗-algebra morphisms (such as representations) are com-
pletely positivemaps. If A or B is commutative, all positivemaps (in particular, states)
are automatically completely positive. Complete positivity is however a much more
demanding property than just positivity. While the general structure of positive maps
is rather elusive, even in a finite dimensional setting, the structure of CP maps is
completely described by the Stinespring Theorem [103]. We may consider, without
loss of generality, the case of a CP map T : A → B(h). The result ensures the exis-
tence of a representation π : A → B(k) on a Hilbert space k and that of a bounded
operator V : h → k such that

Ta = V ∗π(a)V a ∈ A.

In case A is unital and T 1A = 1A, then V ∗V = Ih so that V is an isometry which
can be considered as an immersion of h into k. V ∗ is then the projection of k onto
h and the CP map T results as the compression of the restriction of a representa-
tion. The Stinespring construction can be considered as a generalization of the GNS
representation. One starts endowing the vector space A ⊗alg h by the sesquilinear
form

(a ⊗ ξ |b ⊗ η) := (ξ |T (a∗b)η)h a, b ∈ A, ξ, η ∈ h

and checks that the CP property just ensures that this form is positive definite. Cutting
out its kernel and completing the normed space obtained, one gets the Hilbert space
k. The representation of A on k is an ampliation of the left regular representation of
A as it is induced by the map a(b ⊗ ξ) �→ ab ⊗ ξ .

A positivity preserving map φ : M → N between von Neumann algebras, is nor-
mal if φ(supα xα) = supα φ(xα) for all bounded monotone increasing nets of self
adjoint elements {xα} ⊂ M . The property is equivalent to the continuity with respect
to weak∗-topology of the algebras.

3.5 Positivity Preserving and Markovian Semigroups on
Operator Algebras [15]

A strongly continuous semigroup {Tt : t > 0} of contractions on a unital
C∗-algebra A

Tt : A → A Tt ◦ Ts = Tt+s, T0 = I, lim
t→0+

‖a − Tta‖A = 0, a ∈ A
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is said to be Markovian if it is positivity preserving and subunital

0 ≤ a ≤ 1A ⇒ 0 ≤ Tta ≤ 1A a ∈ A.

If A is endowed with a densely defined trace τ , the semigroup is said to be τ -
symmetric if

τ(a∗(Ttb)) = τ((Tta
∗)b) a, b ∈ A ∩ L1(A, τ ).

In case A is a von Neumann algebra, one requires the trace to be normal and the
semigroup to be point-weak*-continuous in the sense

lim
t→0+

η(a − Tta) = 0 a ∈ A, η ∈ A∗.

In case the C∗-algebra A does not have a unit, one can understand positivity
preserving and Markovianity embedding A into a larger unital C∗-algebra Ã and
there using the unit 1 Ã instead of 1A. For example one can choose A ⊕ C.

The generator (L , D(L)) of a Markovian semigroup on a C∗-algebra (resp. a von
Neumann algebra) A is a norm (resp. weak*) closed, densely defined operator on A
defined as

D(L) :=
{
a ∈ A : ∃ lim

t→0+

a − Tta

t
∈ A

}
La := lim

t→0+

a − Tta

t
a ∈ D(L)

where the limit is understood in the norm (resp. weak∗)-topology. Norm continuous
semigroups are exactly those which have bounded generators and these are classified
in [23, 76]. Completely positive, completely contractive or completely Markovian
semigroups are defined as those semigroups on A whose ampliations to the algebras
A ⊗ Mn(C) are positive, contractive orMarkovian for all n ≥ 1. CompletelyMarko-
vian semigroups are also called dynamical semigroups especially in Mathematical
Physics and Quantum Probability (see [44]).

Remark 3.1 Notice that, on vonNeumann algebras, strongly continuous semigroups
are automatically norm continuous as it follows by a direct application of [56, Theo-
rem 1]. Since semigroups with bounded generators have rather limited applications,
this is the reasons for which on von Neumann algebra the natural continuity of a
semigroups is the point-weak*-continuity.

4 Noncommutative Potential Theory

In this section, we let (A, τ ) be a C∗-algebra endowed with a densely defined, lower
semicontinuous faithful trace and consider the GNS representation πGNS acting
on the space L2(A, τ ). We will indicate by L∞(A, τ ) the von Neumann algebra
(πGNS(A))′′ ⊆ B(L2(A, τ )) generated by A through the GNS representation.
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Recall that the little Lipschitz algebra is defined as

Lip0(R) := { f : R → R : f (0) = 0, | f (t) − f (s)| ≤ |t − s|, t, s ∈ R}.

If a = a∗ ∈ A and f ∈ Lip0(R), then f (a) ∈ A acquires a meaning thank to
the fact that C∗-algebras are closed under continuous functional calculus. Since, by
assumption, Aτ := A ∩ L2(A, τ ) is dense in A and a fortiori in L2(A, τ ), if a =
a∗ ∈ L2(A, τ ) then f (a) ∈ L2(A, τ ) may be defined as the limit in L2(A, τ ) of the
sequence f (an) ∈ L2(A, τ ) associated to a sequence an ∈ A ∩ L2(A, τ ) converging
to a in L2(A, τ ).

4.1 Dirichlet Forms on C∗-Algebras with Trace d’après
Albeverio–Hoegh-Krohn

In this section we define Dirichlet forms and Markovian semigroups on the space
L2(A, τ ) and discuss the connection between them and the Markovian semigroups
on the von Neumann algebra L∞(A, τ ), where (A, τ ) is a C∗-algebra A endowed
with a densely defined, lower semicontinuous faithful trace, introduced in [2]. Even
if wewill not discuss them in this notes, wemention that Guido et al. in [65] provided
the extension of this theory to the case of non-symmetric Dirichlet forms.

Definition 4.1 A Dirichlet form is a lower semicontinuous functional

E : L2(A, τ ) → (−∞,+∞]

with domain F := {a ∈ L2(A, τ ) : E[a] < +∞} satisfying the properties
(i) F is dense in L2(A, τ )

(ii) E[a∗] = E[a] for all a ∈ L2(A, τ ) (reality)
(iii) E[ f (a)] ≤ E[a] for all a = a∗ ∈ L2(A, τ ) and all f ∈ Lip0(R) (Markovian-

ity).
A Dirichlet form is said to be

(iv) regular if its domain F is dense in A
(v) complete Dirichlet form if the ampliation En on the algebra (A ⊗ Mn(C), τ ⊗

trn) defined

En : L2(A ⊗ Mn(C), τ ⊗ trn) → (−∞,+∞]

En[[ai, j ]ni, j=1] :=
n∑

i, j=1

E[ai, j ]

is a Dirichlet forms for all n ≥ 1.
A strongly continuous, self-adjoint semigroup {Tt : t > 0} on L2(A, τ ) is said

(vi) positivity preserving if Tta ∈ L2+(A, τ ) for all a ∈ L2+(A, τ )

(vii) Markovian if it is positivity preserving and for a = a∗ ∈ A ∩ L2(A, τ )
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0 ≤ a ≤ 1 Ã =⇒ 0 ≤ Tta ≤ 1 Ã t > 0

(viii) completely Markovian if the extensions T n
t := Tt ⊗ In to L2(A ⊗ Mn(C), τ ⊗

trn) are Markovian semigroups for all n ≥ 1.

Remark 4.2

(1) If in theMarkovianity condition one considers as f the zero function in Lip0(R),
one verifies that Dirichlet forms are nonnegative.

(2) It may be checked that Markovianity is equivalent to the single contraction
property

E[a ∧ 1] ≤ E[a] a = a∗ ∈ L2(A, τ )

inwhich only the unit contraction f (t) := t ∧ 1 is involved.A geometricHilber-
tian interpretation of this fact will be vital to extend the theory beyond the trace
case.

(3) A nice characterization of elements of type f (a) for a fixed a = a∗ ∈ L2(A, τ )

and f ∈ Lip0(R) has been shown in [2] as those hermitian b = b∗ ∈ L2(A, τ )

such that
b2 ≤ a2, |b ⊗ 1 − 1 ⊗ b|2 ≤ |a ⊗ 1 − 1 ⊗ a|2.

(4) Since L2(A ⊗ Mn(C), τ ⊗ trn) = L2(A, τ ) ⊗ L2(Mn(C), trn), the ampliations
are equivalently defined as

E[a ⊗ m] := E[a] · ‖m‖2HS a ⊗ m ∈ L2(A, τ ) ⊗ L2(Mn(C), trn).

The first fundamental result of the Albeverio–Hoegh-Krohnwork [2] is the following
correspondence which generalize that of Beurling–Deny in the commutative case.

Theorem 4.3 There exists a one-to-one correspondence among

(i) Dirichlet forms (E,F) on L2(A, τ )

(ii) Markovian semigroups {Tt : t > 0} on L2(A, τ )

(iii) τ -symmetric, Markovian semigroups {St : t > 0} on the von Neumann algebra
L∞(A, τ ). Moreover, the semigroups are completely Markovian if and only if
the quadratic form is a completely Dirichlet form.

The correspondence between semigroups and quadratic forms on L2(A, τ ) is
given by the relation

E[a] = lim
t→0

t−1
(
a|(I − Tt )a

)
L2(A,τ )

a ∈ L2(A, τ )

where both sides are finite precisely when a ∈ F . The correspondence between the
semigroup on the Hilbert space L2(A, τ ) and the one the von Neumann algebra
L∞(A, τ ) is given by

Sta = Tta a ∈ A ∩ L2(A, τ ).
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Remark 4.4 The above correspondence is exactly the original one proved in [2]
even if the result still holds true if one start with a semi-finite von Neumann algebra
(M, τ ) and a densely defined, semifinite trace on it.

We prefer the first presentation since it prepares the ground (i) to naturally intro-
duce and discuss the notion of regularity of a noncommutative Dirichlet forms,
which, as in the Beurling–Deny theory, is the key notion to develop a rich potential
theory [35] and (ii) to develop the intrinsic differential calculus of Dirichlet spaces
(see Sect. 5 below and [32]).

The second fundamental result of the Albeverio–Hoegh-Krohn work is the fol-
lowing

Theorem 4.5 Let the C∗-algebra A be represented as acting on a Hilbert space h.
Let K be a self-adjoint (non necessarily bounded) operator on h and mi ∈ L2(h) be
Hilbert–Schmidt operators for i = 1, 2, . . .. Then the quadratic form

E[a] :=
∞∑
i=1

Tr(|[a,mi ]|2) + Tr(K |a|2) a ∈ L2(A, τ )

is a completely Dirichlet form provided it is densely defined.

This result is fundamental not only because it provides a tool to construct a large
class of examples but also because it suggests, at least in one direction, a correspon-
dence between completely Dirichlet forms and unbounded derivations a �→ i[a,m]
on the C∗-algebra A (see Sect. 5 below).

The proofs in [2] of both theorems are based on a careful analysis of the normal
contractions on A.

4.1.1 Dirichlet Energy Forms on Clifford C∗-Algebras

Here we illustrate the first example of a noncommutative Dirichlet form. It has been
created to represents the quadratic form of a physical Hamiltonian of an assembly of
electrons and positrons. In particular, its definition and the study of its properties has
been introduced by L. Gross [63, 64] in connection with the problem of existence
and uniqueness of the ground state of physical Hamiltonians describing Fermions.

Let h be a complex Hilbert space and J a conjugation on it (i.e. an anti-linear,
anti-unitary operator such that J 2 = I ). Systems whose number of particles is not a
priori bounded above are described by the Fock space

F(h) :=
∞⊕
n=0

h⊗n
.

Particles systemobeying a Fermi–Dirac statistics are described by the Fermi–Fock
subspace
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F−(h) := P−(F(h)),

where the orthogonal projection P− is defined by

P−( f1 ⊗ · · · ⊗ fn) = (n!)−1
∑
π

επ fπ(1) ⊗ · · · ⊗ fπ(n)

where the sum is over all permutations (1, . . . , n) �→ (π(1), . . . , π(n)). For f ∈ h,
the creation operator a∗( f ), defined as a∗( f ) := √

n + 1P−( f ⊗ g1 ⊗ · · · ⊗ gn),
is bounded with norm ‖a∗( f )‖ = ‖ f ‖h . Together with the annihilation operator
defined by a( f ) := (a∗( f ))∗, it satisfies the canonical anti-commutation CAR rela-
tions

a( f )a(g) + a(g)a( f ) = 0, a( f )a∗(g) + a∗(g)a( f ) = ( f |g)Ih f, g ∈ h

which represents the Pauli’s Exclusion Principle. The Clifford C∗-algebra Cl(h) is
defined as the C∗-algebra generated by the fields operators

b( f ) := a∗( f ) + a(J f ) f ∈ h

i.e. as the intersection of all C∗-subalgebras of B(F−(h)) containing the fields {b( f ) :
f ∈ h}. It is highly noncommutative since it is a simple C∗-algebra in the sense that it
has no nontrivial closed, bilateral ideals. The Fock vacuum vector � := 1 ⊕ 0 · · · ∈
F−(h) defines a trace vector state on it by

τ0(A) := (�|A�) A ∈ Cl(h)

and the natural map D : Cl(h) → F−(h) given by A �→ A�, extends to a unitary
map from L2(Cl(h), τ0) onto F−(h), called the Segal isomorphism. This natural
isomorphism allows to transfer on the Fermi–Fock space the order structure one
has on L2(Cl(h), τ0) and vice versa, to study on L2(Cl(h), τ0) operators originally
created on F−(h). This procedure is especially useful in combination with second
quantization, where a self-adjoint operator (A, D(A)) on h give rise to a self-adjoint
operator (d�(A), D(d�(A))) onF−(h) as follows. First define self-adjoint operators
(An, D(An)) on P−(h⊗n

) for n ≥ 0 setting A0 = 0 and

An(P−( f1 ⊗ · · · ⊗ fn)) :=
n∑

k=1

P−( f1 ⊗ · · · ⊗ A fk ⊗ · · · fn) f1 ⊗ · · ·⊗

fn ∈ D(An) := D(A)⊗
n
.

The direct sum of the An is essentially self-adjoint because it is symmetric and
it has a dense set of analytic vectors formed by finite sums of anti-symmetrized
products of analytic vectors of A. The self-adjoint closure d�(A) := ⊕∞

k=0An of this
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sum is called the second quantization of A and is denoted by (d�(A), D(d�(A))).
The main example of this procedure concerns the Number operator d�(I ).

Theorem 4.6 (Clifford Dirichlet form) Let (A, D(A)) be a self-adjoint operator on
h, commuting with J and satisfying A ≥ mIh for some m > 0. Then

(i) the quadratic form (E,F) of the operator H := D−1d�(A)D

E[ξ ] := (ξ |Hξ)L2(Cl(h),τ0) = (Dξ |d�(A)Dξ)F−(h) ξ ∈ D(H)

is a completely Dirichlet form on L2(Cl(h), τ0);
(ii) the completely Markovian semigroup e−t H is hypercontractive in the sense that

it is bounded from L2(Cl(h), τ0) to L4(Cl(h), τ0) as soon as mt ≥ (ln 3)/2;
(iii) inf σ(H) is an isolated eigenvalue of finite multiplicity.

The main point is to prove the result for A = Ih so that the Hamiltonian
is H = Dd�(Ih)D−1 = DND−1 is unitarily equivalent to the Number operator
N = d�(Ih). We shall see later a proof based on the structure of the Dirichlet form of
the Number operator. The interest in noncommutative Dirichlet forms originated in
QFT to extend to Fermions the non perturbative techniques of Nelson, Segal, Glimm,
Gross, Jaffe, Simon and others, elaborated for Bosons systems.

We conclude this section noticing that the Clifford von Neumann algebra
L∞(Cl(h), τ0) generated by the GNS representation of the Clifford C∗-algebra pro-
vided by the Fock vacuum state, is isomorphic to the the hyperfinite I I1-factor
(usually denoted by R) to which τ0 extends to a normal tracial state. While the
hyperfinitness (see Sect. 7.3 below) is a reflection of the fact that L∞(Cl(h), τ0)

is generated by the net of finite-dimensional subalgebras corresponding to finite
dimensional subspaces of the Hilbert space h, its uniqueness is a fundamental result
of [40].

As any von Neumann algebra, R is generated by its projections p ∈ R (which
are defined as the self-adjoint elements p = p∗ satisfying p2 = p). However, while
projections in a type I von Neumann algebra as B(h) have traces which can assume
integers values only (equal to the dimension of their ranges), the trace of a projection
in R may assume any real value τ0(p) ∈ [0, 1], interpreted as a real dimension of
the range of p. This is the reason by which von Neumann regarded R as exhibiting
a Euclidean continuous geometry.

5 Dirichlet Forms and Differential Calculus: Bimodules
and Derivations

In this section we show that on C∗-algebras endowed with a densely defined, lower
semicontinuous, faithful trace (A, τ ), completely Dirichlet forms are representations
of a differential calculus (see [32, 91, 92]). In fact they can be constructed, on one
side, and determine, on the other side, closable derivations on the C∗-algebra A. This
was suggested, at least in one direction, by the result of Albeverio–Hoegh-Krohn
illustrated in Theorem 4.5 above.
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To specify what a derivation on a C∗-algebra A is, let us recall the notion of
A-bimodule H: this is an Hilbert space together with two continuous commuting
actions (say left and right) of A

A × H � (a, ξ) �→ aξ ∈ H, H × A � (ξ, b) �→ ξb ∈ H.

The commutativity says that (aξ)b = a(ξb) for all a, b ∈ A and ξ ∈ H. If the left
and right actions coincides, aξ = ξa, then H is called a A-mono-module. Equiva-
lently, a A-bimodule is a representation on the Hilbert space H of the maximal or
projective tensor product C∗-algebra A ⊗max A◦. Here A◦ denote the opposite C∗-
algebra coinciding with A as linear space with involution but in which the product
is reversed in order: x◦y◦ := (yx)◦.

A symmetric A-bimodule (H,J ) is a A-bimodule J together with a conjugation
J such that

J (aξb) = b∗(J ξ)a∗ a, b ∈ A, ξ ∈ H.

Definition 5.1 (Derivation on C∗-algebras) A derivation on a C∗-algebra A is a
linear map ∂ : D(∂) → H defined on a subalgebra D(∂) ⊆ A with values into a
A-bimodule H satisfying the Leibnitz rule

∂(ab) = (∂a)b + a(∂b) a, b ∈ D(∂) ⊆ A.

The derivation is called symmetric if D(∂) is involutive, H is symmetric and

J (∂a) = ∂a∗ a ∈ D(∂).

Here we review some examples of derivations.

Gradient operator. Let M be a Riemannian manifold and consider the Hilbert space
L2
C
(T M) := L2(T M) ⊗R C obtained complexifying the Hilbert space of square

integrable vector fields. This is a mono-module2 over the commutative C∗-algebra
of continuous function C0(M) where the action is defined pointwise and it can be
endowedwith the involutionJ (χ ⊗ z) := χ ⊗ z̄. If H 1(M) denotes the first Sobolev
space, then a symmetric derivation is defined by the gradient operator

∇ : C0(M) ∩ H 1(M) → L2
C
(T M).

Difference operator. Let X be a locally compact Hausdorff space and let j be a Radon
measure on X × X supported off the diagonal. Left and right commuting actions of
C0(X) on L2(X × X, j) may be defined as

(a f )(x, y) := a(x) f (x, y), ( f b)(x, y) = f (x, y)b(y)

a, b ∈ C0(X), f ∈ L2(X × X, j)

2 A mono-module is a bi-module in which the left and right actions coincide.
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and one may check that

j : Cc(X) → L2(X × X, j) (∂ j a)(x, y) := a(x) − a(y)

is a symmetric derivation on C0(X) once the conjugation is defined as

(J f )(x, y) := f (y, x).

Killing measure. Let X be a locally compact Hausdorff space and let k be a Radon
measure on X . Consider L2(X, k) as a C0(X)-bimodule where the left action is
the usual pointwise one while the right action is the trivial one so that ξb := 0 for
all ξ ∈ L2(X, k) and b ∈ C0(X). If one considers as J just the pointwise complex
conjugation of functions in L2(X, k), then one may easily check that the map

∂k : Cc(X) → L2(X, k) ∂a := a

is a symmetric derivation on C0(X).

Commutators I. Let (A, τ ) be a C∗-algebra endowed with a faithful, semifinite trace
and recall that Aτ := {a ∈ A : τ(a∗a) < +∞} is a bilateral ideal in A. Then if one
consider on the Hilbert space L2(A, τ ) the natural left and right actions of A and the
conjugation J a := a∗, one obtains a symmetric A-bimodule. Moreover any b ∈ A
give rise to a symmetric derivation

∂b : Aτ → L2(A, τ ) ∂ba := i[a, b] = i(ab − ba).

If a sequence {bk ∈ A : k ≥ 1} is fixed and one consider the direct sum of sym-
metric A-bimodules ⊕∞

k=1L
2(A, τ ), then the direct sum

∂ := ⊕∞
k=1∂bk : D(∂) → ⊕∞

k=1L
2(A, τ )

is a symmetric derivation defined on the involutive subalgebra D(∂) of those a ∈ Aτ

such that the series ⊕∞
k1

‖[a, bk]‖2L2(A,τ )
converges.

Commutators II. As a variation of the above construction, suppose that A is repre-
sented on the Hilbert space h. Then the space of Hilbert–Schmidt operators L2(h)

is a A-bimodule for the left aξ and right ξb actions of a, b ∈ A on ξ ∈ L2(h) given
by composition as operators on h. A natural involution is defined by J ξ := ξ ∗ on
ξ ∈ L2(h) and then a symmetric derivation is given by

∂ξ : A → L2(h) ∂ξa := i(aξ − ξa).

If a sequence {ξk ∈ L2(h) : k ≥ 1} of Hilbert–Schmidt operators is fixed and one
consider the direct sum of symmetric A-bimodules ⊕∞

k=1L
2(h), then the direct sum

∂ := ⊕∞
k=1∂ξk : A → ⊕∞

k=1L
2(h)
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is a symmetric derivation defined on the involutive subalgebra D(∂) of those a ∈ Aτ

such that the series ⊕∞
k=1‖aξk − ξka‖2L2(h)

converges. This last derivation is clearly
related to the one appearing in the Albeverio–Hoegh-Krohn Theorem above.We will
come back on this construction later on.

Next result shows that closable derivations give rise to Dirichlet forms [32].

Theorem 5.2 Let (A, τ ) be a C∗-algebra endowed with a densely defined, lower
semicontinuous, faithful trace and let (∂, D(∂),H,J ) be a symmetric derivation,
densely defined on a domain D(∂) ⊂ A ∩ L2(A, τ ), which is closable as an operator
from L2(A, τ ) toH. Then the closure of the quadratic form

E[a] := ‖∂a‖2H a ∈ F := D(∂)

is a completely Dirichlet form.

The proof of the above result goes through the establishment of noncommutative
chain rule [32] for closable derivation, by which one has

∂ f (a) = ((La ⊗ Ra)( f̃ ))(∂a) a = a∗ ∈ A ∩ L2(A, τ ), f ∈ Lip0(R)

Here La (resp. Ra) are the representation ofC(sp(a)), continuous, complex valued
functions on the spectrum sp(a) of a, uniquely defined by

La( f )ξ =
{

f (a)ξ if f (0) = 0

ξ if f ≡ 1
f ∈ C(sp(a)) ξ ∈ H

and

Ra( f )ξ =
{

ξ f (a) if f (0) = 0

ξ if f ≡ 1
f ∈ C(sp(a)) ξ ∈ H.

La ⊗ Ra is the tensor product representation ofC(sp(a)) ⊗ C(sp(a)) = C(sp(a) ×
sp(a)). When I ⊆ R is a closed interval and f ∈ C1(I ), we will denote by f̃ ∈
C(I × I ) the differential quotient on I × I , sometimes called the quantum derivative
of f , defined by

f̃ (s, t) =
{

f (s)− f (t)
s−t if s �= t

f ′(s) if s = t.
(5.1)

Since commutators in A are bounded derivations in the above sense, the above
result provides an independent proof of the Albeverio–Hoegh-Krohn Theorem 4.5
above.

A derivation for the Clifford–Dirichlet form. As a further application of the above
result, let us show that the quadratic form EN of the Number operator N of Fermions,
when seen on the space L2(Cl(h), τ0) via the Segal isomorphism D, is a completely
Dirichlet form on the Clifford algebra (Cl(h), τ0). Recall first that N and EN can be
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written as

N =
∞∑
k=1

a∗( fk)a( fk) EN [ψ] :=
∞∑
k=1

‖a( fk)ψ‖2

for any orthonormal base of { fk : k ≥ 1} ⊂ h. Let us denote by Lb and Rb the left
and right actions on L2(Cl(h), τ0) of an element of the Clifford algebra b ∈ Cl(h).
The symmetry β := �(−Ih) of F−(h) induces an idempotent automorphism γ ∈
B(F−(h))

γ (A) := βAβ A ∈ B(F−(h)).

Since b( f )β = −b( f ), we have γ (b( f )) = −b( f ) for all f ∈ h so that γ leaves
Cl(h) globally invariant and then γ ∈ Aut(Cl(h)). SinceCl(h) ⊂ L2(Cl(h), τ0) and
β� = � we have D(γ (b)) = βbβ� = βb� = βD(b) so that

γ (b) = (D−1βD)(b) b ∈ Cl(h).

For f ∈ h and ξ ∈ Cl(h)wehaveDLb( f )D−1(Dξ) = D(Lb( f )ξ ) = Lb( f )(ξ�) =
Lb( f )(Dξ) so that, since Cl(h) is dense in L2(Cl(h), τ0), we obtain

DLb( f )D
−1 = a∗( f ) + a(J f ) = b( f ).

Sinceβ(P−( f1 ⊗ · · · ⊗ fn)) = P−β( f1 ⊗ · · · ⊗ fn) = (−1)n P−( f1 ⊗ · · · ⊗ fn)
and β� = �, by the CAR relations we have that a∗( f ) − a(J f )β commutes with
all of b(g) for g ∈ h and then with all elements of the Clifford algebra. Then, for b ∈
Cl(h) we have (a∗( f ) − a(J f ))β(D(b)) = (a∗( f ) − a(J f ))β(b�) = b(a∗( f ) −
a(J f ))β� = b(a∗( f ) − a(J f ))� = ba∗( f )� = b(a∗( f ) + a(J f ))� = bb( f )
� = (Rb( f )b)� = D(Rb( f )b) and since Cl(h) is dense in L2(Cl(h), τ0), we obtain

DRb( f )D
−1 = a∗( f ) − a(J f )β

which can be rewritten as

a∗( f ) − a(J f ) = DRb( f )D
−1β = DRb( f )(D

−1βD)D−1.

By summation we have

a(J f ) = 1

2
D(Lb( f ) − Rb( f )(D

−1βD))D−1

and changing f with J f we get

a( f ) = D
(1
2

(
Lb(J f ) − Rb(J f )(D

−1βD)
))

D−1.
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Consider now on the Hilbert space Hγ := L2(Cl(h), τ0) the Cl(h)-bimodule
structure where the right action of Cl(h) is the usual one while the left one is twisted
by the automorphism γ

b1 · ξ · b2 := γ (b1)ξb2 b1, b2 ∈ Cl(h), ξ ∈ L2(Cl(h), τ0)

(dots indicate actions in this new bimodule structure). The definition is justified by
the fact that, as one can easily check, this new left action is continuous and commutes
with the right one. Let us now check that for any fixed f ∈ h, the map

∂ f : Cl(h) → Hγ ∂ f := i

2
(Lb(J f ) − Rb(J f )(D

−1βD)),

more explicitly given by a module commutator

∂ f (b) = 1

2
(Lb(J f ) − Rb(J f )(D

−1βD))(b)

= 1

2
(Lb(J f )(b) − Rb(J f )(D

−1βD)(b))

= 1

2
(b(J f )b − Rb(J f )(γ (b))

= 1

2
(b(J f )b − γ (b)b(J f ))

= 1

2
(b(J f ) · b − b · b(J f ))

is a derivation in the sense that the Leibniz rule holds true:

∂ f (ab) = 1

2
{b(J f ) · (ab) − (ab) · b(J f )}

= 1

2
{(b(J f ) · a − a · b(J f )) · b + a · (b(J f ) · b − b · b(J f ))}

= (∂ f a) · b + a · (∂ f b) a, b ∈ Cl(h).

To define a symmetry Jγ such that (Hγ ,Jγ ) is a symmetric bimodule, notice
first that the automorphism γ of the Clifford algebra Cl(h) can be extended to a
symmetry acting on the Hilbert space L2(Cl(h), τ0). In fact as β� = �, the trace
τ0 is γ -invariant: τ0(γ (b)) = (�|γ (b)�) = (β�|bβ�) = (�|b�) = τ0(b) for all
b ∈ Cl(h). Consequently γ is isometric with respect to L2-norm

‖γ (b)‖22 = τ0((γ (b))∗γ (b)) = τ0(γ (b∗)γ (b))

= τ0(γ (b∗b)) = τ0(b
∗b) = ‖b‖22 b ∈ Cl(h)

so that by density it extends to an isometry on the whole L2(Cl(h), τ0) such that
γ 2 = I . Further, as for all a, b ∈ Cl(h) we have
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(γ (a)|b)2 = τ0((γ (a))∗b) = τ0((γ (a∗))b) = τ0(γ (a∗γ (b)))

= τ0(a
∗γ (a∗)) = (a|γ (b))2,

it results that γ is a symmetry on L2(Cl(h), τ0) which commutes with the symmetry
J

γ ∗ = γ, γ 2 = I, γ ◦ J = J ◦ γ.

A new conjugation is then defined byJγ := J ◦ γ = γ ◦ J onHγ in such a way
that (Hγ ,Jγ ) is a symmetric bimodule over the Clifford algebra Cl(h), as it results
from the following identities for a, b, c ∈ Cl(h)

Jγ (a · b · c) = J (γ (γ (a)bc)) = J (aγ (b)γ (c))

= (γ (c))∗(γ (b))∗a∗ = (γ (c∗))(Jγ (b))a∗ = c∗ · Jγ (b) · a∗.

Since for f ∈ h one has Jγ (b(J f )) = γ (b(J f )∗) = γ (b( f )) = −b( f ), it fol-
lows that

Jγ (∂ f b) = 1

2
Jγ ((b(J f ) · b − b · b(J f )))

= 1

2
(b∗ · Jγ (b(J f )) − Jγ (b(J f )) · b∗)

= 1

2
(b( f ) · b∗ − b∗b( f ))

= ∂J f (b
∗).

Consequently, if f ∈ h is J -real (in the sense that J f = f ) then ∂ f is Jγ -
symmetric

Jγ (∂ f b) = ∂J (b
∗) b ∈ Cl(h).

Choosing a Hilbert base { fk : k ≥ 1} ⊂ h made by J -real vectors J fk = fk , we
can represent the quadratic form of the Number operator on the space L2(Cl(h), τ0)

as

ECl [b] :=
∞∑
k=1

‖∂ fk b‖2Hγ
b ∈ FCl

where the formdomain is obviouslyFCl := D−1(D(
√
N )). SettingHCl := ⊕∞

k=1 Hγ

as a direct sum of symmetric Cl(h)-bimodules, we have that ∂Cl := ⊕∞
k=1 ∂ fk is a

symmetric derivation of the Clifford algebra into HCl such that

ECl [b] = ‖∂Clb‖2HCl
b ∈ FCl

and which is densely defined and closable as sum of bounded derivations. By Theo-
rem 5.2 above, the associated semigroup is thus completely Markovian.
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Dirichlet form on noncommutative tori. This is a fundamental example appearing in
Noncommutative Geometry [42] in which the relevant algebra of coordinates Aθ of
the space is a noncommutative deformation of the algebra of continuous functions
on a classical torus. For any fixed θ ∈ [0, 1], Aθ , called noncommutative 2-torus, is
defined as the universal C∗-algebra generated by two unitaries U and V , satisfying
the relation

VU = e2iπθUV .

When θ = 0 one recovers the algebra of continuous functions on the 2-torus.
All elements of Aθ can be written as a series

∑
m,n∈Z cm,nUmV n with complex

coefficients. A tracial state is specified by

τ : Aθ → C τ(UmV n) = δm,0δn,0 m, n ∈ Z

so that

L2(Aθ , τ )) =
{ ∑
m,n∈Z

cm,nU
mV n :

∑
m,n∈Z

|cm,n|2 < +∞
}

� l2(Z2).

A densely defined, closed form is given by

E
[ ∑
m,n∈Z

cm,nU
mV n

]
=

∑
m,n∈Z

(m2 + n2)|cm,n|2

on the domain F ⊂ l2(Z2) where the above series converges (i.e. the first Sobolev
space). To check that we are dealing with a Dirichlet form, one may observe that it is
a “square of a derivation”, taking values in the direct sum of two standard bimodules
L2(A, τ ) ⊕ L2(A, τ ) and given by the direct sum

∂(a) = ∂1(a) ⊕ ∂2(a)

of the derivations ∂1 and ∂2 from Aθ into L2(Aθ , τ ) defined by

∂1(U
mV n) = imUmV n , ∂1(U

mV n) = inUmV n n,m ∈ Z.

The associated Markovian semigroup {Tt : t ≥ 0}, characterized by

Tt (U
mV n) = e−t (m2+n2)UmV n m, n ∈ Z,

is clearly conservative, in the sense that Tt1Aθ
= 1Aθ

, because E[1Aθ
] = 0. Even if, at

a Hilbert space level, the Dirichlet form and its associated Markovian semigroup are
clearly isomorphic to the Dirichlet integral and the heat semigroup on the classical
(commutative) torus T

2, written in Fourier series terms, their potential theoretic
properties arise from the order structure of Aθ which may differ completely from
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those of C(T2). The properties of Aθ depend a lot upon the rationality/irrationality
and diophantine approximation properties of the parameter θ ∈ [0, 1]. For example
consider the spectrum of the self-adjoint element S := U +U ∗ + V + V ∗ ∈ Aθ . If
θ = 0 we have Aθ = C(T2) so that since T2 is connected and S a real continuous
function, its spectrum is a closed interval of the real line. When θ is irrational,
however, the spectrum of S is typically a Cantor set (so that, under “commutative
spectacles” we would look at Aθ as a rather fragmented space).

5.1 The Derivation Determined by a Dirichlet Form

The following result, in combination with the previous one, establishes a one-to-one
correspondence between Dirichlet forms and closable derivations on C∗-algebras
[32, 91, 92]. It says that derivations are differential square roots of Dirichlet forms.
It can be considered as a generalization of the construction of the (differential first
order) Dirac operator from the (differential second order) Hodge–de RhamLaplacian
of a Riemannian manifold.

Theorem 5.3 Let (E,F) be a completely Dirichlet form on a C∗-algebra endowed
with a densely defined, lower semicontinuous faithful trace (A, τ ) Then there exists
a densely defined, L2-closable derivation (∂, D(∂)) with values in a symmetric A-
bimodule (H,J ) such that D(∂) is a form core and

E[a] = ‖∂a‖2H a ∈ D(∂).

The bimodule (H,J ) is called the tangent bimodule associated to (E,F).

5.1.1 Conditionally Negative Definite Functions and Dirichlet Forms on
Dual of Discrete Groups [32]

Let λ : � → B(2(�)) be the left regular representation of a countable discrete group
�

(λs f )(t) := f (s−1t) s, t ∈ �

and consider the reduced C∗-algebra C∗
r (�) defined as the smallest C∗-subalgebra

of B(L2(�)) containing the unitary operators λs for all s ∈ �. Extending λ to cc(�)

as a convolution

(λ( f )g)(t) := ( f ∗ g)(t) =
∑
s∈�

f (ts−1)g(s) f, g ∈ cc(�), t ∈ �,

we can identify cc(�) as a dense involutive subalgebra ofC∗
r (�). The involution of an

element f ∈ cc(�) is given by f ∗(s) = f (s−1). A faithful tracial state is determined
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by
τ(λ( f )) = f (e) f ∈ cc(�)

where e ∈ � is the unit of the group. Since

(λ( f )|λ(g))L2(C∗
r (�),τ ) = ( f |g)l2(�) f, g ∈ cc(�),

we can identify L2(C∗
r (�), τ ) with l2(�) at the Hilbert space level and represent

the positive cone L2+(C∗
r (�), τ ) as the one of all square integrable, positive definite

functions on �. The von Neumann algebra L(�) generated by the unitaries {λs : s ∈
�} on l2(�) is called the group von Neumann algebra of�. It is a finite von Neumann
algebra since the tracial state τ on C∗

r (�) extends to a normal tracial state on it and
it is a factor if and only if the conjugacy class

{sts−1 ∈ � : s ∈ �}

of any t ∈ � is an infinite set. In this setting, any conditionally negative definite
function l : � → C, i.e. a normalized, symmetric function

l(e) = 0, l(s−1) = l(s) s ∈ G

satisfying, for s1, . . . , sn ∈ �, c1, . . . , cn ∈ C,

n∑
k=1

c j l(s
−1
j sk)ck ≤ 0 whenever

n∑
k=1

ck = 0,

determines a completely Dirichlet form

El [a] :=
∑
s∈�

l(s)|a(s)|2 a ∈ l2(�)

defined on the domain Fl where the above sum converges and whose associated
completely Markovian semigroup is given by

(Tta)(s) = e−tl(s)a(s) a ∈ l2(�).

To describe the associated derivation recall that any negative definite function can
be represent by a 1-cocycle c : � → Hπ of a unitary representation π : � → Hπ ,
i.e. a function satisfying

c(st) = c(s) + π(s)(c(t)) s, t ∈ �,

as follows
l(s) = ‖c(s)‖2Hπ

s ∈ �.
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On the Hilbert spaceHπ ⊗ l2(�) aC∗
r (�)-bimodule structure is then specified by

the left action π ⊗ λ and by the right action id ⊗ ρ where ρ is the right regular action
of � and id is the trivial action on Hπ assigning the identity operator to any ele-
ment of �. Using the natural isomorphism Hπ ⊗ l2(�) � l2(�,Hπ ), the derivation
representing El is identified by

(∂la)(s) = a(s)c(s) a ∈ cc(�), s ∈ �.

When � = Z
n , the C∗-algebra C∗

r (�) coincides with the algebra C(Tn) of con-
tinuous functions on the torus and if one considers the negative definite function
l(z1, . . . , zn) := |z1|2 + · · · + |zn|2, one recovers as Dirichlet form just the standard
Dirichlet integral on Tn (see Sect. 2.1).

5.2 Decomposition of Derivation, Beurling–Deny Formula
Revisited [32, 33]

Since an A-bimodule is just a representation of the C∗-algebra A ⊗max A, one dis-
poses of all the tools that representation theory offers, such has decomposition the-
ory, to analyze derivations and their associated Dirichlet forms. In the commutative
situation, for example, one obtains, by an algebraic approach, a refinement of the
Beurling–Deny decomposition of Dirichlet forms.

In this section we introduce notions of bounded, approximately bounded and
completely unbounded derivations and we prove that any derivation canonically
split into a sum of the latter.

Let ∂ : D(∂) → H be a densely defined derivation on a C∗-algebra A and denote
by LA(H) the algebra of bounded operators onH which commute both with left and
right actions of A.

An element B ∈ LA(H) will be said to be ∂-bounded if the map B ◦ ∂ extends to
a bounded map from A into H. Notice that if this is the case, B ◦ ∂ is a derivation.
A projection p ∈ LA(H) will be said to be approximately ∂-bounded if it is the
increasing limit of a net of ∂-bounded projections. AsH is assumed to be separable,
this means that one can write the A-bimodule p(H) as an at most countable direct
sum

⊕
n Hn of A-bimodules such that p ◦ ∂ decomposes as a direct sum

⊕
n ∂n of

bounded derivations ∂n := pn ◦ ∂ where pn ∈ LA(H) is the ∂-bounded projection
onto the A-submoduleHn . A projection p ∈ LA(H)will be said to be completely ∂-
unbounded if 0 is the only ∂-bounded projection smaller than p. The derivation ∂ will
be said to be bounded (resp. approximately bounded, resp. completely unbounded)
if the identity operator 1H is a ∂-bounded (resp. approximately ∂-bounded, resp.
completely ∂-unbounded) projection.

Then one can prove that there exists a greatest approximately ∂-bounded projec-
tion Pa ∈ LA(H) and that every ∂-bounded B ∈ LA(H) satisfies B ◦ Pa = B.
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Setting Ha := Pa(H) and Hc := (1 − Pa)(H) we have the decomposition of
H = Ha ⊕ Hc into its approximately bounded and completely unbounded sub-A-
bimodules. Correspondingly, setting ∂a := Pa ◦ ∂ and ∂c := (1 − Pa) ◦ ∂ we have
the decomposition of the derivation ∂ = ∂a ⊕ ∂c into its approximately bounded and
completely unbounded components. Finally, any Dirichlet form can be canonically
splitted as a sum of its approximately bounded and completely unbounded parts

E[a] = ‖∂a‖2H = ‖∂aa‖2H j
+ ‖∂ca‖2Hc

a ∈ F .

This is a (purely algebraic) generalization of the Beurling–Deny decomposition
of Dirichlet forms on a commutative C∗-algebra A = C0(X). In particular the com-
pletely unbounded part Ec can be identified with the diffusive part and the approx-
imately bounded part Ea correspond to the sum E j + Ek of the jumping and killing
parts. In the commutative situation Ec can also be characterized as the part of the
Dirichlet form whose C0(X)-bimodule Hc is the largest sub-C0(X)-mono-module
of the C0(X)-bimodule H corresponding to E , i.e. the largest submodule on which
the left and right actions coincide. Moreover, since as any C0(X)-mono-module,Hc

is the direct integral
∫
X Hx μ(dx) of C0(X)-mono-modules Hx whose actions are

the simplest possible

aξ = ξa = a(x)ξ a ∈ C0(X), ξ ∈ Hx , x ∈ X,

in the corresponding splitting ∂ = ∫
X ∂xμ(dx), the derivations ∂x of C0(X) satisfy

the Leibniz property

∂x (ab) = (∂xa)b(x) + a(x)(∂xb) a, b ∈ F ∩ C0(X).

5.3 Noncommutative Potential Theory and Curvature in
Riemannian Geometry [33]

Classical Potential Theory arose to understand properties of the potential energy
functions in electromagnetism and in classical gravity. The properties of these func-
tions were encoded in properties of the Laplace–Beltrami operators and in those
of the Dirichlet integrals of Euclidean domains. Dealing with Nonlinear Elasticity
or Riemannian Geometry [74], one is naturally lead to consider other Laplace type
operators and associated quadratic energy forms acting on sections of vector bundles
over Riemannian manifolds. In this section we describe briefly the strict relation
between curvature and a distinguished noncommutative Dirichlet form.

Topological and geometric aspects of a Riemannian manifold (V, g) are related to
the Hodge–de Rham operator�HdR = dd∗ + d∗d acting on the space L2(�∗(V )) of
square integrable sections of the exterior bundle �∗(V ). It generalizes the Laplace–
Beltrami operator acting on functions but its quadratic form cannot be directly con-
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sidered as a Dirichlet form, essentially because exterior forms do not realize a C∗-
algebra. However, the geometric aspects of V are more deeply connected to the Dirac
operator D and its square D2, the so called Dirac Laplacian, acting on sections of
the Clifford bundle Cl(V ) essentially because it is the construction of this space and
operators that depends on the metric g.

Recall that the fibers of Cl(V ) are the Clifford algebras Cl(TxV ) of the Hilbert
space (TxV, gx ). Since the exterior algebra �∗

x V is nothing but the antisymmetric
Fock space F−(TxV ), globalizing the Segal isomorphism, we met in a previous
section, we have a canonical isomorphism of vector bundles between Cl(V ) and
�∗(V ). The difference is that, by construction, the fibers of the bundle Cl(V ) form
now C∗-algebras. As a consequence, the space C∗

0 (V, g) of continuous sections
vanishing at infinity of the Clifford bundle form, by pointwise product on V , a C∗-
algebra naturally associated to the Riemannian manifold (V, g). Moreover, denoting
by �x ∈ F−(TxV ) the vacuum vector and by τx (·) = (�x | · �x ) the associated trace
on Cl(TxV ), using the Riemannian measure mg , we get on the Clifford ∗-algebra a
densely defined, lower semicontinuous, faithful trace

τ(ω) :=
∫

V

mg(dx)τx (ωx )

and the ordered Hilbert space L2(Cl(V, g), τ ). The Levi-Civita connection of (V, g)
can be lifted to a metric connection on the Clifford bundle and represented, at the
analytical level, by the covariant derivative ∇ acting between the smooth sections of
the Hermitian bundles Cl(V, g) and Cl(V, g) ⊗ T ∗V .

Theorem 5.4 ([49, 50, 101]). The closure of the Bochner integral

EB[ω] :=
∫

V

|∇ω(x)|2 mg(dx) ω ∈ C∞
c (Cl()V, g)

is a completely Dirichlet form on L2(Cl(V, g), τ ).

The self-adjoint operator �B := ∇∗∇ associated to EB , called the Bochner
or connection Laplacian, thus generates a completely Markovian semigroup on
L2(Cl(V, g), τ ) which is strongly Feller in the sense that it reduces to a strongly
continuous Markovian semigroup on the Clifford algebra C∗

0 (V, g).
We may base the proof of the above result on Theorem 5.2 above. Notice first that

on the Hilbert space L2(Cl(V, g) ⊗ T ∗V ) we may consider the C∗
0(V, g)-bimodule

structure given by
σ1 · (σ2 ⊗ ω) · σ3 := (σ1 · σ2 · σ3) ⊗ ω

J (σ2 ⊗ ω) := σ ∗
2 ⊗ ω̄
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for σ1, σ3 ∈ C∗
0 (V, g) and σ2 ⊗ ω ∈ L2(Cl(V, g) ⊗ T ∗V ), where σ2 → σ ∗

2 is the
extension of the involution on the Clifford algebra and ω → ω̄ is the involution on
the complexified cotangent bundle. Denoting by iX the contraction operator with
respect to a smooth vector field X , we may consider the covariant derivative along X
given by ∇X := iX ◦ ∇. Since, by definition, the Levi-Civita connection is a metric
connection, we have the identity

∇( f σ) = σ ⊗ d f + f ∇σ X (σ |σ) = (∇Xσ |σ) + (σ |∇Xσ)

for any smooth section σ of the Clifford bundle and any smooth function f . Since
the contraction iX commutes with actions of the Clifford algebra we have

iX (∇(σ · σ)) = iX ((∇σ) · σ + σ · (∇σ))

for all smooth vector fields X so that

∇(σ · σ) = (∇σ) · σ + (∇σ) · σ,

from which the Leibniz property follows by polarization. Notice that this result is
independent upon the Riemannian curvature of the manifold. The situation changes
drastically if we consider the Dirac Laplacian D2 on L2(Cl(V, g), τ ) or better the
Dirac quadratic form

ED[σ ] :=
∫

V

mg(dx) |Dσ(x)|2.

Recall that the Dirac operator D is defined locally for smooth sections σ by

(Dσ)(x) :=
n∑

k=1

ek(x) · (∇ekσ)(x),

where the vector fields ek form an orthonormal base in a neighborhood of x ∈ V . At
an Hilbert space level, the Dirac operator on the Clifford bundle is isomorphic to the
de Rham operator on the exterior bundle

D � d + d∗

and the Dirac Laplacian is isomorphic to the Hodge–de Rham Laplacian

D2 � (d + d∗)2 = dd∗ + d∗d.

Differently from the Bochner Laplacian, the potential theoretic properties of D2

depend, however, strongly on the sign of the curvature

Theorem 5.5 ([33]) The following conditions are equivalent
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(i) the Dirac quadratic form ED on L2(Cl(V, g), τ ) is a completely Dirichlet form
(ii) the curvature operator of V is nonnegative R̂ ≥ 0
(iii) Dirac heat semigroup e−t D2

on the Clifford algebra C∗
0 (V, g) is completely

Markovian.

To describe the main steps of the proof let us recall that the curvature tensor R of
the metric defines the curvature operator R̂ on the Hermitian bundle �2V as follows

R̂x : �2
x V → �2

x V (R̂x (v1 ∧ v2)|v3 ∧ v4)�2
x V := Rx (v1, v2, v3, v4)

v1, v2, v3, v4 ∈ TxV .

The curvatures identities imply that R̂x is symmetric and thus self-adjoint when
extended on the Hilbert space obtained complexifying�2

x V . By the Bochner identity
we have

ED = EB + QR

where QR is the quadratic form on L2(Cl(V, g), τ ) given by

QR[σ ] =
∫

V

m(dx) QR(x)[σx ] QR(x)[σx ] =
n(n−1)/2∑

α=1

μα(x)‖[ηα(x), σx ]‖2

where the norms are those of the Hilbert spaces L2(Cl(TxV, gx ), τx ), ηα(x) ∈ �2
x V

are eigenvectors of R̂x and μα(x) ∈ R the corresponding eigenvalues. To prove that
(i) implies (ii) one notices that, by the Albeverio–Hoegh-Krohn Theorem 4.5 or
by the fact that commutators are bounded derivations, if the curvature operator is
nonnegative, then all the eigenvalues are nonnegative and QR appears as a superpo-
sition of Dirichlet forms. Since, by the Davies–Rothaus Theorem 5.4 above, EB is
a Dirichlet form, we have that ED is a Dirichlet form too. The proof that (i) implies
(ii) the main idea is to use the decomposition theory of derivations to prove that QR

is a Dirichlet forms because it coincides with the approximately bounded part of the
Dirichlet form ED . Then, a careful analysis of the structure of the Dirichlet forms
on the Clifford algebras of finite dimensional Euclidean spaces allows to conclude
that all the eigenvalues or the curvature operator are nonnegative. Since D2 is, by
construction, a symmetric operator on L2(Cl(V, g), τ ), if we assume that the Dirac
heat semigroup is completely Markovian on the Clifford algebra C∗

0 (V, g) then we
get that it is a completely Markovian on L2(Cl(V, g), τ ) so that the quadratic form
ED is completely Dirichlet. To prove that R̂ ≥ 0 implies that the Dirac semigroup
leaves globally invariant the Clifford algebra and that there is strongly continuous
one uses (i) ellipticity of D2 to deduce that e−t D2

transforms compactly supported
smooth sections of the Clifford bundle into bounded continuous sections, (ii)Marko-
vianity, to reduce the problems to the algebraC0(V ) of continuous functions and (iii)
the fact that R̂ ≥ 0 implies that the Ricci curvature is nonnegative so that on C0(V )

the Feller property holds true by a classical result.
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5.4 Voiculescu Dirichlet Form in Free Probability

In this section we describe a Dirichlet form appearing in Free Probability Theory
discovered by Voiculescu [107].

Let (M, τ ) be a noncommutative probability space, i.e. a von Neumann alge-
bra endowed with a faithful, normal trace state. Let us fix a unital ∗-subalgebra
1M ∈ B ⊂ M and a finite set X := {X1, . . . , Xn} ⊂ M of noncommutative ran-
dom variables, i.e. self-adjoint elements of M , algebraically free with respect to
B. Let us consider the ∗-subalgebra B[X ] ⊂ M generated by X and B (regarded
as the algebra of noncommutative polynomials in the variables X with coefficients
in the algebra B) and the von Neumann subalgebra N ⊂ M generated by B[X ].
Let HS(L2(N , τ )) = L2(N , τ ) ⊗ L2(N , τ ) be the Hilbert N -bimodule of Hilbert–
Schmidt operators on L2(N , τ ) and 1M ⊗ 1M ∈ HS(L2(N , τ )) the rank one projec-
tion onto the multiples of the unit 1M ∈ M ⊂ L2(M, τ ).

Within this framework, Voiculescu introduced a natural differential calculus with
associated Dirichlet form.

Theorem 5.6 There exists a unique derivation ∂X j : B[X ] → HS(L2(M, τ )) for
any fixed j = 1, . . . , n such that

(i) ∂X j Xk = δ jk1M ⊗ 1M k = 1, . . . , n.
(ii) ∂X j b = 0 for all b ∈ B.
(iii) The derivation (∂X j , B[X ]) is densely defined in L2(M, τ ), symmetric and it

is closable if 1M ⊗ 1M ∈ D(∂∗
X j

).

(iv) If 1M ⊗ 1M ∈ ⋂n
j=1 D(∂∗

X j
) the quadratic form (E,F) defined as

E[a] :=
n∑
j=1

‖∂X j a‖2HS(L2(M,τ )) a ∈ F := B[X ]

is closable and its closure is completely Dirichlet form.

Under the assumption 1M ⊗ 1M ∈ ⋂n
j=1 D(∂∗

X j
), the Noncommutative Hilbert

Transform of X with respect to B is defined as

I(X : B) :=
( n∑

j=1

∂X j

)
1M ⊗ 1M ∈ L2(M, τ )

and the Relative Free Fisher information of X with respect to B is defined as

�∗(X : B) := ‖I(X : B)‖2L2(M,τ ).

It has been shown by Biane [11] that this Dirichlet form is the Hessian of the
Relative Free Fischer information on the domain where the Relative Free Fisher
information is finite. Moreover, if B = C and still under the assumption that 1M ⊗
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1M ∈ ⋂n
j=1 D(∂∗

X j
), one has the following surprising spectral characterization of

semicircular random variables X .

Theorem 5.7 ([11]) A Free Poincaré inequality holds true for some c > 0

c · ‖a − τ(a)‖22 ≤ E[a] a ∈ L2(M, τ )

if and only if the random variable X is centered, it has unital covariance and semi-
circular distribution.

In the case of semi-circular systems, the self-adjoint operator associated to the
Dirichlet form E is unitarily equivalent to the Number operator on the Free Fock
space, it generates the Free Ornstein–Uhlenbeck semi-group and a logarithmic
Sobolev inequality holds true (see [12]).

6 Dirichlet Forms on Standard Forms of von Neumann
Algebras

The theory of noncommutative Dirichlet forms illustrated so far has been introduced
by Albeverio and Hoegh-Krohn and developed independently by Sauvageot [91, 92,
97] and by Lindsay andDavies [47, 48].We have seen that it can be applied to several
fields in which the relevant algebra of observables, to retain a physical language, is
no more commutative but it requires, however, that the reference weight or state is a
trace.

In this section we describe the extension of the theory to cases in which the refer-
ence functional is a normal state on a von Neumann algebra. In a forthcoming section
we will describe how this theory may be used to study KMS-symmetric semigroups
on C∗-algebras as it is required for applications to Quantum Statistical Mechan-
ics, Quantum Field Theory, Quantum Probability and Noncommutative Geometry.
Notice that by a fundamental result of Dell’Antonio [52], the von Neumann algebras
appearing in Quantum Field Theory are typically of type I I I so that no normal trace
is available on them.

The exposition is based on the approach given in [24, 26] which work on gen-
eral standard forms of σ -finite von Neumann algebras. An approach based on the
Haagerup standard form [66, 67] of von Neumann algebras is given in [59, 60]. This
last one has been generalized in [61] to consider the reference positive functional on
a von Neumann algebra to be a weight. In this respect one ought to consult also [102,
Appendix] for the correction of a result in [61].

The Potential Theory developed by Beurling and Deny and in particular the one to
one correspondence between Dirichlet forms and symmetric Markovian semigroups
on ameasured space (X,m), relies on the geometric properties of the cone L2+(X,m)

of positive functions in the Hilbert space L2(X,m). This is a closed, convex cone
which is self-polar in the sense that
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a ∈ L2
+(X,m) if and only if (a|b) ≥ 0 for all b ∈ L2

+(X,m).

The theory of noncommutative Dirichlet forms developed by Albeverio and
Hoegh-Krohn on C∗-algebras endowed with a faithful, semifinite trace (A, τ ) is
based on analogous properties of the cone L2+(A, τ ) defined as the closure in theGNS
Hilbert space L2(A, τ ) of the cone {a ∈ A+ : τ(a) < +∞}. This cone determines,
in particular, an anti-unitary involution Jτ on L2(A, τ ) which extends the isometric
involution a �→ a∗ of A to the von Neumann algebra L∞(A, τ ). The whole structure
(L∞(A, τ ), L2(A, τ ), L2+(A, τ ), Jτ ) realizes the standard form of the von Neumann
algebra L∞(A, τ ) in the following sense.

Definition 6.1 (Standard form of a von Neumann algebra) ([5, 39, 66]).
A standard form (M,H,P, J ) of a von Neumann algebraM acting on a Hilbert

space H, consists of a self-polar cone P ⊂ H and an anti-unitary involution J ,
satisfying:

(i) JMJ = M′;
(ii) J x J = x∗, ∀x ∈ M ∩ M′ (the center of M);
(iii) Jη = η, ∀η ∈ P;
(iv) x J x J (P) ⊆ P, ∀x ∈ M.

The J -real part of H is defined as HJ := {ξ ∈ H : Jξ = ξ} and one has the
decompositionH = HJ ⊕ iHJ . Moreover, one may define the positive part ξ+ ∈ P
of J -real vector ξ ∈ HJ as the Hilbert projection of ξ onto the positive cone P ,
its negative part ξ− ∈ P as the difference ξ− := ξ − ξ+ and its modulus by |ξ | :=
ξ+ + ξ− ∈ P so that ξ = ξ+ − ξ− and (ξ+|ξ−) = 0.

Standard form of commutative von Neumann algebras. One may readily checks that
(L∞(X,m), L2(X,m), L2+(X,m), J ) is a standard form of the commutative von
Neumannalgebra L∞(X,m) (once the anti-unitary involution is givenby the complex
conjugation: Ja = a) and that the above notions related to the order structure assume
the familiar meaning.

Hilbert–Schmidt standard form. A noncommutative example is provided by Hilbert–
Schmidt standard form

(B(h), L2(h), L2
+(h), J )

of the algebra B(h) of all bounded operators on a Hilbert space h. In the Hilbert
space L2(h) of all Hilbert–Schmidt operators on h, the cone L2+(h) of the positive
ones is self-polar and the involution J associates to the Hilbert–Schmidt operator a
its adjoint a∗.

Essential properties of the standard form of a von Neumann algebra are its exis-
tence and uniqueness (modulo unitaries preserving the positive cones). These prop-
erties authorize to denote the standard form of a von Neumann algebra M simply
by

(M, L2(M), L2
+(M), J ).
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These main results are also of practical use because different standard forms may
show different advantages (or inconveniences). In the commutative case uniqueness
is a reflection of the fact that the von Neumann algebra L∞(X,m) is determined
by the class of zero m-measure sets only, so that the algebra can be represented
standardly on the space L2(X,m ′) of any measure m ′ equivalent to m.

Standard formof semifinite vonNeumannalgebras. In case thevonNeumannalgebras
M is semifinite, a standard form may be constructed by the GNS representation
associated to a normal, semifinite trace τ on M as

(M, L2(M, τ ), L2
+(M, τ ), Jτ ).

To construct the standard form of a von Neumann algebra M starting from a
normal state ω0 ∈ M∗+ one need to recall some aspects of the Tomita–Takesaki
Modular Theory of von Neumann algebras [104, 105]. We may assume that M is
represented in a Hilbert spaceH so that M ⊆ B(H) andω0 is represented by a cyclic
and separating vector ξ0 ∈ h as ω0(x) = (ξ0|xξ0)H for x ∈ M (for example, H can
be assumed to be the GNS space L2(M, ω0)). The anti-linear map S(xξ0) := x∗ξ0,
densely defined on Mξ0 ⊆ H, is a closable operator on H and we may consider the
polar decomposition of its closure S̄

S̄ = J�
1/2
0

where the square root of the self-adjoint modular operator �0 = S̄∗ S̄ provides its
positive part and the modular conjugation J is an anti-unitary operator on H pro-
viding the phase. Using these tools one proves that

P := {x J x J ∈ H : x ∈ M}

is a self-polar cone in H coinciding with �
1/4
0 M+ξ0 and that (M,H,P, J ) is a

standard form. When ω0 is a trace state then S is isometric so that the modular
operator �0 reduces to the identity, S = J and P = M+ξ0. The modular operator
�0 measures how much the state ω0 differs from a trace state in that only in this case
�0 reduces to the identity.

The denominationmodular used for the operator�0 originates from the following
example.

Modular operator and standard form of group von Neumann algebra. Let (G,mH )

be a locally compact group and consider the convolution algebra Cc(G) acting by
left convolution λG on L2(G,mH ) and define the group von Neumann algebra L(G)

as λG(Cc(G))′′. The Haar measuremH determines an additive, homogeneous, lower
semicontinuous functional ωH on the positive part L(G)+, called the Plancherel
weight (see [106, Chap. VII]). It is a trace if and only if G is unimodular and a
trace state if and only if G is discrete. Since on L(G) the involution is determined
by λG(a)∗ := λG(a∗) where a∗(s) := a(s−1) for s ∈ G and a ∈ Cc(G), one may
check that the modular operator �H on L2(G,mH ) associated to the Plancherel
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weight ωH is given by the multiplication operator by themodular function G � s �→
dmH (·s−1)/dmH .

Modular operators and Gibbs states. On the von Neumann algebra B(h) any normal
state ω0 can be represented by a self-adjoint, positive, compact operator ρ ∈ B(h)

having unit trace, called density matrix, as follows

ω0(x) = Tr (xρ) x ∈ B(h).

setting H := − ln ρ we have ρ = e−H so that ωρ appears as the Gibbs equilibrium
state of the dynamical system whose time evolution is given by the automorphisms
group

αt (x) = e−i t H xe+i t H x ∈ B(h)

generated by the Hamiltonian H . We now use the Hilbert–Schmidt standard form
of B(h) to compute the action of the modular operator. Since ω0(x) = Tr (xρ) =
Tr (ρ1/2xρ1/2) = (ρ1/2|xρ1/2)L2(h) wehave that compact operator ξ0 = ρ1/2 ∈ L2(h)

in the Hilbert–Schmidt class is the cyclic and separating vector representing ω0.
To recover the action of the modular operator notice that, by definition, we have
J�

1/2
0 (xξρ) = x∗ξρ for x ∈ B(h). Then �

1/2
0 (xρ1/2) = J (x∗ρ1/2) = ρ1/2x for all

x ∈ B(h) so that

�
1/2
0 ξ = ρ1/2ξρ−1/2 ξ ∈ D(�

1/2
0 ) := {η ∈ L2(h) : ρ1/2ηρ−1/2 ∈ L2(h)}.

Notice that (x J x J )(ξ) = xξ x∗ for all x ∈ B(h) and ξ ∈ L2(h) so that
P = L2+(h).

Another crucial property of the standard form is that any normal state ω ∈ M∗+
can be represented as the vector state of a unique, unit vector ξω ∈ P in the standard
positive cone, i.e. ω(x) = (ξω|xξω)H for all x ∈ M.

6.1 Tomita–Takesaki Theory and Connes’ Radon–Nikodym
Theorem [38, 104, 105]

Let (M, ω) be a von Neumann algebra with a faithful, normal state and denote by
πω : M → B(L2(M, ω)) the associated GNS representation. The Tomita–Takesaki
Theorem then ensure that

Jωπω(M)Jω = πω(M)′,

�−i t
ω πω(M)�i t

ω = πω(M) t ∈ R.

Moreover, setting

σω
t : M → M σω

t (x) := π−1
ω (�−i t

ω πω(x)�i t
ω) x ∈ M, t ∈ R
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onegets aw∗-continuousgroupσω ∈ Aut(M)of automorphismsof thevonNeumann
algebra that satisfies and it is uniquely determinedby the followingmodular condition

ω(xσω
−i (y)) = ω(yx)

for all x, y ∈ M which are analytic with respect to σω. A fundamental theorem due
to Connes [[40], Theorem 1.2.1], which has to be considered as the noncommutative
generalization of the Radon–Nikodym Theorem, states that the modular automor-
phismgroupof a vonNeumann algebra is essentially unique: for anypairφ,ψ ∈ M∗+
of faithful, normal states on M , there exists a canonical 1-cocycle u : R → U(M)

for σ
φ
t ,with values in the unitary group of M

ut1+t2 = ut1σ
φ
t1 (ut2) t1, t2 ∈ R,

such that
σ

ψ
t (x) = utσ

φ
t (x)u∗

t x ∈ M, t ∈ R.

6.1.1 Modular Operators on Type I Factors

In case of the von Neumann algebra B(h) and the normal state ω(x) := Tr(ρx)
associated to a positive, trace-class operator ρ ∈ B(h) with unit trace, one checks
that the modular group is given by

σω
t (x) = ρi t xρ−i t , x ∈ B(h), t ∈ R

and that the modular condition follows from the trace property of Tr

ω(yx) = Tr(ρyx) = Tr(ρxρyρ−1) = ω(xσω
−i (y)).

In the particular case of a matrix algebra Mn(C), denoting by e jk the matrix units,
if the density matrix ρ is diagonal with eigenvalues λ1, . . . , λn > 0, one has

σω
t (e jk) =

(λ j

λk

)i t
e jk j, k = 1, . . . , n, t ∈ R.

6.2 Symmetric Embeddings [5, 24]

In the commutative case, the standard form of a probability space (X,m), we
have the natural embeddings L∞(X,m) ⊆ L2(X,m), L2(X,m) ⊆ L1(X,m) and
L∞(X,m) ⊆ L1(X,m).

These may be generalized to the standard form of any von Neumann algebra M ,
using the modular operators associated to any fixed faithful normal state ω ∈ M∗+.
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Definition 6.2 (Symmetric embeddings) The symmetric embeddings associated to
the standard form (M,H,P, J ) and a cyclic and separating vector ξω ∈ P are defined
as follows:

(i) iω : M → H iω(x) := �
1/4
ω xξω, x ∈ M ;

(ii) iω∗ : H → M∗ 〈iω∗(ξ), y〉 = (iω(y∗)| ξ) = (�
1/4
ω y∗ξω| ξ), ξ ∈ H, y ∈ M ;

(iii) jω : M → M∗ 〈 jω(x), y〉 = (Jωyξω|xξω), x, y ∈ M .

These maps are well defined becauseMξω ⊆ D(�
1/2
ω ), by the very definition of the

modular operator, and because D(�
1/2
ω ) ⊆ D(�

1/4
ω ) by the Spectral Theorem.

The essential feature of these embeddings is that they preserve the order structures
ofM,H andM∗ provided by the positive cones of these spaces. In particular iω estab-
lishes a one to one homeomorphism between the set [0, 1M ] := {x = x∗ ∈ M : 0 ≤
x ≤ 1M} ⊂ M+ and its image iω([0, 1M ]) = {ξ ∈ P : 0 ≤ ξ ≤ ξω} := [0, ξω] ⊂ P .

In the following we will indicate by ξ ∧ ξ0 the Hilbert projection onto the closed,
convex set {ξ ∈ HJ : ξ ≤ ξω} of a J -real vector ξ ∈ HJ . In the commutative case and
when ξω is given by the constant function 1 and a ∈ L2

R
(X,m) is a real function, then

a ∧ 1 reduces to the so calledunit contractionofa givenby (a ∧ 1)(x) = inf(a(x), 1)
for x ∈ X . Using this geometric operation we may rephrase on the standard form of
any von Neumann algebra M , the Markovianity of Dirichlet forms one considers in
the commutative setting L∞(X,m).

Definition 6.3 (Dirichlet forms [24]) Let (M,H,P, J ) be a standard form of a von
Neumann algebra M and ξω ∈ P a cyclic and separating vector representing the
normal state ω ∈ M∗+.

A quadratic form E : H → (−∞,+∞] is said to be J -real if

E[Jξ ] = E[ξ ] ξ ∈ H

and Markovian with respect to ξω if it is J -real and

E[ξ ∧ ξω] ≤ E[ξ ] ∀ ξ ∈ HJ . (6.1)

In case E[ξω] = 0, the Markovianity condition is equivalent to

E(ξ+|ξ−) ≤ 0 ξ = Jξ ∈ H.

A densely defined, lower semicontinuous Markovian form is called a Dirichlet
form with respect to ξω or ω.

The quadratic form E is called a completely Dirichlet form if any of its matrix
extension En on H ⊗ L2(Mn(C), given by

En[[ai, j ]ni, j=1] =
n∑

i, j=1

E[ai, j ] [ai, j ]ni, j=1 ∈ H ⊗ L2(Mn(C),
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is a Dirichlet form w.r.t. the state ω0 ⊗ τn , where τn is the unique tracial state on
Mn(C).

In particular, if E is Markovian and E[ξ ] is finite then E[ξ ∧ ξω] is finite too. Also,
in the commutative setting Dirichlet forms are automatically completely Dirichlet
forms. In other words, under the Hilbertian projection ξ �→ ξ ∧ ξω, the value of the
quadratic form does not increase. As noticed above, this definition reduces to the
usual one in the commutative setting. We are going to see that in any standard form,
Dirichlet forms represent an infinitesimal characterization of strongly continuous,
symmetric Markovian semigroups.

Theorem 6.4 (Characterization of Markovian semigroups by Dirichlet forms [24,
59, 60]) Let (M,H,P J ) be a standard form of a von Neumann algebra M and
ξω ∈ P the cyclic vector representing a state ω ∈ M∗+. Let {Tt : t ≥ 0} be a J-real,
symmetric, strongly continuous, semigroup on the Hilbert space H and E : H →
(−∞,+∞] the associated J -real, lower semibounded, closed quadratic form. Then,
the following properties are equivalent

(i) {Tt : t ≥ 0} is Markovian with respect to ξω;
(ii) E is a Dirichlet form with respect to ξω.

In particular, Dirichlet forms are automatically nonnegative and Markovian semi-
groups are automatically contractive.

Dirichlet forms not only determine and are determined by strongly continuous
Markovian semigroups on the standard Hilbert space, but they are also in one-to-
one correspondence with point-weak*-continuous, completely positive, subunital
(abbreviated with Markovian) semigroups on the von Neumann algebra, satisfying a
certainmodular symmetry propertywhich is a deformation of the modular condition.

Theorem 6.5 (Markovian semigroups on standard forms of von Neumann algebras
[24]) Let (M,H,P J ) be a standard form of a vonNeumann algebraM,ω ∈ M∗+ a
faithful state and ξω ∈ P its representing cyclic vector. Then there exists a one-to-one
correspondence between

(i) Markovian (with respect to ξω) semigroups {Tt : t > 0} on L2(M) and
(ii) Markovian semigroups {St : t > 0} on M which are ω-modular symmetric in

the sense that, for all x, y in a weak*-dense, σω-invariant, ∗-subalgebra of
Mσω , one has

ω
(
ySt (x)

)
= ω

(
σω

i
2
(x)St (σ

ω

− i
2
(y))

)
. (6.2)

The correspondence is provided by the symmetric embedding through the relation

iω : M → L2(M) iω ◦ St = Tt ◦ iω.

Remark 6.6 A careful analysis of the family of closed cones {�α
ωxξω : x ∈ M+} in

L2(M) for α ∈ (0, 1/2), indicates that if instead of the symmetric embedding, the so
called GNS embedding x �→ xξω of M into L2(M) is used, the resulting semigroup
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automatically commutes with modular operator. In application to convergence to
equilibrium in Quantum Statistical Mechanics this situation should be avoided and
this is the reason why the self-polar cone corresponding to α = 1/4 is used.

6.2.1 Elementary Dirichlet Forms

As a first example of a Dirichlet form with respect to a not necessarily trace state,
we illustrate a construction that can be considered a generalization of the one of
Albeverio–Hoegh-Krohn in Theorem 4.5 above. Elementary Dirichlet form will
find application to approximation/rigidity properties of von Neumann algebras in
Sect. 7.6.

Let (M,H,P J ) be a standard form and ξ0 ∈ P a cyclic vector. Consider, for
fixed ak ∈ M, μk, νk > 0 and k = 1, . . . , n, the operators

∂k : H → H dk := i(μkak − νk j (a
∗
k ))

and the bounded quadratic form

E[ξ ] :=
n∑

k=1

‖∂kξ‖2 ξ ∈ H.

Then E is J -real and E(ξ+|ξ−) ≤ 0 for all J -real ξ ∈ H if and only if

n∑
k=1

[μ2
ka

∗
k ak − ν2

k aka
∗
k ] ∈ M ∩ M′.

Moreover, if the above condition holds true, E is a Dirichlet formwith E[ξ0] = 0 if
and only if the numbers (μk/νk)

2, k = 1, . . . , n, are eigenvalues of themodular oper-
ator �ξ0 , corresponding the eigenvectors akξ0 ∈ H. Conditions like the one above
are considered in the framework of q-deformed CCR relations and related factor von
Neumann algebras [13].

The construction above provides a, possibly unbounded,Dirichlet form evenwhen
n = ∞, provided E is densely defined.

6.2.2 Quantum Ornstein–Uhlenbeck and Quantum Brownian Motion
Semigroups [29, 71]

We describe here the construction of a Dirichlet form, on the Neumann algebra B(h),
which generates a Markovian semigroups appearing in quantum optics.

On the Hilbert space h := l2(N) consider the standard form
(B(h), L2(h), L2+(h), J ). Let {en : n ≥ 0} ⊂ h be the canonical Hilbert basis, and
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denote by | em〉〈en|, n,m ≥ 0, the partial isometries, having Cen as initial space and
Cem as final one.

Fix the parameters μ > λ > 0, set ν := λ2/μ2 and let ων(x) := Tr(ρνx) the nor-
mal state on B(h) represented by the density matrix

ρν := (1 − ν)
∑
n≥0

νn|en〉〈en|.

The state ων is then represented by the cyclic vector ξν := ρ
1/2
ν = (1 − ν)1/2∑

n≥0 νn/2|en〉〈en|. The creation and annihilation operators, a∗ and a on h, are
defined by

a∗en := √
n + 1en+1, aen :=

{√
nen−1, if n > 0;

0, if n = 0.

They are adjoint of one another on their common domain D(a) = D(a∗) = {
e ∈

h : ∑
n≥0

√
n|〈e| en〉|2 < ∞}

and satisfy the CCR

a a∗ − a∗a = I.

The quadratic form given by

E[ξ ] := ‖μaξ − λξa‖2 + ‖μaξ ∗ − λξ ∗a‖2,

densely defined in L2(h) on the subspace of finite rank operators

D(E) := linear span{| em〉〈en|, n,m ≥ 0},

is closable and Markovian so that its closure is a Dirichlet form with respect to
ων , generating the so called quantum Ornstein–Uhlenbeck Markovian semigroup.
Moreover, since, as it is easy to check one has E[ξν] = 0, it results that the cyclic
vector is left invariant by the semigroup.

When λ = μ, the role of the invariant state ων has to be played by the normal,
semifinite trace τ on B(h). However, even in this case, using the Albeverio–Hoegh-
Krohn criterion, it is possible to prove that the closure of the unbounded quadratic
form

E[ξ ] := ‖aξ − ξa‖2 + ‖aξ ∗ − ξ ∗a‖2, ξ ∈ D(E)

is a Dirichlet form. The associated τ -symmetric Markovian semigroup on B(h),
may be dilated by a Quantum Stochastic Process, known as the Quantum Brownian
motion. This represents a sort ofbridgebetweenpairs of classical stochastic processes
of quite different type. In fact on a suitable, invariant, maximal abelian subalgebra
(masa), this semigroup reduces to the semigroup of a classical Brownian motion
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while on another masa, it reduces to the semigroup of a classical birth and death
process.

7 Application to Approximation/Rigidity Properties of von
Neumann Algebras

In this sectionwe describe three results showing that the spectral properties ofDirich-
let forms are naturally and deeply connected with those fundamental properties of
von Neumann algebras having to do with the ideas of approximation and rigidity.

7.1 Amenable Groups

In 1929, von Neumann discovered a far reaching explanation of the Banach–Tarski
paradox in terms of a property, called amenability, of a group of Euclidean motions
in Rn which holds true in dimension n = 1, 2 but it does not in higher dimensions.

Definition 7.1 A discrete group � is amenable if there exist a left-translation invari-
ant probability measure on �.

This property is equivalent to the existence of a sequence of finitely supported,
positive definite functions φn on �, pointwise converging to the constant function 1,

lim
n

φn(t) = 1 for all t ∈ �,

and to the existence of a proper, conditionally negative definite function ψ : � → C

(see Sect. 5.1.1). Recall that a function φ : � → C is positive definite if the matrices
[φ(s−1

j sk)]nj,k=1 are positive definite for all s1, . . . , sk ∈ �, i.e. if for all c1, . . . cn ∈ C

one has
n∑

j,k=1

c̄ jφ(s−1
j sk)ck ≥ 0.

Since positive definite functions are coefficients of unitary representations and
the constant function 1 is the coefficient of the trivial representation, amenability is
also equivalent to the fact that the trivial representation is weakly contained in the
left regular one, i.e. it is unitarily equivalent to a subrepresentation of a multiple of
the regular representation.

The amenability of a group � can be translated in terms of a corresponding
property of its associated group von Neumann algebra L(�).

To introduce this property in complete generality, we recall the fundamental
notions of bimodule and correspondence.
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7.2 Bimodules and Connes Correspondences [4, 42, 43, 90]

A Banach M-bimodule E on a C∗-algebra M is a Banach space E together with a
pair of norm continuous, commuting actions of M .

If the left action of x ∈ M on ξ ∈ E is denoted by xξ and the right action of
y ∈ M on ξ ∈ E is denoted by ξ y, the required commutation reads (xξ)y = x(ξ y).

In case M is a von Neumann algebra and E is a dual bimodule, in the sense that
it is the dual Banach space of a predual one, the left and right actions are required to
be continuous with respect to the weak*-topology of E .

A Connes correspondence on M is a Hilbert space H which is an M-bimodule.
Denote by M◦ the opposite algebra of M : it coincides with M as a vector space

but the product is taken in the reverse order x◦y◦ := (yx)◦ for x◦, y◦ ∈ M◦. By
convention, elements y ∈ M , when regarded as elements of the opposite algebra are
denoted by y◦ ∈ M◦. Let M ⊗max M◦ the maximal tensor product of M and M◦
considered as C∗-algebras.

A correspondence on M is nothing but a representation

π : M ⊗max M
◦ → B(H) π(x ⊗ y◦)ξ = xξ y

such that M � x �→ π(x ⊗ 1M) and M � x �→ π(1M ⊗ x◦) provide normal repre-
sentations. Correspondences of von Neumann algebras may be conveniently thought
of both as generalization of unitary representations of groups.

Among the correspondences of vonNeumannalgebras, the following are of central
importance.

The identity or standard correspondence of a vonNeumann algebraM is provided
by its standard representation (M, L2(M), L2+(M), J ). Here beside the left action
of M on L2(M), denoted by xξ for x ∈ M and ξ ∈ L2(M), we have the right action
defined by ξ x := J x∗ Jξ .

The coarse correspondence is the M-bimodule given by L2(M) ⊗ L2(M) with
actions

x(ξ ⊗ η)y = xξ ⊗ ηy x, y ∈ M, ξ, η ∈ L2(M).

This is also called the Hilbert–Schmidt correspondence by the identification of
L2(M) ⊗ L2(M) with the Hilbert space HS(L2(M)) of Hilbert–Schmidt operator
on L2(M). In this terms the actions are given by xT y ∈ HS(L2(M)) for x, y ∈ M
and T ∈ HS(L2(M)).

Correspondences of von Neumann algebras may also be fruitfully thought as gen-
eralization of completely positive maps. In fact, suppose that on M a faithful, normal
state ω is fixed and consider a not necessarily self-adjoint, completely Markovian
map T : L2(M, ω) → L2(M, ω), assuming, to simplify, that T ξω = ξω. Then the
functional determined by

�T : M ⊗max M
◦ → C �T (x ⊗ y◦) := (iω(y∗)|T iω(x))
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is a state onM ⊗max M◦ which, by theGNS construction, give rise to a representation
of M ⊗max M◦, thus to a correspondenceHT on M . The unit, cyclic vector ξT ∈ HT

representing �t thus satisfies

(iω(y∗)|T iω(x)) = (ξT |xξT y)HT x, y ∈ M.

A fundamental operation that is defined on correspondences is their relative ten-
sor product, by which any M-N -correspondenceHN and any N -P-correspondence
KP may tensorized, in this order, to produce an M-P-correspondence denoted by
H ⊗ KP . The advantages to translate into the common language of correspondences
problems of apparently different origin concerning von Neumann algebras, are the
possibility to let them play into a shared ground on one side, and the possibility to use
the tools of representation theory, for example to introduce notions like containment,
weak containment and convergence.

7.3 Amenable von Neumann Algebras

Definition 7.2 ([23, 41, 42])AC∗ or vonNeumann algebraM is said to be amenable
if for every dual Banach M-bimodule E , all derivations δ : M → X , that is maps
satisfying the Leibniz property

δ(ab) = (δa)b + a(δb) a, b ∈ M,

are inner, i.e. there exists ξ ∈ E such that

δ(x) = xξ − ξ x x ∈ M.

This property was introduced by Johnson and Ringrose in their works on coho-
mology of operator algebras. As the result of an enormous amount of efforts, it has
been shown that amenability is equivalent to approximation properties:

(i) a C∗-algebra A is amenable if and only if it is nuclear in the sense that its
identity map can be approximated in the point-norm topology,

lim
n

‖ψn ◦ φn(a) − a‖ = 0 for all a ∈ A,

ψn : A → Mkn (C) φn : Mkn (C) → A;

(ii) a von Neumann algebra M is weakly nuclear if and only if its identity map can
be approximated in the point-ultraweak topology,

lim
n

η(ψn ◦ φn(a) − a) = 0 for all a ∈ A, η ∈ M∗,
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by the composition of suitable contractive, completely positive maps

ψn : A → Mkn (C) φn : Mkn (C) → A;

(iii) a vonNeumann algebraM is amenable if and only if it is hyperfinite in the sense
that it is generated by an increasing sequence of finite-dimensional subalgebras.

Among the examples of amenable von Neumann algebras, one may recall (i) the
group von Neumann algebra of a locally compact amenable group, (ii) the crossed
product of an abelian von Neumann algebra by an amenable locally compact group,
(iii) the commutant von Neumann algebra of any continuous unitary representation
of a connected locally compact group and (iv) the von Neumann algebra generated
by any representation of a nuclear C∗-algebra.

7.4 Amenability and Subexponential Spectral Growth Rate
of Dirichlet Forms [36]

To illustrate a first connection between approximation properties of von Neumann
algebras and spectral properties of Dirichlet form, we first recall a definition.

Definition 7.3 (Spectral growth rate of Dirichlet forms [36]) Let (N , ω) be an infi-
nite dimensional, σ -finite, von Neumann algebra with a fixed faithful, normal state
on it.

Let (E,F) be a Dirichlet form on L2(N , ω) and let (L , D(L)) be the associated
nonnegative, self-adjoint operator. Assume that its spectrum σ(L) = {λk ≥ 0 : k ∈
N} is discrete, set

�n := {k ∈ N : λk ∈ [0, n]}, βn := �(�n), n ∈ N

and define the spectral growth rate of (E,F) as

�(E,F) := lim sup
n∈N

n
√

βn.

The Dirichlet form (E,F) is said to have

exponential growth if (E,F) has discrete spectrum and �(E,F) > 1
subexponential growth if (E,F) has discrete spectrum and �(E,F) = 1
polynomial growth if (E,F) has discrete spectrum and, for some c, d > 0 and all
n ∈ N,

βn ≤ c · nd .

intermediate growth if it has subexponential growth but not polynomial growth.

It is easy to see that the subexponential growth property can be formulated in
terms of nuclearity of the Markovian semigroup {e−t L : t > 0} on L2(N , ω):
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Lemma 7.4 The Dirichlet form (E,F) has discrete spectrum and subexponen-
tial spectral growth rate if and only if the Markovian semigroup {e−t L : t > 0} on
L2(N , ω) is nuclear, or trace-class, in the sense that:

Trace (e−t L) < +∞ t > 0.

Here is the announced connection between amenability and spectral properties.

Theorem 7.5 ([36]) Let N be a σ -finite von Neumann algebra. If there exists a
normal, faithful state ω ∈ M∗+ and a Dirichlet form (E,F) on L2(N , ω) having
subexponential spectral growth, then N is amenable.

Let us sketch the main points of the proof assuming, to simplify, that E[ξω] = 0.
Let N⊗N ◦ the von Neumann spatial tensor product of N and N ◦. It turns out that
the coarse representation of N ⊗max N ◦, defined by

πco : N ⊗max N
◦ → B(L2(N , ω) ⊗ L2(N , ω))

πco(x ⊗ yo)(ξ ⊗ η) := xξ ⊗ ηy x, y ∈ N , ξ, η ∈ L2(N , ω),

give rise to the spatial tensor product of the von Neumann algebras

(πco(N ⊗max N
◦))′′ = N⊗N ◦.

Moreover, the normal extension of the coarse representation πco of N ⊗max N ◦
to N⊗N ◦ is the standard representation of N⊗N ◦ so that

L2(N , ω) ⊗ L2(N , ω) � L2(N⊗N ◦, ω ⊗ ω◦)

and the positive cone L2+(N⊗N ◦, ω ⊗ ω◦) can be identified with the cone of all
positive, Hilbert–Schmidt operators on L2(N , ω). In particular, since, by assumption,
e−t L is a positive, Hilbert–Schmidt operator for all t > 0, we have

e−t L ∈ L2
+(N⊗N ◦, ω ⊗ ω◦) t > 0.

Since E is a complete Dirichlet form, its associated semigroup is completely
positive and this implies that the linear functional �t , determined by

�t : N ⊗max N
◦ → C �t (x ⊗ y◦) := (iω(y∗)|e−t L iω(x)),

is positive and actually a state since E[ξω] = 0. By the continuity properties of the
symmetric embeddings and the above identifications, we have

�t (z) =
(
e−t L

∣∣∣iω⊗ω◦(z)
)
L2(N⊗N ◦,ω⊗ω◦)

z ∈ N⊗N ◦.
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Since iω⊗ω◦ is positive preserving and e−t L is a positive element of the standard
cone, we have that �t is a normal state on N⊗N ◦ and can thus be represented by a
unique positive unit vector �t ∈ L2+(N⊗N ◦, ω ⊗ ω◦) as

�t (z) =
(
�t |πco(z)�t

)
L2(N⊗N ◦,ω⊗ω◦)

z ∈ N⊗N ◦.

By the strong continuity of the Markovian semigroup e−t L on L2(N , ω), we then
have

lim
t↓0

(
�t |πco(z)�t

)
L2(N ,ω)⊗L2(N ,ω)

= (ξω|πid(z)ξω) = 1 z ∈ N ⊗max N
◦.

This proves that the trivial representation πid of N ⊗max N ◦, given by πid(z) :=
IL2(N ,ω) for all z ∈ N ⊗max N ◦, is weakly contained in the coarse representation πco

and thus N is amenable by a characterization of amenability due to Popa [90].
This approach by correspondences to relate spectral properties of Dirichlet forms

to approximation properties of vonNeumann algebras allows to treat also the relative
case in which one deals with embeddings of subfactors B ⊂ N on one side and with
the a subexponential spectral growth rate of Dirichlet form relative to the subalgebra
B, on the other side. In these situations the essential spectrum of Dirichlet forms is
not empty. (See [36]).

7.5 Haagerup Approximation Property and Discrete
Spectrum of Dirichlet Forms

The free group of two generators F2 is non amenable but in 1979 Haagerup proved in
[68] that its word-length function l is conditionally negative definite and proper. This
allowed him to prove that the group von Neumann algebra L(F2) and the group C∗-
algebra of F2 have the Grothendieck Metric Approximation Property. Moreover, the
above properties of the length function of free groups also determine the following
properties. This specific case opened the study of the following class of groups, larger
than the class of amenable ones.

Definition 7.6 A countable, discrete group � is said to have the Haagerup Approx-
imation Property if there exists a sequence of positive definite functions in c0(�),
uniformly convergent on compact subsets, to the constant function 1 (see for example
[17]). This property is equivalent to the existence of a proper, conditionally negative
definite function on �.

Clearly all amenable groups have the Property (H). A series of contribution [18–
21, 70], allowed to isolate the following property of von Neumann algebras that for
group algebras L(�) of discrete groups is equivalent to the Haagerup Approximation
Property of �.
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Definition 7.7 AvonNeumann algebrawith standard form (M, L2(M), L2+(M), J )

is said to have theHaagerupApproximationProperty (HAP) if there exists a sequence
of completely positive contractions Tk : L2(M) → L2(M) strongly converging to the
identity operator

lim
k

‖ξ − Tkξ‖L2(M) = 0 ξ ∈ L2(M).

Here is the announced connection between (HAP) and spectral properties.

Theorem 7.8 ([19]) Let N be a σ -finite von Neumann algebra. Then the following
properties are equivalent

(i) M has the Property (HAP)
(ii) there exists on L2(M) a completely Dirichlet form (E,F) with respect to some

faithful, normal state ω ∈ M∗+, having discrete spectrum.

Remark 7.9

(i) Property (H) may be formulated in a number of slightly different, equivalent
ways also for not necessarily σ -finite von Neumann algebras too in such a way
that the above spectral characterization remains anyway true.

(ii) The construction of Dirichlet forms out of negative definite functions on groups
and the above characterization of the Haagerup Approximation Property, indi-
cate that Dirichlet forms for arbitrary vonNeumann algebras play a role parallel
to the one played by the continuous, negative definite functions on groups (see
discussion in [19]).

7.6 Property (�) and Poincaré Inequality for Elementary
Dirichlet Forms

Another instance of the interactions among structural properties of a von Neumann
algebra M and spectral properties of Dirichlet forms on L2(M) may be shown refor-
mulating the Murray–von Neumann Property (�).

By an elementary completely Dirichlet form on a finite von Neumann algebra
(M, τ ), endowed with a normal, trace state, we mean one of type

EF [ξ ] :=
∑
x∈F

‖xξ − ξ x‖2L2(M,τ ) ξ ∈ L2(M, τ )

for some finite, symmetric set F = F∗ ⊂ M . The unit, cyclic vector ξτ ∈ L2(M, τ )

representing the trace is central so that EF [ξτ ] = 0 and λ0 = 0 is an eigenvalue for
all elementary Dirichlet forms. Elementary Dirichlet forms are everywhere defined
and thus bounded.

Definition 7.10 ([38]) A finite von Neumann algebra endowed with its normal,
tracial state (M, τ ), has the Property (�) if for any ε > 0 and any finite set F ⊂ M
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there exists a unitary u ∈ M with τ(u) = 0 such that ‖(ux − xu)ξτ‖2 < ε for all
x ∈ F .

This property was the first invariant introduced byMurray and von Neumann [84]
to show the existence of non hyperfinite I I1 factors. For example, the group von
Neumann algebra L(S∞) of the countable discrete group S∞ of finite permutations
of a countable set and the Clifford von Neumann algebra of a separable Hilbert space
are both isomorphic to the hyperfinite I I1 factor R, which fullfill the Property (�).
This latter cannot be isomorphic to the group algebra L(Fn) of the free group Fn

with n ≥ 2 generators which is a I I1 factor but does not have the Property (�) (and
in fact it is not hyperfinite).

It is well known [90] that the absence of the Property (�) for a I I1 factor with
separable predual, is a rigidity property equivalent to the existence of a spectral
gap for suitable self-adjoint, finite, convex combinations of inner automorphisms, as
unitary operators on L2(M, τ ).

We now show how the Property (�) can be also naturally interpreted in terms of
a spectral property of elementary Dirichlet forms.

Theorem 7.11 ([37]) A finite von Neumann algebra endowed with its normal, tra-
cial state (M, τ ), has the Property (�) if and only if for any elementary completely
Dirichlet form

EF [ξ ] =
∑
x∈F

‖xξ − ξ x‖2L2(M,τ ) ξ ∈ L2(M, τ ),

associated to a finite set F = F∗ ⊂ M, the eigenvalue λ0 := 0 is not isolated in the
spectrum.

Otherwise stated, (M, τ ), does not have the Property (�) if and only if there exists
an elementary Dirichlet form EF such that the eigenvalue λ0 = 0 is isolated (spectral
gap) or, equivalently, EF satisfies, for some cF > 0, a Poincaré inequality

cF · ‖ξ − (ξτ |ξ)ξτ‖22 ≤ EF [ξ ] ξ ∈ L2(M, τ ).

Proof If J denotes the symmetry on L2(M, τ ) which extends the involution of
M , then for u, x ∈ M , setting ξ := xξτ ∈ Mξτ , we have (ux − xu)ξτ = uξ −
Ju∗x∗ξτ = uξ − Ju∗ J xξτ = uξ − ξu. Since ξτ ∈ L2(M, τ ) is cyclic, i.e. Mξτ is
dense in L2(M, τ ), if (M, τ ) does not have the Property � there exists ε > 0 and an
elementary Dirichlet form EF such that for all unitaries u ∈ M we have

ε · ‖uξτ − τ(u)ξτ‖22 ≤ EF [uξτ ].

For any y = y∗ ∈ M such that ‖y‖M ≤ 1/
√
2, consider the unitaries u± := y ±

i
√
1M − y2 so that y = (u+ + u−)/2. Since

√
1 − y2 = φ(y)withφ(s) := √

1 − s2

and |φ′(s)| ≤ 1 for |s| ≤ 1/
√
2, it follows by the Markovianity of the Dirichlet form

that EF [√1 − y2ξτ ] ≤ EF [yξτ ]. Since EF is J -real we then have
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EF [u±ξτ ] = EF [(y ± i
√
1 − y2)ξτ ] = EF [yξτ ] + EF [

√
1 − y2ξτ ] ≤ 2EF [yξτ ]

and

ε · (‖u+ξτ − τ(u+)ξτ‖22 + ‖u−ξτ − τ(u−)ξτ‖22)
≤ EF [u+ξτ ] + EF [u−ξτ ] ≤ 4EF [yξτ ].

Thus for all y ∈ M we have

‖yξτ − τ(y)ξτ‖22 = ‖u+ξτ − τ(u+)ξτ + u−ξτ − τ(u−)ξτ‖22
≤ 2

(‖u+ξτ − τ(u+)ξτ‖22 + ‖u−ξτ − τ(u−)ξτ‖22
)

≤ 8ε−1 · EF [yξτ ].

and, by the density of Mξτ in L2(M, τ ), a Poincaré inequality holds true with cF =
ε/8. �

By classical results of Connes [40], obtained along his classification of injective
factors, one can relate the existence of spectral gap for an elementary Dirichlet form
to fundamental properties of I I1 factors (M, τ )with separable predual: the following
properties are equivalent

(i) the subgroup Inn(M) of inner automorphisms is closed in Aut(M) (M is called
a full factor)

(ii) the C∗-algebra C∗(M, M ′) generated by M and its commutant M ′, acting stan-
dardly on L2(M, τ ), contains the ideal of compact operators

(iii) there exists an elementary Dirichlet form EF on L2(M, τ ) satisfying a Poincaré
inequality.

7.7 Property (T)

Groups having the Kazdhan property (T) show, in many instances, a very rigid char-
acter. By their definition, all continuous, negative definite functions on them are
bounded (see [17]) and they can be characterized by any of the following proper-
ties: (i) whenever a sequence of continuous, positive definite functions converges
to 1 uniformly on compact subsets, then it converges uniformly, (ii) if a representa-
tion contains the trivial representation weakly, then it contains it strongly, (iii) every
continuous, isometric action on an affine Hilbert space has a fixed point.

In von Neumann algebra theory, the Property (T) of a group � with infinite con-
jugacy classes, were first considered by Connes to show that the factor L(�) has
a countable fundamental group. The same author characterized countable, discrete
groups � having the Property (T) through a specific property of L(�). Later Connes
and Jones [43] identified a property (T) for general von Neumann algebras in strong
analogy with one of the above characterizations for the groups case. They key point
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was the replacement of the notion of group representation by that of correspondence
for general von Neumann algebras:
M has the property (T) if all correspondences sufficiently close to the standard one
must contain it.

In Sect. 10 below, we will describe a recent result by Skalski and Viselter to a
Dirichlet form characterization of the property (T) of von Neumann algebras of
locally compact quantum groups.

8 KMS-Symmetric Semigroups on C∗-Algebras

We have seen that the extension of the theory of Dirichlet forms introduced by
Albeverio and Hoegh-Krohn and developed and applied by Sauvageot [93, 97] and
by Davies [46], Davies and Rothaus [49, 50] and by Davies and Lindsay [47, 48],
can be applied to several fields in which the relevant algebra of observables, to retain
a physical language, is no more commutative. This theory concerns, however, C∗-
algebras or von Neumann algebras endowed with a well behaved trace functional.
To have a theory suitable to be applied to other fields one has to face the problem
to give a meaning to Markovianity of Dirichlet forms with respect non tracial states.
For example,

(i) equilibria in Quantum Statistical Mechanics or Quantum Field Theory are
described by states obeying the Kubo–Martin–Schwinger condition which are
not trace at finite temperature

(ii) in Noncommutative Geometry the algebra generated by the “coordinate func-
tions” of a noncommutative spacemay have a natural relevant state which is not
a trace, as it is the case of the Haar state of several Compact Quantum Groups.

In this section we describe this extension of the theory of Dirichlet forms which
deals with Markovianity with respect to KMS states on C∗-algebras and with any
normal, faithful states on von Neumann algebras. In the next sections we shall have
occasion to describe applications were this generalized theory is due.

8.1 KMS-States on C∗-Algebras

Let A be a C∗-algebra and let {αt : t ∈ R} be a strongly continuous automorphism
group on it, often interpreted as a dynamical system.

Definition 8.1 (KMS-states) ([69, 72]) Let α := {αt : t ∈ R} be a strongly contin-
uous group of automorphisms of a C∗-algebra A and β ∈ R. A state ω is said to be a
(α, β)-KMS state if it is α-invariant and if the following KMS-condition holds true:

ω(aαiβ(b)) = ω(ba)
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for all a, b in a norm dense, α-invariant ∗-algebra of analytic element for α. If
M is a von Neumann algebra and α := {αt : t ∈ R} is a w∗-continuous group of
automorphisms, a state ω is said to be a (α, β)-KMS state if ω is α-invariant, normal
and theKMS-condition above holds true for all a, b in aσ(M, M∗)-dense,α-invariant
∗-subalgebra of Aα . KMS states corresponding to β = 0 are just the traces over M .

Notice that any faithful normal stateω on a vonNeumann algebraM is a (σω,−1)-
KMS state, i.e. aKMS state for themodular group σω at inverse temperatureβ = −1.
In this case, in fact, the KMS condition coincides with modular condition.

Definition 8.2 (KMS-symmetric Markovian semigroups on C∗-algebras) ([25,
28]) Let α := {αt : t ∈ R} be a strongly continuous group of automorphisms of a
C∗-algebra A and ω be a fixed (α, β)-KMS state, for some β ∈ R.

A bounded map R : A → A is said to be (α, β)-KMS symmetric with respect to
ω if

ω
(
bR(a)

)
= ω

(
α− iβ

2
(a)R(α+ iβ

2
(b))

)
(8.1)

for all a, b in a norm dense, α-invariant ∗-algebra of analytic elements for α.
A strongly continuous semigroup {Rt : t ≥ 0} on A is said to be (α, β)-KMS

symmetric with respect to ω if Rt is (α, β)-KMS symmetric with respect to ω for all
t ≥ 0.

In the vonNeumannalgebra case,ω is assumed to benormal,maps and semigroups
to be point-weak*-continuous and the subalgebra B to be weak*-dense.

Let α := {αt : t ∈ R} be a strongly continuous group of automorphisms of a C∗-
algebra A andω be a fixed (α, β)-KMS state, for someβ ∈ R. Let (πω,Hω, ξω) be the
correspondingGNS-representation, ω̂ the normal extension ofω to the vonNeumann
algebraM := πω(A)′′ and α̂ := {̂αt : t ∈ R} be the inducedweak*-continuous group
of automorphisms of M . Comparing the KMS condition for ω̂ with respect to α̂ to
its modular condition, one readily observe that the modular group of ω̂ is given by

σ ω̂
t = α̂−βt t ∈ R.

The following is a key consequence of the (α, β)-KMS-symmetry of a map.

Lemma 8.3 ([25]) A map R : A → A which is (α, β)-KMS symmetric with respect
to ω, leaves globally invariant the kernel ker(πω) of the GNS-representation of ω.

This result allows to study KMS symmetric maps and semigroups on the von
Neumann algebra associated to the GNS representation of the KMS state.

Theorem 8.4 (von Neumann algebra extension of KMS-symmetric semigroups)
([25]) Let {Rt : t ≥ 0} be a strongly continuous semigroup on A, (α, β)-KMS sym-
metric with respect to ω. Then there exists a unique point-weak*-continuous semi-
group {St : t ≥ 0} on M determined by

St (πω(a)) = πω(Rt (a)), a ∈ A, t ≥ 0. (8.2)
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This extension is ω̂-modular symmetric in the sense that

ω̂
(
St (x)σ

ω̂

− i
2
(y)

)
= ω̂

(
σ ω̂

+ i
2
(x)St (y)

)
t ≥ 0, (8.3)

for all x, y in a weak*-dense, σ ω̂-invariant ∗-algebra of analytic elements σ ω̂. More-
over, if {Rt : t ≥ 0} is positive, completely positive, Markovian or completelyMarko-
vian, then {St : t ≥ 0} shares the same properties.

As a consequence, a Dirichlet form on L2(A, ω) is determined by the semigroup
on A

Corollary 8.5 Let (L , D(L)) be the generator of the semigroup {Rt : t ≥ 0} on A.
Then the Dirichlet form on L2(A, ω) associated to the strongly continuous extension
of the ω̂-modular symmetric semigroup {St : t ≥ 0} on M, satisfies the relation

E[iω(πω(a))] = (iω(πω(a))|iω(πω(La)))L2(A,τ ) a ∈ D(L).

By this result one may study properties of the semigroup R on the C∗-algebra
through the associated Dirichlet form E on A. Notice that by definition we have the
coincidence of the spaces L2(A, ω) = L2(M, ω̂).

This result suggests also that one can approach the construction of Markovian
semigroups (α, β)-symmetric with respect to a (α, β)-KMS state ω on a C∗-algebra
A, through the construction of Dirichlet forms on L2(A, ω). The advantage being
that working with quadratic forms instead that linear operators often allows to relax
domain constrains to prove closability. To finalize this approach, however, once
obtained from the Dirichlet form on L2(A, τ ) the Markovian semigroup on the
von Neumann algebra L∞(A, τ ), one has to face the problem to show that the C∗-
algebra A is left invariant and that on it the semigroup is not only w∗-continuous
but in fact strongly continuous. This last problem may be solved case by case as for
the Ornstein–Uhlenbeck semigroup in [29] for example. We notice, however, that
even in classical potential theory, on Riemmanian manifolds the construction of the
heat semigroup on the algebra of continuous functions requires a certain amount of
substantial potential analysis [45].

9 Application to Quantum Statistical Mechanics

After the proof, in the early nineties of the last century, by Stroock and Zegarlinski, of
the equivalence between the Dobrushin-Shlosman mixing condition and the uniform
logarithmic Sobolev inequalities for classical spin systems with continuous spin
space, efforts were directed to obtain for quantum spin systems similar results, within
the framework of the studies of the convergence to equilibrium. See for example
[77–83].

In this section we describe just one of these constructions of Markovian semi-
groups by Dirichlet forms for KMS states of quantum spin systems, provided by
Park and his school [7, 8, 86–88].



The Emergence of Noncommutative Potential Theory 93

9.1 Heisenberg Quantum Spin Systems

Let us describe briefly, the quantum spin system and its dynamics. The observables
at sites of the lattice Z

d are elements of the algebra M2(C) and the C∗-algebra of
observables confined in the finite region X ⊂ Z

d is

AX :=
⊗
x∈X

M2(C).

If L denotes the net of all finite subsets of Zd , directed by inclusion, the system
{AX : X ∈ L} is in a natural way a net of C∗-algebras so that the algebra of all local
observables given by

A0 :=
⋃
X∈L

AX ,

is naturally normed and its norm completion is a C∗-algebra A (quasi-local observ-
ables).

Interactions among particles in finite regions is represented by a family of
self-adjoint elements � := {�X : X ∈ L} ⊂ AX . Using the Pauli’s matrices σ x

j ∈
M2(C), j = 0, 1, 2, 3, at the sites x ∈ Z

d , in the isotropic, translation invariant,
Heisenberg model, for example, in addition to an external potential represented by a
one-body interaction of strength h ∈ R

�({x}) := hσ x
3 ,

particles interact only by a two-body potential so that �(X) = 0 whenever |X | ≥ 3
and

�({x, y}) := J (x − y)
3∑

i=1

σ x
i σ

y
i x �= y

for a parameter λ > 0 and a function J : Zd → R describing the strength of the
interaction between pairs of particles, under the assumption

∑
x∈Zd

eλ|x ||J (x)| < +∞.

For any fixed Y ∈ L, the derivation

A0 � a �→ i
[
�Y , a

] ∈ A

extends to a bounded derivation on A and generates a uniformly continuous group of
automorphisms of A, representing the time evolution of the observables, interacting
with those particles confined in Y . To take into account simultaneously, the mutual
influences among particles in different regions, one verifies that the superposition
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D(δ) := A0 δ(a) :=
∑
Y∈L

i
[
�Y , a

]
, (9.1)

is a closable derivation on A whose closure is the generator of a strongly continuous
group α� := {α�

t : t ∈ R} of automorphisms of A.

9.2 Markovian Approach to Equilibrium

The above interactions provide the existence of (α�, β)-KMS-statesω at any inverse
temperature β > 0. Let (πω,Hω, ξω) be the GNS representations of the state ω,
M the von Neumann algebra πω(A)′′ and (M, L2(A, ω), L2+(A, ω), Jω) the cor-
responding standard form. In the following we will use the smearing function
f0(t) := 1/ cosh(2π t).

Theorem 9.1 Suppose that ω is a (α�, β)-KMS-state at an inverse temperature
satisfying

β <
λ

‖�‖λ

(9.2)

where
‖�‖λ := sup

x∈Zd

∑
x∈X∈L

|X |4|X |eλD(X)‖�X‖AX (9.3)

is finite under the exponential decay assumption on the strength J . Then the quadratic
forms associated to the self-adjoint elements ax

j := πω(σ x
j )

Ex, j [ξ ] =
∫

R

‖(σt−i/4(a
x
j ) − j (σt−i/4(a

x
j )))ξ‖2 f0(t)dt (9.4)

are bounded completely Dirichlet forms and

E : L2(A, ω) → [0,+∞] E[ξ ] :=
∑
x∈Zd

3∑
j=0

Ex, j [ξ ] (9.5)

is a completely Dirichlet form on L2(A, ω).

Concerning the proof, a first observation is that the Ex, j are bounded Dirichlet
form as uniformly convergent continuous superposition of elementary completely
Dirichlet forms. The quadratic form E is Markovian and closed as pointwise mono-
tone limit of bounded completely Dirichlet forms. The only point that is left to be
shown is the fact that it is densely defined, i.e. E is finite on a dense domain in
L2(A, ω). This is a consequence of the fact that under the current hypotheses on the
strength on the interaction, the dynamics has finite speed propagation in the sense
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that, denoting by d(x, X) distance of the site x ∈ Z
d from the region X ∈ L, we have

‖[α�
t (a), b]‖ ≤ 2‖a‖ · ‖b‖ · |X | · e−

(
λd(x,X)−2|t |‖�‖λ

)
a ∈ A{x}, b ∈ AX , t ∈ R.

(9.6)
Concerning the ergodic behaviour of the semigroups associated to the Dirichlet

forms above, the following result shows how these properties are deeply connected
to the other fundamental properties of the KMS-state.

Corollary 9.2 ([87, Theorem 2.1]) Within the assumption of Theorem 3.3, the fol-
lowing properties are equivalent:

(i) ω is an extremal (α�, β)-KMS-state;
(ii) ω is a factor state in the sense that the von Neumann algebra M := πω(A)′′ is

a factor;
(iii) theMarkovian semigroup {Tt : t ≥ 0} is ergodic in the sense that the subspace of

L2(A, ω) where it acts as the identity operator is reduced to the scalar multiples
of the cyclic vector ξω ∈ L2(A, ω) representing the KMS state ω.

Extremality, i.e. the impossibility to decompose a KMS state as convex, nontrivial
superposition of other KMS states (see [16]), is the mathematical translation of the
notion of pure phase in Statistical Mechanics.

Ergodicity of Markovian semigroups were considered by Gross [63] to prove the
uniqueness of the ground state of physical Hamiltonians in Quantum Field Theory.
Later, Albeverio and Hoegh-Krohn [3] established a Frobenious type theory for
positivity preserving maps on von Neumann algebras with trace and in [26] a Perron
type theory was provided for positivity preserving maps on the standard form of
general von Neumann algebras.

10 Applications to Quantum Probability

As pointed out in Introduction, one of the major achievement of the theory of com-
mutative potential theory is the correspondence between regular Dirichlet forms and
symmetricMarkov–Hunt processes onmetrizable spaces. In noncommutative poten-
tial theory we do not dispose at moment of a complete theory but we have at least a
clear connection betweenDirichlet forms of translation invariant, symmetric,Marko-
vain semigroups and Lévy’s Quantum Stochastic Processes on Compact Quantum
Groups.
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10.1 Compact Quantum Groups d’après S. L. Woronowicz
[108]

In the following mA : A ⊗alg A → A will denote the extension of the product oper-
ation of A.

Let us recall that a compact quantum group G := (A,�) is a unital C∗-algebra
A =: C(G) together with a

(i) coproduct � : A → A ⊗max A, a unital, ∗-homomorphism which is
(ii) coassociative (� ⊗ idA) ◦ � = (idA ⊗ �) ◦ � and satisfies
(iii) cancellation rules: the closed linear span of (1 ⊗ A)�(A) and (A ⊗ 1)�(A)

is A ⊗ A.

An example of the above structure arise from a compact group G by dualization
of its structure. In fact, setting A := C(G) we have A ⊗max A = C(G × G) and a
coproduct defined by

(� f )(s, t) := f (st) f ∈ C(G), s, t ∈ G.

A unitary co-representation of G is a unitary matrix U = [u jk] ∈ Mn(A) such
that

�u jk =
n∑

i=1

u ji ⊗ uik j, k = 1, . . . , n.

Denote by Ĝ the set of all equivalence classes of unitary co-representations ofG.
If a family of inequivalent irreducible, unitary co-representations {Us : s ∈ G} ofG
exhausts all of Ĝ, then the algebra of polynomials, defined by the linear span of the
coefficients of all unitary co-representations

Pol(G) := linear span{u jk ∈ A : [u jk] ∈ Ĝ}

is a Hopf ∗-algebra, dense in A, with counit ε and antipode S determined by

ε(u jk) := δ jk, S(u jk) := u∗
k j [u jk] ∈ Ĝ

and satisfying the rules

(ε ⊗ id)�(a) = a, (id ⊗ ε)�(a) = a,

mA(S ⊗ id)�(a) = ε(a)1A = mA(id ⊗ S)�(a).

The C∗-algebra C(G) of a compact quantum groupG is commutative if and only
if it is of the form C(G) for some compact group G. In this case counit and antipode
are defined by

ε( f ) := f (e), S( f )(s) := f (s−1) s ∈ G,

where e ∈ G is the group unit.
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Combining the tensor product with the coproduct, one may introduce new oper-
ations that in the case of compact group reduce to the well known classical ones.

The convolution ξ ∗ ξ ′ ∈ A∗ of functionals ξ, ξ ′ ∈ A∗ is defined by

ξ ∗ ξ ′ := (ξ ⊗ ξ ′) ◦ �

and the convolution ξ ∗ a ∈ A∗ of a functional ξ ∈ A∗ and an element a ∈ A is
defined by

ξ ∗ a = (id ⊗ ξ)(�a) a ∗ ξ := (ξ ⊗ id)(�a).

By a fundamental result of Woronowicz, on a compact quantum group G there
exists a unique (Haar) state h ∈ A∗+ which is both left and right translation invariant
in the sense that

a ∗ h = h ∗ a = h(a)1A a ∈ A = C(G).

In the commutative case the Haar state reduces to the integral with respect to the
Haar probabilitymeasure. However, in general, the Haar state is not even a trace but it
is a (σ,−1)-KMS state with respect to a suitable automorphisms group σt ∈ Aut(A),
t ∈ R,

h(ab) = h(σ−i (b)a) a, b ∈ Pol(G).

By a result ofWoronowicz, the antipode S : Pol(G) → C(G) is a densely defined,
closable operator on A and its closure S̄ admits the polar decomposition

S̄ = R ◦ τi/2

where

(i) τi/2 generates a ∗-automorphisms group τ := {τt : t ∈ R} of the C∗-algebra A
and

(ii) R is a linear, anti-multiplicative, norm preserving involution on A commuting
with τ , called unitary antipode.

10.1.1 SUq(2) Compact Quantum Group

The compact quantum group SUq(2) with q ∈ (0, 1], is defined as the universal
C∗-algebra generated by the coefficients of a matrix

U =
[
α −qγ ∗
γ α∗

]

subject to the relations ensuring unitarity: UU ∗ = U ∗U = I . Then one may check
that, in terms of the generators α, γ , all the other relevant objects are determined by
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(i) comultiplication: �(α) := α ⊗ α + γ ⊗ γ , �(γ ) := γ ⊗ α + α∗ ⊗ γ

(ii) counit: ε(α) := 1, ε(γ ) := 0
(iii) antipode: S(α) := α∗, S(γ ) := −qγ , S(u j,k) := (−q)( j−k)u−k, j for

[u jk] ∈ Ĝ

(iv) Haar state: h(u jk) := 0 for [u jk] ∈ Ĝ

(v) automorphisms group: σz(u jk) := q2i z( j+k)u jk for [u jk] ∈ Ĝ and z ∈ C

(vi) unitary antipode: R(u jk) := qk− j u∗
jk for [u jk] ∈ Ĝ.

When q = 1 one recovers the classical compact group SU (2).

10.1.2 Countable Discrete Groups as CQGs

Let � be a countable discrete group and λ : � → B(l2(�)) its left regular represen-
tation

λs : l2(�) → l2(�) λs(δt ) := δst s, t ∈ �.

The reduced C∗-algebra C∗
r (�) ⊂ B(l2(�)) is the smallest C∗-algebra containing

all the unitary operators λs for s ∈ �. If instead of the regular representation one
uses the direct sum of all cyclic unitary representation of �, the resulting algebra is
called the universal C∗-algebra. It is isomorphic to the regular one if and only if � is
amenable.

A compact quantum group structure on C∗
r (�) is obtained extending to a ∗-

homomorphism � from C∗
r (�) to C∗

r (�) ⊗ C∗
r (�) the map defined by �(λs) :=

λs ⊗ λs for s ∈ �. The linear span of the unitaries λs for s ∈ � is a dense ∗-Hopf
algebra on which counit and antipode are defined as ε(λs) = 1 and S(λs) := λs−1

for s ∈ �. The compact quantum group C∗
r (�) is cocommutative in the sense that

the comultiplication � is invariant under the flip of the left and right factors of
C∗
r (�) ⊗ C∗

r (�). A theorem of Woronowicz ensures that any cocommutative com-
pact quantum groupC(G) is essentially the C∗-algebra of a countable discrete group
in the sense that there exists a countable discrete group � and ∗-homomorphisms
C∗(�) → C(G) → C∗

r (�). The CQG C∗
r (�) is of Kac type and the Haar state coin-

cides with the trace determined by τ(δs) = 0 for s �= e and τ(δe) = 1.

10.2 Lévy Processes on Compact Quantum Groups [30]

The Lévy processes on compact groups are among the most investigated stochastic
processes in classical probability. We briefly describe in this section a class of quan-
tum stochastic processes, in the sense of [1] (see also [62]), on compact quantum
groups that generalize the classical Lévy processes.

Let (P,�) be a von Neumann algebra with a faithful, normal state, also called a
noncommutative probability space.

(i) A random variable on G is a ∗-algebra homomorphism j : Pol(G) → P
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(ii) the distribution of the random variable is the state φ j := � ◦ j on Pol(G)

(iii) the convolution j1 ∗ j2 of the random variable j1, j2 : Pol(G) → P is the ran-
dom variable

j1 ∗ j2 := mP ◦ ( j1 ⊗ j2) ◦ �

where mP is the product in P .

A Quantum Stochastic Process [1] is a family of random variables { js,t : 0 ≤ s ≤
t} satisfying
(i) jtt = ε1P for all 0 ≤ t
(ii) increment property: jrs ∗ jst = jrt for all 0 ≤ r ≤ s ≤ t
(iii) weak continuity: jtt → jss in distribution as t → s decreasing.

Definition 10.1 (Quantum Lévy Processes) A Lévy process on a CQGG is a quan-
tum stochastic process on the Hopf-algebra Pol(G) such that it has

(i) independent increments in the sense that for disjoint intervals (sk, tk], k =
1, . . . , n

�( js1t1(a1) · · · jsn t1(an)) = �( js1t1(a1)) · · · �( jsn t1(an))

(ii) stationary increments in the sense that the distribution φst = � ◦ jst depends
only on t − s.

Theorem 10.2 Under a suitable probabilistic notion of equivalence of quantum
stochastic processes, equivalence classes of Lévy processes { js,t : 0 ≤ s ≤ t} on a
compact quantum groupG are in one-to-one correspondence with those Markovian
semigroups {St : 0 < t} on the C∗-algebra C(G) which are translation invariant in
the sense that

� ◦ St = (id ⊗ St ) ◦ � t > 0.

To illustrate themain steps of the correspondence, notice first that the distributions
of the process φt := � ◦ j0t form a continuous convolution semigroup on Pol(G)

φ0 = ε, φs ∗ φt = φs+t , lim
t→0+

φt (a) = ε(a) a ∈ Pol(G)

and that the generating functional of the process is then defined as

G : D(G) → C G(a) := d

dt
φt (a)

∣∣∣
t=0

on a dense domain D(G) ⊆ Pol(G). From it one can reconstruct the distribution of
the process as a convolution exponential

φt = exp∗(tG) := ε +
∞∑
n=1

tn

n!G
∗n t > 0,
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a semigroup on Pol(G) by

Sta = φt ∗ a a ∈ Pol(G), t > 0

and its formal generator L : Pol(G) → Pol(G) as L(a) := G ∗ a. Then one checks
that the semigroup extends to a strongly continuous, translation invariant Markovian
semigropup on the C∗-algebra C(G) and that its generator is the closure of L . More-
over, the distribution and the generating functional can be written directly in terms
of the semigroup and its generator

φt = ε ◦ St , G = ε ◦ L .

The KMS-symmetry of the semigroup of a Lévy process can checked using the
generating functional as follows

Theorem 10.3 Let {St : t > 0} be the Markovian semigroup of a Lévy process
{ js,t : 0 ≤ s ≤ t} on compact quantum group G. The following properties are then
equivalent

(i) the semigroup is (σ h,−1)-KMS symmetric
(ii) the generating functional is invariant under the action of the unitary antipode

G = G ◦ R

on the Hopf ∗-algebra Pol(G).

If the above conditions are verified then one can proceed to construct the Dirichlet
formassociated to theLévyprocess. Thedifferential structure of theseDirichlet forms
and the generating functional can be described in terms of the Schürmann cocycle
(see [30]) but we do not pursue it here.

Rather, we prefer to conclude this section with examples of Dirichlet forms on a
class of compact quantum groups whose spectrum has been completely determined
with application to the approximation properties treated in a previous section.

10.2.1 Free Orthogonal Quantum Groups

The universal C∗-algebra Cu(O
+
N ) of the free orthogonal quantum group of Wang

O+
N , N ≥ 2, is generated by a set of N 2 self-adjoint elements {v jk : j, k = 1, . . . , N }

subject to the relations which ensure that the matrix [v jk] is unitary
N∑
l=1

vl jvlk = δ jk =
N∑
l=1

v jlvkl

and where a coproduct is defined as �v jk := ∑N
l=1 vl j ⊗ vlk . The Haar state is a

trace which is faithful on the Hopf algebra but not on Cu(O
+
N ) so that the Lévy
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semigroup is considered on the reduced C∗-algebra Cr (O
+
N ), defined by the GNS

representation of the Haar state. The set of equivalence classes of irreducible, uni-
tary co-representations is indexed by N. Denoting by {Us : s ∈ N} the Chebyshev
polynomial on the interval [−N , N ] defined recursively as

U0(x) = 1, U1(x) := x, Un(x) = xUn−1(x) −Un−2 n ≥ 2,

a generating functional is then defined by

G(unjk) := δ jk
U ′

n(N )

Un(N )
j, k = 1, . . . ,Un(N ), n ∈ N.

It can be proved that the associated Dirichlet form has discrete spectrum whose
eigenvectors are the coefficients unjk of the irreducible, unitary co-representations
and such that the corresponding eigenvalues and multiplicities are

λn := U ′
n(N )

Un(N )
, mn := (Un(N ))2.

By the results of a previous section, this implies that the von Neumann alge-
bras L∞(C∗

r (O
+
N ), τ ) generated by the GNS representation of the Haar trace states,

all have the Haagerup Property. In particular, however, since for N = 2 one has
λn = n(n+2)

6 and mn = (n + 1)2, it results that L∞(C∗
r (O

+
2 ), τ ) is amenable. The

amenability of the free orthogonal quantum groups have been proved for the first
time by Brannan [14].

10.2.2 Property (T) of Locally Compact Quantum Groups
and Boundedness of Dirichlet Forms

We conclude this exposition describing succinctly a recent result of Skalski and
Viselter [102] connecting the Property (T) of the von Neumann algebra of a quantum
group to the boundedness of translation invariant Dirichlet forms. Their framework
is more general than the one treated in this section as they consider the locally
compact quantum groups G = (M,�, ϕH ), in the von Neumann algebra setting, of
Kustermans and Vaes [73].

The main difference with respect to the Woronowicz theory of compact quantum
groups is that the Haar weight ϕH (in general no more a state) is, together with the
coproduct operation �, part of the structure of a locally compact quantum group
G. This causes a lack of certain common, dense, natural domain for generators,
generating functionals and quadratic forms so that a subtler analysis is required.

The vonNeumann algebraM (resp. its standard space L2(M)) is often indicated as
L∞(G) (resp. L2(G)) or as L∞(G, ϕH ) (resp. L2(G, ϕH )) to emphasize the reference
to the chosen Haar weight.
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From the point of view of potential theory, the unboundedness of the Plancherel
weight necessitates of the extension of the theory of Dirichlet forms with respect to
weights on von Neumann algebras, developed by Goldstein and Lindsay in [61] (and
amended in [102, Appendix]). We do not describe the details of this theory here but
we just notice that in case the Plancherel weight ϕH is a trace we may use the theory
illustrated in Sect. 4.

The following result, obtained in [102, Theorem 4.6], characterizes the Property
(T) of von Neumann algebras of separable locally compact quantum groups (defined
in [57] for discrete quantum groups and for general locally compact ones in [51]) in
terms of a spectral property of the completely Dirichlet forms.

Theorem 10.4 Let G be a locally compact quantum group such that L2(G, ϕH ) is
separable. Then the following properties are equivalent

(i) the von Neumann algebra L∞(G, ϕH ) has the property (T)
(ii) any translation invariant completely Dirichlet form on L2(G, ϕH ) is bounded.

As in the compact case, the translation invariance of the Dirichlet form may be
expressed as the invariance of the associated generating functional with respect to
the unitary antipode.

Acknowledgements The author wishes to thanks the referee for her/his careful and patient work.
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Contact Interactions and Gamma
Convergence

Gianfausto Dell’Antonio

Abstract We study contact interactions, a generalization of Albeverio’s point inter-
actions. There are two types of contact interactions, weak and strong; the last type
occurs only in a three particle system. Strong contact leads to systems that have an
infinite number of bound states with eigenvalues that decrease with a scaling law.We
prove that in both the strong and the weak contact cases the hamiltonians are strong
resolvent limits of hamiltonians with potentials with support that vanishes with a
given scaling law while the L1 norm remains constant. In the weak contact case, the
approximating hamiltonians must have a zero energy resonance. As applications we
describe Bose-Einstein condensation in the low and high density regimes, the Fermi
sea in solid state physics and the ground state of Nelson’s polaron.

Keywords Contact interactions · Gamma convergence

1 Introduction

This is a contribution to the volume dedicated to Sergio Albeverio on the occasion
of his 80th birthday. Sergio is a very close friend, an exceptional scientist and an
extraordinary gentle person always ready and willing to help. This and his innate
curiosity has resulted in a very large number of collaborations on an even larger
number, if possible, of different aspect of Mathematical Physics and Analysis.

Sergio has given many very important contributions to science, as stressed in
this volume. His work on Feynman integrals and on singular stochastic equation
has opened new ways in these important fields. Among his impressive scientific
production stands out his work on point interaction, initiated with Høegh-Krohn; its
importance is testified among other by the two“voluminous” books, SolvableModels
in Quantum Mechanics [2] (this book has become a “bible” in the field) and later
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Singular Perturbations of Differential Operators [3], a “must” for researchers in the
field. Later Sergio and collaborators (mostly of the Russian school) obtained very
interesting results on the Schrödinger equation with potentials that are singular on
lower dimensional manifolds.

My contribution to this volume in honor of Sergio is on a subject, contact interac-
tions, strictly related to point interactions. I pursue the research of Sergio by consid-
ering a wider class of operators defined by boundary conditions on a lower dimen-
sionalmanifold; now themanifoldmay be three dimensional andwe consider contact
between two or three bodies.

Point interaction may be considered as contact with a zero-dimensional manifold.
We consider two types of contact, strong and weak. In the case of contact in a
three particle system the weak contact can be of a particle with the other two or
simultaneous of the three particles. In the case of Bose-Einstein condensates they
correspond respectively to the low and high density cases. We describe also shortly
an application to atomic physics (Fermi sea) and to the Nelson problem (contact
interaction of a particle with a quantized zero mass field).

2 Contact Interactions

Contact interactions in R
3 are defined formally by imposing that the wave function

in the domain of the hamiltonian satisfies the boundary conditions

φ(X) = Ci, j

|xi − x j | + Di, j i �= j

at the coincidence manifold �

� ≡ ∪i, j�i, j �i, j ≡ xi − x j = 0, i �= j xi ∈ R
3.

These conditions were later used by Skorniakov and Ter-Martirosian [35] in their
analysis of three body scattering within the Faddaev formalism.

It is easy to see, integrating by parts twice, that formally C �= 0 corresponds
to an attractive potential −Ci, jδ(xi − x j ), Ci, j > 0 and D �= 0 corresponds to an
attractive potential with radial derivative proportional to −Di, jδ(xi − x j ). Since if
Ci, j �= 0 the function is not in L2 (and the δ is not a bona-fide potential), the definition
is only formal. On the other hand it would suffice an extra factor c

log(|xi−x j |) . This
suggests that given Ci, j there are infinitely many “solutions” and one must select
“the right one”. Even the right one is not in the domain of the free hamiltonian;
solution of the Schrödinger equation is only meant in a weak sense, after averaging
with a smooth function and integrating by parts. The equation holds therefore in the
sense of quadratic forms. Quadratic forms techniques play an important role. From
a mathematical point of view, the resulting operators are self-adjoint extensions of
the symmetric operator ̂H0, the free hamiltonian restricted to functions with support
away from �.
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We remark that already in 1935 Bethe and Peirels [9], in order to model the very
short range nuclear forces, introduced potentials “that vanish except at the origin”.
A formal force localized in a point was introduced earlier by Fermi.

A particular case was given a mathematical status as “point interactions” in the
work of Sergio [1]. In R

3 this interaction requires the presence of a zero energy
resonance.

In Theoretical Physics the interest in the subject was renewed by recent advances
in the theoretical formulation of low energy physicswith very short range interactions
and by the flourishing of research on ultra-cold atoms interacting through potentials
of very short range [8].

In three dimensions we call strong contact the case Di, j = 0 and weak contact
the caseCi, j = 0. We shall prove that these two types of contact lead to independent
and complementary effects. The effect is independent and complementary to that due
a smooth interaction. In three dimensions two particles can have only weak contact.

In a three particle system one can have mutual weak contact of the three particles.
We will see that in order to solve this case one must consider the (separate) strong
contact of one particle with the other two and the result is infinitely many bound
states. In two dimensions there is only one type of contact. To treat the case of
mutual contact between three particles one must consider a stronger contact and this
leads again to an infinity of bound states. In one dimension contact interactions in
a system of three spin 1

2 particles can lead to infinite number of bound states (the
“Fermi sea”).

The formalismwe develop allows us to prove that strong contact interactions inR3

are limits in strong resolvent sense when ε → 0 of interactions through a two-body
potential of class C1 which scales (in the three-dimensional case) as

Vε(|x |) = ε−3V

( |x |
ε

)

,

for strong contact. For weak contact the scaling is

Vε(|x |) = ε−2V

( |x |
ε

)

,

and there must be a zero energy resonance. We will see that this requirement is of
topological origin. This same ε−2 scaling occurs in two dimensions and there is no
zero energy resonance. In one dimension the scaling is

Vε(|x |) = ε−1V

( |x |
ε

)

.

We analyze first in R3 the case of three particles one of which is in strong contact
with the other two. This analysis will be also useful in the case ofmutual weak contact
of three particles. Later we will treat the case of dimension two and dimension one.
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Remark 1 Warning: We are using the common (but wrong) notation “particle” to
indicate a wave function. A particle is an observable and therefore a density matrix
(positive trace-class operator with trace one). We will come back later to this point;
we remark here that a cubic local interaction term for a wave function is the strong
form of a contact interaction between two densities.

3 Mathematical Formulation; The Krein Map

From a mathematical point of view the problem of zero range interaction was first
analyzed by Pavlov [33] who investigated the self-adjoint extensions defined by the
condition of finite value at the boundary �i, j (weak contact). For this case Shondin
[34] followed a scheme for self-adjiont extension led out by Yu Shirokov. Later the
problem was analyzed by Makarov [28], Makarov and Melezdik [29].

Contact interactions were analyzed in [25, 26] from the point of view of self-
adjoint extensions. We analyze the same problem from point of view of quadratic
forms [4, 22].

Consider first the (separate) strong contact between one particle and two identical
particles. Since the particles are identical we consider only one pair, but we shall see
the presence of a third particle is needed for the procedure we follow. This contact
interaction is to be considered as limit of interactions of very short range; we will
prove that the limit is in strong resolvent sense.

The quadratic form of the free hamiltonian is a strictly positive operator on the
space of absolutely continuous functions and it takes value +∞ on the complement.
The delta distribution defines on the space of continuous functions a negativebounded
quadratic form which not is weakly closed. To “extract” a self-adjoint operator from
their sum we use an invertible mapK that lifts the system to a space of more singular
functions (so that by duality the potential term is less singular). We call K “Krein
map” and M “Minlos space” the image space. We will explain later the genesis
of these names. The map K acts differently on the free hamiltonian (an operator)
and on the potential (a quadratic form). The map is “fractioning” and “mixing” in
precise sense; this are the same properties which are commonly required in the study
of composite materials in applied mathematics. They have the role of a magnifying
glass.

Recall that we are considering a system of three particles one of which is in strong
contact with the other two (that we assume to be identical so that the contact is with

a density matrix). The map is induced by the operator H
− 1

2
0 , where H0 is the free

hamiltonian of the three particle system.We shall see that this procedure is similar to
the one followed in [6, 18] for the construction of self-adjoint extensions of positive
operators; this explains the name “Krein” for the map. But we stay on the side of
quadratic forms [22].

We call “Minlos space” M the image space since the idea of using this space
came while reading [25, 26]. The map is mixing (it entangles all coordinates) and
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fractioning (the target space contains more singular functions). The map is useful
also in the study of weak contact of two particles since it helps separating the short
distance and the long distance properties of the interaction (weak contact requires
the presence of a zero energy resonance). Later we will study the weak contact in a
three particle system.

In the new space M both the kinetic energy and the potential are symmetric
operators. Both are unbounded, one below and one above. In M the kinetic energy
is

√
H0. The potential term is

−C(H0)
− 1

2 δ(x)(H0)
− 1

2 .

Since the delta function commutes with H0 (as easily seen taking Fourier transfor-
mation) this operator can also be written −Cδ(x)H−2

0 . The procedure we follow is
therefore similar to that of [6, 18] (but on the side of quadratic forms [22]).

InM, in position space the interaction term is −C 1
|x | + B, where B is a positive

operator with smooth kernel that vanishes on the diagonal. In the following we
neglect the operator B. This is justified because we will prove that strong, weak
contact and smooth interactions lead to independent and complementary effects.
The proof makes use of the Konno-Kuroda formulation of the Birman-Schwinger
formula for the perturbation of the resolvent.

In M kinetic and potential energy operators have opposites sign and the same
singularity on functions supported in a neighborhood of the origin. Therefore their
sum is a quasi-homogeneous operator [14] and if it is not positive it is represented
inM by a continuous ordered family of self-adjoint operators.

It is proved in [14] that there is a first threshold C1 (which depends on the masses
andon the strength of the interaction) such that forC < C1 the form is positive. There-
fore it corresponds uniquely to a self-adjoint operator. There is a second threshold
C2 such that for C1 ≥ C ≥ C2 there is in M a one-parameter family of self-adjoint
operators bounded below with one bound state. For C ≥ C2 there is a one-paramter
family of self-adjoint operators unbounded below each with an infinite number of
bound states that diverge linearly to −∞ .
We remark that in [25] themain tool in the proofs is aMellin transform. The existence
of infinitely many self-adjoint operators when C ≥ C2 is proved in [26] solving the
equation H = H∗. This gives also the structure of the wave functions of the bond
states in M.

4 Going Back to “Physical” Space; Gamma Convergence

Coming back to “physical space”, the continuous family of operators in M gives a
continuous ordered family of quadratic forms bounded below but only weakly closed
(both are consequences of the change in metric topology). Notice that returning to
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physical space is not inversion of the Krein map since the entire closed quadratic
form is regarded as an operator.

Recall that the Krein map is fractioning because the image is a space of more
singular functions andmixing because it is not diagonal in the channels of the kinetic
energy. This suggests to make use of Gamma convergence [13], a variational method
for the study of finely structured materials that was introduced more that sixty years
ago by Buttazzo and De Giorgi.

Gamma convergence is a minimization procedure that selects an extremum out of
a family of convex functionals. We consider the particular case of quadratic forms.
Recall [13] that the Gamma limit of a sequence of strictly convex weakly closed
quadratic forms Fn in a topological space Y is the unique weakly closed quadratic
form F such that for any subsequence the following holds

∀y ∈ Y, yn → y, F(y) = lim inf
n→∞ F(yn);

∀x ∈ Y∃{xn} → x F(x) ≥ lim sup
n→∞

Fn(xn)

The first condition means that F provides an asymptotic common lower bound for
the Fn; the second condition says that this lower bound is optimal.

The condition for the existence of the Gamma-limit for a sequence of strictly
convex quadratic forms is that the sequence be contained in a compact set of a space
Y ; in the present case Y has the Frechet topology given by Sobolev semi-norms.
Compactness of bounded sets is assured by the absence of zero energy resonances (as
in the strong contact case), strict convexity is due to the fact that since the interaction
is invariant under rotations we can restrict attention to s-waves. Therefore there is a
minimizing (Palais-Smale) sequence.

We conclude that for strong contact there is a privileged quadratic form (the
Gamma limit); being minimal and strongly convex, it is strongly closed [18] and
represents a self-adjoint operator, the hamiltonian of our system. If C1 ≤ C < C2

this operator has a bound state, if C ≥ C2 it has an Efimov sequence of bound states.
The presence of the first few members of the series have been reported in low energy
nuclear physics where one considers strong contact interactions (very short range
potentials) between particles. .

The Efimov effect is also present in the case of mutual weak contact of three equal
mass particles, e.g. in the Bose-Einstein condensate at high density. At lower density
separate weak contact interactions prevail and one has only one bound state.

A similar effect (but with a different rate) is present for a system of three spin 1
2

particleswhich satisfy the Pauli equation andmove on a latticewithY -shaped vertices
(where the interaction takes place). In this case, in the Efimov effect the eigenvalues
scale logarithmically. The Pauli principle lead to the Fermi sea (occupation of all
bound states).

Remark 2 One may wonder what is the role of the other quadratic forms that are
only weakly closed in physical space. They correspond to other boundary condition,
e.g. due to a strong magnetic field at the boundary. So far we have used the free



Contact Interactions and Gamma Convergence 113

hamiltonian to define the Krein map but we can use e.g. the magnetic hamiltonian.
The interaction takes place at the boundary and the infimum now is a different
quadratic form, and therefore a new self-adjoint extension is promoted to “physical”
hamiltonian.

5 Convergence of Approximations

We prove now that the hamiltonian we have described is the limit in strong resolvent
sense of the hamiltonians with the approximate negative two-body potentials V ε(|x)
which scale as

Vε(|x |) = ε−3V

( |x |
ε

)

.

Remark that Gamma convergence is stable under continuous perturbations. Since the
potentials are negative and have constant L1 norm, the ε-sequence of hamiltonians
is a decreasing sequence of quadratic forms bounded below by the hamiltonian of
contact interactions.

The hamiltonian of strong contact has no zero energy resonances and also the ε-
dependent approximations have no zero energy resonances. Therefore the sequence
and its limit belong to a compact subset for the topology induced by the Sobolev
semi-norms. Any such sequence bounded below admits a convergent subsequence.
The difference between the contact interaction and the approximate sequence con-
verges to zero weakly. Since the hamiltonians are strictly decreasing the limit point
is unique. Therefore when ε → 0 the approximate hamiltonians Gamma converge
to the hamiltonian of strong contact.

Gamma convergence implies strong resolvent convergence [13] (but not quadratic
form convergence), therefore the resolvents of the ε-dependent hamiltonians con-
verge in strong convergence sense to the resolvent of the contact interaction. Strong
resolvent convergence implies convergence of spectra and of the Wave operators.

We add a few remarks.

Remark 3 Notice that no rate of convergence is available. Notice also that gamma
convergence does not imply convergence of quadratic forms and therefore even weak
convergence of the hamiltonians. Theoperator and its domain are obtainedbyGamma
convergence, a variational technique. In this lies the strength of Gamma convergence.

Remark 4 The convergence we have proved is in the strong resolvent sense. The
quadratic forms converge only in a sub-domain; in the complement the quadratic
forms may diverge. Recall that the resolvent of a self-adjoint operator A is 1

A−z for z
not in the spectrum of A. Therefore if An → A in strong resolvent it is only required
that the quadratic form of An converges to the quadratic form of A on a large enough
domain.

Remark 5 Contact interactions are entirely determined by the behavior of the wave
functions at the boundary (compare with electrostatics; here the Krein map plays
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the role of the Weyl map between potential and charges in electrostatics). For this
reason it natural to call the Minlos space space of charges [12]. There is a natural
connection between strong contact interactions and the theory of Boundary Triples
[10]; the difference with existing literature is that the boundary is of dimension 3 and
it is internal.

6 Weak Contact

We consider now the case of weak contact. Since the weak potential has the same
scaling properties under dilations as the kinetic energy there can be at most as many
weak contacts as particles. The tightest configuration is the simultaneous weak con-
tact of three particles.

We shall consider first the case of two particles. Now the boundary conditions
require that functions in the domain take a finite value at the boundary. This cor-
responds to a boundary potential whose “gradient” has the singularity of a delta
distribution.

In the study of weak contact we can proceed as in the case of strong contact and
introduce theMinlos space. TheKreinmap in the case of twoparticles inweak contact

is induced by the operator H
− 1

2
0 . This corresponds to a smoothing of the interaction

but there is no mixing. In M the kinetic energy is represented by the operator H
1
2
0

and the potential has log(|xi − x j |) singularity at the coincidence manifold. The
hamiltonian is covariant under dilation.

In physical space one has a weakly closed quadratic form bounded below and
with a 1

|xi−x j | behavior at large distances. It is therefore strongly closed [19] and cor-
responds to a self-adjoint operator bounded below and with a zero energy resonance.
Also in this case the weak contact hamiltonian is the limit in strong resolvent sense
of the hamiltonian with the approximation potentials V ε but a zero energy resonance
must be subtracted away before on can use compactness to prove the existence of the
limit. This explains why in the case of weak contact the approximating potentials
must have a zero energy resonance (to be subtracted away).

Remark 6 The case of a weak interaction in a two particle system is discussed in
[1] using methods of functional analysis in the case when one of the particles has
infinite mass. This particle may be considered at a fixed point (point interaction). The
presence of a zero energy resonance implies a singularity of the resolvent at zero
momentum and this requires an accurate and difficult estimate of the zero energy
limit in the B.K.S. formula for the difference of two resolvents [1]. Using the Krein
map simplifies much the analysis since it acts differently on the kinetic and potential
parts and allows therefore to treat separately the singularity at contact and the long-
distance behavior. In [1], this analysis is presented for the weak contact interaction
of a particle with a fixed point (a particle of infinite mass) but the same analysis can
be done for the case of weak contact interaction of two particles in the reference
frame of the barycenter.
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7 Bose-Einstein Condensate; The Dilute Case

The Bose-Einstein condensate is a gas of identical bosons in weak contact. As well
known the theory of the low density Bose-Einstein condensate requires the presence
of a zero energy (Feshbach) resonance.We distinguish two cases: we call low density
the case of separate weak contact of one of the particles with the other two and high
density the case of mutual weak contact.

In the low density case there are two zero energy resonances and therefore at zero
energy the resolvent is the inverse of a 2 × 2 matrix with zeroes on the diagonal. As a
result if the interaction is strong enough, the hamiltonian has a negative eigenvalue;
one has therefore a three-body bound state. This bound state is stable since the
separation of one of the two particles that interact produces a system which has
positive energy (and one resonance). Notice that there is no interaction between
two of the particles. One can say that the interaction takes place between one wave
function and the density of another particle.

Since the particles are identical, taking the scalar product with the conjugate of
the wave function of the interacting particle and integrating by part the kinetic term,
one obtains an energy form which is the sum of a free part and the integral over the
product of the two densities. This quartic term has as coefficient the intensity of the
Gross-Pitaevskii coupling.

We have already remarked that the world “particle” is misleading: wave function
would be better. A particle is represented by a density matrix, and therefore the
interaction is local and takes place between two densities.

The energy functional is obtained by taking the scalar productwith awave function
and integrating by parts the kinetic term. Therefore the energy functional contains a
term which is linear in the density and a quadratic term. The bound states is a critical
point of this functional.

8 The High Density Case; The New Ground State

Consider now the high density case. The three wave functions are now in simulta-
neous weak contact. The interaction is represented, as before, taking the limit for
ε → 0 in the hamiltonian

Hint = H0 +
∑

i �= j �=k

1

ε2
V

( |xi − xk |
ε

)

.

In the Birman-Schwinger formula the contribution to the resolvent coming from
the terms that contain only two of the three potentials is the same as in the case of
separate interactions. The contribution represents weak contact interaction of two
particles in presence of a non interacting particle; this provides a bound state. If the
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density is higher the contribution that corresponds to mutual weak contact becomes
dominant.

In the contribution of the factors that depend on the product of all three potentials
one can take away the factor ε−2 from one of the potentials and attribute a further
factor ε−1 to the remaining two (the way we distribute the ε is an artifice devoid of
physical meaning). This leads to consider separate strong contact interaction of a
wave function with a pair. It also leads to an Efimov sequence of bound states. The
lowest energy state (the ground state) is now the lowest Efimov state. If the particles
are identical there is only one ground state �s . Therefore the ground state of the
high densiity Bose-Einstein gas is ⊗N

k=1�
k
s , where k is the index of distinct triplets

in joint weak contact. It is not related to the ground state ⊗N
k=1�

k
w of the diluted

Bose-Einstein gas.
Also here the energy functional is obtained by taking the scalar product with a

wave function and integrating by parts the kinetic term; it has still the form

D
∫

(∇φ,∇φ) − C
∫

|φ4(x)|d3x , D,C > 0 ,

but the ratio C
D is larger than in the previous case and the system has an infinite

number of (Efimov) bound states (it should be possible to use Morse theory to see
the difference in the number of critical point as a function of the coefficient of the
potential term).

In both cases if the “particles” are identical the ground state of the gas is symmetric;
if there are 3N wave functions the ground state is the tensor product of the ground
states of the three wave functions system, but this ground state is different in the two
cases. In fact one can “unify” the procedure and consider simultaneously the limits
ε → 0 and N → ∞ (notice that for one degree of freedom the form domain of the
number operator is compact in Fock space). We will not analyze further here this
problem.

Remark 7 In [8] one considers a system of N “particles” with an interaction of
support 1

N (we consider only the case β = 1 in their notation). The fact that the
range of the interaction depends on the number of particles is unpleasant. Setting in
the interaction term 1

N = ε the system represents N triples of particles that in the limit
ε → 0 are in weak contact. One can take ε → 0 and N → ∞ independently; this
justifies the use of the de Finetti formalism and the reference to singular potentials..
The limit ε → 0 exists and to first order in ε is the ground state of triplets of wave
functions in weak contact.We already remarked that a particle (an observable), while
usually described in Quantum Mechanics by a wave function, is rather a density
matrix.

Remark 8 The semiclassical limit. It is easy to verify that weak contact for (gaus-
sian) coherent states implies Coulomb interaction between the barycenters. The free
Schrödinger hamiltonian in R

3 corresponds in the coherent states formalisms to
the free classical hamiltonian. Therefore a quantum system of three “particles” in
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mutual weak contact corresponds to the newtonian three-body problem and the Efi-
mov bound states correspond to the periodic solutions of the classical three-body
problem. The same holds in R

2 for the planar three-body problem.

9 Strong and Weak Contact Are Independent
and Complementary

In three dimensions for N ≥ 3 contact interactions and weak-contact interactions
contribute separately and independently to the spectral properties and to the boundary
conditions at the contact manifold. Both are independent from the contribution of
regular potentials. We will only outline the proof.

For an unified presentation (which includes also the proof that the addition of a
regular potential does not change the picture) it is convenient to use a symmetric
presentation due to Kato and Konno-Kuroda [20] (who generalize previous work by
Krein and Birman) for hamiltonians that can be written in the form

H = H0 + Hint Hint = B∗A

where B, A are densely defined closed operators with D(A) ∩ D(B) ⊂ D(H0) and
such that, for every z in the resolvent set of H0, the operator A 1

H0+z B
∗ has a bounded

extension, denoted by Q(z). Since we consider the case of attractive forces, and
therefore negative potentials, it is convenient to denote by −Vk(|y|) the two body
potentials. The particle’s coordinates are xk ∈ R

3, k = 1, 2, 3.
We take the interaction potential to be of class C1 and set

V ε(X) =
∑

i �= j

[V ε
1 (|xi − x j |) + V ε

2 (|xi − x j |) + V ε
3 (|xi − x j |)]

where V1 and V2 are negative and V3 is a regular potential. For each pair of indices
i, j we define V ε

1 (|y|)) = 1
ε3
V1(

|y|
ε

) and V ε
2 (|y|) = 1

ε2
V2(

|y|
ε

) .We leave V3 unscaled.
We define Bε = Aε = √−V ε . For ε > 0 using Krein’s resolvent formula one can

give explicitly the operator Bε as convergent power series of products of the free
resolvent R0(z), Re(z) > 0 and the square roots of the sum of potentials V ε

k , k =
1, 2, 3.

One has then for the resolvent R(z) ≡ 1
H+z the following form [20]

R(z) − R0(z) = [R0(z)B
ε][1 − Qε(z)]−1[BεR0(z)] z > 0

with

R0(z) = 1

H0 + z
, Qε(z) = Bε 1

H0 + z
Bε .
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We approximate the zero range hamiltonian with the one parameter family of
hamiltonians

Hε = H0 + +
∑

m,n

V ε(|xn − xm |) , n �= m, xm ∈ R3 .

The potential is the sum of three terms

V ε(|y|) =
3

∑

i=1

V ε
i , V ε

1 (|y|) = 1

ε3
V1

( |y|
ε

)

, V ε
2 (|y|) = 1

ε2
V2

( |y|
ε

)

,

(we omit the indexm, n). All potentials are of class C1. The potential V3 is unscaled.
Define

U ε(|y|) = V ε
2 + V3 .

If ε > 0 the Born series converges and the resolvent can be cast in the Konno-Kuroda
form [20], where the operator B is given as (convergent) power series of convolutions
of the potential U ε and V ε

1 with the resolvent of H0. In general

√

V ε
1 (|y|) +U ε(|y|) �= √

V ε
1 (|y|) + √

U ε(|y|)

and in the Konno-Kuroda formula for the resolvent of the operator Hε one loses
separation between the two potentials V ε

1 andU ε . Notice however that, if V ε
1 andU ε

are of class C1, the L1 norm of U ε vanishes as ε → 0 uniformly on the support of
V ε
1 . By the Cauchy inequality one has

lim
ε→0

‖√V ε
1 (y).

√

U ε(y)‖1 = 0 .

Therefore, if the limit exists the strong and weak contact interactions act indepen-
dently.

Remark 9 One can give a similar proof that regular (Rollnik class) potentials give
contributions that are independent and complementary to those due to contact con-
tributions, weak or strong.

10 The Two-Dimensional Case

In two dimensions there is only one type of contact interaction. It is described by a
distributional potential δ(|xi − x j |), x j ∈ R

2 at the coincidence manifold. It is the
limit of the interaction through two-body potentials that scale as
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V ε(|y|) = 1

ε2
V

( |y|
ε

)

.

Consider the contact interaction of a particle with two identical particles. The Krein
map and Minlos space are defined in the same way and again in M the free hamil-

tonian H0 is represented by H
1
2
0 and the potentials differ from − C

|xi−x j | , C > 0. If
the interaction is strong enough in physical space there is a bound state. Since there
are no zero energy resonances the mapping properties of the Wave operator in phys-
ical space are L p → Lq for 1 < p ≤ q < ∞. This result has been obtained also for
regular potentials in [16]; indeed the result can be obtained easily without using the
Krein map.

More interesting is the case of simultaneous pairwise contact interaction of three
bosons. It is represented by the potential −C

∑

δ(|xi − xk), C > 0. Again in M
if C is large enough (depending on the mass of the particles) there is a one param-
eter family of self-adjoint extensions each with a sequence of bound states with
eigenvalues that diverge linearly. In physical space Gamma convergence provides
a self-adjoint hamiltonian with an Efimov sequence of bound states. Since there is
only one type of contact interaction, in the Bose-Einstein gas there is no difference
between low and high density (and interaction has no zero energy resonances). The
three particle system is the limit for ε → 0 of a system of three particles that interact
through potentials that scale as V ε(|x |) = 1

ε2
V (

|x |
ε

). The Bose-Einstein gas is the
union of triples of particles which satisfy the cubic non linear equation; since there
are no zero energy resonances the equation is cubic but is not of Gross-Pitaevskii
type.

11 The Fermi Sea

Consider now the motion of the conduction electrons in a crystal. Conduction elec-
trons are spin 1

2 “particles”; the eigenfunctions satisfy the Pauli equation, a linear
equation with hamiltonian HP = iσ · ∇ + mI , where σk, k = 1, 2, 3, are the Pauli
matrices. Their motion is constrained due to the joint action of the three neighboring
nuclei. As a result the motion is restricted to a small neighborhood of a graph with
Y shaped vertices; this is verified by pictures obtained with an electron microscope
[5]. The restriction to a neighborhood of the vertex is due to the combined action of
the three nuclei, the restriction to a neighborhood of the edges is due to two atoms.
Estimates are in [37]. The potential at the vertex can be approximated formally by
a delta function (strong contact in one dimension). This approximation does not
change the spectrum since strong contact and interaction through a regular potential
lead to complementary and independent effects.

Since the equation is linear homogeneous one can use as coordinates the difference
of the coordinates of the particles. This replaces the equation with an equation in
which each of the three spinors has a strong contact with the other two.
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Notice that the fact that electrons have spin 1
2 is important since electrons satisfy

the Fermi-Dirac statistics and interaction is not possible for identical spin orientation.
Since spinors transform under rotations according to the SU (2) group, to describe a
pair of spinors it is sometimes convenient to use the Dirac formulation of the Pauli
equation; in this formulation the spinors have four components and the rotation group
is implemented by a unitary transformation. The Pauli equation becomes then the
Dirac equation. Since the observables are represented by bilinear forms we prefer to
make use of the Pauli equation.

The interaction is attractive (from the point of view of the nucleus we consider)
because after the interaction the electron is forced to move closer to the nucleus. We
are in the setting described previously but the Pauli hamiltonian HP is not positive
and its square root cannot be defined (and its inverse used to define the Krein map).

Recall that our procedure leaves invariant the free part of the hamiltonian and
modifies the “interaction potential” in such a way to obtain a self-adjoint operator for
the sum.We can define as free hamiltonian the positive part of the Pauli hamiltonian,

i.e. the Salpeter hamiltonian HS =
√

H 2
P (positive square root). We therefore define

the Krein map using the operator HS . The Krein map is again mixing and fractioning.
In M the kinetic energy of the three particle system is a (pseudo-)differential

operator of order 1
2 . The image of the delta potential is the convolution of V with

the resolvent of HS; in position space this term differs from −C
√

1
|x | , x ∈ R, by a

bounded positive operator. InM the hamiltonian is an almost homogeneous operator:
the degree of the differential operator is 1

2 and it is equal to the degree of singularity
of the negative potential at the origin. Therefore [14, 23] there are constantsC1 < C2

such that for C ≥ C1 in the sector of total angular momentum zero of M there is a
one-parameter family of self-adjoint operators (since the potential is invariant under
rotations and permutation invariant, only this sector is affected). For C ≥ C2 each
member of the family has an infinite number of (negative) bound states that are
asymptotically proportional to −√

n. The constants C1,C2 depend on the mass of
the particles and on the strength of the interaction. If themasses of the two particles in
strong contact are zero one has C2 = 0. C2 is an increasing function of these masses
and a decreasing function of the coupling constant. We assume that C ≥ C2. In our
case this is due to the fact that the electron has a small mass in units in which the delta
potential represents, in the semiclassical limit, Coulomb interaction of the electrons
with the nuclei. Therefore in M there is a one parameter family of self-adjoint
operators unbounded below and each with an infinite number of bound states. The
relation between the Pauli hamiltonian and the Salpeter hamiltonian (|HP | = HS)
indicates that the nth (negative) eigenvalue scales in M as

√
n.

Returning to physical space one has an ordered family of weakly closed forms
bounded below. Gamma convergence selects the infimum. This form can be closed
[18] and defines a self-adjoint operator bounded below; if C ≥ C2 it has an Efimov
spectrum.The eigenvalues scale as 1

log n , they have the asymptotic behavior cn
|x |

1
log2(n|x |)

and are therefore very extended along the edges. Gamma convergence implies strong
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resolvent convergence of the approximating hamiltonians with potentials that scale
when ε → 0 as V ε(|y|) = 1

ε2
V (

|y|
ε

).
Recall that electrons are identical spin 1

2 particles and satisfy the Pauli exclusion
principle (no more than two electrons can be in the same bound state). The occupied
states are theFermi sea.The energies of these bound state converge to zero as n → ∞
with a 1

log n law. Since the spectrum accumulates at zero, a very small electric field is
enough to “extract” the electrons (superconductivity). Due to the law of decay of the
energies these states “remain in phase” under time evolution. For very large values of
n the electrons have practically no binding energy and the have a “Dirac spectrum”.
Since the energy is then the absolute value of the momentum, the wave functions of
these states remain in phase under translation along the edges.

We have so far considered only one vertex of the graph and we have taken the
edges to be infinitely extended. Notice that while the interaction takes place at the
boundary, the eigenfunctions are extended along the edges. The periodic structure of
the crystal identifies two edges and requires a smooth connection along the edge. For
this is again important that for most of the electrons in the Fermi sea the energy has
practically the same value of the linear momentum and eigenfunctions of different
eigenstates remain in phase under translations along the edges.

For a periodic lattice we must take into account that spinors transform under
rotations according to the SU (2) group and in presence of a magnetic field there
may be a spin-orbit coupling. We must also consider that the electrons are Fermi
particles and their wave function is anti-symmetric, but the phase may change in a
complete loop around the border of a cell. This is the common explanation for the
presence of an index.

Recall now that the Fermi sea is the collection of occupied states. This is a discrete
set, but since the eigenvalues decrease with a c

log n law, if the crystal is large enough a
large number of states is occupied and “almost all” of them have negligible binding
energy. The Fermi sea (or Fermi band, i.e. an interval of energy with macroscopic
population) can be very densely populated and can appear as a continuum. If it is
added to the spectrum of the crystal of the nuclei the bands may overlap and the gaps
in the spectrum may become closed. The electrons at the surface of the Fermi sea
have practically no binding energy. This justifies the “Dirac-like” behavior of their
spectra.

Remark 10 If there is a relevant amount of impurities (or if crystal is random) more
levels are added, therefore there are more states that can be occupied (a Hilbert
hotel). If the density of impurities is sufficiently high the “highest” occupied state
has a finite negative energy. Therefore a small electric field is not sufficient to “extract
an electron” and the conductivity of the sample decreases sharply. At a semiclassical
level this is described by a negative potential that slows down or blocks diffusion.

In presence of a smooth magnetic field one has still a Fermi sea but the wave
functions are different. Diamagnetic inequalities imply that one has only a smooth
modification of the minimal form. If the field is very intense and concentrated on the
boundary one has a new hamiltonian as Gamma limit. We have seen that on coherent
states contact interaction is Coulomb interaction.
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If the magnetic field is smooth at this scale the motion of electrons on the surface
of the Fermi sea is seen as classical motion of particles which satisfy the laws of
classical electrodynamics [32]. At the semiclassical level in presence of very strong
electromagnetic fields the Fermi surface can have a non smooth structure and the
description of dynamics may require a refined analysis [32]. Also in one dimension
the semiclassical limit of the dynamics on the surface of the Fermi sea is the classical
motion on the surface of the Fermi sea studied in detail by Novikov andMaltsev [30,
32] (see also [38]).

12 The Nelson Polaron

The Nelson polaron is the ground state of the system of one particle interacting with
a second-quantized zero-mass field. Second quantization can be thought as Weyl
quantization for a system with an infinite number of particles. Lebesgue measure is
substituted by a measure on function space (Gauss measure in the Bose case). Very
roughly speaking in second quantization a wave function f is substituted with a
scalar fieldΨ ( f ) = a( f ) + a∗( f̄ )where a( f ) (resp. a∗( f̄ )) destroys (resp. creates)
a particle with wave function f ∈ L2(R3). Both terms are linear in f .

In the Bose case the field satisfies the (non relativistic) commutation relations
[Ψ ( f̄ ), Ψ (g)] = ( f, g). One defines the Fock representation by postulating the exis-
tence of a vector � (the “vacuum”) such that a( f )� = 0 for all f in the Hilbert
space. Fock space is the space generated by repeated action of the a∗( f ) on � (this
justifies the name “creation operators”)

A problem in the quantum theory of interacting quantum fields with coupling
contact g is to find an irreducible representation (not necessary Fock) in which the
interaction is realized by operator-valued distribution. We shall use the formalism of
secondquantization anddenote bya(k) (resp.a∗(k)) the annichilation (resp. creation)
of a zero mass particle “of momentum k” (we omit the more precise definition).

In the following we shall consider the strong contact interaction of a particle of
mass m with a non relativistic field of zero mass particles in the second quantization
formulation for the field. This system is called polaronic and the ground state is the
polaron [31] . One must pay attention to the fact that for zero mass particles there
are infinitely inequivalent representations of the canonical commutation relations.
A vector of finite energy in the Hilbert space may contain an infinity of zero mass
particles with smaller and smaller momentum (this is known as infrared problem).

We denote by Ĥ the limit hamiltonian. It describes the contact interaction of the
massive particle with the two mass zero particles. The ground state of the system is
called polaron. To find the structure of the polaron we will “partially dequantize” the
field by choosing properly the state of two of the zeromass particles (and therefore the
representation of the canonical commutation relations since the zero mass particles
are identical).

Let Φ(x) be the ground state of the system (a particle of mass m at the point x
in separate weak contact with two zero mass particles). To find the structure of the
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ground state of the entire system we fiber the second quantization space of the zero
mass particles choosing as parameter the position of the particle of mass m. We
choose the representation by defining annihilation operators

Ax (y) = a(y) − Φ(x)

For each value of x the (distribution valued) operators Ax (y) satisfies the same
canonical commutation relations as the operators a(y) but the two representations
are inequivalent. Different values of the position of the particle of massm correspond
to a different “infrared behaviors” of themass zero field. If onewrites theHamiltonian
as a function of the field A(y) one obtains

H = Ĥ +
∫

ω(p)A∗
x (p)Ax (p)dp ,

where Ĥ is the hamiltonian that describes the contact interaction of the massive
particle with two identical zero mass particles. In the Theoretical Physics literature
this operation goes under the name of “completing the square” and the particle of
positive mass is now “dressed” with the a particles. To minimize this, one has to
choose for every x the vacuum and therefore the Fock representation for Ax (y).
Therefore, the a particles are described in an x-dependent representation defined by

ax (y) = A(y) + Φ(x) ,

where the A(p) is in the Fock representation.
There is no coupling. The ground state of the system has a cloud of mass zero a-
particles. The cloud depends on the coordinate of the heavy particle [24, 31]. This
is known as the infrared problem.

Remark 11 We remark that the use of perturbation theory in this context leads
to serious problems. One can approximate the interaction by using the two-body
potential V ε = 1

ε3
V (

|xi−x |
ε

) where V ∈ C1:

H ε = H0 +
∫

V ε(x − y1)Ψ (y1)dy1 +
∫

V ε(x − y2)Ψ (y2)dy2,

H0 = − 1

2m
�x +

∫

ω(p)a∗(p)a(p)dp,

where ω(p) = |p|2 and the a(k) satisfy the canonical commutation relations.
Again the interaction is linear, one can select the representation in which the

ground state is a product state. But the representation of the canonical commutation
relations chosen depends on ε and convergence must be understood in a very weak
sense.
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On the Hamiltonian for Three Bosons
with Point Interactions

Rodolfo Figari and Alessandro Teta

Abstract We briefly summarize the most relevant steps in the search of rigorous
results about the properties of quantum systems made of three bosons interacting
with zero-range forces. We also describe recent attempts to solve the unbounded-
ness problem of point-interaction Hamiltonians for a three-boson system, keeping
unaltered the spectrum structure at low energies.

Keywords Point interactions · Three-body problem

1 Introduction

In the unbounded scientific production of Sergio Albeverio the unboundedness of
the zero-range Hamiltonians for three bosons and the Efimov effect play a very
special role. First of all, as he pointed out in [2], because of the connection of the
unboundedness problemwith the existence of a non-trivial self-interacting relativistic
quantum field theory, which was one of the main interest of his early scientific career.
On the other hand, the peculiar structure of the spectrum at low negative energies of
such Hamiltonians (suggesting the existence of the so called Efimov trimers) was for
him a challenge to analize rigorously the peculiar discrete scaling of the eigenvalues
of zero-range multi-particle Hamiltonians. The physics and mathematical-physics
literature on the three-boson quantum system and the Efimov effect is nowadays
so extensive that we cannot claim that the reader will find in this contribution a
thorough summary of the subject and a comprehensive list of references. We will try
first to describe the different attempts made to solve the unboundedness problem in a
rigorous way and we will mention some clever suggestions about the solution of the
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problem which were never followed up with final results. On the basis of those
suggestions, we tried recently to define zero-range Hamiltonians for the system
of three bosons either breaking the rotational symmetry or adding three-particle
contributions. We outline here methodology and results of this work-in-progress,
examining in particular the effect of the three-particle interaction, suggested in the
past by Minlos, Faddeev, Albeverio, Høegh-Krohn and Wu, on the spectral structure
of the Hamiltonians.

Regarding attempts relying on rotational symmetry breaking, see Basti et al. [9].
We want first to give an outline of how the quantum three-body problem appeared

in the physical literature.

2 The Thomas Paper

In 1935, on G.E. Uhlenbeck’s suggestion, L. H. Thomas investigated the interaction
between a neutron and a proton in order to analize the structure of Tritium nucleus
[40]. He made the assumption of negligible interaction between the two neutrons
and examined how short the neutron-proton interaction could be. He proved that
the energy of the system was not bounded below for shorter and shorter interaction
range. His conclusions are clearly stated in the abstract of the paper: “... We conclude
that: either two neutrons repel one another by an amount not negligible compared
with the attraction between a neutron and a proton; or that the wave function cannot
be symmetrical in their positions; or else that the interaction between a neutron and a
proton is not confinedwithin a relative distance very small comparedwith 10−13 cm”.

Notice that few years later the connection between spin and statistics was finally
clarified. It then became clear that the wave function of the two neutrons could
not be symmetrical under the exchange of their positions. Nevertheless, Thomas
result indicated that zero-range interactions,while perfectly defined for a two-particle
system, allowing a finite energy for the ground state, seem to give Hamiltonians
unbounded from below in the three-boson case. Since then, this effect of “falling to
the center” of the quantum three-body system with zero-range interactions is known
as Thomas effect (or Thomas collapse).

In the paper, Thomas studied, in the center ofmass reference frame, the eigenvalue
problem for the free Hamiltonian outside a small region around the origin, where the
three particles occupy the same position. He found that for negative energy values
it was possible to exhibit a square integrable solution showing singularities on the
planes where the two neutron positions coincide. The solution was successively used
as a test function to show that the energy of the ground state of the system was
unbounded from below if the range of the interaction (a sum of two-body potentials
or a singular boundary condition) was made shorter and shorter.

In particular, let x1, x2 the position of the neutrons and x3 the position of the
proton. In the center of mass reference frame let si = xi − x3 for i = 1, 2 be the
relative coordinates of the neutrons with respect to the proton. The free Hamiltonian
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eigenvalue equation then reads

−
(

�

4π2m

)
(Δs1 + Δs2 + �s1 · �s2)Ψ (s1, s2) + μ2Ψ (s1, s2) = 0 μ > 0. (1)

Thomas found that a singular solution of (1) is given by

Ψ (s1, s2) = 1

s2
K0(ηs)

[ π
2 − arctan ξ1

ξ1(1 + ξ 2
1 )

+
π
2 − arctan ξ2

ξ2(1 + ξ 2
2 )

]
(2)

where

s2 = |s1|2 + |s2|2 − s1 · s2; ξ1 = |s1|
|s1 − 2s2| ; ξ2 = |s2|

|s2 − 2s1| , (3)

K0(x) is the zero-th Macdonald function of integer order (see, e.g. [21]) and η =(
4π2m

�

)1/2

μ.

We list few important features of the solution.
The behaviour of the solution close to the coincidence plane {s1 = 0}when |s2| >

0 is

Ψ (s1, s2) ≈ 1

|s1|
(

π√
3

1

|s2|K0(η|s2|)
)

. (4)

Symmetrically, when |s1| ∼= 0 e |s2| > 0

Ψ (s1, s2) ≈ 1

|s2|
(

π√
3

1

|s1|K0(η|s1|)
)

. (5)

Moreover, the following scale transformation send eigenvectors in eigenvectors
with different μ

Ψλ(s1, s2) ≡ λ3Ψ (λs1, λs2) = λ

s2
K0(ληs)

[ π
2 − arctan ξ1

ξ1(1 + ξ 2
1 )

+
π
2 − arctan ξ2

ξ2(1 + ξ 2
2 )

]
(6)

with λ > 0 and ‖Ψλ‖2 = ‖Ψ ‖2.
Notice that the singularity shown by the solution close to the coincidence planes

are the same of the potential of a density charge distributed on the planes. As we
will see this behaviour is typical of the functions in the domain of the zero-range
interaction Hamiltonians suggested by Ter-Martirosian and Skorniakov [39] and
Danilov [17] many years after the work of L. H. Thomas.
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3 Zero-Range Interaction Hamiltonians

It is well known that for system of quantum particles in R
3 at low temperature one

has that the thermal wavelength

λ = h

p
� �

√
2π

mkBT

is much larger than the range of the two-body interaction. Under these conditions the
system exhibits a universal behavior, i.e., relevant observables do not depend on the
details of the two-body interaction, but only on a single physical parameter known
as the scattering length

a := lim
|k|→0

f (k,k′)

where f (k,k′) is the scattering amplitude of the two-body scattering process. In
this regime it is natural to expect that the qualitative behavior of the system of
particles in R

3 is well described by the (formal) effective Hamiltonian with zero-
range interactions

“H = −
∑
i

1

2mi
Δxi +

∑
i< j

ai jδ(xi − x j ) ” (7)

where mi is the mass of the i-th particle and ai j is the scattering length associated to
the scattering process between the particles i and j . Hamiltonians of the type (7) are
widely used in the physical literature to investigate, e.g., the behaviour of ultra-cold
gases (see, e.g. [10–13, 26, 37, 42, 43]).

From the mathematical point of view the first step is to give a rigorous meaning to
(7).We define theHamiltonian for the systemof n particleswith two-body zero-range
interactions as a non trivial self-adjoint (s.a.) extension in L2(R3n) of the operator

−
∑
i

1

2mi
Δxi (8)

defined on H 2-functions vanishing on each hyperplane {xi = x j }.
The complete characterization of such Hamiltonians can be obtained in the simple

case n = 2. Indeed, in the center ofmass reference frame, denotingwith x the relative
coordinate, one has to consider the operator in L2(R3)

h̃0 = − 1

2m12
Δx, m12 = m1m2

m1 + m2
(9)

defined on H 2-functions vanishing at the origin. Such operator has defect indices
(1, 1) and the one-parameter family of s.a. extensions hα , α ∈ R, can be explicitly
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constructed. Roughly speaking, hα acts as the free Hamiltonian outside the origin
and ψ ∈ D(hα) satisfies the (singular) boundary condition at the origin

ψ(x) = q

|x| + α q + o(1) for |x | → 0 (10)

where q is a constant depending on ψ and α = a−1. Moreover, the resolvent (hα −
z)−1, z ∈ C \ R, can be explicitly computed and all the spectral properties of hα

characterized (see [1, 5]).
For systems of n particles, with n > 2, the construction is much more difficult

because of the presence of infinite dimensional defect spaces (see, e.g. [3, 4, 7–
9, 14–16, 18, 20, 22, 24, 25, 27–36, 41]). To simplify notation, we describe the
problem, and some previous attempts to solve it, in the case of three identical bosons
with masses 1/2, in the center of mass reference frame.

Let x1, x2 and x3 = −x1 − x2 be the cartesian coordinates of the particles. Let us
introduce the Jacobi coordinates

x = x2 − x3, y = 1

2
(x2 + x3) − x1 (11)

with inverse given by x1 = − 2
3y, x2 = 1

2x + 1
3y, x3 = − 1

2x + 1
3y. Due to the

symmetry constraint, the Hilbert space of states is

L2
s (R

6)=
{
ψ ∈ L2(R6) s.t. ψ(x, y) = ψ(−x, y) = ψ

(1
2
x + y,

3

4
x − 1

2
y
)}

(12)

and the formal Hamiltonian reads

“H = −Δx − 3

4
Δy + aδ(x) + aδ(y − x/2) + aδ(y + x/2) ”, (13)

i.e., H is a perturbation of the free dynamics inR
6 supported by the three-dimensional

hyperplanes
Σ = {x = 0} ∪ {y − x/2 = 0} ∪ {y + x/2 = 0}. (14)

According to our mathematical definition, a s.a. Hamiltonian in L2
s (R

6) correspond-
ing to the formal operator H is a non trivial s.a. extension of the operator

H̃0 = −Δx − 3

4
Δy, D(H̃0) =

{
ψ ∈ L2

s (R
6) s.t. ψ ∈ H 2(R6), ψ

∣∣
Σ

= 0
}
. (15)

Aswe alreadymentioned the defect indices are now infinite and the problem arises
of how to choose and characterize a class of s.a. extensions with the right physical
properties.

An apparently reasonable choice based on the analogy with the case n = 2 is due
to Ter-Martirosian and Skorniakov [39]. Indeed, they defined an operator Hα acting
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as the free Hamiltonian outside the hyperplanes and satisfying a boundary condition
at the hyperplanes. Specifically, they impose

ψ(x, y) = ξ(y)
|x| + α ξ(y) + o(1), for |x| → 0 and y = 0 (16)

where ξ is a function depending on ψ . Due to the bosonic symmetry, the same
conditions for |y − x/2| → 0 and |y + x/2| → 0 have to be satisfied.

We note that the first term in the right-hand side of (16) coincides with the first
term of the asymptotic expansion of the potential produced by the charge density ξ

distributed on {x = 0}. Therefore, an equivalent way to describe a wave function ψ

in the domain of Hα is the following. Any ψ ∈ D(Hα) can be decomposed as

ψ = wλ + Gλξ, wλ ∈ H 2(R6) (17)

where λ > 0 and

Ĝλξ(k,p) =
√

2

π

ξ̂(p) + ξ̂ (k − 1
2p) + ξ̂ (−k − 1

2p)

|k|2 + 3
4 |p|2 + λ

. (18)

Note that the function Gλξ(x, y) has the asymptotic behaviour

Gλξ(x, y) =ξ(y)
|x| − 1

(2π)3/2

∫
dp eip·y(T λξ̂

)
(p) + o(1) (19)

for |x| → 0 and y = 0, where

(
T λξ̂

)
(p) :=

√
3

4
|p|2+λ ξ̂(p) − 1

π2

∫
dp′ ξ̂ (p′)

|p|2 + |p′|2 + p · p′ + λ
. (20)

We will refer to the first and second term in (20) respectively as the diagonal and
the non-diagonal part of T λ.

Therefore the boundary condition (16) is now rewritten as

α ξ̂(p) + (
T ξ̂

)
(p) = (wλ

∣∣
x=0)

∧(p). (21)

There is an ambiguity in the above definition since the domain of the symmetric
and unbounded operator T λ in L2(R3) is not specified. As a first attempt one can
choose

D(T λ) = {ξ̂ ∈ L2(R3) |
∫
dk |k|2|ξ̂ (k)|2 < ∞} ≡ {ξ̂ | ξ ∈ H 1(R3)}. (22)

Note that for ξ̂ ∈ D(T λ) both terms in the r.h.s. of (20) belong to L2(R3) (see,
e.g. [22]).
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As a matter of fact, the operator Hα defined in this way is symmetric but not s.a.
and it turns out that its s.a. extensions are all unbounded from below. This fact, first
noted by Danilov [17], was rigorously analyzed by Minlos and Faddeev in [33, 34].

4 Minlos and Faddeev Contributions

In the first of their seminal contributions (see [33]) Minlos and Faddeev consider
a system of three bosons and approach the general mathematical problem to give a
meaning to the formalHamiltonianwith zero-range interactions.Working inmomen-
tum space and using the theory of s.a. extensions of semibounded operators developed
by Birman [38], they obtain the abstract characterization of all the s.a. extensions of
the operator (15).

Then they observe that the s.a. extensions of the operator Hα in L2
s (R

6) introduced
by Ter-Martirosian and Skornyakov are in one-to-one correspondence with the s.a.
extensions of the operator T λ in L2(R3). Such operator T λ defined on D(T λ) has
defect indices (1, 1) and they find that a s.a. extension T λ

β , β ∈ R, of T λ is defined
on

D(T λ
β ) =

{
ξ̂ ∈ L2(R3) | ξ̂ = ξ̂1 + ξ̂2, ξ̂1 ∈ D(T λ),

ξ̂2(k) = c

|k|2 + 1

(
β sin

(
s0 log |k|) + cos

(
s0 log |k|))}

(23)

where c is an arbitrary constant and s0 is the positive solution of the equation

1 − 8√
3

sinh πs
6

s cosh πs
2

= 0. (24)

One can observe that both the diagonal and the non diagonal parts of T λ diverge
on functions with the asymptotic behaviour of ξ̂2 in (23) for |k| → ∞, but their sum
remains finite.

Given the s.a. operator T λ
β , D(T λ

β ), one obtains the s.a. extension Hα,β (also called
Ter-Martirosian, Skornyakov Hamiltonian) of Hα

D(Hα,β) =
{
ψ ∈ L2

s (R
6) | ψ = wλ + Gλξ, wλ ∈ H 2(R6), ξ̂ ∈ D(T λ

β ),

α ξ̂ (p) + (
T λξ̂

)
(p) = (wλ

∣∣
x=0)

∧(p)
}
, (25)

(Hα,β + λ)ψ = (H0 + λ)wλ, (26)

where

H0 = −Δx − 3

4
Δy, D(H0) = H 2(R6). (27)
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Roughly speaking, β parametrizes a further boundary condition satisfied at the
triple coincidence point x1 = x2 = x3 = 0. Therefore, it can be considered as the
strength of a sort of an additional three-body force acting on the particles when all
their positions coincide.

The authors conclude claiming that some further results on the spectrum of the
Hamiltonian Hα,β hold. In particular, they affirm that Hα,β has the unphysical insta-
bility property already noted by Danilov, i.e., that there exists an infinite sequence
of negative eigenvalues

En → −∞, as n → ∞.

The rigorous proof of this fact is contained in their second paper on the subject and
it will be described below.

At the end of the paper one finds an interesting remark on the possibility to define
a modified Hamiltonian satisfying the stability property, i.e., bounded from below.
The authors say: “We note that this last result (i.e., the instability property) somewhat
discredits our chosen extension, since probably only semibounded energy operators
are of interest in nonrelativistic quantum mechanics. It seems to us that there must
exist among the other extensions of the operator H̃0 semibounded extensions which
have all the properties of the model of Ter-Martirosian and Skornyakov that are good
from the physical point of view, namely the properties of locality and of the correct
character of the continuous spectrum. The authors therefore indicate a strategy to
solve the instability problem, i.e., they suggest to replace the constant α in (21) (or
equivalently in (16)) with the operator αM in the Fourier space defined by

(αM ξ̂ )(p) = αξ̂(p) + (K ξ̂ )(p) (28)

where α ∈ R and K is a convolution operator with a kernel K (p − p′) having the
asymptotic behavior

K (p) ∼ γ

|p|2 , for |p| → ∞ (29)

with the constant γ satisfying

γ >
1

π3

( 4π

3
√
3

− 1
)
. (30)

Unfortunately, they conclude: “A detailed development of this point of view is
not presented here because of lack of space.”

We believe that such suggestion is interesting and we find it rather strange that
the idea has never been developed in the literature. We also observe that it is not
so evident that the replacement of the constant α with the operator αM defined in
(28)–(30) produces a semibounded Hamiltonian and, moreover, it is not clear the
physical meaning of such replacement. We shall come back to this point in the next
section.
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Here we continue the analysis of the contribution of Minlos and Faddeev dis-
cussing the content of their second paper on the subject [34], where the authors show
that the Hamiltonian Hα,β has an infinite number of eigenvalues accumulating both
at zero and at−∞. We give here a slightly different, and more elementary, proof than
the one given in [34]. To simplify the notation, we consider only the case α = 0. We
recall that α = 0 corresponds to a two-body interaction with zero-energy resonance
(see, e.g. [5]).

Taking into account definitions (25) and (26), an eigenvector of H0,β associated
to the negative eigenvalue E = −μ, μ > 0, has the form Gμξ , where ξ̂ ∈ D(Tβ) is
a solution of the equation

√
3

4
|p|2+μ ξ̂(p) − 1

π2

∫
dp′ ξ̂ (p′)

|p|2 + |p′|2 + p · p′ + μ
= 0. (31)

We shall compute the rotationally invariant solutions ξ̂ = ξ̂ (|p|) of (31). Perform-
ing the angular integration in the second term of (31), one obtains the equation

√
3

4
p2+μ p ξ̂ (p) − 2

π

∞∫
0

dp′ p′ξ̂ (p′) log
p2 + p′2 + pp′ + μ

p2 + p′2 − pp′ + μ
= 0. (32)

Let us introduce a change of the independent variable

p = 2
√

μ√
3

sinh x, x = log

⎛
⎝

√
3p

2
√

μ
+

√
3p2

4μ
+ 1

⎞
⎠ (33)

and define

θ(x) =
{

μ sinh x cosh x ξ̂
(
2
√

μ√
3
sinh x

)
for x ≥ 0

−θ(−x) for x < 0
(34)

so that

ξ̂ (p) = 2√
3

θ
[
log

(√
3p

2
√

μ
+

√
3p2

4μ + 1
)]

p
√

3
4 p

4 + μ

. (35)

The first term in (32) in the new coordinates is

√
3

4
p2+μ p ξ̂ (p) =

√
μ sinh2x + μ

2
√

μ√
3

sinh x ξ̂

(
2
√

μ√
3

sinh x

)

= 2√
3

θ(x). (36)
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The other term in (32) in the new coordinates reads

− 2

π

∞∫
0

dp′ p′ξ̂ (p′) log
p2 + p′2 + pp′ + μ

p2 + p′2 − pp′ + μ

= − 8

3π

∞∫
0

dy θ(y) log
sinh2 x + sinh2 y + sinh x sinh y + 3/4

sinh2 x + sinh2 y − sinh x sinh y + 3/4

= − 8

3π

∞∫
0

dy θ(y) log
(2 cosh(x + y) − 1) (2 cosh(x − y) + 1)

(2 cosh(x + y) + 1) (2 cosh(x − y) − 1)

= − 8

3π

+∞∫
−∞

dy θ(y) log
2 cosh(x − y) + 1

2 cosh(x − y) − 1
(37)

where in the last line we have used the extension θ(x) = −θ(−x) for x < 0. There-
fore, equation (32) for ξ̂ (p) is transformed into the following convolution equation
for θ(x)

θ(x) − 4√
3π

+∞∫
−∞

dy θ(y) log
2 cosh(x − y) + 1

2 cosh(x − y) − 1
= 0. (38)

Finally, we compute the Fourier transform (see [21], p. 36) and we arrive at the
equation for θ̂ (

1 − 8√
3

sinh π
6 s

s cosh π
2 s

)
θ̂ (s) = 0. (39)

Denote by g(s) the function in parenthesis in (39). It is easy to see that g is
even, monotone increasing for s > 0 and g(s) → 1 for s → +∞. Moreover, g(0) =
1 − 4π

3
√
3

< 0 and we conclude that the equation g(s) = 0 has two solutions s = ±s0,

with s0 > 0. Since θ̂ is an odd function, the solution of (39) reads

θ̂ (s) = δ(s − s0) − δ(s + s0) (40)

apart from a multiplicative constant and therefore

θ(x) = sin s0x . (41)

From (35) we obtain the solution of equation (32) for any μ > 0

ξ̂μ(p) =
sin

[
s0 log

(√
3p

2
√

μ
+ 1√

μ

√
3
4 p

2 + μ
)]

p
√

3
4 p

2 + μ

. (42)
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We note that the solution (42) belongs to L2(R3) but it does not belong to D(T λ)

because of the behavior O(p−2) for p → ∞. On the other hand we can find suitable
values of μ such that the solution belongs to D(T λ

β ).

Indeed, denoting ε = 4μ
3 p−2, we have

ξ̂μ(p) =
sin

{
s0

[
log

√
3p√
μ

+ log
(
1 + ε/2

1+√
1+ε

)]}
p2

√
1 + ε

=
sin

(
s0 log p + s0

2 log 3
μ

)
p2

√
1 + ε

+ η1(p)

= cos

(
s0
2
log

3

μ

)
sin (s0 log p)

p2 + 1
+ sin

(
s0
2
log

3

μ

)
cos (s0 log p)

p2 + 1
+ η2(p)

(43)

where η1, η2 ∈ D(T λ). According to (23), in order to have ξ̂μ ∈ D(T λ
β ) we impose

the condition

cos

(
s0
2
log

3

μ

)
= β sin

(
s0
2
log

3

μ

)
. (44)

Condition (44) is satisfied if and only if μ is equal to

μn = 3 e− 2
s0

cot−1 β e
2π
s0
n
, n ∈ Z. (45)

Thus we obtain an infinite sequence of negative eigenvalues

En = −μn, n ∈ Z (46)

with corresponding eigenvectors Gμnξμn , where ξ̂μn is given by (42).
We stress that the model Hamiltonian H0,β exhibits the Efimov effect, i.e., there

exists an infinite sequence of eigenvalues En → 0 for n → −∞ satisfying the (exact)
geometrical law

En

En+1
= e− 2π

s0 . (47)

On the other hand, one also has En → −∞ for n → +∞, corresponding to the
instability property known as Thomas effect.

5 Regularized Zero-Range Interactions

In this section we propose a model Hamiltonian for three bosons with zero-range
interactions regularized around the triple coincidence point x1 = x2 = x3 = 0 in
such a way to avoid the Thomas effect, i.e., with a spectrum bounded from below.
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We follow the proposal contained in [4] which, in turn, essentially coincides with
the already mentioned suggestion discussed at the end of [33].

In the first part of [4] the authors announce an interesting mathematical result on
the Efimov effect. They consider a three-particle system with Hamiltonian H , with
two-body, spherically symmetric, short range potentials such that at least two of the
two-body subsystems have zero-energy resonances (i.e. infinite scattering length).
They claim that H has infinitely many spherically symmetric bound states with
energy En → 0 such that

lim
n→∞

En

En+1
= e− 2π

Σ (48)

where σ > 0 depends only on the mass ratios (and coincides with s0 in (47) in the
case of three identical bosons). The result should follow “from a detailed study of
the asymptotic behavior of the action of the scaling group in the spaces of two and
three-body Hamiltonians restricted to functions invariant under the natural action of
SO(3)”, where the scaling group is given by

H → Hε = 1

ε2
UεHU−1

ε , (Uεψ)(x) = 1

ε3/2
ψ

(x
ε

)
, ε > 0. (49)

Roughly speaking, for ε → 0 the rescaled Hamiltonian should converge to the
zero-range model H0,β . Since for H0,β the Efimov effect, together with the property
En
En+1

= e−2π/σ , is explicitly verified, one should infer the result for H . Unfortunately,
this program has not been realized and it remains as a challenging open problem.

In the last part of the paper the authors add an interesting remark for our aim
concerning the construction of a reasonable three-body Hamiltonian with zero-range
interactions which is bounded from below.

Indeed, they claim that one can consider a Hamiltonian with zero-range interac-
tions where the zero-range force between two particles depends on the position of
the third one. If such three-body force is suitably chosen then the Hamiltonian is
bounded from below.

The proposed recipe can be rephrased in the following way: in the boundary
condition (16) one replaces the constant α with a position-dependent term

αA(y) = α + δ

|y| , α, δ ∈ R. (50)

In the case of equal masses, they affirm that for

δ >
2

π2

( 4π

3
√
3

− 1
)

(51)

the corresponding zero-range Hamiltonian is bounded from below. Also the proof of
this statement is postponed to a forthcoming paper which has never been published.
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Let us briefly comment on the above proposal. The replacement of the constant
α with a function α(y), with α(y) → ∞ for |y| → 0, has a reasonable physical
meaning. It means that when the positions of the three particles coincide, i.e., for
x = y = 0, the two-body interactions are switched off (α = ∞means no interaction).
In this way one compensates the tendency of the three interacting particles to “fall
in the center”. On the other hand, the specific choice of the function αA(y) is not
explained in the paper but one can imagine that such a function allows some explicit
computations (as in the case of the choice (29) of the operator K in [33]).

It is also natural to compare the two proposals contained in [4, 33]. It is immediate
to realize that the twoproposals essentially coincide in the sense that one is the Fourier
transform of the other, i.e.,

(αAξ)∧(p) = (αM ξ̂ )(p), if δ = 2π2γ. (52)

It is also important to stress that only the asymptotic behavior of K (p) for |p| → ∞
(see (29)) is relevant to obtain a lower bounded Hamiltonian, as it is correctly pointed
out in [33]. Correspondingly, it must be sufficient to require only the asymptotic
behavior δ|y|−1 + O(1) for |y| → 0 for the position-dependent strength of the inter-
action.

In conclusion, following the (common) idea proposed in [4, 33], we introduce the
Hamiltonian Hα̃ characterized by the boundary condition

ψ(x, y) = ξ(y)
|x| + α̃(|y|) ξ(y) + o(1), for |x| → 0 and y = 0 (53)

where

α̃ : R+ → R, α̃(r) = α + δ

r
χ�(r) (54)

with

α ∈ R, δ > 0, � > 0, χ�(r) =
{
1 r ≤ �

0 r > �.
(55)

More precisely, we define the Hamiltonian as follows

D(Hα̃) =
{
ψ ∈ L2

s (R
6) | ψ = wλ + Gλξ, wλ ∈ H 2(R6), ξ ∈ H 1(R3),

(α̃ ξ)∧(p) + (
T λξ̂

)
(p) = (

wλ
∣∣
x=0

)∧
(p)

}
, (56)

(Hα̃ + λ)ψ = (H0 + λ)wλ. (57)

In [6] we proved the following result.

Proposition 1 Let δ > δ0, where
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δ0 =
√
3

π

(
4π

3
√
3

− 1

)
. (58)

Then for any � ∈ (0,+∞] and α ∈ R the operator (56) and (57) is s.a. and
bounded from below.

The result shows that it is sufficient to add a three-body force with an arbitrary
small (but different from zero) range to avoid the collapse. We stress that it would be
interesting to prove that boundedness from below is preserved taking “some suitable
limit � → 0”.

The proof is based on the analysis of the quadratic form associated to Hα̃ . Taking
into account of (56) and (57), by an explicit computation forψ ∈ D(Hα̃) one obtains

(ψ, (Hα̃ + λ)ψ) = (ψ, (H0 + λ)wλ)=(wλ, (H0 + λ)wλ)+(Gλξ, (H0 + λ)wλ)

= (wλ, (H0 + λ)wλ) + 12π
[
(ξ, α̃ ξ) + (ξ̂ , T λξ̂ )

]
. (59)

Hence we define the quadratic form

Fα̃(ψ) = (wλ, (H0 + λ)wλ) − λ‖ψ‖2 + 12π �λ
α̃(ξ) (60)

where

�λ
α̃(ξ) =

∫
dy α̃(|y|)|ξ(y)|2 +

∫
dp ξ̂ (p)(T λξ̂ )(p) (61)

and

D(Fα̃) =
{
ψ ∈ L2

s (R
6) | ψ = wλ + Gλξ, wλ ∈ H 1(R6), ξ̂ ∈ H 1/2(R3)

}
. (62)

The proof proceeds taking such a quadratic form as starting point and proving
that it is closed and bounded from below. Therefore it uniquely defines a s.a. and
bounded from below operator which coincides with (56) and (57).

6 On the Negative Eigenvalues

In this section we consider the eigenvalue problem for Hα̃ in the special case

α = 0, � = +∞. (63)

As we already noticed in the case of the TMS Hamiltonian, an eigenvector
associated to the negative eigenvalue E = −μ, μ > 0, has the form Gμξ , where
ξ ∈ H 1(R3) is a solution of the equation
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δ

2π2

∫
dp′ ξ̂ (p′)

|p − p′|2 +
√
3

4
|p|2+μ ξ̂(p) − 1

π2

∫
dp′ ξ̂ (p′)

|p|2 + |p′|2 + p · p′ + μ
= 0.

(64)
where the first term in (64) is the Fourier transform of δ|y|−1ξ(y).

Proceeding as in Sect. 2, we consider the rotationally invariant case ξ̂ = ξ̂ (|p|).
Performing the angular integration one obtains the equation

δ

π

∞∫
0

dp′ p′ξ̂ (p′) log
p + p′

|p − p′| +
√
3

4
p2+μ p ξ̂ (p)

− 2

π

∞∫
0

dp′ p′ξ̂ (p′) log
p2 + p′2 + pp′ + μ

p2 + p′2 − pp′ + μ
= 0. (65)

In the following we prove that for δ > δ0 there are no solutions of (65) and
therefore the Hamiltonian has no negative eigenvalues corresponding to rotationally
invariant solutions of (64). The main point of the proof is that the l.h.s. of (65) can
be diagonalized by the same change of coordinates used in section 2 for the TMS
Hamiltonian.

Proposition 1 Let δ > δ0. Then equation (65) has only the trivial solution.

Proof Using (33) and (34), for the first term in (65) we have

δ

π

∞∫
0

dp′ p′ξ̂ (p′) log
p + p′

|p − p′| = 4δ

3π

∞∫
0

dy θ(y) log

∣∣∣∣ sinh x + sinh y

sinh x − sinh y

∣∣∣∣

= 4δ

3π

∞∫
0

dy θ(y) log

∣∣∣∣∣
sinh x+y

2 cosh x−y
2

cosh x+y
2 sinh x−y

2

∣∣∣∣∣

= 4δ

3π

∞∫
0

dy θ(y) log

∣∣∣∣∣
cosh x−y

2

sinh x−y
2

∣∣∣∣∣ + 4δ

3π

∞∫
0

dy θ(y) log

∣∣∣∣∣
sinh x+y

2

cosh x+y
2

∣∣∣∣∣

= 4δ

3π

+∞∫
−∞

dy θ(y) log

∣∣∣∣coth x − y

2

∣∣∣∣ (66)

where in the last line we have used the extension θ(x) = −θ(−x) for x < 0. Hence,
by (36), (37) and (66), in the new variables equation (65) reads
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θ(x) + 2δ√
3π

+∞∫
−∞

dy θ(y) log

∣∣∣∣coth x − y

2

∣∣∣∣

− 4√
3π

+∞∫
−∞

dy θ(y) log
2 cosh(x − y) + 1

2 cosh(x − y) − 1
= 0. (67)

We note that

1√
2π

∫
dx e−isx log

∣∣∣coth x

2

∣∣∣ =
√

2

π

∞∫
0

dx cos sx log
(
coth

x

2

)

=
√

2

π

∞∫
0

dx cos sx log
(
1 + e−x

) −
√

2

π

∞∫
0

dx cos sx log
(
1 − e−x

)
. (68)

Thenwe use ([23], p. 582), and (39) to write the equation for the Fourier transform
of θ (

1 + 2
δ sinh π

2 s − 4 sinh π
6 s√

3 s cosh π
2 s

)
θ̂ (s) = 0. (69)

It remains to show that the function in parenthesis in (69) is strictly positive for
δ > δ0. Note that the function is even and then we can consider s ≥ 0. For δ > δ0 it
is positive in s = 0. Moreover, if we denote

F(s) = √
3 s cosh

π

2
s + 2δ sinh

π

2
s − 8 sinh

π

6
s, (70)

for δ > δ0 we have

F ′(s) = (
√
3 + πδ) cosh

π

2
s +

√
3π

2
s sinh

π

2
s − 4π

3
cosh

π

6
s

> (
√
3 + πδ0) cosh

π

2
s − 4π

3
cosh

π

6
s

≥
(√

3 + πδ0 − 4π

3

)
cosh

π

6
s = 0 (71)

so that F(s) > 0 for any s. It follows that equation (69), and then equation (65), has
only the trivial solution and this conclude the proof of the proposition. �
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7 Acknowledgements by Way of Conclusion

We have many reasons for being grateful to Sergio Albeverio, mainly for his lasting
friendship and for all the affection and help he has been giving us for so many years.
Among all these good reasons, one concerns the support he provided to our scientific
activity.

As it is very well known, he was one of the main players in the scientific project
aimed to explicitly construct models in relativistic quantum field theory describing
interacting bosons, a project that never reached a final result in four dimensional
space-time. The formal non-relativistic limits of the relativistic models under study
in constructive quantum field theory (see [19] for the only rigorous result in the
investigation of such limits) describe particles in three dimensions interacting via
zero-range forces. This was the reason why, together with many other scientific
interests, he got involved in the theory of point interaction Hamiltonians.

In the early nineties he suggested to one of us (A.T., young postdoc in Bochum at
that time) to investigate further the spectral structure of the point interaction Hamil-
tonian for a three-boson system, following the suggestions given in [4]. With some
delay, together with a group of other younger italian researchers, we figured out
better those suggestions and started working in this direction.

In this contribution we outlined the history of the main achievements in this
research field and we sketched our first results.
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1 Introduction

Feynman path integrals are ubiquitous in theoretical physics [1–6]. Since their first
introduction in R. Feynman’s pioneering work [7], they have gained an important
role in the formulation of quantum theory providing on the one hand an intuitive
quantization procedure and on the other hand a powerful computational tool. It is
commonly believed that Feynman path integrals are in fact just an heuristic tool,
without a sound mathematical definition. This paper has the aim to disprove this
misconception and show how Feynman’s idea and the attempts to give them a sound
mathematical foundation have lead to the development of a blooming area of mathe-
matics where infinite dimensional analysis and mathematical physics meet and find
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Feynmanpath integralswere introduced in 1942 [8]whenR. Feynman, developing
an intuition by Dirac [9], proposed an alternative Lagrangian formulation of time
evolution in quantum mechanics. According to Feynman’s proposal, the solution of
Schrödinger equation

{
i� ∂

∂t ψ(t, x) = − �
2

2m�ψ(t, x) + V (x)ψ(x)
ψ(0, x) = ψ0(x), ψ0 ∈ C∞

0 (Rd)
(1)

describing the time evolution of the state ψ of a non-relativistic particle moving in
a force field associated to a potential V , should be given as a sum over all possible
histories of the system, i.e. by an heuristic integral of the following form:

ψ(t, x) = “C−1
∫
�

e
i
�
St (γ )ψ0(γ (0))dγ ” (2)

In (2) � denotes a set of paths γ : [0, t] → R
d with fixed end point γ (t) = x , dγ

stands for a Lebesgue-type measure on � while the function S : � → R appearing
in the integral is the classical action functional of the system, namely

St (γ ) = S0(γ ) −
t∫

0

V (γ (s))ds, S0(γ ) = m

2

t∫
0

|γ̇ (s)|2ds,

and C plays the role of a normalization constant. In (1) and (2) the positive constants
m and � denote the mass of the particle and the Planck constant respectively. A
formal derivation of (2) can be provided in terms of Trotter product formula [10],
which yields the unitary groupU (t) : L2(Rd) → L2(Rd) generated by the quantum
mechanical Hamiltonian operator1 in terms of the strong limit in L2(Rd)

U (t)ψ = e− i t
�

( −�
2m +V )ψ0 = lim

n→∞
(
e

it�
2m�n e− i t

n V
)n

ψ0 (3)

By taking a subsequence the convergence holds for almost everywhere x ∈ R
d and

by using the representation formula

e
it�
2� ψ0(x) =

∫
Rd

e
im(x−y)2

2�t

(2iπm−1�t)d/2
ψ0(y)dy, x ∈ R

d

1 More precisely H : D(H) ⊂ L2(Rd ) → L2(Rd ) given on smooth compactly supported vectors

ψ ∈ C∞
0 (Rd ) by Hψ(x) = − �

2

2m �ψ(x) + V (x)ψ(x). Under suitable condition on the potential
V : R

d → R (see, e.g. [11]) the operator H is essentially selfadjoint onC∞
0 (Rd ) and its closure is the

unique self-adjoint extension which generates by Stone theorem a strongly continuous 1-parameter

group U (t) : L2(Rd ) → L2(Rd ), formally written U (t) = e− i
�
Ht .



Mathematical Theory of Feynman Path Integrals 149

we obtain

U (t)ψ(x) = lim
n→∞

∫
Rdn

e
i
�

∑n
j=1

(
m(x j−x j−1)2

2(t/n)2
−V (x j )

)
t
n

(2π im−1�t/n)nd/2
ψ0(x0)dx0 . . . dxn−1. (4)

Fixed n ∈ N and considering the finite dimensional vector space Hn of piecewise
linear paths of the form

γn(s) := x j + (x j+1 − x j )

t/n
(s − j t/n), s ∈

[
j t

n
,
( j + 1)t

n

)
,

it is possible to look at the right hand side of (4) as the finite dimensional approxi-
mation of Feynman formula (2) where the space � of all paths is replaced by Hn:

∫
Hn

e
i
�
St (γn)ψ0(γ(0))dγn∫

Hn
e

i
�
S0(γn)dγn

=
∫

Rdn

e
i
�

∑n
j=1

m(x j−x j−1)2

2t/n e− i
�

t
n V (x̃ j )

(2π im−1�t/n)nd/2
ψ0(x0)dx0 . . . dxn−1,

(5)
where x̃ j ∈ [x j , x j+1]. Hence, from this point of view Feynman formula is just a
mnemonic tool which resembles an approximation procedure. Nevertheless it is
undoubtedly fascinating. Indeed, it creates a bridge between the classical Lagrangian
description of the physical world and the quantum one, reintroducing in quantum
mechanics the concept of trajectory, which had been banned by the original for-
mulation of quantum theory. It provides a quantization method, allowing (at least
heuristically) to associate a quantum evolution to any classical Lagrangian. More-
over it makes simple and intuitive the study of the semiclassical limit of quantum
mechanics, i.e. the study of the detailed asymptotic behaviour of the solution of (1) in
the limit � ↓ 0. Indeed, according to an heuristic application of the classical station-
ary phase method [12, 13] to (2), when � ↓ 0 the main contributions to the integral
should come from those paths γc such that δS(γc) = 0. These, by Hamilton’s least
action principle are exactly the classical orbits of the system. However, Feynman’s
formula (2) does not have a well defined mathematical meaning. Indeed, neither the
normalization constantC not the infinite dimensional Lebesgue measure dγ are well
defined. Feynman himself was conscious of these problems, as it is possible to infere
from his own words [8]

…one feels as Cavalieri must have felt calculating the volume of a pyramid before the
invention of calculus.

which convey clearly the lack of a sound mathematical theory underlying his tech-
niques. Nevertheless, Feynman extended its formula to more general quantum sys-
tems, including relativistic fields [14], and producing a powerful heuristic calculus
which works even when rigorous arguments fail [15]. The challenge to provide a
mathematical definition of Feynman integrals was soon taken up by mathematicians.
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2 An Alternative Integration Theory

Already in 1949, after attending a Feynman’s lecture at Cornell University, Marc
Kac realized that Feynman’s ideas admit a rigorous formalization by replacing
Schrödinger equation (1) with the heat equation

{
∂
∂t u(t, x) = 1

2�u(t, x) − V (x)u(t, x),
u(0, x) = u0(x).

Indeed, in this case, under suitable assumptions on the potential V and the initial
datum u0 [16–18], it is possible to prove the following representation for the solution,
given in terms of an integral over the space of continuous path with respect to the
Wiener probability measure

u(t, x) =
∫
Ct

u0(γ (t) + x)e− ∫ t
0 V (γ (s)+x)dsdW (γ ).

This functional integral representation for the solution of the heat equation is the cel-
ebratedFeynman-Kac formula, which nowadays can be regarded as the first andmost
famous example of an extensively developed theory [19, 20] connecting parabolic
equations associated to second order elliptic operators

{
∂
∂t u(t, x) = 1

2Tr [σ(x)σ ∗(x)D2
xu(t, x)] + 〈b(x), Dxu(t, x)〉 + V (x)u(t, x)

u(0, x) = u0(x)
(6)

to stochasticMarkov processes Xx = (Xx
t )t≥0, solutions of the stochastic differential

equations {
dXx

t = b(Xx
t )dt + σ(Xx

t )dWt ,

X (0) = x, x ∈ R
d ,

(7)

with (Wt )t≥0 being a d-dimensionalWiener process. Indeed, if σ : R
d → L(Rd , R

d)

and b : R
d → R

d are Lipschitz maps the solution of (6) can be represented by the
following formula (see [19, 20])

u(t, x) = E

[
u(0, Xx

t )e
− ∫ t

0 V (Xx
s )ds

]
, t ≥ 0, x ∈ R

d . (8)

In 1960Cameron [21] pointed out that it is impossible to provide for the solution of the
Schrödinger equation a representation similar to (8), given in terms of a Lebesgue
-type integral over the space of paths γ : [0, t] → R

d with respect to a suitable
Feynman complex measure. In order to gain a deeper insight into this no-go result, it
is useful to look at the proof of Feynman-Kac formula [6] and checkwhich arguments
fail when one replaces the heat equation with the Schödinger equation.
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Let us consider theC0-semigroup T α(t) : L2(Rd) → L2(Rd), t ≥ 0 generated by
the self-adjoint operator A = −α� : D(A) ⊂ L2(Rd) → L2(Rd), with α ∈ C is a
complex non-vanishing constant such that Re(α) ≥ 0 and D(A) = {ψ ∈ L2(Rd) :∫

Rd ‖k‖4|ψ̂(k)|2dk < ∞}, where ψ̂ stands for the Fourier transform ofψ ∈ L2(Rd).
Let us denote MV : L2(Rd) → L2(Rd) be the multiplication operator defined on
the vectors u ∈ C∞

0 (R) by MVu(x) = αV (x)u(x), where V : R
d → R is a contin-

uous bounded function. Let A + MV : D(A) ⊂ L2(Rd) → L2(Rd) be the operator
sum and T α

V (t) : L2(Rd) → L2(Rd) be the associated semigroup, written formally
as T α

V (t) = e−αt (−�+V ). By the Trotter product formula [11, 22], the perturbed semi-
group is given by the strong L2(R)-limit

T α
V (t)u = lim

n→∞

(
e

t
n α�e−αMV

t
n

)n
u, u ∈ L2(R).

By taking a subsequence and using the explicit representation formula for the action
of the semigroup T α(t)

T α
t u(x) =

∫
Rd

K α
t (x, y)u(y)dy, K α

t (x, y) = e− |x−y|2
2αt

(2παt)d/2
, (9)

we obtain for almost every x ∈ R
d :

T α
V (t)u(x) = lim

n→∞

(
e−α t

n (−�)e−αMV
t
n

)n
u(x)

= lim
n→∞

∫
Rdn

u(x0)e
−α t

n

∑n
j=1 V (x j )�n−1

j=0K
α
t/n(x j , x j+1)dx j (10)

where xn ≡ x . If α = 1 (or, more generally, if α ∈ R
+) then T α

t is the heat semigroup
and its kernel K α

t ( · , · ) is the density of a Gaussian probability measure on R
d . In

this case Kolmogorov theorem [23] allows to interpret the last line of Eq. (10) as
an integral on the space (Rd)[0,t] with respect to a σ -additive probability measure.
However, this interpretation is impossible if the constant α is not real and positive
and has a non vanishing imaginary part. Indeed, let us consider the algebra A of the
cylinder sets of the form

EJ ;B1,...,Bn := {γ ∈ (Rd)[0,t] : γ (t1) ∈ B1, . . . , γ (tn) ∈ Bn},

with n ∈ N, J = {t1, . . . , tn} ⊂ [0, t] and B1, . . . , Bn belonging to the Borel σ -
algebra B(Rd). Let μα be the finitely additive (complex) measure on A defined as:
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μα(EJ ;B1,...,Bn ) =
∫
B1

. . .

∫
Bn

K α
tn−tn−1

(xn−1, xn) . . .

. . . K α
t2−t1(x1, x2)K

α
t1 (x, x1)dx1 . . . dxn. (11)

As remarked by Cameron [21], if Im(α) = 0 then it is impossible to construct a σ -
additive complex measure on the σ -algebra generated byAwhich extends μα , since
its total variation would be infinite, even when restricted to bounded sets. Nowadays
Cameron’s pioneering result can be considered as a particular case of a theorem by
Thomas [24] generalizing Kolmogorov theorem to the case of projective systems of
complex (instead of probability) measures (see also [25] for a discussion of these
issues in the framework of themathematical Feynman path integration). Remarkably,
Cameron’s no-go result triggered a huge research activity on the mathematical defi-
nition of Feynman path integrals; starting from the 60s till today different approaches
have been proposed. It fact a common feature to all of them is the replacement of the
concept of Lebesgue type integral with respect to a σ -additive measure with themore
general concept of linear continuos functional on a domain of integrable functions.
This idea has been systematically implemented only rather recently in [25], where
a general theory of projective systems of functionals, alternative to the projective
systems of measures [26], has been developed. When applied to the particular case
of Feynman path integration, the theory reduces to the construction of a linear con-
tinuous functional L : D(L) → C defined on a domain D(L) containing cylinder
functions, i.e. the functions f : (Rd)[0,t] → C of the form

f (ω) := F(ω(t1), . . . , ω(tn)) (12)

for some n ∈ N, t1, . . . , tn ∈ [0, t] and a Borel function F on R
d × · · · × R

d . The
action of the functional L on a function f of the form (12) must be given by a (finite
dimensional) integral of the form:

L( f ) =
∫

Rd×···×Rd

F(x1, . . . , xn)K
α
tn−tn−1

(xn−1, xn) . . . K α
t2−t1(x1, x2)

K α
t1 (x, x1)dx1 . . . dxn . (13)

In fact most of the different approaches to themathematical definition of Feynman
path integrals fit into this context and differ essentially for the class of functions
that can be integrated, i.e. the domain of the functional. We mention briefly only
the main techniques proposed and refer to [27, 28] and references therein for an
extended discussion. The first approach proposed by Cameron himself and further
developed within the framework of stochastic analysis is the analytic continuation
of Wiener integrals [21, 29–33]. A different proposal relies on the implementation
of an infinite dimensional distribution theory, first introduced by C. Dewitt-Morette
and later extensively developed in the framework of white noise calculus [34–40].
Particular efforts have also been devoted to the so-called sequential approach. On
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the one hand a systematic study of the convergence of the sequence (3) and (4) has
been conducted [41, 42], on the other hand the convergence of the finite dimensional
approximations of Feynman heuristic formula along particular sequences of finite
dimensional subspaces of paths in the spirit of formula (5) has been extensively
studied [43–51].Other approaches relies, e.g., on the constructionof complexPoisson
measures [52–54] or on nonstandard analysis [55], but they haven’t been extensively
developed yet.

3 Infinite Dimensional Fresnel Integrals

In the 60s a couple of papers by Itô [56, 57] proposed a different approach, leading
to the development of the theory of infinite dimensional Fresnel integrals. The main
idea is a generalization of the classical Parseval equality

∫
Rn

φ(x) f (x)dx =
∫
Rn

φ̂(x) f̂ (x)dx, (14)

where φ̂ and f̂ denote the Fourier transform of the Schwartz test functions φ, f ∈
S(Rn). Equality (14) can be extended to the case where φ(x) = (2π iε)−n/2e

i
2ε ‖x‖2 ,

where ε ∈ R
+ is a positive constant, while f : R

n → C is the Fourier transform of
a complex bounded Borel measure μ f on R

n

f (x) =
∫
Rn

eikxdμ f (k), x ∈ R
n.

In this case (14) assumes the following form

∫
Rn

e
i
2ε ‖x‖2

(2π iε)n/2
f (x)dx =

∫
Rn

e− iε
2 ‖x‖2dμ f (k). (15)

where the left hand side has to be interpreted as an improper Riemann integral.
The latter equality is the starting point for the generalization of Fresnel integrals
to the case where R

n is replaced by a real separable infinite dimensional Hilbert
space (H, 〈 , 〉). Indeed, while the left hand side is no longer meaningful for infinite
dimensional Hilbert spaces due to the lack of a reasonable Lebesgue measure dx ,
the right hand side still makes sense within Lebesgue traditional integration theory
since it is the integral of a bounded continuous function with respect to a complex
Borel measure with finite total variation.

Given a real separable Hilbert space (H, 〈 , 〉), let us consider the set F(H) of
functions f : H → C of the form
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f (x) =
∫
H

ei〈x,y〉dμ f (y), x ∈ H, (16)

for some complex Borel measure μ f onH with finite total variation. Besides being
a linear space, F(H) is a Banach algebra of functions with unity, where the multi-
plication is simply defined as f g(x) := f (x)g(x), x ∈ H while the norm ‖ f ‖F of
f ∈ F(H) is defined as the total variation of the associated via (16) measure μ f , i.e.
‖ f ‖F := |μ f |.

The infinite dimensional Fresnel integral is the linear functional IF : F(H) → C

defined on f ∈ F(H) of the form (16) as

IF ( f ) :=
∫
H

e− iε
2 〈x,x〉dμ f (x). (17)

It is also denoted with the symbol
∫̃
He

i
2ε ||x ||2 f (x)dx .

By construction, the functional IF : F(H) → C enjoys some remarkable prop-
erties. First of all it is straightforward to prove the continuity in the F(H)-norm
since ∣∣∣∣∣∣

∫
H

e− iε
2 ‖x‖2dμ f (x)

∣∣∣∣∣∣ ≤ |μ f | = ‖ f ‖F

Moreover it is invariant under Euclidean transformations on H and a Fubini-type
theorem holds [27].

Proposition 1 Let the group of Euclidean transformations E(H) be the group of
transformations x → Ox + a, where a ∈ H and O is an orthogonal transformation
ofH ontoH. Then the space of Fresnel integrable functionsF(H) is invariant under
E(H), and E(H) is in fact a group of isometries of F(H). Moreover the infinite
dimensional Fresnel integral is invariant under the transformations in E(H).

Proposition 2 Let H = H1 ⊕ H2 be the orthogonal sum of two subspaces H1 and
H2. For f (x) ∈ F(H) set f (x1, x2) = f (x1 ⊕ x2) with x1 ∈ H1 and x2 ∈ H2. Then
for fixed x2, f (x1, x2) is in F(H1) and

g(x2) =
∫̃
H1

e
i
2ε ‖x1‖2 f (x1, x2)dx1 (18)

is in F(H2). Moreover
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∫̃
H2

e
i
2ε ‖x2‖2g(x2)dx2 =

∫̃
H2

e
i
2ε ‖x2‖2

⎛
⎝∫̃
H1

e
i
2ε ‖x1‖2 f (x1, x2)dx1

⎞
⎠ dx2

=
∫̃
H

e
i
2ε ‖x‖2 f (x)dx .

A systematic implementation of the theory of infinite dimensional Fresnel integrals
as long as their applications to the mathematical definition of Feynman path inte-
grals has been presented in the first edition of the pioneering book [27] and in the
fundamental paper [58] by Sergio Albeverio and Raphael Høegh-Krohn. The main
application of this new infinite dimensional integral is the representation of the solu-
tion of Schrödinger equation (1). Let us consider the Cameron-Martin Hilbert space
Ht , i.e. the space of absolutely continuous paths γ : [0, t] → R

d with fixed end point
γ (t) = 0 and weak derivative γ̇ ∈ L2(Rd), endowed with the inner product

〈γ, η〉 =
t∫

0

γ̇ (s)η̇(s)ds, γ, η ∈ Ht .

Under suitable conditions on the potential V and the initial datumψ0, the solution of
the Schrödinger equation (1) admits a representation in terms of an infinite dimen-
sional Fresnel integral on the Cameron-Martin space Ht with parameter ε = �.

Theorem 1 Let V and ψ0 be Fourier transforms of bounded complex measures in
R

d and let Ht be the Cameron-Martin Hilbert space. Then the map f : Ht → C

f (γ ) = e− i
�

∫ t
0 V (γ (s)+x)dsψ0(γ (0) + x) (19)

is in F(Ht ) and the solution of the Schrödinger equation (1) is given by the infinite
dimensional Fresnel integral

ψ(t, x) =
∫̃
Ht

e
i
2�

‖γ ‖2 f (γ )dγ. (20)

In [27] the definition (17) of infinite dimensional Fresnel integral is generalized
to the case where the phase function φ(x) = ‖x‖2

2 is replaced by a quadratic form

x �→ 〈x, Bx〉, x ∈ D(B) (21)

associated to a densely defined symmetric linear operator B : D(B) ⊂ H → H. Let
us assume that there exists a dense subspace D ⊂ H containing the range of B and
a symmetric bilinear form �(x, y) on D × D such that Im(�(x, x)) ≤ 0 and



156 S. Mazzucchi

�(x, By) = 〈x, y〉, ∀x ∈ D, y ∈ D(B). (22)

Further, let us assume that D is a Banach space, endowed with a norm ‖ ‖D stronger
than the norm ‖ ‖ of the Hilbert space H, i.e. there exist a c > 0 such that ‖x‖ ≤
c‖x‖D for all x ∈ D, and we get the chain of continuous embeddings

D ⊂ H ⊂ D∗.

Further, for any fixed x ∈ D the map y �→ �(x, y) is an element of D∗. This actually
gives by (22) a mapping from D into D∗ which can be considered a left inverse of
B. Let us eventually define the space F(D∗) of maps f : D∗ → C of the form

f (x) =
∫
D

ei〈x,y〉dμ f (y), x ∈ D∗, (23)

where 〈x, y〉 stands for the dual pairing between x ∈ D∗ and y ∈ D and μ f is a
complex bounded Borel measure on D.
The Fresnel integral with respect to � is the linear functional on F(D∗) defined on
f ∈ F(D∗) of the form (23) as:

�∫
e

i
2 〈x,Bx〉 f (x)dx :=

∫
D

e−i�(x,x)dμ f (x). (24)

Extension of these results to the case of polynomially growing phase functions have
been developed in [59–61], where a path integral representation of high-order heat-
type equations is also proved.

Besides the Schrödinger equation with harmonic oscillator potential, the main
applications of this generalization of definition (17) can be found in field theory.
Already in the 1976 edition of the book [27] a construction of the Feynman path
integral for the relativistic quantum boson field is presented, both in the case of
free field and in the presence of a regularized interaction term, constructed out of
a map V ∈ F(R). These pioneering results haven’t been developed later as they
deserved, since they provided the first construction of the functional integral for the
bosonic field in real time, regardless any Euclidean approach or analytic continuation
procedure.

Another interesting application of the Fresnel integral can be found in Chern-
Simons theory. In a fundamental paper published in 1989 [62] Witten conjectured
that there should be a connection between topological field theories based on the
so-called Chern-Simons action and topological invariants. Let M be a smooth 3-
dimensional oriented manifold without boundary, and consider a compact Lie group
G with its Lie algebra g endowed with a Ad-invariant inner product 〈 , 〉. Witten’s
calculations are based on a path integral formulation of Chern-Simons theory
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I ( f ) =
∫
�

ei�(A) f (A)d A (25)

where the integration is performed on a space � of g-valued connection 1-forms A
on M , while the phase function � is the Chern-Simons action:

�(A) = k

2π

∫
M

(
〈A ∧ d A〉 + 1

3
〈A ∧ [A ∧ A]〉

)
,

where k is a non-zero real constant, [A, A] is the 2-form whose value on a pair
of vectors (X,Y ) is 2[A(X), A(Y )] and 〈A ∧ B〉, for a g-valued 1-form A and a
g−valued 2-form B is the 3-form whose value on (X,Y, Z) is given by the skew-
symmetrized form of 〈A(X), B(Y, Z)〉. According toWitten’s conjecture the integral
I ( f ), for suitable f , should give topological invariants. The first contribution to the
rigorous mathematical definition of integral (25) was presented by Albeverio and
Schäfer in 1995 [63]. These ideas were later developed by Leukert and Schäfer and
by Albeverio and Sengupta [64–66]. Recent results have been obtained by Albeverio
and Mitoma [67].

4 Infinite Dimensional Oscillatory Integrals

One of the main issues present in the theory of infinite dimensional Fresnel integrals
is the restriction on the class of integrable functions, i.e. the domain of the functional.
Indeed, in the application to the mathematical definition of Feynman path integrals,
the function f defined on the Cameron Martin space Ht by (19) must belong to
F(Ht ). In order to fulfill this requirement, both the initial datum and the potential V
are required to belong to F(Rd), hence they are continuous and bounded. This con-
dition is rather restrictive from a physical point of view, since it excludes most of the
physically relevant potentials. In addition, aiming to the functional integral construc-
tion of non trivial integrating quantum field theories, the discussion of polynomially
growing potentials would be of fundamental importance. It is thus important to pro-
vide an alternative definition of Fresnel integrals in infinite dimensions which allows
to enlarge the domain of the functionals defined in the previous section. The first
step to accomplish this task was done in the 80s by Elworthy and Truman [68]. Their
idea was extensively developed later by Albeverio and Brzezniak [69–71], leading
to the definition of infinite dimensional oscillatory integrals.

Oscillatory integrals on R
n are object of the following form

∫
Rn

e
i
ε
�(x) f (x)dx, (26)



158 S. Mazzucchi

where ε ∈ R \ {0} is a real parameter,� : R
n → R and f : R

n → C are Borel func-
tions. � is usually called phase function, in the case where it is quadratic form
the integrals (26) are called Fresnel integrals, while if �(x) = x3, x ∈ R, they are
called Airy integrals and find interesting applications in optics. A systematic study of
these objects from a mathematical point of view, as long as the investigation of their
asymptotic behavior when ε ↓ 0, has been developed by Hörmander [72, 73] and by
Duistermaat [12]. Remarkably, integrals of the form (26) can be defined even in the
case where the function f is not summable, hence the integral (26) does not make
sense within Lebesgue integration theory. The following definition goes back to Hör-
mander (see also [68]) and relies on the construction of a sequence of regularized
(hence absolutely convergent) integrals.

Definition 1 Let f : R
n → Cbe aBorel function and� : R

n → R a phase function.
If for each Schwartz test function φ ∈ S(Rn) such that φ(0) = 1 the integrals

Iδ( f, φ) :=
∫
Rn

ei
�(x)

ε f (x)φ(δx)dx

exist for all ε > 0, δ > 0 and limδ→0 Iδ( f, φ) exists and is independent of φ, then
the limit is called the oscillatory integral of f with respect to � and denoted by

o∫
Rn

ei
�(x)

ε f (x)dx ≡ I
�
ε ( f ). (27)

According to the definition above it is possible, e.g., to define the oscillatory integral∫ o
Rn ei

�(x)
ε f (x)dx in the case where both � and f have arbitrary polynomial growth

at infinity [72, 73].
The generalization of this integration technique to the case where R

n is replaced
by a real separable infinite dimensional Hilbert space (H, 〈 , 〉) relies on an approx-
imation procedure. Indeed, an infinite dimensional oscillatory integral is defined as
the limit of sequences of finite dimensional approximations (suitably normalized).
We present here the definition in [69], where the particular case of a quadratic phase
function � : H → R is considered.

Definition 2 A function f : H → C is said to be Fresnel integrable if for any
sequence {Pn}n of projectors onto n-dimensional subspaces of H, such that Pn ≤
Pn+1 and Pn → I strongly as n → ∞ (I being the identity operator inH), the oscil-
latory integrals

o∫
PnH

ei
‖Pn x‖2

2ε f (Pnx)d(Pnx),

are well defined (in the sense of Definition 1) and the limit
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lim
n→∞(2π iε)−n/2

o∫
PnH

ei
‖Pn x‖2

2ε f (Pnx)d(Pnx) (28)

exists and is independent of the sequence {Pn}n . In this case the limit is called infinite
dimensional oscillatory integral of f and is denoted by

∫̃
H

ei
‖x‖2
2ε f (x)dx .

A complete characterization of the set of Fresnel integrable function is still an
open problem, even in finite dimension, however it is possible to present interesting
subclasses. In particular, it is possible to prove that if f ∈ F(H), i.e. it is of the form
(16) then f is Fresnel integrable and

∫̃
H

ei
‖x‖2
2ε f (x)dx =

∫
H

e−iε ‖x‖2
2 dμ f (x).

This result shows that the infinite dimensional oscillatory integral (28) is actually
an extension of the infinite dimensional Fresnel integral (17). Moreover, a stronger
result can be proved [68, 69]

Theorem 2 Let L : H → H be a selfadjoint trace-class operator, such that I − L
is invertible and let f ∈ F(H). Then the function g : H → C defined by

g(x) = e− i
2ε 〈x,Lx〉 f (x), x ∈ H (29)

is Fresnel integrable and its infinite dimensional Fresnel integral is given by the
following Parseval-type equality:

∫̃
H

e
i
2ε 〈x,(I−L)x〉 f (x)dx = (det(I − L))−1/2

∫
H

e− iε
2 〈x,(I−L)−1x〉dμ f (x) (30)

where det(I − L) is the Fredholm determinant of the operator (I − L) (that is the
product of the eigenvalues of (I − L)) andμ f is the complex bounded Borel measure
onH related to f by (16).

These results appeared for the first time in the 80s and triggered a huge research
activity in the 90s, leading to the rigorous mathematical definition and the study of a
wider class of Feynman path integrals representations. It is worthwhile tomention the
application to the Schrödinger equation with anharmonic oscillator potential of the
form V (x) = 1

2 x A
2x + λ|x |4, where x ∈ R

d , A is d × d symmetric positive definite
matrix and λ > 0 is a coupling constant. In fact it is possible to provide a well defined
mathematical construction of the Feynman path integral representation
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ψ(t, x) =
∫

γ (t)=x

e
i
�

∫ t
0

γ̇ (s)2

2 ds− i
�

∫ t
0 [ 12 γ (s)A2γ (s)+λ|γ (s)|4]dsφ(γ (0))dγ, (31)

as the analytic continuation (in the parameter λ, from λ < 0 to λ ≥ 0) of an infinite
dimensional oscillatory integral on the Cameron Martin Space Ht [74–76].

This result relies on a generalization of Parseval-type equality (30) to the case
where the quadratic phase function is replaced by a fourth order polynomial. The
main idea is a deformation of the integration contour in the complex plane that allows
to compute a finite dimensional oscillatory integral with polynomial phase function

�(x) = 1

2
‖x‖2 + λ‖x‖4, x ∈ R

n (32)

in terms of a Gaussian integral:

(2π iε)−n/2

o∫
Rn

e
i
2ε ‖x‖2+iλ‖x‖4dx = (2πε)−n/2

∫
Rn

e− 1
2ε ‖x‖2−iλ‖x‖4dx = E[e−iλε2‖x‖4 ],

(33)
where ε, λ > 0 and the symbol E on the right hand side denotes the expectation with
respect to the standard gaussian measure on R

n . This rather elementary equality is
the key tool for the construction of infinite dimensional oscillatory integrals with
polynomial phase functions of the form (32) in the case R

n is replaced by in infinite
dimensional real separable Hilbert space H. Indeed, when the dimension n of the
integration domain is allowed to converge to ∞, the left hand side of (33) is no
longer meaningful because of the presence of the Lebesgue measure dx and of the
normalization constant (2π iε)−n/2. On the other hand, the right hand side of (33)
is still meaningful in an infinite dimensional setting since Gaussian measures on
infinite dimensional spaces do exist, contrary to the case of Lebesgue measure. For
the detailed development of the theory of infinite dimensional oscillatory integrals
with polynomial phase we refer to the original papers [76], where the theory of
abstract Wiener spaces [77–79] plays a fundamental role in the extension of formula
(33) to an infinite dimensional setting. When applied to the mathematical definition
of heuristic Feynman formula (31), it allows to compute an infinite dimensional
oscillatory integral on the Cameron-Martin Hilbert spaceHt in terms of a Gaussian
integral over the Banach space Ct of continuous path ω : [0, t] → R

d with respect
to the Wiener measure P. Let us consider on L2(Rd) the anharmonic oscillator
Hamiltonian operator H of the form:

H = −�
2

2
� + 1

2
x A2x + λC(x, x, x, x), (34)

whereC is a completely symmetric positive fourth order covariant tensor onR
d , A is

a positive symmetric d × d matrix, λ ≥ 0 a positive constant. We shall denote with
Ai , i = 1, . . . , d the eigenvalues of the matrix A. It is well known [11] that H is



Mathematical Theory of Feynman Path Integrals 161

essentially self-adjoint on C∞
0 (Rd) and generates a strongly continuous 1-parameter

group of unitary operators U (t) = e− i
�
Ht .

Let (Ht , 〈 , 〉) denote the Hilbert space of absolutely continuous paths γ : [0, t] →
R

d with square integrable weak derivative
∫ t
0 γ̇ (τ )2dτ < ∞, fixed initial point

γ (0) = 0 and inner product 〈γ1, γ2〉 = ∫ t
0 γ̇1(s)γ̇2(s)ds. The cylindrical Gaussian

measure onHt with covariance operator the identity extends to a σ -additive measure
on the Wiener space Ct = {ω ∈ C([0, t]; R

d) | γ (0) = 0}: the Wiener measure P.

Theorem 3 Let us assume that λ ≤ 0, and that for each i = 1, . . . , d the following
inequalities are satisfied

Ai t <
π

2
, 1 − Ai tan(Ai t) > 0. (35)

Let φ1, φ2 ∈ L2(Rd) ∩ F(Rd), i.e.

φ2(x) =
∫
Rd

eix ·kdμ2(k), φ1(x) = (2π i�)−d/2e
i
2�

|x |2
∫
Rd

eix ·kdμ1(k).

Assume in addition that the measures μ1, μ2 satisfy the following assumption:

∫
Rd

∫
Rd

e
�

4 x A
−1 tan(At)xe(y+cos(At)−1x)(1−A tan(At))−1(y+cos(At)−1x)d|μ2|(x)d|μ1|(y) < ∞

where |μ| stands for the total variation measure of μ. Then the infinite dimensional
oscillatory integral

∫̃
Rd×Ht

φ̄1(x)e
i
2�

∫ t
0 γ̇ (τ )2dτ e− i

2�

∫ t
0 (γ (τ )+x)A2(γ (τ )+x)dτ

e− iλ
�

∫ t
0 C(γ (τ )+x,γ (τ )+x,γ (τ )+x,γ (τ )+x)dτ φ2(γ (t) + x)dxdγ (36)

is well defined and is equal to

(i)d/2
∫

Rd×Ct

ei
λ
�

∫ t
0 C(

√
�ω(τ)+x,

√
�ω(τ)+x,

√
�ω(τ)+x,

√
�ω(τ)+x)dτ

e
1
2�

∫ t
0 (

√
�ω(τ)+x)A2(

√
�ω(τ)+x)dτ φ̄(eiπ/4x)ψ0(e

iπ/4
√

�ω(t) + eiπ/4x)dP(ω)dx . (37)

Moreover the absolutely convergent integral (37) is an analytic function of the com-
plex variable λ if Im(λ) > 0, and continuous in Im(λ) = 0. In particular, when
λ ≥ 0 it represents the scalar product between φ1 and the solution of the Schrödinger
equation (1) with Hamiltonian (34) and initial datum φ2.
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Similar techniques allow to study the case where the parameter λ attains negative
values and the quantum Hamiltonian is no longer essentially-selfadjoint [80].
A further generalization of theDefinition 2was proposed byAlbeverio andBrzezniak
in [71]. It involves a different choice of the normalization constant appearing in the
finite dimensional approximations (28) and finds an interesting application in the
construction of the Feynman path integral representation of the solution of (1) in the
case where a constant magnetic field is present.

The result of Theorem 2, i.e. the Parseval-type equality (30), holds under the
assumption that the phase function� : H → R is a quadratic form�(x) = 〈x, (I −
L)x〉 associated to a self-adjoint trace class operator L : H → H, in such a way that
the Fredholm determinant det(I − L) is well defined. In order to cope with the cases
where this condition is not fulfilled, the definition of class p oscillatory integral was
introduced [71]. Let p ∈ N and consider the Schatten class Tp(H) of bounded linear
operators L inH such that [81]

‖L‖p = (Tr(L∗L)p/2)1/p < +∞.

In fact (Tp(H), ‖ · ‖p) is a Banach space. For any p ∈ N it is possible to define the
regularized Fredholm determinant det(p) : I + Tp(H) → R as:

det
(p)

(I + L) := det
(
(I + L) exp

p−1∑
j=1

(−1) j

j
L j

)
, L ∈ Tp(H),

where det denotes the usual Fredholm determinant, which is well defined since the
operator (I + L) exp

∑p−1
j=1

(−1) j

j L j − I is trace class provided that L ∈ Tp(H) [81].
In particular det(2) is called Carleman determinant.
For p ∈ N, p ≥ 2, L ∈ T1(H), let us define the normalized quadratic form Np :
H → C:

Np(L)(x) := 〈x, Lx〉 − i�Tr
p−1∑
j=1

L j

j
, x ∈ H. (38)

Definition 3 Let p ∈ N, p ≥ 2, L : H → H a bounded linear operator in H, f :
H → C a Borel measurable function. If for any sequence {Pn}n∈N of projectors onto
n-dimensional subspaces ofH, such that Pn ≤ Pn+1 and Pn → I strongly as n → ∞
(I being the identity operator inH) the finite dimensional oscillatory integrals

õ∫
PnH

e
i
2�

|x |2e− i
2�

Np(Pn LPn)(Pnx) f (Pnx)d(Pnx), (39)

are well defined and the limit
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lim
n→∞

◦̃∫
PnH

e
i
2�

|x |2e− i
2�

Np(Pn LPn)(Pnx) f (Pnx)d(Pnx) (40)

exists and is independent on the sequence {Pn}, then the limit is called the class p
normalized oscillatory integral of the function f with respect to the operator L and
it is denoted

Ip,L( f ) =
p̃∫

H

e
i
2�

|x |2e− i
2�

(x,Lx) f (x)dx .

If L is not a trace class operator, then the quadratic form (38) is not well defined,
nevertheless expression (39) still makes sense thanks to the fact that all the functions
under the integral are restricted to finite dimensional subspaces. In this setting the fol-
lowinggeneralization ofParseval-type equality (30) canbeproved, valid for functions
f ∈ F(H) and for self-adjoint operators L ∈ Tp(H) such that det(p)(I − L) = 0:

p̃∫
H

e
i
2�

|x |2e− i
2�

〈x,Lx〉 f (x)dx = [det
(p)

(I − L)]−1/2
∫
H

e− i�
2 〈x,(I−L)−1x〉dμ f (x). (41)

This result finds application in the construction of the Feynman path integral
representation of the solution of the Schrödinger equation

{
i� ∂

∂t ψ = 1
2 (−i�∇ + a(x))2ψ + V0(x)ψ

ψ(0, x) = φ(x), x ∈ R
d , t > 0

(42)

describing the dynamics of a nonrelativistic charged quantum particle (with unitary
charge and mass) moving in under the action of an external magnetic field. In (42)
V0 ∈ F(Rd) is a scalar potential while a(x) = Cx is a linear vector potential, withC
an anti-self-adjoint linear operator in R

d . Let us consider the operator L : Ht → Ht

defined on the Cameron-Martin Hilbert space Ht by

〈Lγ1, γ2〉 =
t∫

0

(Cγ1(τ ) · γ̇2(τ ) + Cγ2(τ ) · γ̇1(τ )) dτ, γ1, γ2 ∈ Ht

It is possible to prove (see [71] for details) that L is self-adjoint and belongs to
the Hilbert-Schmidt class T2(Ht ) and det(p)(I − L) = 0 if sin(t

√
C∗C) = 0. By

assuming that the initial datum φ belongs to F(Rd), the heuristic Feynman path
integral representation for the solution of the Schrödinger equation (42)

ψ(t, x) =
∫

γ (t)=x

e
i
2�

∫ t
0 γ̇ (τ )2dτ− i

�

∫ t
0 C(γ (τ )+x)γ̇ (τ )dτ− i

�

∫ t
0 V0(γ (τ )+x)dτ φ(γ (0) + x)dγ
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can be rigorouslymathematically realized in terms of the class-2 normalized integral:

ψ(t, x) =
2̃∫

Ht

e
i
2�

∫ t
0 γ̇ (τ )2dτ+ i

2�
(Lγ,γ )e− i

�

∫ t
0 V0(γ (τ )+x)dτ φ(γ (t) + x)dγ

For recent results on the case on non-constant magnetic field see [82].

5 Further Applications and Open Issues

This section eventually presents some further applications of the theory developed
so far, as well as some open problems.

5.1 The Stationary Phase Method an the Study
of the Semiclassical Limit of Quantum Mechanics

A systematic implementation of an infinite dimensional version of the classical sta-
tionary phase method [12, 13] is presented in [58], allowing for the study of the
detailed asymptotic behavior of the Fresnel-Feynman integral (20) in the limit when
� ↓ 0. Let I : R

+ → C be the map defined by

I (�) :=
∫̃
H

e
i
2�

‖x‖2e− i
�
V (x)g(x)dx,

where H is a real separable Hilbert space and V, g ∈ F(H), i.e.

V (x) =
∫
H

ei〈x,y〉dμ(y), g(x) =
∫
H

ei〈x,y〉dν(y).

Byassuming that themeasuresμ, ν admit finitemoments of any order and if the phase
function �(x) = 1

2‖x‖2 − V (x), x ∈ H, has only a finite number of non-degenerate
critical points, then it is possible to prove [58, 71] that I is a C∞ function of the
variable � and to compute explicitly all terms of its asymptotic expansion for � ↓ 0.
These depend only on the derivatives of V and g at the critical points. Furthermore,
under additional assumptions on the moments of μ and ν it is even possible to prove
the Borel summability of the asymptotic expansion [83]. When applied to the repre-
sentation of the solution of Schrödinger equation, i.e. to formula (20), these results
provide an alternative derivation of Maslov’s classical results on the semiclassical
asymptotics for the solution of Schrödinger equation [84]. Another interesting appli-



Mathematical Theory of Feynman Path Integrals 165

cation of these techniques can be found in the study of the semiclassical asymptotic
for the trace of the Schrödinger group [85–88]. These results actually provide a rig-
orous mathematical realization of the heuristic Gutzwiller trace formula [89], which
is particularly relevant in the theory of quantum chaos. For analogous results in the
case of the heat equation see [90, 91].

5.2 Phase Space Feynman Path Integrals

Even if Feynman’s original aim was to provide a Lagrangian formulation of quan-
tum mechanics, soon in the physical literature Hamiltonian versions of formula (2)
appeared (see, e.g. [1]). Phase space Feynman path integrals representations are
heuristic formulas of the following form

“ψ(t, x) = const
∫

q(t)=x

e
i
�
St (q,p)φ(q(0))dq dp”, (43)

where the integral is meant on the space of paths (q, p) : [0, t] → R
d × R

d in the
phase space of the system (q : [0, t] → R

d is the path in configuration space and
p : [0, t] → R

d is the path in momentum space). St is the action functional in the
Hamiltonian formulation:

St (q, p) =
t∫

0

(q̇(τ )p(τ ) − H(q(τ ), p(τ )))dτ,

(H being the classicalHamiltonian of the system).Differentmathematical definitions
of formula (43) have been proposed [33, 35]. In [92] the theory of infinite dimensional
oscillatory integrals is applied. Let us consider the Hilbert spaceH = Ht × Lt , with
Ht the Cameron-Martin space and Lt = L2([0, t]), endowed with the natural inner
product

〈(q1, p1), (q2, p2)〉 =
t∫

0

q̇1(τ )q̇2(τ )dτ +
t∫

0

p1(τ )p2(τ )dτ, (q1, p1), (q2, p2) ∈ H.

Let B : H → H be the operator defined by

B(q, p)(τ ) =
⎛
⎝

τ∫
t

p(u)du, q̇(τ ) − p(τ )

⎞
⎠ , (44)

with the corresponding quadratic form

〈(q1, p1), B(q2, p2)〉 =
t∫

0

q̇1(τ )p2(τ )dτ +
t∫

0

p1(τ )q̇1(τ )dτ −
t∫

0

p1(τ )p2(τ )dτ.
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Let us consider the Schrödinger equation

{
i� ∂

∂t ψ(t, x) = − �
2

2m �ψ(t, x) + V1(x)ψ(t, x) + V2(−i�∇)ψ(t, x)
ψ(t, x) = φ(x)

(45)

with V1, V2 bounded functions. Given the function f : H → C of the form

f (q, p) := φ(x + q(0))e− i
�

∫ t
0 V (q(s)+x,p(s))ds , (q, p) ∈ H,

it is possible to prove (see [92] for details) that for any sequence {Pn} of finite dimensional projectors
converging strongly to the identity the limit

lim
n→∞(det(Pn BPn))

1/2

õ∫
PnH

e
i
2�

〈Pn (q,p),BPn(q,p)〉 f ◦ Pn(q, p)dPn(q, p)

exists and is independent of {Pn}. Further, it provides the solution of (45).

5.3 The Stochastic Schrödinger Equation

Infinite dimensional oscillatory integrals can find interesting applications also in the quantum theory
of open systems, in particular in the theory of continuous quantum measurements. The continuous
time evolution of the state of a quantum particle described by the Schrödinger equation (1) is valid if
the system is isolated.However, if it interactswith an external environment, in particular if the system
is submitted to themeasurement of one of its observables and interactswith themeasuring apparatus,
then the time evolution is no longer continuous because of the so-called collapse of thewave function,
which is actually a random and discontinuous transition. Different mathematical description of this
phenomena have been proposed and nowadays the theory of quantummeasurements is an active area
of research where physics, mathematics as well as philosophy of science find a fruitful interplay.
In this framework a class of stochastic Schrödinger equations have been proposed. In particular,
Belavkin-Schrödinger equation [93]

{
dψ(t, x) = − i

�
Hψ(t, x)dt − λ

2 R
2ψ(t, x)dt + √

λRψ(t, x)dW (t)
ψ(0, x) = φ(x) (t, x) ∈ [0, T ] × R

d (46)

describes the time evolution of the state of a quantum particle submitted to the measurement of
one of its (M-dimensional vector) observables, described by the selfadjoint operator R on L2(Rd ).
In Eq. (46) the symbol H stands for the quantum mechanical Hamiltonian operator, W is an
M−dimensional Brownianmotion and dW denotes the Itô differential, λ > 0 is a coupling constant
which is proportional to the accuracy of the measurement. In the case of position measurement, i.e.
if R = X , the position operator, equation (46) becomes

{
dψ(t, x) = − i

�
Hψ(t, x)dt − λ

2 x
2ψ(t, x)dt + √

λxψ(t, x)dW (t)
ψ(0, x) = φ(x) (t, x) ∈ [0, T ] × R

d ,
(47)

while in the case of momentum measurement, i.e. R = −i�∇, we obtain:
⎧⎨
⎩
dψ(t, x) = − i

�
Hψ(t, x)dt + λ�

2

2 �ψ(t, x)dt − i
√

λ�∇ψ(t, x)dW (t)

ψ(0, x) = ψ0(x) (t, x) ∈ [0, T ] × R
d .

(48)
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One of the first heuristic Feynman path integral formulas describing selective dynamics of a particle
whose position is continuously observed was proposed by Mensky [94, 95], who suggested that the
state of the particle at time t if the observed trajectory is the path ω(s)s∈[0,t] should be given by the
“restricted path integrals”

ψ(t, x, ω) = “
∫

{γ (t)=x}
e

i
�
St (γ )e−λ

∫ t
0 (γ (s)−ω(s))2dsφ(γ (0))Dγ ”, (49)

where φ ∈ L2(Rd ) is the initial state of the system, St is the action functional and λ > 0 a
real positive parameter. In fact, according to formula (49) as an effect of the correction term

e−λ
∫ t
0 (γ (s)−ω(s))2ds due to the measurement, the paths γ giving the main contribution to the integral

(49) should be those closer to the observed trajectory ω.
The first construction of the solution of Belavkin equation (46) in terms of infinite dimensional

oscillatory integral was proposed by Albeverio, Kolokoltsov and Smolyanov in [96, 97] and by
Truman and Zastawniak [98] (see also [54]). These results were further developed by Albeverio,
Guatteri andMazzucchi in [99] in the case of Belavkin position equation (47) and later for Belavkin
momentum equation by means of phase-space Feynman path integrals [100] (see Sect. 5.2). The
main tool to accomplish this task is a generalization of Parseval type equality (30) to the case of
complex valued phase functions. This allows to handle the cases where the Feynman formula is
required to describe a dynamics which is no longer unitary, as in the case of quantum open systems
(see [101]).

Given a real separable Hilbert spaceH, a vector y ∈ H, a map f ∈ F(Ht ) and two self-adjoint
trace class operators L1, L2 such that (I + L1) is invertible and L2 is nonnegative, it is possible to
prove the following result

∫̃
H

e
i
2�

〈x,(I+L)x〉e〈y,x〉 f (x)dx = det(I + L)−1/2
∫
H

e
−i�
2 〈k−iy,(I+L)−1(k−iy)〉dμ f (k), (50)

where L = L1 + i L2.
The left hand side of (50) is defined as the limit of sequences of finite dimensional approximations
as in (28), while the right hand side is an absolutely convergent integral with respect to the finite
complex Borel measure μ f which is related to the map f via (16). Eventually, det(I + L) denotes
the Fredholm determinant of the operator (I + L).

By considering Schrödinger-Belavkin position equation (47), it is possible to prove (see [99] for
details) that there exists a strong solution which admits a infinite dimensional oscillatory integral
representation of the form

ψ(t, x) =
∫̃
e

i
�
St (γ )−λ

∫ t
0 (γ (s)+x)2dse

∫ t
0

√
λ(γ (s)+x)dW (s)dsφ(γ (0) + x)dγ

= e−λ|x |2t+√
λx ·ω(t)

∫̃
Ht

e
i
2�

〈γ,(I+L)γ 〉e〈l,γ 〉e−2λ�
∫ t
0 x ·γ (s)ds

· e−i
∫ t
0 V (x+γ (s))dsφ(γ (0) + x)dγ

where Ht is the Cameron-Martin Hilbert space, l ∈ Ht , l(s) = √
λ

∫ t
s ω(τ)dτ and L = i L2, with

L2 : Ht → Ht , (γ1, Lγ2) = −2iλ�

t∫
0

γ1(s)γ2(s)ds.
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1 Introduction

This paper is a personal look back at some of the work I have done with Sergio
Albeverio andwork that was heavily influenced by him. Thoughwritten as a personal
recollection, I hope the article will be of some interest to new researchers in the field
whomight be interested in the background to the results of some of that work. I do not
intend this to be a standard mathematical paper with precisely stated theorems and
rigorous proofs; indeed most ideas are stated in the way we typically ‘understand’ or
view mathematical results, which is quite different from the way we formally state
them. Technical accounts are available in the references.

This article is focused on two and three-dimensional gauge theories, but Sergio
Albeverio’s influence on me is seen in other published works, such as [2, 9], as well
as unpublished work.
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2 The Chern-Simons Functional Integral

In August 1995, I arrived at the Ruhr University in Bochum to work as a Humboldt
Fellow in Professor Sergio Albeverio’s research group. The year 1995–1996 was
a very productive year for me and had a permanent impact on my interests and
work, with Sergio’s influence playing a determinative role for decades to come. That
year I was also influenced by interactions with many other researchers in his group,
including Claas Becker, Alexei Daletskii, Astrid Hilbert, Pavel Kurasov, Konstantin
Makarov, Barbara Rüdiger, Victoria Steblovskaya, and numerous others.

On my first day at Bochum, Sergio introduced me to the problem of giving a
mathematically rigorous definition of the Chern-Simons functional integral. I had
just completed a work with my colleagues at LSU on infinite-dimensional distribu-
tions, and Sergio suggested we try using some of the technology from white noise
distribution theory to construct the Chern-Simons integral. He shared with me work
he had done with his former student Schäfer [7], using Fresnel integrals to define
Chern-Simons functional integrals, and pointed to a paper by Fröhlich andKing [26].

2.1 The Chern-Simons Action

For our discussion here wewill work over three-dimensional Euclidean spaceR
3 and

a compact Lie group G whose Lie algebra L(G) is equipped with an Ad-invariant
metric 〈·, ·〉. For our purposes here, a connection A over R

3 is a smooth 1-form
on R

3 with values in the Lie algebra L(G) of a compact Lie group. We take the
Chern-Simons action to be given by

CS(A) =
∫

R3

cs(A), (1)

where

cs(A) = 〈A ∧ d A〉 + 1

3
〈A ∧ [A, A]〉. (2)

The notation needs some unpacking. Let A and C be L(G)-valued 1-forms, and B
an L(G)-valued 2-form. For convenience let {E j } be a basis of L(G); then

[A,C](X,Y ) = [A(X),C(Y )] − [C(Y ), A(X)], (3)

for all tangent vectors X,Y to R
3, and

〈A ∧ B〉 =
∑
j,k

A j ∧ Bk〈E j , Ek〉, (4)

where we have used the basis {E j } to write A = ∑
j A j E j and B = ∑

k Bk Ek .
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2.2 Some Background

What is the origin of the formula (2)? Let us take a historical detour with this as our
initial and final point.

The classical Gauss-Bonnet formula says that for a geodesic triangle on a surface,
the integral of the curvature over the triangle is equal to the excess of the sum of
the angles over π . This result is a consequence of Gauss’s 1825 definition of surface
curvature [27]. Gauss defined the curvature of a piece of a surface � ⊂ R

3 as the
area of the image of this piece on the unit sphere S2 under a smooth map ν: � → S2,
which associates to each point p a unit normal ν(p) to the surface at p; this is the
immediate counterpart of the curvature of an arc in R

2. Combined with Thomas
Harriot’s observation about the area of a geodesic triangle on S2 being the excess of
the sum of the angle of the triangle over π , this leads to the Gauss-Bonnet formula.
A formal proof uses an application of Stokes’ theorem, with the curvature being
viewed as the differential of an angle-valued 1-form (a kind of ‘potential’ if one
thinks of the curvature as somehow representing ‘field strength’). Triangulating a
surface and adding up the angle-excesses over all the triangles leads to the Gauss-
Bonnet formula: the integral of the curvature of a compact oriented closed surface is
2π times the Euler characteristic of the surface.

The natural challenge from the Gauss-Bonnet formula is to generalize it to higher
dimensions. This led eventually to Chern’s generalization [14, 15] of the Gauss-
Bonnet formula (with earlier work of Allendoerfer andWeil [12]): the integral of the
Pfaffian of the curvature form on an even dimensional compact orientedmanifold is a
multiple of the Euler characteristic of the manifold. In Chern’s proof the the strategy
of finding a potential for the curvature appears in a highly sophisticated form.The
role of the potential is played by cs(A):

d cs(A) = 〈F A ∧ F A〉, (5)

where F A is the curvature 2-form

F A = dA + [A ∧ A]. (6)

The Chern-Weil form 〈F A ∧ F A〉 is invariant under gauge transformations

A �→ g−1Ag + g−1dg,

where g: R3 → G is any smooth mapping. However, cs(A) lacks this symmetry. As
in the case of the Gauss-Bonnet formula, the ‘potential’ for the surface curvature
involves an ‘angle’ variable. In the more sophisticated setting, the potential for the
Chern-Simons form cs(A) lives not on the base manifold but on a bundle over this
base manifold.

For an expository account with more details on the Chern-Simons action from the
point of view of a classical dynamical system, see [48] and references therein.
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2.3 Functional Integrals

In the Feynman path integral approach to quantum mechanics, time evolution of the
state of a system is described by integrating against quantities of the form

∫

C

e
i
�
S(γ ) Dγ,

where γ is a path describing the evolution of the system, from an initial state to
a final, and S(·) is the action function that governs the classical dynamics of the
system. The integration is over the infinite-dimensional space C of all possible paths
γ . The classical dynamics emerges from the quantum as a limit, for small values
of the Planck’s constant � (scaled by 2π), in which case the integral focuses on the
extremals of the classical action S. Although enormously useful, both conceptually
and in some cases computationally, Feynman integrals are notoriously difficult to
define rigorously. Even when rigorously definable, the rigorous version isn’t always
of much use. Nonetheless, it is a mathematical challenge to give meaning to such
infinite-dimensional integrals.

Witten’s paper [50] linked Chern-Simons functional integrals

∫

A

e
ik
4π CS(A) f (A)DA, (7)

to the Jones polynomial in knot theory. (See also the short lecture monograph by
Atiyah [11].) Following this work, there was an explosion of interest in both the
Chern-Simons functional integral and knot theory. The integral (7) is, of course,
a formal object lacking a precise mathematical definition. While quantum physics
shows that such ill-defined mathematical quantities or entities can be enormously
useful and deep, it is a mathematical challenge to give rigorous meaning to such
integrals. For more on such integrals see the book by Albeverio et al. [6].

2.4 White Noise Distributions in Brief

The key notion we used in [8] to define integrals of the type (7) is the notion of
an infinite-dimensional distribution. Thus, instead of (7) being an actual integral we
view it as the evaluation of a distribution on a ‘test function’ f . The realization of
such infinite-dimensional distributions in terms of a Gaussian measure background
is the subject of white noise distribution theory, developed by Hida, Kuo, Potthoff,
Streit, and many others. A self-contained and readable account is available in the
book by Kuo [33]. Here we will discuss just the general ideas.
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Let H0 be a real separable Hilbert space. In the theory of Abstract Wiener spaces
one constructs a Banach space B, in which H0 is densely embedded, and a Gaussian
measure on the space B. This theory was founded by Gross [28] and provides a
standard framework for infinite-dimensional analysis (Kuo’s lecture note [32]was the
first expository introduction to the fundamental notions and results in this subject).
The white noise framework is different, in that instead of the Banach space B a
nuclear space H ⊂ H0 is used, with the Gaussian measure μ being defined on
the dual space H′. For our purposes, let us just think of H as a topological vector
space, dense as a subset of H0, and μ as the Borel measure on H′ specified by the
requirement that ∫

H′

eλφ(x) dμ(φ) = e
λ2

2 |x |20 , (8)

where λ ∈ C and x ∈ H. The case of interest is where the topology on H comes
from a family of inner-products 〈·, ·〉p, for p ∈ {0, 1, . . .}. This structure leads to a
topological vector space [H], and its dual [H]′, where

[H] ⊂ L2(H′, μ)

is viewed as the space of infinite-dimensional test functions over the space H′, and
[H]′ the corresponding space of distributions. A useful class of test functions are
those of the form

φ �→ eφ(a)+iφ(b),

for any fixed a, b ∈ H. Using the complexificationHc, we can write this function as
e(a+ib,·).

It is very useful to understand a distribution Φ ∈ [H]′ through its S-transform
SΦ, which is a function on the complexification Hc ofH:

SΦ(z) = Φ
(
e(z,·)) for all z ∈ Hc. (9)

A fundamental theorem in white noise distribution theory, due originally to Potthoff
and Streit [40] provides simple conditions for a function onHc to be the S-transform
of a distribution Φ ∈ [H]′. We used this result to construct a rigorous form of the
Chern-Simons functional integral in [8]. Briefly put, we used for f in (7) an exponen-
tial test function and, through reasonable but formal computation, worked out what
the S-transform of the Chern-Simons distribution should be. Then it was straightfor-
ward to check that this function does satisfy the criteria for being the S-transform of
a distribution in H′. The Hilbert space H0 in this case is the space of Lie-algebra-
valued 1-forms A0dx0 + A1dx1, where gauge fixing is used to eliminate one of the
components of a 1-form on R

3.
Although this method constructs a rigorous candidate for the Chern-Simons inte-

gral it does not provide an evaluation of the integral on functions of geometric
interest, such as traces of holonomies around loops. Atle Hahn, who was Sergio’s
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doctoral student in the late 1990s, took up this task and wrote several papers, includ-
ing [1, 30], connecting our construction, and other more sophisticated constructions,
to topological invariants of knots and links.

3 Yang-Mills in 2 Dimensions

Sergio’s influence on my work goes further back to well before I met him. While
a graduate student at Cornell in the late 1980s, I came across several preprints [3–
5] by Sergio and coauthors, which constructed random variables, with values in
Lie groups, that could describe stochastic parallel-transport. In those days hard copy
preprints, in this case fromBiBoS, were available at the CornellMathematics Library
(White Hall) and at other research libraries. I was fascinated by the elegance of the
constructions and tantalized by the possible implications. I went on to construct the
Yang-Mills measure for gauge fields over S2 [41, 42] by a different method but the
ideas in the papers of Sergio and coauthors remained a permanent influence on me.

The literature on 2-dimensional Yang-Mills theory has grown too vast to even
attempt a brief review here. Instead I will cite just a few papers and sketch the most
basic ideas related to work I am familiar with.

3.1 Some Background

In Heisenberg’s theory [31] of the nucleon, the neutron and proton can be viewed
as different states of the same particle or system. This is analogous to the electron
with two spin states, but in the case of the nucleon it is not the spin but something
else which, following Wigner, is called ‘isospin.’ There is a process by which the
neutron transitions to the proton state through interaction with an external field,
thereby emitting a boson W− that is an excitation of this field. This is analogous
to a particle, say a proton, transitioning from one spin state to another, by emitting
a photon, an excitation of the electromagnetic field. The photon has zero rest mass
and travels at the speed of light. The gauge boson, on the other hand, is massive
and the dynamics of the gauge field is governed by equations that resemble but are
not the same as Maxwell’s equations. The equations governing the gauge field are
the Yang-Mills equations. These ideas were discovered and developed by Yang and
Mills [54]. (For simplicity, we omit here the role of the Higgs field.)

The gauge field potential is described by a 1-form A on spacetime M with values
in the Lie algebra L(G) of the gauge symmetry group G of the system (it is SU (2)
for a two-state system like the nucleon model). The field strength is given by

F A = dA + A ∧ A,
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where the notation is based on taking G to be a matrix group. Finally, the dynamics
is obtained as extremal of the Yang-Mills action

SYM(A) = −
∫

M

Tr(F A ∧ ∗F A), (10)

where ∗F A is the Hodge dual of F A. Briefly put, the idea is that, if M is Riemannian
(instead of Lorenztian), the Yang-Mills action is like the L2-norm of F A, and k is a
physical constant. The physics is invariant under gauge transformations

A �→ g−1Ag + g−1dg, (11)

where g: M → G is a any smooth mapping.
More generally, at least from the mathematical viewpoint, a gauge field is

described by a connection on a bundle over spacetime. The relationship between
gauge theory and the mathematical formalism of connections on bundles was made
explicit in the work of Wu and Yang [53].

3.2 The Yang-Mills Measure

We work with a spacetime � that is a Riemannian manifold, as opposed to the
physical Lorentzian one. Let A be the space of L(G)-valued 1-forms on �, and Go

the space of smooth maps � → G, with value e at a fixed basepoint o ∈ �. In the
approach of constructive quantum field theory, the object of fundamental interest is
the measure μT

YM given by

dμT
YM(A) = 1

Z
e− 1

2T SYM(A) DA, (12)

and is to be taken on the quotient space A/Go. Once we have this measure, we are
interested in expectation values of the type

∫

A/Go

f
(
hc1(A), . . . , hck (A)) dμT

YM(A), (13)

where hc(A) is the holonomyof A around a loop c, and f is any function of interest on
Gk . Typically, f is a product of traces. In this case, we should think of the Yang-Mills
measure as living on the full quotient

M = A/G,

where G is the space of all gauge transformations.
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3.3 The Yang-Mills Measure for Two-Dimensional Manifolds

Now we focus on the case where the underlying manifold is a two-dimensional
Riemannian manifold �.

A measure can be constructed that is a rigorous form of the measure μT
YM. It lives

on a probability space that we could view as a kind of completion of the spaceA/Go.
The construction of this measure for� = R

2, as well as computing loop expectation
values, was carried out in [29] and simultaneously, in a different approach, by Driver
[19]. It was Driver’s approach that I pursued further in developing the theory over
compact surfaces. There were other works in the area, including several papers by
Fine [23–25], who approached the problem at the level of the functional integral.
A major advance was made by Lévy [35], whose approach made it possible to
define stochastic parallel transport for a much larger class of loops. Lévy’s approach
culminated in a very general theory of ‘Markovian holonomy fields’ [36].

On the probability space on which μT
YM is defined, there are G-valued random

variables hc associated to loops c on �, based at o, and the distributions of these
variables can be explicitly computed.

3.4 The Yang-Mills Measure for Simplicial Complexes

For our purposes here let me focus on a discrete framework. Let G be a compact Lie
group, with a given Ad-invariant metric on its Lie algebra L(G). The heat kernel on
G is a function (0,∞) × G → R : (t, x) �→ Qt (x) that satisfies the heat equation

∂Qt(x)

∂t
= 1

2

GQt (x),

where 
G is the Laplacian over G, with initial condition

lim
t↓0

∫

G

f (x)Qt (x) dx = f (e),

for any continuous function f on G. The heat kernel is a smooth function, and
is the density of a probability measure on G. Moreover, Qt (xyx−1) = Qt (y) and
Qt (x−1) = Qt (x) for all x, y ∈ G. Another important property of the heat kernel is
the convolution formula:

∫

G

Qu(xy
−1)Qv(y) dy = Qu+v(x) (14)

for any u, v > 0, the integration being with respect to unit-mass Haar measure on G.
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Now let T be a two-dimensional simplicial complex; let E be the set of oriented
edges, V the set of vertices, and F the set of oriented 2-simplices. To each face F we
associate an ‘area’ |F | > 0. We pick a ‘positive orientation’ on each edge: E

+ be a
subset of E such that for every edge e ∈ E, either e is in E

+ or the reverse e−1 is in
E

+. Let AT be the set of all maps

x : E → G : e �→ xe = x(e)

for which x(e−1) = x(e)−1 for all e ∈ E. We call such a map a connection over T.
For a sequence e1 . . . en of edges e j we define

x(e1 . . . , en) = x(e1) . . . x(en).

Next, for any t > 0, we define a measure νt on AT by

dνt (x) =
∏
F∈F

Qt |F |
(
x(∂F)

)
dx, (15)

where dx is the product of unit-mass Haar measures, one for each edge in E
+. The

notation ∂F is ambiguous but this makes no difference because of the properties of
the heat kernelmentioned earlier. Specifically if F is the simplex specified by vertices
a, b, c then we can take any initial point, say the vertex a, and take ∂F = e1e2e3,
where e1 is the edge from a to b, e2 runs from b to c, and e3 runs from c back to a.

For a recent rendition of the theory see Lévy’s paper [39]. The defining formula
(15) has its origins in the paper by Driver [19] and in my papers such as [43]; my
thinking was influenced by earlier works of Sergio and coauthors on ‘stochastic
multiplicative measures’ [5]. Of course, there is also much inspiration drawn from
the physics literature, especially the two papers of Witten [51, 52].

A discrete version of the Yang-Mills measure is of interest, especially because it
is an exact discrete form of, not an approximation to, the continuum measure. It is
given by AT normalizing nut :

μ
T,t
YM = 1

νt (AT)
νt . (16)

The normalizer
ZT
YM = νt (AT)

can be thought of as a partition function for this theory, viewed as a statistical
mechanical system in some sense.

The relationship between this and (12) is a long story. To make just one brief
comment connecting the discrete with the continuum theory, think of T as a trian-
gulation of the surface � over which we have the Yang-Mills fields. For example, if
T triangulates a torus, then the partition function works out to be
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ZT
YM =

∫

G2

QT (aba−1b−1) da db, (17)

where we have taken the total surface area of � to be 1.
The preceding theory can be developed quite generally, including for connec-

tions on non-trivial bundles and also for connections over surfaces with boundary
components (see [43, 46]).

3.5 The Low-T Limit

Duringmy stay at Bochum in 1995–1996, I worked with Claas Becker, who was then
doing his doctoral work with Sergio, on the discrete Yang-Mills measure.We showed
that when two surfaces, with boundary, are sewn together along the boundary, the
corresponding Yang-Mills measures glue together, through a kind of convolution,
into a Yang-Mills measure for the combined surface.

A topic of great interest was the limit of the Yang-Mills measure μT
YM as the

‘temperature’ T was frozen down to 0.Witten [51] showed that the partition function
ZT
YM leads, in the T ↓ 0 limit, to the volume of the moduli space of flat connections

over the surface, where the volume is with respect to a certain natural symplectic
form in the case where � is orientable. A glance at formula (12) shows that it is
certainly reasonable that the limiting measure would live on the flat connections,
and a more thorough examination of the Yang-Mills action in terms of a moment
map also shows, heuristically, why the limiting measure should be the symplectic
volume measure in the orientable case. During my time in Bochum, visiting Sergio,
and later, I studied these ideas [45–47] and, building on the work with Becker, was
able to obtain a rigorous proof for the volume formula for the moduli space of flat
connections, for closed orientable surfaces of genus > 1, and also for the behavior
of the limiting measure itself. Some of this work, such as the study of Yang-Mills
connections over surfaces, I did during the U-Bahn ride from Herne, where I lived,
and Bochum. Many ideas developed through encouraging remarks and observations
that Sergio made over lunch or dinner.

3.6 The Large-N Limit

Another limit of the Yang-Mills measure is the large-N limit for the gauge group
G = U (N ). There is a large literature in physics and also a considerable literature
in the rigorous mathematical approach. See for example, Lévy’s overview [39] and
the papers by Driver et al. [20–22]. Some of this work was inspired by ideas from a
paper by Singer [49].
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3.7 Concluding Thought

This article has focused on low-dimensional gauge theories, but Sergio Albeverio’s
influence on my work has continued over the years in many ways, and I hope it will
do so for many more years to come.
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The Allure of Infinitesimals: Sergio
Albeverio and Nonstandard Analysis

Tom Lindstrøm

Abstract I give a survey of Sergio Albeverio’s work in nonstandard analysis, cov-
ering applications to operator theory, stochastic analysis, Dirichlet forms, quantum
mechanics, and quantum field theory, and making an attempt at putting his con-
tributions into the historical context of what has happened in the field before and
since.
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Of themore than one thousand items in SergioAlbeverio’s bibliography, I have found
somewhere between twenty-five and thirty that deal with nonstandard analysis in an
essentialway. That is not a large percentage, but the picture changeswhenone realizes
that two of these items are books containing substantial amounts of independent
research, and it changes even more when one takes the contributions of Sergio’s
students and collaborators into account.

The purpose of this paper is to trace Sergio’s contributions to nonstandard analysis
in a broad sense, covering not only his own books and papers, but also those of his
students and many associates. As nonstandard analysis is not so much a subject as a
method—and a method that can be applied in all areas of mathematics that touches
on the infinite—it has been a challenge to find the best structure for the exposition:
Should it be organized chronologically or thematically? Having tried both, I have
settled for a presentation that is primarily chronological, but where I usually—but
not always—allow myself to follow a theme to the end once it is started. As Sergio
has often been concentrating on different subjects in different periods, this approach
seems to work reasonably well, and it has the advantage of keeping a sense of history
without interrupting the thematic developments too much.

I have had to restrict myself. I do not discuss Sergio’s many expository articles
(such as [1–9]) although they are often very instructive, and I have made no attempt
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to connect the nonstandard papers to the rest of Sergio’s production, although there
are lots of overlaps, especially in areas such as point interactions, Dirichlet forms,
and quantum fields. I have also had to prioritize, and I may clearly be accused of
giving preferential treatment to a book [19] that I have myself contributed to, but my
defense is that this book laid the foundations for most of what followed later, and
that it gives a unique impression of Sergio Albeverio’s and Raphael Høegh-Krohn’s
vision of mathematical physics in the 1980s.

The topics we shall look at span from operator theory to stochastic analysis, with
Dirichlet forms as a natural meeting point. And as usual with Sergio, physics is
always present—if not center stage, so at least lurking in the wings.

1 Nonstandard Analysis

Although there isn’t room in this paper for a systematic introduction to nonstandard
analysis, I should say a few words about the subject for those who are not familiar
with it ([81] contains more or less what I would have said if I had ten extra pages,
and [84] is a full introduction along the same lines).

The basic object of nonstandard analysis is a set of nonstandard reals (or hyperre-
als) ∗

Rwhich extends the ordinary real lineR by adding infinitely large and infinitely
small (infinitesimal) numbers.1 The extension ∗

R is an ordered field, and hence we
can calculate with numbers in ∗

R and compare their size just the way we are used to
from R.

Figure1 shows the structure of ∗
R: We have infinite negative numbers, finite

numbers, and infinite positive numbers. Eachfinite number x is of the form x = a + ε

where a ∈ R and ε is infinitesimal.We call a the standard part of x and write a = ◦x
or a = st(x). We shall also write x ≈ y to denote that x and y are two infinitely close
hyperreals, i.e. that x and y differ by an infinitesimal.

What separates the hyperreal numbers frommost other extensions ofR, is that sets
and functions also extend: Any set A ⊆ R has a canonical extension to a subset ∗A
of ∗

R, and every function f : R → R has a canonical extension ∗ f : ∗
R →∗

R such
that ∗ f (x) = f (x) for all x ∈ R. These extensions preserve the defining properties of
the original objects, but interpreted in a nonstandard context; e.g. will ∗(a, b) consist

1 Actually there isn’t just one set of hyperreals, but infinitely many, but for the purpose of this
paper it doesn’t matter much which one we choose as long as it is sufficiently rich (in technical
terminology, it should be ℵ1-saturated).



The Allure of Infinitesimals: Sergio Albeverio and Nonstandard Analysis 189

of all nonstandard numbers between a and b, and the nonstandard extension of the
exponential function will satisfy ∗exp(x + y) =∗ exp(x)∗exp(y) for all x, y ∈ ∗

R.
As there is usually no danger of confusion, I shall drop the asterisk on the nonstandard
extension of a function and write f instead of ∗ f .

The nonstandard sets and functions that arise from ordinary sets and functions in
this way are (rather confusingly) referred to a standard objects in nonstandard par-
lance. They are what make nonstandard calculus possible, but they are not sufficient
for more serious applications of the theory; for this, we need to extend the theory to
so-called internal sets and functions. It would take me to far afield to give a good
description of these sets and functions here; let me only say that they are the sets and
functions that can be handled by the theory in a good way, just as the measurable
sets and functions are the sets and functions that be handled by measure theory in a
good way.

An interesting class of internal sets are the hyperfinite sets—these are infinite sets
withmost of the formal properties of finite sets. To define them, one first observes that
the set ∗

N of nonstandard natural numbers consists of the ordinary natural numbers
plus infinitely large elements. If N ∈ ∗

N is infinite, the set A = {1, 2, 3, . . . , N } is
a hyperfinite set with internal cardinality N , and any other set B for which there is
an internal bijection φ : A → B, is also a hyperfinite set of internal cardinality N .
Hyperfinite sets occur naturally; e.g. is T = {0, 1

N , 2
N , . . . , N−1

N } a hyperfinite set
with N elements that can serve as a “hyperdiscrete” timeline.

As already mentioned, hyperfinite sets have many of the combinatorial properties
of finite sets. If P is an internal function and � is a hyperfinite set, we may, e.g.,
sum P over �—i.e. there is a canonical way to define the sum

∑
ω∈� P(ω). If

this sum equals 1, we may define an internal probability measure on � by putting
P(A) =∑ω∈A P(ω) for all internal A ⊆ �. We can then “standardize” P by taking
standard parts: ◦P(A) = st(P(A)).

The internal sets form an algebra, but not a σ -algebra, and hence ◦P is not a mea-
sure. It turns out, however, that the conditions of Carathéodory’s extension theorem
are trivially satisfied, and hence ◦P can be extended to a (complete) measure PL .
This measure is known as the Loeb measure of P (the Loeb measure construction
was introduced by Peter Loeb in [91] and is much more general than what I have
described here).

For a glimpse of what this can be used for, let T = {0, 1
N , 2

N , . . . , N−1
N } be the

hyperfinite timeline introduced above, and let � be the set of all internal functions
ω : T → {−1, 1} (think ofω as a sequence of coin tosses, one for each t ∈ T ). Then�

is a hyperfinite set with internal cardinality 2N , and we let P be the internal counting
measure on �. Define a process B : � × T →∗

R by

B(ω, t) =
∑

s<t

ω(s)
√

�t, where �t = 1

N
.

Anderson [25] showed that the standard part b of B (properly defined) is a Brownian
motion on the Loeb space (�, PL), and that stochastic integrals with respect to b can
be recovered from hyperfinite sums
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∑

s<t

X (ω, s)�B(ω, s),

where�B(ω, s) = B(ω, s + �t) − B(ω, s) is the forward increment of B at time s.
We shall return to Anderson’s random walk again and again throughout this paper.

There is one more use of hyperfinite sets that I need to mention. The notion of
finite dimensional vector spaces overR extends to a notion of hyperfinite dimensional
vector spaces over ∗

R. To get one,wemay startwith a hyperfinite set of basis elements
{en}Nn=1 for an infinitely large N ∈ ∗

N and form all hyperfinite sums
∑N

n=1 xnen , xn ∈
∗
R. A usual way to obtain such a structure, is to start with a standard Hilbert space
with basis {en}n∈N and look at its nonstandard extension ∗H (there are nonstandard
extensions of everything, not just ∗

R) and cut off its basis {∗en}n∈ ∗N at some infinite
N . In this way we get an outer approximation of H by something that is formally
finite dimensional, and where all the techniques of linear algebra apply.

2 Sergio Albeverio’s First Contribution to Nonstandard
Analysis

Nonstandard analysis was invented by Abraham Robinson around 1960 [101]. He
was not the first to construct an ordered field extension of the reals (see e.g. Levi-
Civita [77] and Hahn [58]), but as earlier constructions did not have a way to treat
transcendental functions, they could not be used for serious infinitesimal calculus
in the spirit of Newton and Leibniz. The first book-length treatment of nonstandard
analysis was a set of lecture notes [92] by W. A. J. Luxemburg in 1962, and the
first edition of Robinson’s own book [102] followed in 1966. The first breakthrough
for nonstandard analysis as a research tool also came in 1966 when Bernstein and
Robinson [33] solved the invariant subspace problem for polynomially compact
operators.

In the summer of 1976, Edward Nelson delivered an AMS address [93] on a
new axiomatic approach to nonstandard analysis called Internal Set Theory (IST).
At the time, Sergio was in Oslo working with Raphael Høegh-Krohn. They both
knew Nelson from Princeton and were interested in his work, but not so much for
the new framework as for the applications to probability theory and mathematical
physics. There was one particular example that struck their imagination—Nelson’s
nonstandard treatment of a problem that had previously been discussed by Berezin
and Faddeev [32] and Friedman [57]: Describe all Schrödinger operators in R

d

generated by a singular potential of the form λδ, where δ is the Dirac δ-function
at the origin. There are no nontrivial examples for d > 3, but they exist for d ≤ 3,
and Nelson’s thought was to use nonstandard analysis to give a description of these
potentials for d = 3. The idea (a nonstandard version of Friedman’s approach) was
simple and natural: Choose an infinitesimal ε > 0 and let V (x) = 3

4πε2
χε(x), where

χε is the indicator function of the ball around the origin with radius ε. Consider
operators of the form H(α) = −� + αV for standard α. Nelson finds that H(α) is
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infinitely close to the unperturbed operator −� except when α = −π3

3 (2n + 1)2 for
an integer n. For such α (the standard part of ) H(α) is a nontrivial perturbation of
−�.

Sergio and Raphael soon realized that Nelson’s parametrization was too coarse to
give all singular perturbations of −�. Their heuristic calculations showed that they
could get all perturbations by instead using the parametrization H(λ) = −� + λχε ,
where λ runs through all of ∗

R, and that the nontrivial perturbations would occur
when λ was of the form

λ(k, α, ε) = −
(

k + 1

2

)2
π2

ε2
+ 2

ε
α + β,

where k is a standard integer and α and β are two (standard) real numbers (a quick
calculation will show you that Nelson’s result corresponds to the situation where
α = β = 0). Moreover, their calculations indicated that which perturbation of −�

they got, depended only onα and not on k andβ (and hence all Nelson’s perturbations
are the same as they all correspond to α = 0).

The results seemed interesting enough to publish, but Sergio and Raphael needed
assistance in turning their heuristic calculations into solid nonstandard analysis, and
sought the help of the logician Jens Erik Fenstad. The collaboration was successful
and resulted in a joint paper [18], which in addition to treating singular perturbations
from two different perspectives also contained a section on singular Sturm-Liouville
problems.

The activity inOslowas seminar-driven, and among the participants in the seminar
were Bent Birkeland, Dag Normann, and myself as a beginning graduate student.
Bent wrote a paper [29] which treated the singular Sturm-Liouville problem as a
problem about hyperfinite difference equations, but after a while the interest of the
seminar turned to the new developments in nonstandard probability theory. We stud-
ied Anderson’s paper on Brownian motion and Itô integration [25], and then turned
to the preprint version of Keisler’s monograph [69] on infinitesimal stochastic anal-
ysis. A natural question at the time was how to extend Anderson’s and Keisler’s
work on diffusions to martingales, and I wrote a thesis [78] on stochastic integra-
tion with respect to martingales (many of the results—and more—were discovered
independently by Hoover and Perkins [66]).

3 Nonstandard Methods in Stochastic Analysis
and Mathematical Physics

At some point (I am not quite sure when) Sergio, Raphael, and Jens Erik decided to
write a book on nonstandard analysis. Originally, it was meant as a brief introduction
with just the basic theory and a few striking applications, but it soon outgrew the
original plan. After I had finished my degree and secured a postdoc position with
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Keisler in Wisconsin, I was invited to join the project. Over the following years we
were often asked when the book would be finished, and we would always answer
“before Christmas” and be careful not to specify which Christmas we were talking
about. The book [19] eventually appeared in 1986, some six or seven years after the
work had started.

Nonstandard Methods in Stochastic Analysis and Mathematical Physics consists
of two parts and seven chapters. The first part (called “Basic Theory” and containing
the first three chapters) corresponds to some extent to the original plan; it contains
the basic theory of nonstandard analysis plus some selected applications: In Chap. 1,
the “chasse au canard”, a study of infinitesimal perturbations of dynamical systems
due to Benoît, Callot, and Diener [30, 31, 34, 51]; in Chap. 2, a nonstandard proof
of the spectral theorem for compact operators (already treated in Robinson’s book
[102]); and in Chap. 3, Anderson’s nonstandard construction of Brownian motion
and a few applications of Loeb measures to limit measures and measure extensions,
some new, but most taken from [79].

The second part of the book is called “Selected Applications” and as it contains
a mixture of original research and reports on (what was then) very recent research,
I am going to spend some time on each chapter, especially as I also aim to give an
account of subsequent developments where they fit in.

3.1 Chapter 4: Stochastic Analysis

This chapter begins with a quick treatment of Anderson’s version of the Itô integral.
One of the big questions at the time was how to extend Anderson’s theory from
Brownian motion to martingales, and Sects. 4.2–4.4 reports on the results obtained
by Lindstrøm [78] and Hoover and Perkins [66]. The key to the theory is the close
relationship between an internal martingale and its quadratic variation, which can be
used to study both path properties and stochastic integrals (see Stroyan and Bayod’s
book [107] for another exposition of the theory published about the same time).

Section4.5 deals with stochastic differential equations, and reports on work by
Keisler [69] and his student Kosciuk [76] with some minor simplifications. The
basic idea is simple. Translated into a nonstandard setting, the stochastic differential
equation

dx(t) = f (t, x(t)) dt + g(t, x(t)) db(t) (1)

becomes a stochastic difference equation

�X (t) = f (t, X (t))�t + g(t, B(t))�B(t) (2)

which, given an initial condition, obviously has an inductively defined solution. The
question is when a solution of (2) can be turned into a solution of (1)? As long as the
coefficients f and g are continuous in the space variable, it is not very hard to see
how this can be done. The result can be extended to jointly measurable coefficients
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provided det g is bounded away from zero, but this is more complicated and relies on
a deep inequality by Krylov. Kosciuk [76] showed that it is even possible to obtain
a solution when the diffusion degenerates as long as the coefficients are continuous
on the set of degeneracies, but as later pointed out in [83], the solutions tend to be
so nonunique that one loses control.

Section4.6 deals with stochastic control theory and is based on work by Nigel
Cutland (see his two survey papers [37, 39] for more information), although the pre-
sentation ismodified fromapathwise approach to an approachbasedon anonstandard
version of Girsanov’s theorem. Cutland’s fundamental insight was that relaxed (i.e.
measure-valued) controls occur naturally as the standard part of wildly oscillating
nonstandard controls, and that this can be used to obtain new existence results for
optimal controls of partially observed systems.

Section4.7 takes a quick look at Brownian motion and stochastic integration in
Hilbert spaces, based on my paper [80]. The theory starts with a hyperfinite dimen-
sional version of Anderson’s random walk, and obtains a standard version of the
process by taking standard parts in a norm weaker than the Hilbert space norm. Just
as in the finite dimensional theory, stochastic integrals of the standard process can
be obtained from hyperfinite sums.

Although infinite dimensional stochastic analysis doesn’t play a big part in [19], it
has later become a central area of nonstandard research. In a series of papers (neatly
summed up in their book [36], see also [35, 46, 47] for later developments), Marek
Capiński and Nigel Cutland developed a nonstandard approach to stochastic fluid
dynamics that is formulated in terms of Anderson-like random walks on hyperfinite
dimensional spaces. In another direction, Horst Osswald produced a series of papers
on a nonstandard approach to Malliavin calculus, culminating in his book [98]. For
other papers on nonstandard Malliavin calculus and related topics, see [44, 48–50,
88, 89], and Chap. 3 of [45].

The last section of Chap.4 deals with white noise and Lévy Brownian motion,
and is based on the Diplomarbeit [104] of Sergio’s student Andreas Stoll. As Lévy
Brownianmotion is amulti-parameter process,wenowhave to replace our hyperfinite
timeline by a hyperfinite lattice in ∗

R
d :

� = {(k1�t, k2�t, . . . , kd�t) : ki ∈∗
Z and |ki | ≤ N },

where �t is infinitesimal and N is so large that N�t is infinite. The sample space �

consists of all internal maps ω : � → {−1, 1}, and the internal probability measure
P is simply the normalized counting measure on �. If A is an internal subset of �,
we define

χ(A) =
∑

a∈A

ω(a)�td/2 .

Obviously, χ is our nonstandard representation of white noise. Stoll proved that the
standard part of the random field λ given by
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λ(x) − λ(y) = kd
∑

a∈A

(
1

||x − a||(d−1)/2
− 1

||y − a||(d−1)/2

)

χ({a})

is a Lévy Brownian motion for the right choice of the scaling parameter kd . He
also used the representation to give a Donsker type invariance principle for Lévy
Brownian motion.

As was pointed out in [87], Stoll’s construction is easily generalized to fractional
Brownian fields; just replace Stoll’s formula above by

λ(x) − λ(y) = kd,p

∑

a∈A

(
1

||x − a||(d−p)/2
− 1

||y − a||(d−p)/2

)

χ({a}),

where p = 2H is twice the Hurst exponent.

3.2 Chapter 5: Hyperfinite Dirichlet Forms and Markov
Processes

This chapter consists entirely of original research that has not been published else-
where. The inspiration for the chapter was twofold—on the one hand the deep study
of (standard) Dirichlet forms and their applications that Sergio and Raphael had
conducted over the previous decade, and on the other hand the need to build a solid
foundation for the nonstandard study of singular perturbations (we shall take a closer
look at the latter when we get to Chap. 6).

The first two sections lay the foundations for the rest by constructing a theory
for bilinear forms on hyperfinite dimensional inner product spaces and describing
their connection to bilinear forms on Hilbert spaces. Starting with a hyperfinite
dimensional linear space H with an inner product 〈·, ·〉, we can construct a standard
Hilbert space in the following way: Let Fin(H) consist of the elements in H with
finite norm, and define an equivalence relation on Fin(H) by

u ∼ v ⇐⇒ ||u − v|| ≈ 0 .

If we let ◦u denote the equivalence class of u, we may introduce an inner product on
◦H := Fin(H)/ ∼ by

〈◦u,◦ v〉 =◦ 〈u, v〉.

It is not hard to check that (◦H, 〈·, ·〉) is a Hilbert space called the nonstandard hull
of the hyperfinite space H .

The question we want to look at is this: Given an internal, nonnegative definite,
symmetric, bilinear form E(·, ·) on H , can we define a corresponding form E on H?
It obviously suffices to define the symmetric terms E(u, u) as we can get the rest by
polarization.
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If E is bounded in the sense that there is standard number K such that

E(u, u) ≤ K ||u||2

for all u ∈ H , the problem is easy. In this case, u ≈ v implies E(u, u) ≈ E(v, v), and
we can just put E(◦u,◦ u) =◦ E(u, u) as it doesn’t matter which representative u we
choose from the equivalence class ◦u.

When E is unbounded, there are two complications. First of all, the standard part
E will now be an unbounded form, and hence only partially defined. This means that
we have to determine the domain D(E) of E . The second complication is that since
we now may have ◦E(u, u) �= ◦E(v, v) for ◦u = ◦v, it is not clear which value to
choose for E(◦u,◦ u).

There is a quick fix to these problems: Just define (recall that an element x in ◦H
is an equivalence class of elements in H ):

D(E) = {x ∈◦ H | inf{◦E(u, u) | u ∈ x} is finite} (3)

and
E(x, x) = inf{◦E(u, u) | u ∈ x}

for x ∈ D(E). I shall refer to E as the standard part of E . It turns out that E is
always a closed form. This is both convenient and surprising as much of the work in
the standard theory goes into showing that forms are closeable.

The problem with the quick fix is that we don’t have any control over how the
infimum is obtained. To get control, we need to take a closer look at the nonstandard
form E . Just as in linear algebra, E is generated by a symmetric, linear map A : H →
H in the sense that

E(u, v) = 〈Au, v〉.

If ||A|| is the operator norm of A (when E is unbounded, ||A||will be an infinitely large
number), we choose an infinitesimal time increment �t so small that ||A||�t < 1,
and use

T = {0,�t, 2�t, . . .}

as our timeline. Put
Q�t = I − A�t,

where I is the identity operator, and define an internal semigroup by setting Qt =
(Q�t )k for all t = k�t ∈ T . We now define the domain D(E) of the nonstandard
form E to consist of those elements u ∈ H such that

(i) E(u, u) is finite
(ii) E(Qtu, Qtu) ≈ E(u, u) for all infinitesimal t .
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The philosophy (or rationalization) behind (ii) is that Qt is a smoothing operator, and
that the elements in the domain should be so smooth that an infinitesimal amount of
smoothing doesn’t change them much.

Much of the key to the theory is that the elements in D(E) are exactly the elements
in H obtaining the infimum in formula (3), i.e.

D(E) = {u ∈ H | ◦||u|| < ∞ and ◦E(u, u) = E(◦u,◦ u)}

One may now show that the standard form E can be approximated by less singular,
nonstandard objects, e.g., if Gα = (A − α)−1 is the resolvent of A, we get:

E(x, x) = − lim◦α→−∞
◦(α2〈Gαv, v〉 + α〈v, v〉) (4)

where v is any element in the equivalence class x . This formula will play a crucial
part when we analyze singular perturbations of operators in the next chapter.

The first application of the theory above is in Sect. 5.3 where it is applied to the
theory of hyperfinite Dirichlet forms and their associated Markov processes, includ-
ing a study of equilibrium potentials and the proof of a nonstandard version of the
Feynman-Kac formula. The Markov process generated by a hyperfinite Dirichlet
form is a Markov chain with a hyperfinite state space (which may e.g. be a lattice
in ∗

R
d with infinitesimal spacing) and a timeline with infinitesimal increments �t .

The standard part of such a Markov chain is a continuous time (standard) Markov
process, and Sects. 5.4 and 5.5 studies the probabilistic and potential theoretic proper-
ties of these processes in finite and infinite dimension. The last section of the chapter
sketches some applications to quantum mechanics and stochastic differential equa-
tions, but more in terms of illustrations than original research efforts.

Manyyears later, Sergio, in collaborationwithRuzongFan andFrederikHerzberg,
returned to the theory of hyperfinite Dirichlet forms, but as this resulted in another
book [17], it deserves its own section (Sect. 4.3). Except for this book and the papers
it builds on, there has unfortunately not been much done with hyperfinite Dirichlet
forms. I wrote a quite speculative paper [82] on connections to diffusions on mani-
folds and fractals, but when I got to write “serious” papers on diffusions on fractals
[85, 86], I chose not to use Dirichlet forms, and the same was the case with my
student Nyberg [96, 97]. This is rather ironic as many of the subsequent standard
papers used Dirichlet forms.

3.3 Chapter 6: Topics in Differential Operators

This chapter starts and ends with reports of already published results, but the middle
three sections consist mainly of original research. As this is a book about Sergio’s
contributions, I’ll concentrate on the middle part, but would like to say a few words
about the other two sections first.
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Section6.1 deals with singular Sturm-Liouville problems of the form

−Y ′′(x) + μY ′(x) = λY (x), 0 ≤ x ≤ 1,

whereμ is a Borelmeasure. Asmentioned in Sect. 2, this problemwas already treated
in Sergio, Jens Erik, and Raphael’s first paper on nonstandard analysis [18], but in the
book we instead follow the approach by Birkeland [29] who discretized the timeline
to get a hyperfinite difference equation that could be treated by linear algebra (plus
a lot of estimates).

Section6.5 reports on Leif Arkeryd’s nonstandard approach to the Boltzmann
equation (see his own surveys [26–28] for more information). Using nonstandard
truncation techniques, Arkeryd obtained existence and uniqueness results that was
in the forefront of the research at the time.

The final section of the chapter consists of some remarks on the Feynman integral
from a nonstandard perspective.

Let us now turn to the central part of the chapter, Sects. 6.2–6.4, which deals
with singular perturbations of operators with applications to point interactions and
polymer measures. We have already taken a look at point interactions in connection
with [18], but the treatment in Chap. 6 of [19] is much more ambitious and aims to
develop a general framework for singular perturbations of operators. The main tool
is the theory of standard parts of bilinear forms described above. As this is the heart
of the book, I’ll go through the arguments in some detail.

To introduce the problem, consider a nonnegative self-adjoint operator A on some
L2-space (most typically−� on L2(Rd ,m)) and the closed, bilinear form E obtained
by closing

E( f, g) = 〈A f, g〉

If C is a “small” set, we may wonder whether E (and hence A) has a perturbation
supported by C , i.e. a closed form Ẽ that is different from E , but agrees with E on
all functions vanishing in a neighborhood of C . Formally, it is natural to think of
such a form as given by

Ẽ( f, g) = E( f, g) −
∫

C

λ f g dρ̃

where ρ̃ is a measure supported on C and λ is a function on C (we could, of course,
have incorporated λ in ρ̃, but in many applications ρ̃ is a naturally given measure,
and λ is the part we can adjust).

The nonstandard approach starts by replacing the original L2-space L2(X,m) by
a hyperfinite space L2(Y, μ), and the form E by a nonstandard form E on L2(Y, μ)

that has E as its standard part (typically, Y is a hyperfinite lattice in ∗
R

d , and E
is the form generated by a hyperdiscrete Laplacian). We also replace C and ρ̃ by
nonstandard representations B and ρ in a similar way. The problem is now to figure
out when the perturbed, nonstandard form
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Ẽ(u, v) = E(u, v) −
∑

x∈B
λ(x)u(x)v(x)ρ(x)

has a standard part different from E . For both physical and mathematical reasons,
we need the perturbed form to be lower bounded, i.e. Ẽ(u, u) ≥ −K ||u||2 for some
finite K .

If L is the operator generating E , the operator H generating Ẽ is given by

Hu(x) = Lu(x) − λ(x)u(x)
ρ(x)

μ(x)
.

The best way to control the perturbation seems to be through the resolvents, and if
we let Gα = (L − α)−1 be the resolvent of L , the resolvent of the perturbed operator
H is given by

(H − α)−1 = Gα

(

I − λρ

μ
Gα

)−1

= Gα

∞∑

l=0

(
λμ

ρ
Gα

)l

.

Rearranging the terms in the Neumann series and then adding them up again (see
[19] for the calculations), we end up with the expression:

(H − α)−1 f (x) = Gα f (x) + Ĝ∗
α

(
1

λ
− G ′

α

)−1

Ĝα f (x),

where the operator Ĝ : L2(Y, μ) → L2(B, ρ) and its adjoint Ĝ∗
α : L2(B, ρ) →

L2(Y, μ) are determined through

Ĝαg(x) =
∑

y∈Y
Gα(x, y)g(y)μ(y),

and G ′
α : L2(B, ρ) → L2(B, ρ) is defined by

G ′
αg(x) =

∑

y∈B
Gα(x, y)g(y)ρ(y) .

This calculation shows that the perturbation is governed by the operator 1
λ

− G ′
α .

If we assume that there is a standard α0 and a standard ε > 0 such that

1

λ(x)
≥
∑

y∈B
Gα0(x, y)ρ(y) + ε (5)

for all x ∈ B, it follows by a simple calculation that the operator 1
λ

− G ′
α′ is positive

for all α ≤ α0 and that the perturbed form Ẽ is bounded from below. This means that
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we can apply the theory from Chap. 5 to find the standard part of Ẽ of Ẽ . According
to formula (4), it is given by

Ẽ( f̃ , f̃ ) = − lim◦α→∞
◦(α2〈H − α)−1 f, f 〉 + α〈 f, f 〉)

where f is a nonstandard representation of the standard function f̃ (a so-called
lifting; I admit details are getting a little blurred here!). Using our formulas above,
this can be rewritten as

Ẽ( f̃ , f̃ )

= − lim◦α→∞
◦
⎛

⎝α2〈Gα f, f 〉 + α〈 f, f 〉 + α2

〈(
1

λ
− G ′

α

)−1

Ĝα f, Ĝα f

〉

L2(B,ρ)

⎞

⎠

= E( f̃ , f̃ ) − lim◦α→∞
◦
⎛

⎝α2

〈(
1

λ
− G ′

α

)−1

Ĝα f, Ĝα f

〉

L2(B,ρ)

⎞

⎠ .

Let us return to formula (5). The sum
∑

y∈B Gα0(x, y)ρ(y) is over a hyperfinite
set, and can be both finite and infinite. Let us first assume that it is finite and that
we can find a finite function λ satisfying (5). As α goes to −∞ in the limit above,
−αGα f approaches f and 1

λ
− G ′

α approaches 1
λ
, and we may hope that the whole

final term approaches
∑

x∈B λ(x) f (x)2ρ(x).
This indeed the case, and the result in standard terms (forgetting all technical

conditions) is as follows: Let E be a standard Dirichlet form with resolvent Rα .
Assume that ρ̃ is a Borel measure on a set C and that λ is a (standard) Borel function
on C such that for some α0 ∈ R

1

λ(x)
≥
∫

C

Rα0(x, y) dρ̃(y) + ε

Then the form

Ẽ( f, g) = E( f, g) −
∫

C

λ(x) f (x)g(x) dρ̃(x)

is a closed perturbation of E supported on C . Note that in this situation we have a
perturbation that can be described in terms of a measure λρ̃ on C .

Returning to the nonstandard picture, we may ask what happens if the sum∑
y∈B Gα0(x, y)ρ(y) in formula (5) is infinitely large. By choosing λ(x) infinitesi-

mal, it is still possible to keep

1

λ(x)
−
∑

x∈B
Gα0(x, y)ρ(y)
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positive and finite. The problem is that since we are interested in the limit as α goes
to −∞, we need to keep 1

λ(x) −∑x∈B Gα(x, y)ρ(y) finite not only for one value of
α, but for all finite values. And if

∑
x∈B Gα(x, y)ρ(y) is infinite and decaying, this

may be seem unlikely.
Let us take a closer look. We need to keep the following quantity finite:

1

λ(x)
−
∑

x∈B
Gα(x, y)ρ(y)

=
(

1

λ(x)
−
∑

x∈B
Gα0(x, y)ρ(y)

)

+
(
∑

x∈B
Gα0(x, y)ρ(y) −

∑

x∈B
Gα(x, y)ρ(y)

)

.

As the first term is finite by assumption, we can concentrate on the second term. By
the resolvent equation

∑

x∈B
Gα0(x, y)ρ(y) −

∑

x∈B
Gα(x, y)ρ(y) = (α0 − α)

∑

y∈B
GαGα0(x, y)ρ(y),

where the kernel GαGα0 is defined by

GαGα0(x, y) =
∑

z∈Y
Gα(x, z)Gα0(z, y)μ(z) .

Now the point is that the kernel GαGα0 is much less singular than the original
kernel Gα(x, y), and hence there is good hope that

∑
y∈B GαGα0(x, y)ρ(y) is finite

even if
∑

y∈B Gα0(x, y)ρ(y) is infinite—and if so, our procedure may still lead to a
perturbation of the original form.

Translated into standard terms (and again dropping all technical conditions), the
final result is: Let E be a standard Dirichlet form with resolvent Rα on a space
L2(X,m). Assume that ρ̃ is a Borel measure on a set C and assume that for some
α0 ∈ R

Rα0 Rα0(x, y) is ρ̃ × ρ̃ − integrable.

Then the form E has a closed, nontrivial perturbation supported on C . As we now
may have to choose λ infinitesimal, the perturbed form can not necessarily be written
as

Ẽ( f, g) = E( f, g) −
∫

C

λ(x) f (x)g(x) dρ̃(x)

in the standard universe.
To see the difference between the two results, note that if E is the form gener-

ated by −�, the resolvent kernel Rα(x, y) has a singularity of order ||x − y||2−d on
the diagonal, while the the kernel RαRα(x, y) has a singularity of order ||x − y||4−d

(assuming that d is large enough). This means that perturbations of the second kind
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(corresponding to infinitesimal λ’s) usually exist two dimensions higher than pertur-
bations of the first kind.

In Sect. 6.2, the general theory is applied to point interactions; i.e., the original
form E is the closure of E( f, g) = 〈− 1

2� f, g〉 in L2(Rd ,m), andC is a single point.
The result is as expected; perturbations exist for d ≤ 3, but are only given by a
measure for d = 1.

Section6.3 deals with perturbations of the Laplacian along Brownian paths (in
the nonstandard setting this means perturbations along the paths of a d-dimensional
random walk moving on a lattice with infinitesimal spacing�x). By a rather straight
forward application of the general theory, we show that they exist for d ≤ 5, but are
given by measures only when d ≤ 3. What is not so straight forward is to show that
in dimension 3, we get perturbations of the form

E( f, g) −
1∫

0

λ(b(t)) f (b(t))g(b(t)) dt

for all bounded functions λ. This requires some hefty estimates involving fifteen
dimensional integrals.

There is a close connection between perturbations along Brownian paths and
polymer measures. To see why, we apply the nonstandard Feynman-Kac formula
proved in Chap. 5 to the semigroup Q̃t generated by the perturbed form Ẽ (the
nonstandard version of the Feynman-Kac formula is strong enough to deal rigorously
with extremely singular potentials). The result is

Q̃t f (x) ≈ Ẽx

⎡

⎣ f (B̃(t)) exp

⎛

⎝

t∫

0

1∫

0

λ(B̃(r))δ̃(B(s) − B̃(r)) ds dr

⎞

⎠

⎤

⎦ .

Here B is the original Anderson randomwalk that carries the perturbation, B̃ is a new
random walk independent of B and generated by the semigroup, Ẽx is expectation
with respect to the measure of B̃, and δ̃ is the nonstandard δ-function on the d-
dimensional lattice given by

δ̃(x) =
⎧
⎨

⎩

�x−d if x = 0

0 otherwise.

The formula above shows that our singular perturbation theory gives us a certain
control over expressions of the form

exp

⎛

⎝

1∫

0

1∫

0

λ(B̃(r))δ̃(B(s) − B̃(r)) ds dr

⎞

⎠ .
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These expressions also occur in the formal definitions of polymer measures, except
that λ is a negative constant and the two Brownian motions are not independent, but
the same (the idea is to penalize self-intersections). Self-intersections of the same
Brownian path are more singular than intersections of two independent paths, but
Westwater [108–110] had shown that it is possible (at least in d = 3) to use the
latter to control the former; the trick is to split the double integral over the square
[0, 1] × [0, 1] into integrals over smaller squares that just touch the diagonal, and
then control the sum of all these contributions. The (open) question is whether it is
possible to do something similar in d = 4. As we shall see when we get to Chap. 7,
this is a question that comes up naturally in quantum field theory.

At the time the book was getting finished, Sergio’s student Andreas Stoll was
making amoredirect, nonstandard attackon self-repellent randomwalks andpolymer
measures.He starts his doctoral dissertation [103] (see also the published papers [105,
106]) with a study of local times for Brownian self-intersections of the form

L(x, ω) =
1/2∑

t=0

⎛

⎝
1∑

s=1/2

�x−dχ{ω:B(s,ω)−B(t,ω)=x}�t

⎞

⎠�t,

where B is a d-dimensional version of Anderson’s random walk and χA is the indi-
cator function of A. The main tools are the nonstandard version of Kolmogorov’s
continuity theorem and a hyperdiscrete version of the Fourier inversion formula.

In the second part of the thesis, these results are used tomake sense of the heuristic
formula

dν(φ, g)

dm
(ω) = 1

Z(φ, g)
exp

⎛

⎝−g

1∫

0

1∫

0

φ(ω(t) − ω(s)) ds dt

⎞

⎠

for the density of a polymer measure against Wiener measure in dimension 2. The
nonstandard approach yields among other things a Donsker-type invariance principle
for Varadhan’s model.

3.4 Chapter 7: Hyperfinite Lattice Models

As the title says, this chapter deals with hyperfinite lattice models for random fields
and quantum fields in ∗

R
d . In the first three sections, the lattices have standard

spacing (the shortest distance between sites in the lattice is 1), and the only difference
between the standard and the nonstandardmodels is that the nonstandard lattices have
additional sites infinitely far out. These sites are important, however, as they allow
us to put boundary conditions “at infinity”. The first section of the chapter follows
the (nonstandard) papers by Helms and Loeb [60, 61] (see also [59]) in describing
how to find the semigroup that governs the evolution of the lattice system—the
point here is that if we fix the configuration outside an infinitely large cube in ∗

R
d ,
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the (nonstandard) dynamics inside the cube is easily described, and the standard
dynamics can be obtained by “taking standard parts”.

Section2 deals with equilibrium models and thermodynamical properties, and
builds partly on earlier nonstandard treatments by Helms and Loeb [60], Hurd [67,
68], and Ostebee, Gambardella, and Dresden [99, 100]. The main idea here is that
one can replace the rather cumbersome limit definitions of the standard theory by
working directly on a hyperfinite part of the lattice. The section endswith a discussion
of how phase transitions can occur in hyperfinite models although they do not occur
in finite models—the clue is that a function can be differentiable in a nonstandard
sense (with an infinitely large derivative) without being differentiable in the suitable
standard sense.

Section3 deals with the global Markov property of lattice fields. For fields there
is a distinction between the local Markov property which deals with the interaction
between a bounded set and its exterior, and the global Markov property which also
deals with the interaction between two unbounded sets. The intuitive reason is that
even if you separate two unbounded sets by a boundary that the interaction does
not reach across, one set can still influence the other “through infinity”. The non-
standard content of this section is to a large extent based on the work of Sergio’s
student Christoph Kessler (see [70–73, 75]). There is a jungle of conditions leading
to the global Markov property, and in his thesis, Kessler helped clarify the relation-
ship between them—in particular, he used nonstandard analysis to construct models
satisfying some properties and not others.

The last two sections of the book, Sects. 7.4 and 7.5, deal with quantum fields.
We are still working with lattices in ∗

R
d , but now the spacing is infinitesimal, i.e.

the distance between neighboring sites is δ ≈ 0. The contents of these sections were
previously unpublished, but some of it must be classified as reworking of standard
theory in nonstandard terms.

We first show how the free field on R
d can be obtained as the standard part of

a hyperfinite Gaussian field; one of the advantages of this representation is that the
hyperfinite field is defined pointwise and not only in a distributional sense (there
are two traditional ways to treat the singularities of quantum field theory: through
distributions or through lattice approximations—see Kessler’s paper [74] for a non-
standard discussion of the relationship between these two approaches). Interactions
are introduced as

U δ
g = λδ

∑
δdg(nδ)uδ(�δ(n)),

where �δ is the free field, g is a cut-off function (often taken to be the indicator
function of a “large” set), λδ is a coupling constant, and the sum is over ∗

Z
d . The

function uδ describes the interaction, and may typically be an exponential uδ(y) =
exp(αy) or a polynomial of low order. The associated probabilitymeasure is given by

dμg,�δ
= exp(−U δ

g )∫
exp(U δ

g ) dμ0,�δ

dμ0,�δ
,

where dμ0,�δ
is the free measure.
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The challenge is twofold: On the one hand to prove that the standard part of the
interacting field satisfies the axioms for Euclidean quantum fields, and on the other
hand to prove that it is nontrivial, i.e. different from the free field. For exponential
interactions in dimension 1 and 2, the situation was well understood through earlier
(standard) work by Sergio and Raphael, and this is used a test case for the nonstan-
dard theory. The real challenge is polynomial interactions, especially the famous (or
infamous?) �4

d -model of fourth degree interactions.
The final section of the book, Sect. 7.5, is called “Fields and polymers” and con-

tains a serious attempt to get a better grip on polynomial interactions. Using Ander-
son’s random walk and a nonstandard representation of Poisson processes, we first
construct a “Poisson field of Brownian bridges” in a very concrete way. The second
step is to prove that this Poisson field is a probabilistic representation of the square of
the free lattice field, and the third step is to use this representation to study interacting
scalar fields (representations of this kind were first obtained by Dynkin [54, 55] in
a standard context). The famous �4 fields are given by interactions of the form

U (�δ) = λ

4

∑

i

�δ(i)
2δd + a

2

∑

i

�δ(i)δ
d ,

where �δ is the square of the free field, the sums are over the lattice, and λ and
a are constants. If we use the representation above to calculate the crucial entity
E[exp(−�δ(g)) expU ], we end up with expressions of the type

exp

⎛

⎜
⎝−

t∫

0

t̃∫

0

λδ(b1(s) − b2(s))

⎞

⎟
⎠ ds̃ ds, (6)

which are exactly the kind of expressions we got acquainted with when we looked
at perturbations along Brownian paths. A major problem is that in some of these
expressions, b1 and b2 are not independent, but the same Brownian motion, and this
leads us to the complicated problems of polymer measures that we just touched on
at the end of Sect. 6.4. Westwater managed to tame them when d = 3, but d = 4 is
a much more singular case.

A way to avoid this problem, is to look at two interacting fields �1 and �2 in
a �2

1�
2
2-model. The calculations are much the same as before, but as we now have

two different fields, we only get the expression in formula (6) for two independent
Brownian motions b1 and b2. This leads to the questions we analyzed in Sect. 6.4
on perturbations of the Laplacian along Brownian paths. The main problem in this
case is that in the physical dimension d = 4, the coupling “constant” in Chap. 6
was positive and allowed to depend on x . In the present situation, we need it to be
negative and independent of x . This seems to be a quite difficult problem as we had
to work extremely hard to prove that λ can be chosen constant in the much easier
three dimensional case (and if it doesn’t sound hard to prove that an infinitesimal
function can be chosen constant, recall that it is the infinite function 1

λ(x) that we
really need to control).
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So the book ends on an open note; we had shown that hyperfinite lattice models
were an interesting setting for quantum fields, much closer to intuition than the
traditional formalism, but we hadn’t been able to obtain the definitive results wewere
aiming for (but then they have proved to be quite elusive for all kind of approaches!).

4 Later Contributions

After the completion of [19], Sergio has continued toworkwith nonstandardmethods
in a variety of subjects and often with different groups of collaborators. Much of this
activity can be seen as a natural continuation of ideas and challenges from [19], and
I shall try to give an exposition of the main results.

4.1 Nonstandard Constructions of Singular Traces

In the first half of the 1990s, Sergio wrote four papers [20–23] on singular traces
in collaboration with Daniele Guido, Arcady Ponosov, and Sergio Scarlatti. In spirit
these papers are close to Sergio’s first nonstandard paper [18] with Fenstad and
Høegh-Krohn in the sense that they give concrete, nonstandard descriptions of oth-
erwise rather elusive operators, but the setting of the papers is quite different from
[18].

IfR is a vonNeumann algebra (you can safely think of the case whereR = B(H)

is the algebra of all bounded operators on a Hilbert space H ) and R+ is its cone of
positive elements, a weight on R is a linear map

φ : R+ → [0,∞] .

Using linearity, we can extend φ to its natural domain Span{T ∈ R+ : φ(T ) < ∞}.
A trace is a weight τ with the property τ(T ∗T ) = τ(T T ∗). We say that τ is normal if
for all increasing nets {Tα | α ∈ I }with T = supα∈I Tα , we have φ(T ) = limα φ(Tα).
A classical result [53] tells us that all normal traces are proportional to the usual trace,
so the question is how many nonnormal traces are there? If we define a trace τ to be
singular if it is trivial on all operators of finite rank, it turns out that any trace on the
compact operators K (H) can be written uniquely as a sum τ = τ1 + τ2 of a normal
trace τ1 and a singular trace τ2, and hence we can concentrate on singular traces.

Dixmier [52] proved that nonnormal traces exist. To get an impression of his
construction, we first fix a regular, slowly increasing and divergent sequence αn of
real numbers (αn = log(n + 1) will do the job, but there are other possibilities).
The idea is to use this divergent sequence to speed up the decay of nonsummable
sequences of eigenvalues so that they become summable.

Next we choose a state (i.e. a normalized weight) on l∞(N). The idea is now to
define a trace τφ on B(H)+ by
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τφ(T ) =

⎧
⎪⎨

⎪⎩

φ
({

σn(T )

αn

})
if T ∈ I (H)

+∞ otherwise.

Here σn(T ) =∑n
k=1 μk(T ), where μk(T ) are the eigenvalues of T in decreasing

order and counted with multiplicity, and I (H) is the ideal of all compact operators
such that the sequence {σn(T )/αn} is bounded.

The main problem with this construction is that as we in general only have an
inequality

σn(T + S) ≤ σn(T ) + σn(S),

τφ will usually not be linear. Dixmier realized that if φ is 2-dilation on l∞(N), i.e.
φ({an}) = φ({a2n}), then we also have the opposite inequality (this needs both the
slow growth of αn and the dilation property), and hence τφ is linear and a trace. As
φ vanishes on the set c0 of sequences converging to 0, τφ is a nonnormal trace.

So how do we get hold of 2-dilations on l∞(N)? It is here nonstandard analysis
comes in with a very simple and elegant description. If {an}n∈ ∗N is the nonstandard
extension of a bounded sequence {an}n∈N, then for any infinite ω ∈ ∗

N, we define

φω({an}) =◦
(
1

ω

ω∑

k=1

a2k

)

.

As φω({an}) − φω({a2n } = 1
ω

(a1 − a2ω+1) ≈ 0, we see that φ is a 2-dilation, and
hence τφω

is a nonnormal trace. More generally,

φk,m,n({an}) =◦
(
1

n

k+n∑

i=k+1

a(2m−1)2k−1

)

is a 2-dilation for all k,m ∈ N and all infinite n ∈ ∗
N. This means that we have a

three-parameter family τk.m,n of associated traces (with repetitions).
So how general is this construction? It is proved in [20] that anyDixmier trace (i.e.

any trace coming from a 2-dilation) is in the closure of the convex hull of the traces
τk,m,n . The proof is based on a close study of the extremal dilation invariant states.
We cannot go deeper into the arguments here, but would like to say that they exploit
the product structure ∗(N × N) = ∗

N ×∗
N of the nonstandard natural numbers in a

way that is not possible in the usual approach through Stone-Čech compactifications
as N × N �= N × N.

In [21] the theory is extended to another class of nonnormal traces (called anti-
Dixmier traces as they are in a sense reflections of the Dixmier traces around the
usual trace), but the results and techniques are much the same as in [20]. In [22] the
emphasis has shifted. The question now is to classify those compact operators T that
admit a singular trace in the sense that there is a singular trace τ with 0 < τ(T ) < ∞.
If we define {Sn(T )} to be the sequence such that Sn(T ) − Sn−1(T ) = μn(T ) and
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S0(T ) =
⎧
⎨

⎩

0 if T /∈ L1(H)

−tr(T ) if T ∈ L1(H),

we say that T is generalized eccentric if 1 is a limit point for the sequence
{S2n(T )/Sn(T )}. The main theorem states that T admits a singular trace if and only
if it is generalized eccentric.

The proof of this theorem is entirely standard, but again 2-dilations coming from
hyperfinite sums are used to throw light on how these operators occur, and the paper
ends with an interesting example of how such sums can be used to calculate a closed
formula for a Dixmier trace of a concrete operator. The last paper [23] in the series
deals with the same problems as [22], but the main emphasis is now on the nonstan-
dard analysis of 2-dilation invariant states.

4.2 Quantum Fields as Flat Integrals

About ten years after the work on [19] was finished, Sergio returned to hyperfinite
models of quantumfields with three papers in collaborationwith Jiang-LunWu ([14–
16], see also Wu’s later paper [111]). The basic idea was to use nonstandard analysis
to make rigorous sense of quantum fields as flat integrals. Intuitively, flat integrals
are representations of Gaussian fields as integrals of infinite dimensional Lebesgue
measure, and they have been much used as a heuristic tool by both physicists and
probabilists. The only problem is that since infinite dimensional Lebesgue measure
doesn’t exist, flat integrals do not exist—at least not in an immediate sense.

What do exist are nonstandard Lebesgue measures on hyperfinite dimensional
spaces, and in a series of papers [38, 40–43] Nigel Cutland used these to give non-
standard flat integral representations of a variety of Gaussian fields. In [15] Sergio
and Jiang-Lun set out to extend these ideas to the quite singular case of Euclidean
quantum fields. Their starting point is that if � is a bounded subset of Rd , the free
Euclidean field φ in � with mass m is heuristically given by the flat integral

dμ(φ) = κ exp

⎧
⎨

⎩
−1

2

∫

�

(|∇φ(x)|2 + m2φ(x)
)
dx

⎫
⎬

⎭

∏

x∈�

dφ(x),

where
∏

x∈� dφ(x) is the infinite dimensional Lebesgue measure.
Working on a hyperfinite lattice approximation �δ of �, Sergio and Jiang-Lun in

[15] obtain a rigorous version of this formula

Γ (A) =
∫

A

κ exp

{

−1

2

∑

z∈�δ

(|∇δqz|2 + m2qz
)

δd

}
∏

z∈�d

dqz,
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where ∇δ is a hyperdiscrete approximation of the appropriate gradient on � and∏
z∈�d

dqz is a (well-defined) hyperfinite dimensional Lebesgue integral. Although
totally rigorous, this formula only makes sense inside the nonstandard universe, but
the authors also derive a standard white noise representation of φ as

φ( f, ω) =
∫

�

(−�� + m2
)−1/2

f (x) dξx (ω), f ∈ D(�), (7)

where {ξx } is an independent family of one-dimensional white noises. This formula
is obtained by first defining a nonstandard white noise η on the hyperfinite lattice
and showing that the nonstandard lattice field Φδ (as defined in Sect. 7.4 of [19])
can be obtained as an integral of η. Some technical work is needed to show that the
standard field is the standard part of�δ in the appropriate Sobolev space. Formula (7)
is then used to obtain a Cameron-Martin formula and a Schilder-type large deviation
principle for the free Euclidean field on �.

The companion paper [14] is written primarily for a nonstandard audience (and
not an audience of physicists) and extends the discussion from the free field to fields
with exponential interaction. In addition to another discussion of large deviations of
quantum fields, the slightly later paper [16] also extends one of Cutland’s flat integral
representations from l2 to l p, 1 ≤ p < ∞.

4.3 A Return to Hyperfinite Dirichlet Forms

In 2011, Sergio, in collaboration with Ruzong Fan and Frederik Herzberg, published
a book [17] entitledHyperfinite Dirichlet Forms and Stochastic Processes. The work
on the project had actually started more than 20 years earlier, and had resulted in a
number of papers in the 1990s, mainly by Fan, but in close collaboration with Sergio.

The main difference between the theory in the new book and the one in [19] is
that the forms are no longer required to be symmetric, but they do have to be weakly
coercive in the sense that there is a finite constant C such that

E1(u, v) ≤ C
√
E1(u, u)

√
E1(v, v).

This condition works as a replacement for Schwarz’ inequality.
The (nonsymmetric) form E has a coform Ê(u, v) = E(v, u) that can be used to

form the symmetric part E(u, v) = E(u, v) + Ê(u, v) and the anti-symmetric part
E̊(u, v) = E(u, v) − Ê(u, v) of E . All four forms play an important part in the expo-
sition.

One of the differences between the standard and the nonstandard theory of Dirich-
let forms is that in the standard theory the domain of the form is usually assumed
to be given (at least until one starts looking at examples!), while in the nonstandard
theory much of the basic work goes into identifying the domain. Although the theory
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of weakly coercive forms is in many ways similar to the symmetric theory, there
is an important difference in the description of domains: In the symmetric case, the
domain is easily described in terms of the semigroup, but in the weakly coercive case
it seems necessary to approach the domain via the resolvent. Rather reassuringly, it
turns out that the domain of the original form E coincides with the domain of the
much simpler, symmetric form E .

After the initial study of domains and standard parts of weakly coercive, hyper-
finite forms, the book continues with a detailed study of potential theory and the
relationship between a Dirichlet form and its associated Markov process, at the same
time generalizing and simplifying the corresponding theory in [19].

The last part of the book is on the theory of hyperfinite Lévy process. As this is
the topic of the next subsection, I’ll leave the discussion till then.

4.4 Nonstandard Lévy Processes

In 2003, Sergio’s student Frederik S. Herzberg wrote a Diplomarbeit on nonstandard
Lévy processes. Unaware of Frederik’s work, I was at the same time starting my
own investigations into the subject. Fortunately, we approached the problem from
opposite angles, and when the first papers appeared ([10, 11] by Sergio and Frederik
and [89] by me—see also the corrections in [65]), they complemented each other
more than they overlapped.

For a quick, intuitive understanding of how the nonstandard theory works, it
is convenient to start with the definitions in [89]. Choose a hyperfinite set A ⊆∗
R

d , an internal set {pa | a ∈ A} of positive numbers such that
∑

a∈A pa = 1, and
a positive infinitesimal �t . Let X be a random walk in ∗

R
d with timeline T =

{k�t | k ∈ N0} and transition probabilities pa ; i.e. let X (0) = 0 and put P[�X (t) =
a | X (0), X (1), . . . , X (t)] = pa . We call X a hyperfinite Lévy process if almost all
paths stay finite for all finite t . This sounds like a silly, totally uncheckable condition,
but it turns out that there is an equivalent, easy to verify characterization. Hyperfinite
random walks have cadlag standard parts that are Lévy processes, and any Lévy
process can be obtained in this way (at least in the sense that every Lévy triple
(γ,C, ν) can be realized—see also [95]).

My focus in [89] is very much on the hyperfinite random walks, and the Lévy
processes only enter the theory to show that it has achieved what it set out to achieve.
In the first two papers [10, 11] by Sergio and Frederik, the Lévy processes are on
the contrary the primary objects, and the main focus is to find good, nonstandard
representations (liftings) preserving the properties of the original process. Typical
examples are the lifting results in [10] where the hyperfinite representations live
on lattices, and where the time development is divided into sequences of binomial
events. Notions from adapted probability logic are used to characterize how close
the nonstandard liftings are to the original processes. In [62], Frederik used these
hyperfinite representations to construct an intrinsic theory for stochastic integration
with respect to Lévy processes.
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Lévy processes have been much used to model financial markets, and this is also
a clear motivation for Sergio and Frederik. By refining the timeline and modeling the
internal processes as sums of binomial increments as in [11], they achieve a model
with a unique martingale measure that can be used for hedging (see also [63]). An
alternative approach to finance in hyperfinite Lévymarkets is presented in [90] where
the focus is on minimal martingale measures.

In Chap. 5 of their book [17] with Ruzong Fan, Sergio and Frederik give a review
of both approaches to the theory of nonstandard Lévy processes, and Frederik has
also given an exposition in another book [64], this time in the framework of Nel-
son’s “radically elementary probability theory” (see [94]). The notion of hyperfinite
random walks seems to fit perfectly into Nelson’s vision.

4.5 The Power of Loeb Measures

As nonstandard measure and probability theory developed, it soon became clear that
Loeb measure spaces have many desirable qualities—e.g., they seem to be universal
in the sense that anything that can be constructed on some measure space (no matter
how exotic), can also be constructed on simple Loeb spaces. This intuitive notion
of universality was formalized through several versions of probability logic, mainly
developed by Jerry Keisler and his (former) students Douglas N. Hoover and Sergio
Fajardo (see [56] for a systematic exposition). Along the way other notions, such as
saturation and homogeneity, were added to universality.

Three of Sergio’s later papers exploits the richness of Loeb spaces. The first
is a joint paper with Yeneng Sun and Jiang-Lun Wu [24] published in 2007. The
authors start with two hyperfinite probability spaces I and � and study processes
X : I × � × T →∗

R, where T is a timeline. If the processes (ω, t) �→ X (i, ω, t)
(with i fixed) are independent martingales, they prove that the “empirical process”
(i, t) �→ X (i, ω, t) (withωfixed) is amartingale for almost all i . Due tomeasurability
problems such questions are hard even to make sense of in a standard setting, but the
paper exploits the fact that the Loeb measure of a product of nonstandard measures
is richer than the product of the Loeb measures to circumvent these problems. The
result extends to sub- and supermartingales.

The other two examples are joint papers [12, 13] with Frederik Herzberg from
about the same time. The first of these deals with the optimization of functionals
where the main variable is a probability measure P . The functional is evaluated by
observing a given process g at a fixed set of points t1, t2, . . . , tn , and then integrating
an expression of the type φ(gt1, gt2 , . . . , gtn ) against the varying measure P . In the
nonstandard setting of an internal, hyperfinite probability space the existence of an
optimalmeasure is almost trivial (it is just a finite dimensional optimization problem),
but to transfer this solution to an arbitrary measure space, the full machinery of
adapted probability logic is needed.

The third paper in this group [13] is more traditional in its methods, but still
uses the power of Loeb measure techniques to the full. The problem is to extend the
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solution of the classicalmoment problem fromR
n toWiener space.UsingAnderson’s

random walk as a representation of Brownian motion, the problem is translated
into a hyperfinite dimensional setting where the nonstandard version of the original
problem applies. An extra condition on the quadratic variation is needed to pull this
nonstandard solution back to the classical Wiener space.

We have reached the end! I hope this little survey has not only given you new
insight into the work of Sergio and his school, but also provided you with a better
understanding of the power and versatility of nonstandard methods.
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More precisely, we consider a system of classical or quantum particles indexed
by the vertices k of an integer lattice Z

d .1 A particle with position k ∈ Z
d carries an

internal parameter (spin) xk ∈ X , where X is a topological space equipped with a
reference measure χ(dx). We define the infinite product space

X ≡XZ
d := {

x = (xk)k∈Zd , xk ∈ X, k ∈ Z
d
}

endowed with the product topology. Given � ⊂ Z
d , let

X �x �→ x� = (xk)k∈� ∈ X� (1.1)

be the natural projection of X onto X�. Our particles are allowed to interact via a
family of spin-spin potentials

U = {
U� : X� → R, � ∈ B0(Z

d)
}
, (1.2)

where B0(Z
d) is the collection of all finite subsets of Z

d . The corresponding system
of classical particles as a whole is governed by the heuristic Hamiltonian

H(x) =
∑

�∈B0(Zd )

U�(x�). (1.3)

In this case, X is usually a finite dimensional (e.g. Euclidean) space. In contrast to
that, quantum systems are governed by operator valued Hamiltonians, see Sect. 2.1,
which in turn leads to infinite dimensional one-particle spaces X . The most common
class of particle systems comprises of those with pair interaction of finite range,
which means that U� ≡ 0 unless

� = {
(k, j) ∈ Z

d × Z
d : |k − j | ≤ R

}

for some fixed interaction radius R < ∞.
For the convenience of the reader and in order to fix main notations, we start

by introducing the notion of Gibbs measures and outlining fundamental problems
arising in their study.

According to the paradigm developed in the works of Dobrushin, Lanford and
Ruelle (1968–70), equilibrium states of our system are given by Gibbs measures μ

on X of the (heuristic) form

μ(dx) = “ Z−1 exp{−H(x)}
⊗

k∈Zd

χ(dxk)” .

1 Without principal changes the whole theory extends from Z
d to infinite graphs with uniformly

bounded vertex degree.
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Rigorously, any such μ is a probability measure on X with prescribed conditional
distributions (or local specifications)

dμ�(x�|ξ) = 1

Z�(ξ)
e−V�(x�|ξ)dx�, ξ ∈ X,

for an exhausting system of sets � ∈ B0(Z
d), where

V�(x�|ξ) =
∑

�∈B0(Z
d ):

�∩� �=∅

U�(x�∩�, ξ�∩�c)

is the energy of the interaction in the volume�with fixed boundary condition ξ ∈ X
and Z�(ξ) = ∫

X� e−V�(x�|ξ)dx�. That is, μ is called a Gibbs measure (for given U
and χ ) if it satisfies the Dobrushin–Lanford–Ruelle (DLR) equation

∫

X

E� f dμ =
∫

X

f dμ

for each � ∈ B0(Z
d) and any bounded cylinder function f : X → R, where

(E� f )(ξ) :=
∫

X�

f (x�, ξ�
c )dμ�(x�|ξ).

So, the study of Gibbs measures is reduced to the generic problem of reconstructing a
Markov random field on X from its local specification. This constitutes the standard
Dobrushin–Lanford–Ruelle formalism, see e.g. the classical monograph [67].

We denote by G the set of all such measures (for fixed U and χ ). The study
of the structure of the set G is of a great importance. In particular, there are three
fundamental questions arising here:

(E) Existence: is G not empty?
(U) Uniqueness: is G a singleton?
(M) Multiplicity: does G contain at least two (and hence infinitely many) elements?

If the answer is positive, the system admits phase transitions.

In order to handle these problems for various types of interacting particle systems
(classical or quantum, discrete or in the continuum), in modernmathematical physics
there has been developed a wide variety of powerful techniques such as Dobrushin’s
abstract existence and uniqueness criteria for random fields [60], Ruelle’s technique
of (super-) stability estimates [80, 86, 87], cluster expansions universally working in
perturbative regime, different types of correlation inequalities employing a particular
structure of the interaction, and so on.

Apart from the classical Isingmodel, themost studied andwell-understood system
is that of one-dimensional classical anharmonic oscillators with nearest-neighbour



220 A. Daletskii et al.

pair interaction. However, the passage to the study of a quantum anharmonic oscilla-
tor and more general quantum systems requires X to be infinite-dimensional, which
is reflected by the Euclidean approach in quantum statistical mechanics. On the other
hand, the case of non-flat single-particle spaces leads to a non-trivial influence of the
geometry of X on the global properties of the system.

It is important to mentioned that, along with the traditional DLR (orMarkov field)
formalism described above, there are two further conceptually different approaches
to the study of Gibbs measures. Namely, these are the analytic and stochastic
approaches, based respectively on

(IbP) characterization of μ ∈ G via integration by parts, and
(SD) construction of the corresponding stochastic dynamics, that is, a Markov

process for which μ is invariant measure, and then studying its properties.

In what follows, we will address the problems (E), (U) and (M) for two rather
different models—quantum lattice systems and classical systems with compact man-
ifolds as single spin spaces, which require the development and application of very
different techniques. We will explore the interplay between all three approaches—
(DLR), (IbP) and (SD), mainly referring to our joint work with Sergio. Let us point
out that the goal of this paper is to outline Sergio’s contribution and not to give a
comprehensive review of the field.

The structure of the paper is as follows. In Sect. 2 we consider the Euclidean
approach to lattice models of quantum statistical mechanics. Section 3 is devoted to
the development of general stochastic analysis on infinite product manifolds and its
applications to classical lattice models. Finally, in Sect. 4 we give a quick overview
of some further developments rooted in the ideas and works described in Sects. 2
and 3.

2 Euclidean Gibbs Measures of Quantum Statistical
Systems

2.1 Euclidean Approach: From Quantum Statistical
Mechanics to Markov Fields

The systematic development of the Euclidean approach to problems of quantum
statistical mechanics has been one of Sergio’s favorite topics of permanent interest.
Initiated in 1973–75 in [11, 12], this work received its contemporary form in the
monograph [20]. Below, we will outline the main ideas of this approach.

To start with, we consider a system of quantum anharmonic oscillators described
by the formal operator-valued Hamiltonian
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H :=
∑

k∈Zd

[
− 1

2m

d2

dx2
k

+ a

2
x2

k + Vk(xk)

]
+ 1

2

∑

〈k, j〉⊂Zd

Wk j (xk, x j ), (2.1)

where the second sum is taken over all (unordered) pairs 〈k, j〉 in Z
d such that

|k − j | = 1. The potentials are continuous functions

Vk : R → R, Wk j = W jk : R × R → R

satisfying the following growth conditions (which guarantee the stability of thewhole
system).

(W) There exist some constants R ≥ 2 and J, C ≥ 0 such that

|Wk j (q, q ′)| ≤ 1

2
J (C + |q|R + |q ′|R), q, q ′ ∈ R, k, j ∈ Z

d .

(V) There exist a continuous function V : R → R and constants P > R, A > 0
and B ∈ R, such that

A|q|P + B ≤ Vk(q) ≤ V (q), q ∈ R, k ∈ Z
d .

Observe that, in terms of (1.2), we have Vk = U{k} and Wk j = U{k, j}, k, j ∈ Z
d .

Each quantum anharmonic oscillator (of mass m > 0 and rigidity a > 0) is indi-
vidually described by the Schrödinger operator

Hk :=
[
− 1

2m

d2

dx2
k

+ a

2
x2

k

]
+ Vk(xk) = H

har
k + Vk(xk) (2.2)

in the (physical) Hilbert state space Hk := L2(R, dxk). Again, the infinite volume
Hamiltonian (2.1) has no rigorous mathematical meaning and is “represented” by
local Hamiltonians

H� =
∑

k∈�

Hk + 1

2

∑

〈k, j〉⊂�

Wk j (xk, x j )

acting (as self-adjoint and lower bounded operators) in the corresponding Hilbert
spaces H� := L2(R�, dx�).

In quantum statistical mechanics, Gibbs states are usually defined as positive nor-
malized functionals on proper algebras of observables satisfying the Kubo-Martin-
Schwinger (KMS) thermal equilibriumcondition, see [52]. For a subsystem restricted
to a finite volume � ⊂ Z

d and thus described by the local Hamiltonian H� in the
Hilbert spaceH�, theKMS condition is formulated bymeans of the unitary operators
exp(i tH�), t ∈ R. To construct the dynamics of the whole system one has to take
the limit of exp(i tH�) as � ↗ Z

d . For the quantum lattice model (2.1), the above
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operator limit does not make rigorous sense and consequently the KMS condition
cannot be formulated.

As an alternative, Sergio Albeverio and Raphael Høegh-Krohn proposed in their
pioneering works [11, 12] to use the Euclidean (or path space) approach, which is
conceptually analogous to thewell-knownEuclidean strategy in quantumfield theory
(see e.g. [68, 88]); for further developments see e.g. the review articles [17, 29, 79]
and monograph [20], as well as extensive bibliography therein. The main idea of the
Euclidean approach is to implement a path integral representation for the local Gibbs
states, using stochastic processes generated by the semi-group exp(−tH�), t > 0.
Then, being translated into a “ probabilistic language” , the quantummodel (2.1) at a
fixed inverse temperature β = 1/T > 0 can be interpreted as an interacting system
of continuous periodic paths (i.e., loops) ωk ∈ C(Sβ) indexed by k ∈ Z

d , where
Sβ

∼= [0, β] is a circle of length β. Respectively, the initial problem of giving a proper
meaning to the infinite volume quantum Gibbs state Gβ transforms into the problem
of studying a certain EuclideanGibbsmeasureμ on the loop lattice�β := [C(Sβ)]Zd

(see Sect. 2.2). The distribution of each single spin ωk is given by the path measure
of the β-periodic Gaussian process (corresponding to the one-particle Hamiltonian
H

har
k ) multiplied by a density obtained from the anharmonic potential Vk(xk) with

the help of the Feynman–Kac formula. Afterwards, finite subsystems in volumes
� are associated with conditional probability measures on �� := C(Sβ)�, which
by the standard DLR theory determine the set of tempered infinite volume Gibbs
measures G t .

Lattice systems of the above type (classical and quantum) are commonly viewed in
statistical physics as mathematical models of a crystalline substance (for more physi-
cal background, see e.g. [17, 29, 68]). A particularly strong motivation to study such
systems comes from the fact that they provide a mathematically rigorous as well as
physically realistic description for the important phenomenon of phase transitions
(i.e., non-uniqueness of Gibbs states). So, if the potential V has several minima, in
the large mass limit m → ∞ the quantum system (2.1) may undergo (ferroelectric)
structural phase transitions connected with the appearance of macroscopic displace-
ments of particles for low temperatures β−1 < β−1

cr (m). For the mathematical theory
of this effect, extending to the quantum setting the two basic techniques, namely: (i)
the method of reflection positivity (for d ≥ 3) involving the so-called infrared (Gaus-
sian) bounds on two-point correlation functions, and (ii) the Peierls energy-entropy
argument (for d ≥ 2) being a part of the Pirogov–Sinai contour method, see e.g. [73,
74, 79] resp. [30, 61]. On the other hand, quantum effects occurring in particular at
small values of the particle mass m > 0 can suppress abnormal fluctuations (which
on the physical level was discussed e.g. in [82]). Thus, in this case one might expect
that |G t| = 1 holding simultaneously at all temperatures β > 0, which would be the
strongest uniqueness result available for the ferromagnetic system (2.1). A mathe-
matical justification of this effect, which was a long standing open problem, has been
completely settledwithin theEuclidean approach in [14–19];more on this see in Sect.
2.3. For the the ground state caseβ = ∞, the convergence of cluster expansionsw.r.t.
to the small masses parameter m > 0 has been proved in [24, 82]. The correspond-
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ing Gibbs measures on the path space C(R) are known as P(ϕ)1-processes and can
be seen as a special case of the Euclidean field theory in the space-dimension zero
[65, 72].

2.2 Definition of Euclidean Gibbs Measures

Below we briefly describe the corresponding Euclidean Gibbsian formalism just for
the concrete class of quantum lattice systems (2.1); for a detailed exposition and an
extensive bibliography we refer the reader to [17, 20, 29].

Let Sβ
∼= [0, β] be a circle of length β > 0 (= inverse temperature) considered as

a compact Riemannian manifold with Lebesgue measure dτ as a volume element.
Consider the standard Banach spaces

Lr (Sβ) := Lr (Sβ → R, dτ), r ≥ 1,

Cα(Sβ) := Cα(Sβ → R), α ≥ 0,

of all integrable resp. Hölder-continuous functions on Sβ (i.e. loops of length β) and
define the single-spin space

X := C(Sβ) (= C0(Sβ)).

Thus the configuration space X = XZ
d
of our infinite volume system is identified

with the space of all temperature loop sequences

�β := [C(Sβ)]Zd =
{
ω = (ωk)k∈Zd

∣∣∣ω : Sβ → R
Z

d
, ωk ∈ C(Sβ)

}

over Z
d , endowed with the product topology and the corresponding Borel σ -algebra

B(�β). Let P(�β) denote the set of all probability measures on (�β,B(�β)). Next,
we define a (Fréchet-type locally convex) space of exponentially tempered configu-
rations

�t
β :=

⎧
⎨

⎩
ω ∈ �β

∣∣∣∣∣∣
||ω||−δ :=

[
∑

k∈Zd

e−δ|k| |ωk |2C(Sβ )

] 1
2

< ∞, δ > 0

⎫
⎬

⎭
(2.3)

and the set of tempered measures

P t(�β) := {
μ ∈ P(�β)

∣∣μ
(
�t

β

) = 1
}
.

Heuristically, the Euclidean Gibbs measures μ corresponding to the Hamiltonian
(2.1) have the representation
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dμ(ω) := Z−1 exp {−I(ω)}
⊗

k∈Zd

dγβ(ωk), (2.4)

where Z stands for a normalization factor and

I(ω) :=
∫

Sβ

⎡

⎣
∑

k∈Zd

Vk(ωk) +
∑

〈k, j〉⊂Zd

Wkk ′(ωk, ω j )

⎤

⎦ dτ

can be viewed as a potential energy describing the interacting system of loops
ωk ∈ C(Sβ). Here, γβ is a centered Gaussian measure on C(Sβ) with the (finite
trace) correlation operator A

−1
β in L2(Sβ), where Aβ := −m�β + a1 is the (shifted)

Laplace–Beltrami operator on the circle Sβ . This “free” measure γβ is related to a
single harmonic oscillator with the Hamiltonian H

har
k , cf. (2.2). Notably, the asso-

ciated β -periodic Ornstein-Uhlenbeck process Sβ � τ �→ ωk(τ ) ∈ R has appeared
first in the context of quantum statistical mechanics in the papers of Albeverio and
Høegh-Krohn [11, 12]; for a detailed account of its regularity properties see [16, 29].
In full analogy with classical statistical mechanics, a rigorous meaning can be given
to the measure μ by the DLR formalism, namely as a Gibbsian random field on the
lattice Z

d . However, as compared with classical lattice systems like as in (2.7), the
situation with Euclidean Gibbs measures is technically more complicated since now
the spin spaces X = C(Sβ) are infinite dimensional and their topological features
should be taken into account carefully.

To this end, for every finite set � ⊂ Z
d , we define a probability kernel π� on

(�β,B(�β)) as follows: for all � ∈ B(�β) and ξ ∈ �β

π�(�|ξ) := Z−1
� (ξ)

∫

��

exp {−I�(ω|ξ)} 1�(ω�, ξ�c)
⊗

k∈�

dγβ(ωk) (2.5)

(where 1� denotes the indicator on �). Here Z�(ξ) is the normalization factor and

I�(ω|ξ) :=
∫

Sβ

⎡

⎣
∑

k∈�

Vk(ωk) +
∑

<k, j>⊂�

Wk j (ωk, ω j ) +
∑

k∈�, j∈�c

Wk j (ωk, ξ j )

⎤

⎦ dτ

is the interaction in the volume �, subject to the boundary condition ξ�c := (ξ j ) j∈�c

in the complement �c := Z
d\�. Obviously, the RHS in (2.5) makes sense under

the above Assumptions (V), (W) on the interaction potentials Vk, Wk j . An important
point is the consistency property: for all � ⊂ �′, ξ ∈ �β and � ∈ B(�β)

(π�′π�)(�|ξ) :=
∫

�β

π�′(dω|ξ)π�(�|ω) = π�′(�|ξ).
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A probability measureμ on (�β,B(�β))will be called the EuclideanGibbsmeasure
corresponding to the quantum lattice system (2.1) (at inverse temperature β > 0) if
it satisfies the DLR equation:

μπ�(�) :=
∫

�β

μ(dω)π�(�|ω) = μ(�) (2.6)

for all� ∈ B0(Z
d) and� ∈ B(�β). Fixing β > 0, wewill be mainly concerned with

the subset G t
β of tempered Gibbs measures supported by �t

β , cf. (2.3).
Note that the large-mass limit m → +∞ of model (2.1) is a classical anharmonic

crystal with the potential energy

Hcl(x) =
∑

k∈Zd

[a

2
x2

k + Vk(xk)
]

+ 1

2

∑

〈k, j〉⊂Zd

Wk j (xk, x j ), (2.7)

x = (xk)k∈Zd ∈ R
Z

d
, see ([20] Sect. 4.2). So, under strong enough geometrical condi-

tions on the interaction, most of the results below (e.g., the existence and uniqueness
Theorems 1 and 3) are actually independent of the mass m and hence applicable both
in the classical and quantum cases. On the other hand, there also could occur purely
quantum effects, which are impossible in the classical analog of model (2.1), like
e.g. the so-called quantum stabilization described in Theorem 4.

2.3 Existence and Uniqueness Results

The theorems of this section provide us with basic information which is needed for
any further investigation of the Euclidean Gibbsmeasures.We suppose that Assump-
tions (W) and (V) are fulfilled without mentioning this again in the formulations of
all subsequent statements.

Theorem 1 [20, 79, 83] For all values of β > 0, the set of tempered Euclidean
Gibbs measures G t

β is nonempty. Moreover, every μ ∈ G t
β is supported by the set of

Hölder loops
⋂

0≤α<1/2 Cα(Sβ) and satisfies the exponential bound

sup
k∈Zd

∫

�β

exp
{
κ|ωk |2Cα(Sβ ) + λ|ωk |R

L R(Sβ )

}
μ(dω) ≤ �α,β(κ, λ), (2.8)

holding for all α ∈ [0, 1/2), λ > 0 and κ ∈ [0, κ
∗
β), with the upper bound κ

∗
β > 0

depending only on a, m, β > 0. The constant �α,β(κ, λ) (calculated explicitly in
terms of the interaction parameters) can be chosen the same for all μ ∈ G t

β .

Estimate (2.8) is called a priori since it certainly holds for each μ ∈ G t
β indepen-

dently of the way it might be constructed. It allows to easily gain further information
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about regularity and support properties of the elements of G t
β , like e.g. a Ruelle-type

bound on their local projections (cf. [87]). Moment estimates like (2.8) are also use-
ful for the study of Gibbs measures by means of the associated Dirichlet operators
Hμ in the spaces L p(μ), p ≥ 1, which is known as the Holley–Stroock approach to
equilibrium states of infinite particle systems [36, 37, 70]; see also Sect. 2.5.

Let us give short comments on the technique used to prove Theorem 1. The key
idea here, stated below as Lemma 2 and successively developed for a variety of
models in [20, 78, 79], is to establish certain Lyapunov-type estimates for the one-
point specification kernels πk(dω|ξ) subject to varying boundary conditions ξ ∈ �t

β

(to shorten notation we just write πk instead of π{k}).

Lemma 2 For any α ∈ [0, 1/2), λ > 0 and κ ∈ [0, κ
∗
β), there exists a correspond-

ing ϒ := ϒα,β(κ, λ) > 0 such that

∫

�β

exp
{
κ|ωk |2Cα(Sβ ) + λ|ωk |R

L R(Sβ )

}
πk(dω|ξ)

≤ exp

⎧
⎨

⎩
ϒ + J

∑

j :| k− j |=1

|ξ j |R
L R(Sβ )

⎫
⎬

⎭
(2.9)

for all k ∈ Z
d and ξ ∈ �t

β.

Wenote that the exponential estimate (2.9) is stronger (but actually easier to check)
than those usually required in Dobrushin’s classical existence criterion [60]. There-
from, using the spatial Markov property of the Gibbs specification, one concludes
that there exists a constant �α,β(κ, λ) > 0 such that

lim sup
�↗Zd

∫

�β

exp
{
κ|ωk |2Cα(Sβ ) + λ|ωk |R

L R(Sβ )

}
π�(dω|ξ) ≤ �α,β(κ, λ), (2.10)

uniformly for all k ∈ Z
d and ξ ∈ �t

β . As a consequence (2.10), implies not only the
existence of at least one μ ∈ G t

β , but also yields the uniform bounds on all points
of the set G t

β and its compactness in appropriate topologies. The method obviously
extends to general N -particle interactions or spin systems on irregular graphs (see e.g.
[83]), which essentially improves all related existence results. Recent developments
show that the method also applies to the interacting particle systems in continuum
[56, 78] , so that to certain extent it can be viewed as a reasonable alternative to
Ruelle’s superstability estimates [80, 87].

In contrast, the uniqueness results presented below takes regard of the concrete
structure of the one-particle and pair potentials. Just for simplicity, let us consider the
translation invariant system (with Vk = V and Wk j = W for |k − j | = 1), assuming
the attractive (i.e., ferromagnetic) harmonic pair interaction

W (xk, x j ) := J (xk − x j )
2/2 ≥ 0 with intensity J > 0. (2.11)
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Theorem 3 [41–43] Suppose that the anharmonic self-interaction admits the
decomposition

V = U + Q, (2.12)

where U ∈ C2(R) is a strictly convex function and Q ∈ Cb(R) is a bounded pertur-
bation (describing the presence of possible wells). Define

b := inf
q∈R

U ′′(q), osc(Q) := sup
q∈R

Q(q) − inf
q∈R

Q(q).

Then, for all values of the mass m > 0, the setG t
β is a singleton provided the following

relation between the model parameters holds:

eβ osc(Q)

2d + J−1(a2 + b2)
<

1

2d
.

The proof of Theorem 3 employes Dobrushin’s uniqueness criterion for Markov
fields [60]. Because of unbounded interactions, one has to use Wasserstein-type
distances to control the weak dependence of single-spin conditional measures
πk(dω|ξ) on boundary configurations ξ ∈ �t

β . It is well known, however, that multi-
dimensional Wasserstein distances are hard (and often impossible) to estimate accu-
rately. To overcome this technical issue, there has been first proposed in [41–43] to
estimate the coefficients of Dobrushin’s interdependence matrix by means of log-
Sobolev inequalities proved for the measures πk(dω|ξ) on the tangent Hilbert space
L2(Sβ). By this method, the uniqueness has been established for small values of the
inverse temperature β > 0, but under the geometric stability conditions independent
of the particle mass (and hence holding also in the quasiclassical regime m ↘ 0).
The above result remains true if one takes a general ferromagnetic interaction
W (xk, x j ) := w(xk − x j ) given by a nonnegative convex function w ∈ C2(R → R)

such that J ≤ infR w′′(q) ≤ sup
R

w′′(q) < ∞. The uniqueness of μ ∈ G t
β in quan-

tum lattice systems (2.1) with superquadratic growth of the many-particle interaction
(i.e., beyond the range of application of Dobrushin’s theorem) was studied in [83].

Typical one-particle potentials satisfying (2.12) (aswell as all the basic assumption
V with P = 2p ≥ 2) are polynomials of even degree and with a positive leading
coefficient

Vk(q) := P(q) =
∑

1≤s≤p

bsq
2s with bp > 0 and p ≥ 2. (2.13)

In this case one speaks about so-called ferromagnetic P(ϕ)–models, which also can
be looked upon as lattice discretizations of quantum P(ϕ)–fields [68, 88]. Due to
choice of a large enough negative b1, the potential (2.13) may have arbitrarily deep
double wells. So, the corresponding lattice system (2.1) may serve as the simplest but
realistic model for the appearance of phase transitions and the influence of quantum
effects. Moreover, this system is technically well-suitable for the study of critical
behavior, in sofar one can use various correlation inequalities employing additional
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symmetries of the polynomial P(q). Below we state the strongest uniqueness result
for scalar ferromagnetic systems, which demonstrates a purely quantum effect of
suppression of the structural phase transitions by the small particle mass. Its proof
its rather involved and requires, among other things, the detailed spectral analysis of
the single-particle oscillators (2.2).

Theorem 4 [15–19] For the quantum lattice model (2.1) with the harmonic inter-
action (2.11) and polynomial self-interaction (2.13), there exists m∗ > 0 such that,
for all m ∈ (0, m∗) and all temperatures β > 0, the set G t

β consists of exactly one
point.

2.4 Integration by Parts Characterization

Next,we outline the so-called analytic approach toGibbsmeasures,which is based on
their characterization via integration by parts [(instead of the traditional one through
the local specification {π�} and the DLR equation (2.6)]. Although such alternative
descriptions ofGibbsmeasures have longbeenknown for a number of specificmodels
in statisticalmechanics andfield theory (see e.g. [68, 70]), the corresponding program
for the quantum lattice systems (2.2) [(as a by-product, including their classical
version (2.7)] has first been completely realized by Albeverio with coworkers in
[25–29] and [36, 37, 44, 45]. This provides yet another striking example of Sergio’s
activity in building bridges between stochastic analysis, infinite dimensional analysis,
and quantum physics.

Let us consider Hβ := l2(Zd → L2(Sβ)) with the scalar product < ω,ω >Hβ
=

||ω||2Hβ
:= ∑

k∈Zd |ωk |2L2(Sβ )
as the tangent Hilbert space to the configuration (i.e.,

product) space �β. We fix an orthonormal basis in Hβ consisting of the vectors
hi := {δk− jϕn} j∈Zd indexed by i = (k, n) ∈ Z

d+1, where {ϕn}n∈Z ⊂ C∞(Sβ) is the
complete orthonormal system of eigenvectors of the operator Aβ in H := L2(Sβ)

, i.e., Aβϕn = λnϕn with λn = (2πn/β)2m + a. Recall that the Laplace–Beltrami
operator Aβ = −m�β + a1 was used to define the “free” Gaussian measure γβ in
Sect. 2.2.

From hereon, we additionally assume that the potentials Vk and Wk j are of C1-
class, that is, continuously differentiable. This allows us to define the vector field
b = (bi )i∈Zd+1 : �β → R

Z
d+1

with components

bi (ω) := −(Aβϕn, ωk)L2(Sβ ) − (Fk(ω), ϕn)L2(Sβ ), (2.14)

where Fk : �β → C(Sβ) is the nonlinear Nemytskii-type operator acting by

Fk(ω) := V ′
k(ωk) +

∑

j �=k

∂q ′ Wk j (ωk, q ′)
∣∣
q ′=ω j

. (2.15)

For each i = (k, n) ∈ Z
d+1, we denote by C1

dec,i (�β) the set of all functions f :
�β → R which are bounded and continuous together with their partial derivatives
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∂i f in direction hi and, moreover, satisfy the extra decay condition

sup
ω∈�β

| f (ω)| · [1 + |ωk |L2(Sβ ) + |Fk(ω)|L2(Sβ )

]
< ∞.

Of course, f bi ∈ L∞(μ) for any f ∈ C1
dec,i (�

t
β) and any μ ∈ P(�β), even though

we do not know a priori whether bi ∈ L1(μ).

For smooth interaction potentials, the initial definition (2.6) of μ ∈ Gβ as spatial
Markov (i.e., DLR) fields will be equivalent to their characterization as differentiable
measures solving the integration by parts (for short, IbP) equations

∂hi μ (dω) = bi (ω) · μ(dω), i ∈ Z
d+1,

with the so-called partial logarithmic derivatives bi prescribed by (2.14).

Theorem 5 [25–29] Let Pb denote the set of all probability measures μ ∈ P(�β)

which satisfy the (IbP)-formula

∫

�β

∂i f (ω) dμ(ω) = −
∫

�β

f (ω)bi (ω) dμ(ω) (2.16)

for all test functions f ∈ C1
dec,i (�t ) and all basis directions hi , i = Z

d+1. Then
Gβ = Pb.

Let us stress that the above mappings bi depend only on the potentials Vk and
Wk j , and hence are the same for allμ ∈ G t

β associated with the heuristic Hamiltonian
(2.1). In stochastic analysis, solutions μ to the (IbP)-formula (2.16) are also called
symmetrizing measures. For further connections to reversible diffusion processes
and Dirichlet operators in infinite dimensions see Sect. 2.5.

The most progress achieved so far in the analytic approach is related with the
existence problem and a priori estimates for the associated Gibbs measures; see e.g.
[25–29] for an alternative proof of Theorem 1. The key ingredient of the (IbP)-
method is that according to (2.16) each π�(dω|ξ) resp. μ ∈ Gβ might be viewed as
a solution of an infinite system of first order partial differential equations (PDE’s).
Under reasonable assumptions on the potentials Vk andWk j , the corresponding vector
fields b will possess certain coercivity properties w.r.t. the tangent spaceHβ , which
then enables us to employ here an analog of the Lyapunov function methodwell-
known from finite dimensional PDE’s. On this way we get, in particular, the uniform
moment estimates on π�(dω|ξ) similar to those in (2.10), which in turn is a crucial
step for proving Theorem 1. For the first time this approach has been implemented in
[44, 45], however in the much simpler situation of the classical spin systems (2.7). Its
extension to the quantum case performed in [25–29] requires for (highly non-trivial)
technical modifications, also involving a “loop space analysis” based on the spectral
properties of the elliptic operator Aβ . Other important and long-standing problem in
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infinite dimensions is to find conditions sufficient for the uniqueness of symmetrizing
measures; for some particular results on this topic see [49].

2.5 Stochastic Dynamics Associated with Euclidean Gibbs
Measures

The (IbP)-description of μ ∈ G t
β provides a background for the stochastic dynamics

method (also referred to in quantum physics as “stochastic quantization” ), in which
the Gibbs measures are treated as invariant (more precise, reversible) distributions
for certain stochastic evolutions in time, see e.g. [46, 47]. Of course, some additional
technical restrictions are required on the interaction in order to ensure the unique
solvability of the corresponding stochastic equations in infinite dimensional spaces.

Actually, in the literature there are two complementary and deeply interrelated
constructions of the corresponding stochastic dynamics.

(i) Equilibrium dynamics. Given μ ∈ P t
b, let us assume that its partial logarithmic

derivatives bi , i = (k, n) ∈ Z
d+1, exist and belong to L2(μ) (which holds for all

μ ∈ G t
β by Theorem 1). Consider a differential expression

Hb f := −1

2

∑

i∈Zd+1

[∂2
i f + bi∂i f ]

correctly defined on smooth cylinder functions f ∈ FC2
b (�β). Each element ofD :=

FC2
b (�β) can be written in the form

f (ω) = fL
(
(ωk1 , ϕn1)L2(Sβ ), ..., (ωkL , ϕnL )L2(Sβ )

)

with some fL ∈ C2
b (R

L) and L ∈ N,where {ϕn}n∈Z ⊂ C∞(Sβ) is a complete orthonor-
mal system of the operator Aβ in L2(Sβ), cf. Sect. 2.4. Then, as follows from the
IbP-formula (2.16), μ will be a symmetrizing measure for Hb in a sense that for all
f, g ∈ D

∫

�β

g · Hb f dμ =
∫

�β

f · Hbg dμ = 1

2

∑

i∈Zd+1

∫

�β

∂i f · ∂i g dμ. (2.17)

A self-adjoint operator (Hμ,D(Hμ)) , defined as the Friedrichs extension of (Hb,D)

in L2(μ), is called the (classical) Dirichlet operator of the measure μ. Consequently,
thisμwill be a reversible measure for the sub-Markovian (i.e., positivity and identity
preserving) semigroup – equilibrium stochastic dynamics P

μ
t := exp(−tHμ), t ≥ 0,

i.e.,
(P

μ
t f, g)L2(μ) = ( f, P

μ
t g)L2(μ), ∀ f, g ∈ L2(μ), t ≥ 0. (2.18)
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Moreover, using the powerful machinery of Dirichlet forms [81], one can con-
clude that there exists a �t

β-valued diffusion process x(t), t ≥ 0, with the generator
(Hμ,D(Hμ)) and time-reversible initial distribution μ, which is a weak solution to
the stochastic differential equation (2.23).

One of Albeverio’s most impressive results here is characterization of the set of all
tempered measures G t

β through the properties of the associated stochastic dynamics,
which extends the famous theorem of Holley and Stroock initially proved in [70] for
the Ising model. By [36, 37] (and, respectively [39, 40] for particle systems in the
continuum), a given μ is an extreme point (or pure phase) in G t

β if and only if the
corresponding semigroup P

μ
t , t ≥ 0, is ergodic in L2(μ), that is,

lim
t→∞

∥∥P
μ
t f − < f >μ

∥∥
L2(μ)

= 0, ∀ f ∈ L2(μ).

This further motivates the study of spectral properties of the Dirichlet operators Hμ.
Under appropriate semi-dissipativity assumptions on the logarithmic derivatives bi ,
the essential self-adjointness of the Dirichlet operators, as well as the presence of a
spectral gap and the validity of a log-Sobolev inequality for them, was first shown
in [35, 89, 90] and [42, 83] in the classical and quantum cases, respectively.

(ii) Nonequilibrium dynamics. Conversely to (i), let us start with a time-homogen-
eous continuous Markov process xt , t ≥ 0, taking values in some Polish space X.

Suppose that the associated transition semigroup Pt , t ≥ 0, which is defined on
f ∈ Cb(X) by

Pt f (x) := E{ f (x(t)) | x(0) = x}, x ∈ X,

is Feller (i.e., it preserves the Banach space Cb(X)). A basic (but often very difficult)
problem here is to describe the sets R(X) and I(X) of all reversible and invariant
distributions for xt , t ≥ 0, respectively. By definition, these are probability measures
μ on (X, B(X)) obeying, cf. (2.18),

∫

X

(Pt f )g dμ =
∫

X

f (Pt g) dμ resp. (2.19)

∫

X

Pt f dμ =
∫

X

f dμ, ∀ f, g ∈ Cb(X), t ≥ 0. (2.20)

Notably, there is a priori inclusion R(X) ⊆ I(X) . For any μ ∈ R(X) (provided
such exists), Pt , t ≥ 0, uniquely extends to a symmetric contraction C0-semigroup
on L2(μ). Furthermore, this semigroup is sub-Markovian and hence contractive in
all L p(μ), 1 ≤ p ≤ +∞. Let (H,D(H)) be its infinitesimal generator in L2(μ); it is
clear that 1 ∈D(H)withH1 = 0. In particular, Eqs. (2.19)–(2.20) implies thatμwill
be symmetrizing and hence also infinitesimally invariant for H, that is, by analogy
with (2.17)

(H f, g)L2(μ) = ( f, Hg)L2(μ),

∫

X

H f dμ = 0,∀ f, g ∈ D(H).



232 A. Daletskii et al.

For some dynamics of the gradient type, which are associated with classical or
quantum particle systems of interest, onemight expect that the setR(X) is nonempty
in so far as it has to contain the related Gibbs states. The question when the sets of
invariant and reversible distributions do coincide, i.e.,R(X) = I(X), was dealt with
for classical lattice systems in [50, 70].

(iii) Stochastic quantization. Based on [46], we now briefly describe themain ingre-
dients of the stochastic quantization procedure when applied to the lattice system
(2.1) at a finite temperature β > 0 (whereas the case of β = ∞ was considered
in [47]). Let us restrict ourselves to the case of harmonic pair interactions; in a
straightforward way the method extends to (many-particle) interactions of at most
quadratic growth. Concerning the one-particle potentials Vk ∈ C2(R →R), the fol-
lowing semi-monotonicity and polynomial growth conditions

(V ′
k(q) − V ′

k(q
′))(q − q ′) ≥ K −1(q − q ′)2 − L , (2.21)

|V ′
k(q)| ≤ K (1 + |q|)M , q, q ′ ∈ R, (2.22)

with some K , L > 0 and M ≥ 1 (implying the basic Assumption (V) in Sect. 2.2)
are required to hold uniformly for all k ∈ Z

d .

Under the above assumptions, one can construct aMarkovprocess xt = (xk,t )k∈Zd ,

t ≥ 0,which gives the unique generalized solution (in a usual for PDE’s sense) to the
(so-called Langevin or Glauber) stochastic evolution equation with a drift coefficient
being the logarithmic gradient b of the measures μ ∈ Gβ. More precisely, xt , t ≥ 0,
takes values in the weighted Banach spaces Xδ := l2(Zd → C(Sβ); e−δ|k|) (used in
(2.3) to define�t

β = ⋂
δ>0Xδ) and satisfies the following infinite systemof stochastic

partial differential equations (SPDE’s):

∂

∂t
xk,t = −1

2
Aβ xk,t + Fk(xt ) + ẇk,t , k ∈ Z

d , t > 0, (2.23)

where ẇk,t (τ ) is a Gaussian white noise on �β × [0,∞) (i.e., heuristically
Eẇk,t (τ )ẇ j,t ′(τ ′) = δk− jδt−t ′δτ−τ ′). Along with the singular random forces ẇk,t ,
a further technical problem here is caused by the nonlinear (possibly unbounded)
drift terms Fk(x) := V ′

k(xk) + J
∑

j : |k− j |=1(x j − xk), cf. (2.15). In the classical case
(where the continuous parameter τ ∈ Sβ is absent), we just obtain a system of inter-
acting Itô diffusions like those considered in Sect. 3. On the other hand, each single
line in (2.23) is a parabolic reaction–diffusion equation with the periodic boundary
conditions on [0, β], driven by an additional noise ẇk,t .

In the trivial case when W = V = 0, the solution of (2.23), starting with initial
data ζ ∈ Xδ, is explicitly given by the Ornstein–Uhlenbeck process

gk,t := e−tAβ/2ζk +
t∫

0

e− 1
2 (t−s)Aβdwk,s, k ∈ Z

d , t ≥ 0. (2.24)
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Taking into account the regularity properties of the semigroup e−tAβ , t ≥ 0, one
can deduce from (2.24) that gt = (gk,t)k∈Zd admits a continuous modification in the
spaces of Hölder loops Cα(Sβ), α ∈ [0, 1/2), and is ergodic in time with the unique
invariant distribution ⊗k∈Zd γβ(dωk) (where γβ is the same as in (2.4)).

A standard practice then consists of replacing (2.23) with the equivalent system
of integral equations

xk,t = gk,t +
t∫

0

e− 1
2 (t−s)Aβ Fk(xs) ds, k ∈ Z

d , t ≥ 0, (2.25)

whereby anyprocess xt = (xk,t )k∈Zd satisfying (2.25) is calledmild solution to (2.23).
Using finite volume approximations, it was proved in [46] that under conditions
(2.21)–(2.22), for each initial data ζ ∈ �t

β := ∩δ>0Xδ there exists a unique continu-
ous solution t �→ xt ∈ �t

β to the Cauchy problem (2.25). Moreover, for any M ≥ 1
we have the following asymptotic bound

lim sup
t→∞

E

⎧
⎨

⎩
|xk,t |M

C(Sβ ) + 1

t

2t∫

t

|xk,s |2Cα(Sβ )ds

⎫
⎬

⎭
≤ �M < +∞, (2.26)

where the constant on the right-hand side can be chosen the same for all ζ ∈ �t
β .

Analogous estimates also hold for the solutions x�
t = (x�

k,t )k∈� ∈ C(Sβ)� of the
corresponding “cut-off ” dynamics

∂

∂t
x�

k,t = −1

2

[
Aβ x�

k,t + Fk(x�
t )

] + ẇk,t , k ∈ �, t > 0, (2.27)

in finite volumes � � Z
d , with fixed initial data x0 := ζ and boundary conditions

x�
k,t := ζk for k ∈ �c.

As was further shown in [46],

(Pt f )(ω) := E{ f (xt ) | x0 = ω}, ω ∈ �t
β, (2.28)

is a Feller transition semigroup in the space Cb(�
t
β) of all bounded continuous

functions f : �t
β → R. LetRt (resp. I t) denote the family of all tempered reversible

(resp. invariant) distributions μ ∈ P(�t
β) for the Markov process xt , t ≥ 0, in the

sense of (2.19)–(2.20). Then there is the following relation

G t
β = Rt ⊆ I t,

with the non-trivial equivalence between the Gibbsian property and the stochastic
reversibility (for its proof involving Itô’s stochastic calculus and (IbP)-formulas, cf.
e.g. [65, 71, 72, 77, 85]). Moreover, in our situation one can directly verify that the
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finite volume Gibbs measures π�(dω|ξ), which were defined in (2.5), are exactly
reversible distributions for the corresponding cut-off dynamics (2.27). Thus, in order
to get the required information on μ ∈ G t

β ⊆ I t , one could apply standard tools used
for the long-time analysis of diffusion processes. So, the existence of invariant mea-
sures μ ∈ I t is a standard consequence of (2.26) combined with Prokhorov’s tight-
ness criterion and the Bogolyubov–Krylov argument. Furthermore, by the ergodic
theorem for invariant distributions, Eq. (2.26) readily implies that

sup
μ∈I t,k∈Zd

∫

�β

[
|xk,t |M

C(Sβ ) + |xk,t |2Cα(Sβ )ds
]
dμ(ω) < ∞,

which agrees with the moment bounds from Theorem 1. To verify the existence of
μ ∈ G t

β = Rt , it would be enough to prove the tightness in �t
β of the local kernels{

πβ,�(dω|0)}
��Zd with fixed boundary condition ξ = 0. This later would be again a

consequence of Prokhorov’s criterion , but now combined with the uniform estimates
on the solutions x�

t , t ≥ 0, of the finite-volume dynamics (2.27). Due to the finite
range of the pair interaction, each cluster point μ := lim�n↗Zd πβ,�n (dω|0) will be
surely Gibbs.

Finally, let us mention that the ergodicity problem (yielding the uniqueness of
μ ∈ I t) for infinite stochastic systems with unbounded spins like (2.23) (except for
the special cases of linear or strictly dissipative ones) is commonly recognized to be
extremely difficult and so far remains mostly open. By now, there are no technical
means to recover the uniqueness results of Theorems 3 and 4 for μ ∈ G t

β by the
stochastic dynamics method.

3 Stochastic Dynamics for Lattice Models with Compact
Spin Spaces

3.1 Infinite Product Manifolds

On the other end of the scale is the study of classical infinite-particle systems with
single-particle space X of complicated geometry. In particular, we consider the case
where X is a compact Riemannian manifold (for which we will use notation M in
order to distinguish it from a linear single-particle space). The existence of Gibbs
measures for compact spin spaces under very general conditions on the interaction
potentials is well known, see e.g. [67]. Our primary goal here is to discuss the
construction of non-equilibrium stochastic dynamics associatedwith thesemeasures,
which we do in Sect. 3 using the stochastic differential equations techniques.

Observe that the spaceM = MZ
d
possesses the natural structure of aBanachmani-

foldmodelled on the Banach space of bounded sequences y = (yk)k∈Zd , yk ∈ R
dim M ,

with the supremum norm. However, this norm being not smooth, one gets difficulties
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in using the corresponding manifold structure for the purposes of stochastic analysis.
The main idea of papers [4–8] is to introduce a special Riemannian-like structure
on M. On a heuristic level, the tangent bundle T M is the Z

d -power of T M , that is,
Tx M = ×k∈Zd Txk Mk . It is natural to consider certain Hilbert sub-bundles of T M. For
a fixed weight sequence p = (pk)k∈Z+ ∈ l+1 we define the Hilbert space Tp,x ⊂ Tx M
with the inner product

(ξ, η)p,x =
∑

k∈Zd

p|k|(ξk, ηk)Txk M

which will play the role of a Riemannian-like structure for M. The space M endowed
with this structure will be denoted by Mp. Observe that Mp, which topologically
coincides with M, is not a Hilbert manifold in a proper sense. However, we can
introduce the classes of “Mp-differentiable” mappings. In particular, a vector filed
β(x) = (

β j (x)
)

j∈Zd , β j (x) ∈ Tx j M , is said to be Mp-differentable if the infinite

matrix ∇β(x) := (∇kβ j (x)
)

k, j∈Zd generates a bounded operator in Tp,x . Here ∇k

stands for the Levi-Civita covariant derivative w.r.t. xk . This class of vector fields will
be denoted by C1(Mp → T Mp). Similarly, we can introduce the spaces Cm(Mp →
T Mp), m = 2, 3, ...

In this section, we give a brief review of the work devoted to the development
of general stochastic analysis on infinite product manifolds, concentrating mainly
on the study of (non-equilibrium) stochastic dynamics of lattice models with spin
spaces given by M , cf. Sect. 3.1. Thus, we consider a system of particles governed by
Hamiltonian (1.3)with X = M andχ =Riemannianvolumeon M . The compactness
of M allows us to deal with interactions of unbounded range.Wewill require however
that the family of potentials U , cf. (1.2), satisfies the following regularity condition:
U� ∈ C1(M�), � ∈ B0(Z

d), and

∑

�∈�(k)

sup
x∈M

|U�(x�)| < ∞, k ∈ Z
d , (3.1)

where �(k) is the collection of all � ∈ B0(Z
d) such that k ∈ �.

In order to be able to construct and study the corresponding stochastic dynamics,
we first consider the general theory of stochastic differential equations and differen-
tiable measures on M.

A more advanced geometric analysis on M has been developed in [9, 10]. In
particular, in [9], the authors defined the de Rham complex over Mp, and considered
Markov processes generated by the corresponding Bochner and de RhamLaplacians.
Some other questions of stochastic analysis on product manifolds, like the quasi-
invariance and Gibbs structure of distributions of the stochastic dynamics and its
ergodicity, were studied in [4, 5] and [8], respectively.
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3.2 Stochastic Differential Equations on Product Manifolds

We consider the following system of SDEs describing (non-equilibrium) stochastic
dynamics of spins xk :

dxk(t) = bk(x(t))dt + dwk(t), k ∈ Z
d . (3.2)

Here
bk(x) := −∇k Vk(x) ∈ Txk M (3.3)

with Vk(x) := ∑
�∈�(k) U�(x�), and wk(t), k ∈ Z

d , is a collection of independent
Brownian motions in M .

Let us first recall that a Brownian motion in M is a Markov process W (t) with
generator 1

2�, where � is the Laplace-Beltrami operator. One of the possible ways
to construct and understand it is as follows. Consider a smooth embedding of M into
a Euclidean space R

n . It is well known that such an embedding exists if n ≥ 2N .
Then the tangent bundle T M is a submanifold of R

n × R
n . Let P(x) : R

n → Tx M
be the corresponding orthogonal projection. Then w(t) is a solution of the SDE

dw(t) = P(w(t)) ◦ dw̃(t)

in R
n . Here w̃(t) stands for a standard Wiener process in R

n and ◦ the Stratonowich
differential.

In this way, the heuristic equation

dx(t) = b(x(t))dt + dw(t) (3.4)

on M , which defines a Brownian motion with drift b (a C1-vector field on M), can
be understood as an SDE in R

n .
More precisely, let us consider the normal bundle vM with the fibers vx M being

the orthogonal complements to the corresponding fibers Tx M in R
n . It is known

(see e.g. [63]) that there exists r > 0 and a neighborhood Ur ⊂ vM of the zero
section (M, 0) of vM ,Ur = {(x, v) : |v| < r}, which is diffeomorphic to the tubular
neighborhood

Nr = {
y ∈ R

n : |y − x | < r, x ∈ M
}

of M in R
n .

Let us choose some positive r1 < r and a smooth function F : R
n → R with

support in Nr that is equal to 1 on Nr1 . Next, for any mapping� from M into a linear
space P , we define its extension �̃ : R

n → P as follows:

�̃(y) :=
{

�(xy)F(y), y ∈ Nr

0, y /∈ Nr
,

where
(
xy, vy

)
is the image of y in Ur .
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Equation (3.4) can now be understood as the following SDE in R
n:

dx(t) = b̃(x(t))dt + P(x(t)) ◦ dwk(t), x(0) ∈ M. (3.5)

Let us now assume that the family of potentials U satisfies (in addition to (3.1))
the following condition: U� ∈ C2(M�), � ∈ B0(Z

d), and

sup
k∈Zd

∑

�∈B0(Zd )

|||∇kU�|||T M + sup
k∈Zd

∑

�∈B0(Zd )

∑

j∈Zd

|||∇ j∇kU�|||T M⊗T M < ∞, (3.6)

where ||| · ||| := supx∈M ‖ · ‖.
Remark 6 In the case of finite range of interactions conditions (3.1) and (3.6) are
obviously fulfilled.

Our main result is the following theorem.

Theorem 7 [6] Let the family of potentials satisfy conditions (3.1) and (3.6). Then,
for any x0 ∈ M, there exists a unique Markov process x(t) ∈ M, t > 0, with initial
value x(0) = x0, which is a strong solution the system (3.2).

In order to use the theory of infinite-dimensional SDE for the proof, we will rewrite
this system in the form of an equation in theHilbert spaceHp ⊂ (Rn)Z

d
ofRn -valued

sequences with the inner product

(ξ, η)p =
∑

k∈Zd

p|k|(ξk, ηk)Rn

for some weight sequence p = (ps)s∈Z+ ∈ l1, which will be chosen later. Obviously,
Hp contains the space of bounded sequences and, therefore, contains M (were we
identify M with its image in R

n).
We denote by H the space Hp with p = (ps = 1)s∈Z+ , that is, the space of

square-integrable R
n-valued sequences.

Similar to (3.5), we extend coefficients bk to (Rn)Z
d
, setting

Ũ�(y) := U�(xy)
∏

j∈�

F(y j ), y = (yk)k∈Zd ∈ (Rn)Z
d

and defining b̃ = (̃bk)k∈Zd by formula (3.3) with Ũ� instead of U�. Consider the
equation

dξ(t) = b̃(ξ(t))dt + P(ξ(t)) ◦ dw(t) (3.7)

in Hp, where P(y) is generated by the block-diagonal matrix with nonzero blocks
Pkk(y) = P(yk) and w(t) is the Wiener process in H. It is clear that P(x) ∈
S2(H,Hp) [(the space of Hilbert-Schmidt operators H → Hp)] and the mapping

Hp � x �→ P(x) ∈ S2(H,Hp)
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is C∞ for any weight sequence p ∈ l1.
The following result can be proved by an application of the Schur test to thematrix

rk j := sup
y∈(Rn)Z

d

∥∥∇ j b̃k(y)
∥∥, k, j ∈ Z

d .

Lemma 8 [6] There exists a weight sequence p ∈ l1 such that the mapping

Hp � x �→ b̃(x) ∈ Hp

is bounded and satisfies the Lipschitz condition.

Let us fix a weight sequence p ∈ l1 as in Lemma 8 and consider SDE (3.7) in
Hilbert space Hp. Observe that the corresponding induced topology on M ⊂ Hp

coincides with the product topology (see [10]). The next statement follows from the
general theory of SDEs in Hilbert spaces.

Theorem 9 [6] (1) For any x ∈ Hp there exists a unique strong solution ξx (t),
t > 0, of equation (3.7) with initial value x. This solution continuously depends on
x in the square mean sense. (2) The process ξx (t), t > 0, with initial value x ∈ M
does not leave M a.s.
(3) The process ξx (t) defines the Markov semigroup

Pt f (y) := E( f (ξx (t))) (3.8)

in the space C(M) of continuous functions on M.

Theorem 7 follows now from Theorem 9.

Remark 10 So far, we have not explicitly used the geometric structure Mp intro-
duced on page 16, although it appeared implicitly as a technical tool in Theorem 9.
In [10], Theorem 7 was proved under more general conditions on the coefficients
guaranteeing their Mp-differentiability. Observe that Mp-differentiable coefficients
cannot in general be extended to differentiable functions on Hp. Thus, in order
to prove the existence and uniqueness results, the authors used more “ geometri-
cal” technique of the orthonormal frame bundle of Mp. A sufficient condition of
Mp-differentiability of a vector field β(x) = (

b j (x)
)

j∈Zd , bk(x) ∈ Txk M , for some
weight sequence p is

sup
j∈Zd

∑

k∈Zd

sup
x∈M

∥∥∇kb j (x)
∥∥ < ∞,

which is weaker than conditions (3.1) and (3.6).

3.3 Dirichlet Forms of Differentiable Measures and
Probabilistic Representations of Associated Semigroups

In this section consider Dirichlet operators associated with differentiable measures
on M (including Gibbs measures of the class G ) and use the results of the previ-
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ous section in order to construct probabilistic representations of the corresponding
semigroups.

We will use the spaces FCm(M) := ⋃
�∈B0(Zd ) Cm(M�) of m-times continu-

ously differentiable real-valued cylinder functions onM and similarly defined spaces
FCm(M →T M) of cylinder vector fields.

Let μ be a probability measure on M differentiable in the sense that the following
integration by parts formula holds true: for any u ∈ FC1(M) and any vector field
ξ ∈ FC1(M →T M)

∫ ∑

k∈Zd

(∇ku(x), ξk(x))Txk M dμ(x) = −
∫

bμ
ξ (x)u(x) dμ(x),

with some bμ
ξ ∈ L2(M, μ) (the logarithmic derivative of μ in the direction ξ ). We

assume that bμ
ξ is given by

bμ
ξ (x) =

∑

k∈Zd

((bμ

k (x), ξk(x))Txk M + div ξk(x)), (3.9)

where bμ(x) := (bμ

k (x)) ∈ C1(Mp → T Mp) for some weight sequence p ∈ l+1 .We
will call βμ the (vector) logarithmic derivative of μ (cf. Sect. 2.4).

For u, v ∈ FC2(M)we define the classical pre-Dirichlet form Eμ associated with
μ :

Eμ(u, v) = 1

2

∫ ∑

k

(∇ku(x),∇kv(x))Txk M dμ(x).

Obviously it has a generator Hμ acting in L2(M, μ) on the domain FC2(M) as

Hμu(x) = −1

2

∑

k

�ku(x) − 1

2

∑

k

(bμ

k (x),∇ku(x))Txk M .

Here �k = T r ∇2
k is the corresponding Laplace-Beltrami operator.

Our goal is to construct a Markov process on M such that its generator coincides
with Hμ on FC2(M). Such a process is sometimes called the stochastic dynamics
associated with μ. One possible construction of the stochastic dynamics is given
by the theory of Dirichlet forms. Indeed, the pre-Dirichlet form Eμ is closable. Its
closure defines the classical Dirichlet form given by μ (which will be denoted also
by Eμ, for this concept see e.g. [33]).We can consider the semigroup P

μ
t in L2(M, μ)

associated with its generator and construct the corresponding process as described
in [33] (cf. also Sect. 2.5(i)).

Another approach (which gives in our case better control on properties of the
stochastic dynamics) is based on the SDE theory. In the case where the relevant SDE
has “nice coefficients” this can be solved and the so constructed process (sometimes
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called “Glauber dynamics” ) coincides (in the sense of having the same transition
semigroup) with the stochastic dynamics process (cf. also Sect. 2.5(ii), (iii)).

In our framework the corresponding process ξ can be obtained as the Brownian
motion onM with drift bμ, cf. Remark 10. Let us consider the correspondingMarkov
semigroup Pt in C(M) defined by (3.8). We observe that the semigroup Pt can be
uniquely extended to a strongly continuous semigroup P̃t of symmetric contraction
operators in L2(M, μ) (see e.g. [66, pp. 27/28]). We have the following result, which
follows essentially from Theorem 7 and Remark 10.

Theorem 11 [6, 10] There exists a unique M−valued Markov process ξx such that
the associated semigroup Pt acts in the space C(M → R1) of continuous functions
on M, and its generator H coincides with −Hμ on FC2(M). This process is given by
Brownian motion on M (constructed in Remark 10) with drift βμ. If βμ ∈ C3(Mp →
T Mp), then Hμ is an essentially self-adjoint operator on FC2(M). In this case we
have P̃t = P

μ
t for all t > 0.

We return now to the study of Gibbs measures of the class G. The next statement
shows that any ν ∈ G can be completely characterized by its logarithmic derivative,
see [2, 8] for the case of finite range interactions (cf. also Theorem 5).

Theorem 12 [8] The following conditions are equivalent: (i) the measure ν belongs
to the class G;
(ii) the measure ν is differentiable and the components bν

k (x) of its vector logarithmic
derivative are given by the formulae

bν
k (x) = −∇k Vk(x), Vk(x) =

∑

�∈�(k)

U�(x�),

cf. (3.9).

In view of this result, Theorem 11 can be applied to any Gibbs measure μ ∈ G.
Observe that the essential self-adjointness of Hμ can be proved in this case with-
out the additional smoothness assumption bμ ∈ C3(Mp → T Mp) by employing the
approximating parabolic criterion, see [8, 10].

4 Further Developments: Gibbs Measures on Random
Graphs and Relationship with Configuration Space
Analysis

There has been a huge number of works rooted in the research described above. The
most notable direction is motivated bymathematical modelling of particle systems in
continuum. It has lead to the development of the configuration space analysis, which
studies analysis and geometry of the space�(X) of locally finite sets (configurations)
γ ⊂ X in a metric space (X, ρ), equipped with a Poisson or Gibbs measure. Initiated
in seminal papers [39, 40], the configuration space analysis has lead to a great variety
of applications in mathematical physics and mathematical biology, see e.g. [64, 76].
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The volume limitations of the present paper do not allow as to go any deeper in this
topic. We are going however to briefly touch another (related) direction of research
- the study of infinite particle spin systems on irregular (possibly random) graphs in
place of integer lattices.

More precisely, we consider a system of classical particles with location points
x ∈ X forming a configuration γ ∈ �(X), and spins σx ∈ S. Here we customarily use
the notation S instead of X for the single spin space.We suppose here that bothX and
S are Euclidean spaces. Two spins σx and σy interact via a pair potential Uxy if the
distance between x and y is no more than a fixed interaction radius R. In other words,
x and y must be adjacent in the geometric (Gilbert) graph with the vertex set γ . In
contrast to the case where γ is a regular graph, e.g. Z

d , the number nx of particles
interacting with particle x can be unbounded in x . Our main example of a “growing”
configuration γ is a typical realization of a Poisson (or Gibbs) point process π on X,
for which nx obeys a logarithmic bound. In the physical terminology, cf. [51], the
equilibrium states of our system are quenched Gibbs states of an amorphous magnet.

For general unbounded degree graphs and unbounded spins, the question of exis-
tence of Gibbs measures was first studied in [75]. In [56] , these results were used to
show that the set of Gibbs measures on Sγ is non-empty for π -distributed γ (under
certain natural conditions on the growth of the interaction potentials). In addition,
the authors described support of those measures and obtain uniform estimates on
their exponential moments. The proof is based on exponential moment bounds for
the local Gibbs specification of our model and its weak dependence on the boundary
conditions (cf. Lemma 2). Such a technique is effective in dealing with spatially
irregular systems, see [75]. The two fundamental tools—Ruelle’s (super-) stabil-
ity technique and general Dobrushin’s existence and uniqueness criteria—are not
directly applicable to our model (due to the unboundedness of the degree function
nx and the lack of the spatial transitivity of γ ). At the same time, for our model the
uniqueness problem remains open.

In [57], the problem of the multiplicity of Gibbs states on Sγ was considered for
S = R. It was proved that, for π -a.a. configurations γ , the (ferromagnetic) model
admits multiple Gibbs states if the intensity of the underlying point process and the
inverse temperature of the system are big enough. The main technical tools used in
this work were the Wells inequality and percolation techniques.

Construction of non-equilibrium stochastic dynamics of infinite particle systems
of the aforementioned type has been a long-standing problem, even in the case of a
linear drift and additive noise. Due to the unboundedness of the vertex degrees of
γ , the coefficients of the corresponding equations cannot be controlled in a single
Hilbert or Banach space (in contrast to the situation considered in Sects. 2.5 and 3).
However, under mild conditions on the density of γ (holding in particular for π -a.a.
configurations γ ), it is possible to construct a solution in the scale ofHilbert spaces Sγ

α

of weighted sequences q̄ = (qx )x∈γ ∈ Sγ such that
∑

x∈γ |qx |2 e−α|x | < ∞, α > 0,
in both deterministic and stochastic case, see [54, 55], respectively. The price to pay
here is that, for an initial condition in Sγ

α , the solution lives in the bigger space Sγ

β ,
β > α.
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Let us remark that the development of stochastic analysis on Sγ has become
important in the framework of the studies of the spaces �(X, S) of configurations
{(x, σx )}x∈γ with marks σx ∈ S (see e.g. [22, 59]), and is motivated by a variety of
applications, in particular in modeling of non-crystalline (amorphous) substances,
e.g. ferrofluids and amorphousmagnets, see e.g. [51, 84]. The questions of existence,
uniqueness andmultiplicity ofGibbs states onmarked configuration spaces have been
considered in [53, 58], respectively. The space �(X, S) possesses a fibration-like
structure over the space �(X) of position configurations γ , with the fibres identified
with Sγ , see [56]. Thus the construction of spin dynamics of a quenched system
(in Sγ ) is complementary to that of the dynamics in �(X) (see references given in
[54]). It is anticipated that (some of) these results can be combined with the approach
described in the present paper allowing to build stochastic dynamics on the marked
configuration space �(X, S).
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Abstract Sergio Albeverio’s research in hydrodynamics is revised, focusing on sta-
tistical analysis of the bidimensional deterministic Euler equations and the bidimen-
sional Navier–Stokes equations with space-time white noise. Both the subjects had
influence on the activity of many researchers including the present authors. The main
interactions with the recent research and some (open) future problems are described.
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1 Introduction

It is a pleasure to write this contribution to celebrate the 80th birthday of Sergio
Albeverio. One of his research areas concerns the statistical analysis of the motion
of fluids. The equations for a homogeneous incompressible fluid are given by

∂t u − νΔu + (u · ∇)u + ∇ p = f ; div u = 0 (1)

where u = u(t, x) and p = p(t, x) are the velocity vector and the (scalar) pressure,
respectively, defined for t ≥ 0 and x ∈ D ⊆ R

d (d = 2 or d = 3). Suitable initial and
boundary conditions are given. For ν = 0 they describe themotion of an inviscid fluid
and are called Euler equations; for ν > 0 they describe the motion of a viscous fluid
and are called Navier–Stokes equations, and ν is the kinematic viscosity parameter.
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Sergio Albeverio gave contributions for both these equations in the two dimen-
sional setting, by using tools of infinite dimensional stochastic analysis, also used
by him in other fields as statistical mechanics or field theory. This activity was in
a sense the prosecution of preliminary investigations of statistical fluid mechanics
(see, e.g., [42, 51]) and opened the door to numerous more recent contributions. The
next sections review part of this story.

2 Euler Equations

This is a paper honouring Sergio Albeverio’s scientific work in Stochastic Hydrody-
namics. However, in order to see the interlacement with other fields—Albeverio as
a precursor, in this case—let us start from something quite different.

2.1 Wave Equation

In 2008 two outstanding papers by Nicolas Burq and Nikolay Tzvetkov appeared on
Inventiones [17, 18]. Theywere devoted to the solvability of nonlinear wave equation
on the 3D torus T3

∂2
t t u = Δu − u3 in T3. (2)

This equationwas known to bewell posed in regular spaces, with counterexamples to
well posedness in less regular ones. Equation (2) is commonly studied in the Hilbert
spaces

(u, ∂t u) ∈ Hs = H s
(
T
3
) × H s−1

(
T
3
)
.

When s = 1 (more generally s ≥ 1), well posedness is proved by energy methods,
thanks to the invariance of the energy:

d

dt

⎛

⎝1

2
‖∇x u‖2L2 + 1

2
‖∂t u‖2L2 +

∫

T3

u4

4
dx

⎞

⎠ = 0.

For s ∈ (
1
2 , 1

)
well posedness has been proved by Strichartz estimates. The strategy

is:

(i) first prove special regularity results (the Strichartz estimates) for the semigroup
S (t) associated to the linear problem

∂2
t t u = Δu in T3

u|t=0 = u0, ∂t u|t=0 = v0
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(ii) then apply them to the iteration

(u, ∂t u) (t) = S (t) (u0, v0) −
t∫

0

S (t − s)
(
0, u3 (s)

)
ds.

Since this strategy has something in common with the exciting recent advances
on singular SPDEs, let me sketch some more details. One decomposes the solution
as

(u, ∂t u) (t) = (u, ∂t u) (t) + (̃u, ∂t ũ) (t)

(singular + regular parts) where

(u, ∂t u) (t) = S (t) (u0, v0) .

Then we have to solve

(̃u, ∂t ũ) (t) = −
t∫

0

S (t − s)
(
0, [̃u (s) + u (s)]3

)
ds. (3)

By contraction principle arguments one can prove:

Lemma 1 Assume
T∫

0

‖u (s)‖3L6 ds < ∞.

Then Eq. (3) has a unique local solution (̃u, ∂t ũ) ∈ C
(
[0, T0] ;H1

)
, for some T0 ∈

(0, T ].
The question then is whether u, solution of the linear wave equation, has the spe-

cial integrability property required by this lemma, in spite of the fact that (u0, v0)

is apparently unrelated with such integrability. Here come into play the celebrated
Strichartz estimates, that we quote in the special case s = 2/3 for our present pur-
poses:

Theorem 1
‖u‖L3(0,1;L6) ≤ C

(
‖u0‖H

2
3

+ ‖v0‖H
2
3 −1

)

Using this estimate one can apply the lemma. Summarizing what said until now:

• s ≥ 1: well posed by energy methods
(Hs = H s

(
T
3
) × H s−1

(
T
3
))

• s ∈ (
1
2 , 1

)
: well posed by Strichartz estimates

• Below s = 1
2 there are counterexamples to well posedness.

Now comes the contribution of Nicolas Burq and Nikolay Tzvetkov.
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Theorem 2 (Burq-Tzvetkov, Inv ’08) For every s ∈ [
0, 1

2

]
there are Gaussian mea-

sures μ supported onHs (with μ
(Hs+ε

) = 0 for every ε > 0) such that the nonlinear
wave equation is well posed for μ-a.e. initial condition (u0, v0).

The strategy of proof is similar to what described above: prove probabilistic
Strichartz estimates for the semigroup S (t) using Gaussian analysis (and Kol-
mogorov regularity theorem).

Lemma 2 Given s > 0, there are Gaussian measures μ supported on Hs (with
μ

(Hs+ε
) = 0 for every ε > 0) such that u has a jointly continuous in space-time

version.

Having this result one can apply Lemma 1 above. Proving the a priori bound

sup
t∈[0,T ]

‖(̃u, ṽ)‖H1 ≤ C

one can also deduce globality.

2.2 Hydrodynamics

What has to do all of this with hydrodynamics, and in particular with Sergio’s work?
After the papers byBurq andTzvetkov (andmanyother researchers) itwasmandatory
to ask whether something similar can be proved for equations of fluid mechanics.

Remark 1 Until now the regularization mechanism of random initial conditions
did not prove to be sufficiently strong for parabolic equations (see also [14]): too
difficult to compete with parabolic regularization. This is why, in fluid mechanics,
the attention goes to inviscid problems.

The discovery is that, in fluid mechanics, a partial analog of Burq and Tzvetkov
result was already done!

Theorem 3 (Albeverio-Cruzeiro CMP ’90) There exists a probability space
(Ω,F , P) and a stationary process (ωt )t≥0, with paths of class C

(
[0, T ] ; H−1−)

,
such that:

(i) (ωt )t≥0 solves the 2D Euler equations
(ii) the law of ωt is the enstrophy measure μ, for every t ≥ 0.

Here, the space H−1− is defined as
⋂

ε>0 H−1−ε . We shall explain this result in
the rest of the section.

Remark 2 The only precursor of Burq-Tzvetkov result was Bourgain [15], on non-
linear Schrödinger equations, in 1996, also posterior to Albeverio-Cruzeiro. It is not
clear whether there was an influence from 2D Euler to dispersive equations.
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2.3 The 2D Euler Equations

Let us consider the 2D Euler equations on the torus T2 = R
2/Z2

∂t u + u · ∇u + ∇ p = 0

divu = 0.
(4)

The vorticity ω = ∂2u1 − ∂1u2 satisfies the nonlinear transport equation

∂tω + u · ∇ω = 0.

Weshall always consider the vorticity formulation. For smooth solutions,we consider
energy, enstrophy and Casimir:

E (ω) = energy = 1

2

∫
|u (x)|2 dx

∼ − 1

2π

∫ ∫
log |x − y| ω (x) ω (y) dx dy

S (ω) = enstrophy =
∫

ω2 (x) dx

Casimir =
∫

|ω (x)|p dx .

Existence of solutions in function spaces and for measure-vorticity is based on
them. Let us review these results.

2.3.1 Existence and Uniqueness in L∞, When ω0 ∈ L∞

This is a celebrated result of Yudovich [52]. The notion of solution, in general for
solutions of class L∞ (0, T ; L p), is the classical weak one: for all φ ∈ C∞

c it is
required that

∫
ω (t, x) φ (x) dx −

∫
ω0 (x) φ (x) dx =

t∫

0

∫
ω (s, x) u (s, x) · ∇φ (x) dxds

where

u (t, x) =
∫

K (x − y) ω (t, y) dy

K (x − y) =Biot-Savart kernel (∼ 1
2π

(x−y)⊥

|x−y|2 at short distance). Concerning existence
of solution in L∞ (0, T ; L p) when the initial condition ω0 belongs to L p, it is based
on compactness arguments, combining the a priori bounds coming from the transport
structure (plus divu = 0)
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∫
|ω (t, x)|p dx ≤

∫
|ω0 (x)|p dx

and the additional regularity of u (t, x) = ∫
K (x − y) ω (t, y) dy

ω (t, ·) ∈ L p ⇒ u (t, ·) ∈ W 1,p

Uniqueness, which holds only under the assumption ω0 ∈ L∞, is more special. For
p = ∞ we do not have u (t, ·) ∈ W 1,∞ but only

u log-Lipstchitz.

One way to understand uniqueness is to invoke the Lagrangian formulation

dX x
t

dt
= u

(
t, X x

t

)
, X x

0 = x

ω
(
t, X x

t

) = ω0 (x) .

When the flow x �→ X x
t is sufficiently well behaved, it is a tool for uniqueness.

Log-Lipstchitz condition on u is sufficient for this purpose.
Existence of Measure-Valued Solutions
When the initial condition is a positive measureω0 (dx) (or slightly more general), of
class H−1, namely with velocity u0 ∈ L2, Delort [25] proved existence of measure-
valued solutions. The proof is based on a priori bound from energy conservation and
a clever argument to pass to the limit in a very weak formulation, acceptable for
solutions which are just measures. We give this detail since it is very relevant for the
sequel. The nonlinearity

∫
ω (s, x) u (s, x) · ∇φ (x) dx =

∫
u (s, x) · ∇φ (x) ω (s, dx)

is a priori meaningless, since u (s, ·) is only L2. But one can rewrite it by the so
called Schochet symmetrization [47] (Delort used a different trick):

u=K∗ω=
∫ ∫

K (x, y) · ∇φ (x) ω (s, dy) ω (s, dx)

= 1

2

∫ ∫
K (x, y) · (∇φ (x) − ∇φ (y)) ω (s, dy) ω (s, dx)

which is better because Hφ (x, y) := 1
2 K (x, y) · (∇φ (x) − ∇φ (y)) is bounded,

smooth outside the diagonal. In order to deal with this expression, the involved mea-
sures should not give weight to the diagonal; this fact is guaranteed by the condition
ω ∈ H−1 which, intuitively speaking, excludes delta Dirac masses.
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2.3.2 Point Vortex Solutions

But precisely the case of only delta Dirac concentrations of vorticity, in finite number,
is acceptable and even well posed by another approach. Marchioro and Pulvirenti
[44] have proved existence and uniqueness of solutions of the form

ω (t, dx) =
N∑

i=1

ωiδXi
t

for almost every point vortex initial measure ω0 (dx) = ∑N
i=1 ωiδXi

0
, where the qual-

ification a.e. refers to Lebesgue measure on product space of N copies of the under-
lying domain. These solutions belong to H−1− = ⋂

ε>0 H−1−ε and the velocity is
not of finite energy, u /∈ L2. This result is usually described as an ODE result:

dXi
t

dt
= 1

2π

∑

j �=i

ω j

(
Xi

t − X j
t

)⊥

∣∣∣Xi
t − X j

t

∣∣∣
2 i = 1, . . . , N

This 2N -dimensional equation has a unique solution, without collision of points,

for Leb2N -a.e.
(
X1
0, ..., X N

0

)
.

This is a first example of probabilistic result for 2DEuler equations, for distributional
solutions. Point vortices are distributional solutions in the sense of Schochet: setting

Hφ (x, y) := 1

2
K (x, y) · (∇φ (x) − ∇φ (y)) for x �= y

Hφ (x, y) := 0 for x = y

(which corresponds to
∑

j �=i in the ODE) and setting

ω0 (dx) =
N∑

i=1

ωiδXi
t

we have
∫

φ (x) ω (t, dx) −
∫

φ (x) ω0 (dx)

=
∫ t

0

∫ ∫
Hφ (x, y) ω (s, dy) ω (s, dx) ds.
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2.3.3 Distributional Solutions

Until ω ∈ H−1 we have Delort result. For very special ω ∈ H−1− we have point
vortex result. Albeverio-Cruzeiro theorem represents another, more substantial, exis-
tence result of H−1−-solutions. Recall that Theorem 3 from Albeverio and Cruzeiro
[2] states the existence of a probability space (Ω,F , P) and a stationary process
(ωt )t≥0, with paths of class C

(
[0, T ] ; H−1−)

, such that (ωt )t≥0 solves the 2D Euler
equations. Recall also that μ (still to be defined in this review) is the law at time
zero—as well as at any time. In particular, the previous result implies:

Corollary 1 For μ-a.e. initial condition ω0 ∈ H−1− there is a solution of class

ω· ∈ C
(
[0, T ] ; H−1−)

.

2.4 The Enstrophy Measure

Let us see what is the measure μ. It is the law of white noise on T
2, here called ω0.

White noise on T
2 is a centered Gaussian r.v. ω0 : � → C∞ (

T
2
)′
(here (�,F , P)

is a probability space) such that

E [〈ω0, φ〉 〈ω0, ψ〉] = 〈φ,ψ〉

for all φ,ψ ∈ C∞ (
T
2
)
. In more heuristic terms,

E [ω0 (x) ω0 (y)] = δ (x − y) .

Remark 3 The solution constructed by Albeverio and Cruzeiro [2] is white noise
at every time (similarly to KDV equations, see Oh [45], and to stochastic viscous
Burgers equation of KPZ theory or stochastic Navier–Stokes equations with space-
time white noise).

Recall the invariant

S (ω) = enstrophy =
∫

ω2 (x) dx .

Formally white noise measure is

μν (dω) = 1

Zν

e−νS(ω)dω (enstrophy measure)

for any ν > 0, and heuristically it is invariant for Euler equations because “dω” is
invariant by the Hamiltonian structure.

Albeverio et al. [9] (and with Ribeiro de Faria in [3]) understood the following
fundamental facts.
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Theorem 4 (i) The enstrophy measure is infinitesimally invariant for Euler dynam-
ics.

(ii) The nonlinear term
〈u · ∇ω, φ〉

of Euler equation, for smooth cylindrical test functions φ, is rigorously defined
by Fourier analysis, on L2

(
H−1−, μν

)

〈u · ∇ω, φ〉 = L2
μν

− lim
N→∞

〈BN (ω) , φ〉

providing a rigorous definition of the infinitesimal generator (and thus infinites-
imal invariance of μν) on cylindrical smooth functions.

(iii) Defined EN (ω) as a truncated Fourier kinetic energy, its limit is infinite on H−1−,
but the following limit exists in L2

(
H−1−, μν

)
:

: E (ω) : = L2
μν

− lim
N→∞ (EN (ω) − E

μν [EN ])

called renormalized kinetic energy.
(iv) Then the measure

μν,γ (dω) = 1

Zν,γ

exp (−γ : E (ω) :) μν (dω)

is also infinitesimally invariant for 2D Euler equations.

2.4.1 Back to Albeverio-Cruzeiro Result

Now we can fully appreciate the result of Sergio Albeverio and Ana-Bela Cruzeiro,
that we restate with the additional informations given above.

Theorem 5 (Albeverio-Cruzeiro CMP ’90) There exists a probability space
(Ω,F , P) and a stationary process (ωt )t≥0, with paths of class C

(
[0, T ] ; H−1−)

,
such that:

(i) (ωt )t≥0 solves the 2D Euler equations in weak form

∂tω + B (ω) = 0

〈B (ω) , φ〉 = L2
μν

− lim
N→∞

〈BN (ω) , φ〉

(ii) the law of ωt is the enstrophy measure μν , for every t ≥ 0.

Let us shortly discuss the idea of proof. All the classical results recalled above
for 2D Euler equations are based on a priori estimates due to invariance of energy,
enstrophy or Casimirs. These quantities are infinite for vorticity fields of class H−1−
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(velocity in H−). [The result for point vortices, which belong to H−1−, is based on
the invariance of interaction energy, which is finite.]

The invariance of μν is the substitute. Let us understand the proof from the view-
point of a priori estimates (the true proof requires an approximation scheme,Galerkin
inAlbeverio andCruzeiro [2] or point vortices in later works, where similar estimates
can be proved rigorously and uniformly). Let us try to use a form of Aubin-Lions
lemma. We may estimate

∫ T
0 ‖ω (t)‖p

H−1−δ dt in μν-average using stationarity:

Eμν

⎡

⎣
T∫

0

‖ω (t)‖p
H−1−δ dt

⎤

⎦ =
T∫

0

Eμν

[‖ω (t)‖p
H−1−δ

]
dt

= TEμν

[‖ω (0)‖p
H−1−δ

]

= T
∫

‖ω‖p
H−1−δ μν (dω) < ∞.

Compactness in time makes use of Euler equation:

Eμν

⎡

⎣
T∫

0

‖∂tω (t)‖H−N dt

⎤

⎦ ≤
T∫

0

Eμν

[‖u (t) · ∇ω (t)‖H−N

]
dt

≤ T
∫

‖(K ∗ ω) · ∇ω‖H−N μν (dω)

and of special estimates on ‖(K ∗ ω) · ∇ω‖H−N with respect to μν similar to those
mentioned above to give a meaning to B (ω).

2.5 Summary of Results

What described until now is an extraordinary set of results, followed by investiga-
tions about Markov uniqueness, generalizations to 2D Navier–Stokes equations with
space-time noise (and improvements of the results in that case). The following is
only a partial list of those papers: [1–6, 9]. In summary, what we have discussed
until now is the scheme for wave equation:

∂2
t t u = Δu − u3 in T3

(u, ∂t u) ∈ Hs = H s × H s−1

• s ≥ 1: well posed by energy methods
• s ∈ (

1
2 , 1

)
: well posed by Strichartz estimates
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• s ∈ [
0, 1

2

]
: well posed for a.e. initial condition with respect to certain Gaussian

measures.

and the analogous scheme for 2D Euler equations:

• existence and uniqueness, when ω0 ∈ L∞ (Wolibner, Yudovich)
• existence for ω0 ∈ L p, p ≥ 2 (velocity u ∈ W 1,p)
• existence for positive measures ω0 (dx) of class H−1 (Delort) (velocity u ∈ L2)
• existence and uniqueness for a.e. point vortex measure ω0 (dx) = ∑N

i=1 ωiδXi
0

(Marchioro-Pulvirenti) (velocity u /∈ L2)
• existence for μν-a.e. ω0 ∈ H−1− (μν described in Sect. 2.4) (Albeverio-Cruzeiro,
CMP ’90).

2.6 Recently Treated Questions

Recently there has been a revived interest for the set-up of distributional white noise
solutions of Albeverio and Cruzeiro. The following list of questions received some
positive contribution:

1. Is the meaning of the nonlinearity related to Schochet symmetrization?
2. Is a white noise solution the limit of suitable smoother solutions?
3. Is a white noise solution the limit of point vortices?
4. Are there generalizations to L (ω0) � μν?
5. Are there generalizations to stochastic Euler equations in the enstrophy measure

regime?

Problem n. 2 was suggested by Nikolay Tzvetkov. We have positive answers to
questions 1–4 in [32] and to 5 in [34, 35] in the case of multiplicative transport
noise (in regimes different from the enstrophy measure see Brzezniak et al. [16] and
references therein) and in [38] for stochastic Euler equation with additive noise and
friction. Further questions of potential interest for turbulence and other aspects of
fluid mechanics have been addressed in other works, like microcanonical variants
of the enstrophy measure [20, 37] and the convergence of stochastic Euler equa-
tions to stochastic Navier–Stokes equations, always in the regime of the enstrophy
measure [36].

On the contrary, open or partially open remain the questions:

1. Uniqueness (also in the stochastic case)
2. Is a white noise solution the limit of arbitrary smoother solutions?
3. When ρ0 := dL(ω0)

dμν
∼ δω0 with ω0 smooth, is ρt ∼ δωt ?

4. Can we work with initial measures really different from the enstrophy measure?
5. Are there invariant measures with higher degree of aggregation (for turbulence

theory)?
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We address to Flandoli and Luo [35] for a discussion of the uniqueness problem 1
in the potentially more favourable case of stochastic Euler equations, which however
still remains unsolved. Problem 4 in the case of moderate variants, like Gibbs mea-
sures including the renormalized energy or microcanonical projections have been
discussed above.

Problem 5 is of fundamental importance; as remarked in [44], the enstrophy
measure is not directly suitable for the description of turbulence. However, it may be
a fundamental building block. In [37], it is argued that a correct description of inverse
cascade turbulence could be in a regime intermediate between a microcanonical
version of the enstrophy measure and the very structured regime of Onsager theory.

3 Stochastic Navier–Stokes Equations

Now we consider the contribution of Sergio Albeverio to the analysis of viscous
fluids,whosemotion is governedby theNavier–Stokes equations. For a homogeneous
incompressible viscous fluid they are given by

∂t u − νΔu + (u · ∇)u + ∇ p = f ; div u = 0 (5)

The parameter ν > 0 is called kinematic viscosity and f is a given forcing term.
Suitable initial and boundary conditions are given.

For ν = 0 they reduce formally to the equations of motion of an inviscid fluid (4)
considered in the previous section. There is a large literature on these equations; the
main difference is about the spatial dimension. For d = 2 the problem is well posed
and the first results on existence and uniqueness of classical and weak solutions with
initial data of finite energy were found by Leray and later Ladyszenskaja, J.-L. Lions
and Prodi. On the other side, for d = 3 there are either results on global existence of
weak solutions or local existence and uniqueness of smooth solutions. Uniqueness
of weak solutions and global existence of strong solutions are both challenging open
problems. This is true both in the deterministic and stochastic setting.

When the forcing term is a stochastic one, existence of invariant measures is
expected due to the balance between dissipation of energy given by the Laplace
operator and the injection of energy given by the forcing term. The invariant (or sta-
tionary) measures are the objects investigated in the statistical analysis of turbulence.
Indeed the individual solutions may give a detailed and very complicated picture of
the fluid, while one might be interested in the behaviour of some global quantity
related to the fluid, where the microscopic picture is replaced by the macroscopic
one.

Actually in the two dimensional setting there are many results on existence and
uniqueness of invariant measures, assuming that the noise is sufficiently regular in
space (see, e.g., [22, 23, 31, 43, 51] and references therein). However there are few
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informations about these measures and no explicit expression of these invariant mea-
sures are given. Notice the difference with respect to the Euler equations, which have
many explicit (at least formally) invariant measures. Actually, Gallavotti suggested
to express the stationary solution of the stochastic Navier–Stokes equation by means
of Girsanov theorem (see Sect. 6.1 in [39]); his formula is only a formal object.
Rigorous results in that direction have been proven so far only for the stochastic
hyperviscous Navier–Stokes equations (see [26–28]).

The only result providing an explicit expression of an invariant measure for the
Navier–Stokes equations was given in the paper by Albeverio and Cruzeiro [2]
already quoted. We will revise this result in the next section. Then we briefly present
other results related to this one.

Before going into details, let us notice that we make a change with respect to the
previous section and we work on the velocity u instead of the vorticityω. This allows
to make some remarks to the 3D case as well. With some abuse of notation we shall
use the same symbols for the measure μν and the nonlinear term B in both settings,
since the meaning is the same (but before they were defined in terms of the vorticity,
now in terms of the velocity).

Finally, as usual we write these equations in abstract form (see, e.g., [50]); this
is obtained by projecting the equation for the velocity onto the subspace of periodic
divergence free velocity fields, so to get rid of the pressure term. We denote by �

the projector onto this subspace and define B(u, v) = �[(u · ∇)v]. Therefore, we
get that the Euler equations (4) in abstract form are

du

dt
(t) + B(u(t), u(t)) = 0 (6)

and the Navier–Stokes equations are

du

dt
(t) + ν Au(t) + B(u(t), u(t)) = f (t) (7)

where A = −Δ (the Laplacian operator) and now f is the projection of the previous
forcing term, but we use the same symbol with some abuse of notation.

3.1 The 2D Navier–Stokes Equations with Space–Time White
Noise

The contribution of Sergio Albeverio to the analysis of viscous fluids started with
the paper in collaboration with Albeverio and Cruzeiro [2]. They realized that the
Gibbs measure of the enstrophy μν given in Sect. 2.4 is invariant for the unforced
Euler equations (6) as well as for a stochastic Stokes equation. This latter equation
corresponds to equations (7) when f is a stochastic forcing term and the nonlinearity
is neglected. It is
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du(t) + ν Au(t) dt = √
2dw(t), t > 0 (8)

where w is an H0-cylindrical Wiener process, that is a space-time white noise (see,
e.g., [22]; here H0 is the space of finite energy and divergence free velocity fields).
Indeed it is well known that the linear stochastic Stokes equation (8) has a unique
invariant measure; so they chose the covariance of the noise in such a way that this
invariant measure is exactly the Gaussian measure μν .

Therefore themeasureμν is an infinitesimally invariant measure for the stochastic
Navier–Stokes equation

d u(t) + [ν Au(t) + B(u(t), u(t))] dt = √
2dw(t) (9)

The fact that the noise is white also in spacemeans that it is not too regular in space
and again we have to analyze the viscous dynamics for velocity fields in the support
of the measure μν , which we already know are not functions but distributions.

We now need to introduce some more notations. First, we work on the torus,
since we are using the invariance of the Gibbs measure of the enstrophy valid for
the 2D inviscid fluid equations; in general the viscid and inviscid fluids obey differ-
ent boundary conditions (velocity tangent to the boundary for an inviscid fluid and
velocity vanishing on the boundary for a viscid fluid). But in the periodic setting the
boundary conditions agree for the both fluids. We denote byHs

p the Sobolev space of
periodic divergence free vectors fields such that As/2u ∈ L p and by Bs

p q the Besov
space of periodic divergence free vectors fields (see [11]); the latter can be defined
as real interpolation space

Bs
p q = (Hs0

p ,Hs1
p )θ,q , s ∈ R, 1 ≤ p, q ≤ ∞

s = (1 − θ)s0 + θs1, 0 < θ < 1

In particular, Bs
2 2 =: Hs are Hilbert spaces.

Now the enstrophy is given by S(u) = 1
2‖u‖2H1 and the Gibbs measure of the

enstrophy is heuristically defined as

μν(du) =′′ 1

Zν

e−νS(u)du′′

so that μν(Hr ) = 0 for any r ≥ 0 but μν(Hr ) = 1 for any r < 0.
Albeverio and Cruzeiro dealt with existence of μν-stationary martingale (weak)

solutions to the stochastic Navier–Stokes equation (9), following the technique used
for the Euler equation, already explained in the previous sections. Later on, Da Prato
and Debussche in [21, 24] gave another proof of the existence result by Albeverio
and Cruzeiro but also proved existence of strong solutions to the stochastic Navier–
Stokes equation (9) for μν-a.e. initial velocity. The pathwise uniqueness of these
solutions was proved later by Albeverio and Ferrario in [7].
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Let us work on any finite time interval [0, T ]. Nowwe state the result of existence
and uniqueness of solutions, which are strong from the probabilitistic point of view
(see [7, 21, 24]).

Theorem 6 Let the real parameters σ, p, q, α, β satisfy 2 ≤ p, q < ∞,1 ≤ β < ∞
and

0 < σ < α <
2

p
1

p
− 1

2
<

α

2
− 1

β
< −σ

2

Then, given T > 0 for μν-a.e. u0 ∈ B−σ
p q there exists a unique solution uu0 to the

stochastic Navier–Stokes equation (9) with initial velocity u0 such that

uu0 ∈ C([0, T ];B−σ
p q ) P − a.s.

Moreover, for any l ∈ N

E

(

sup
t∈[0,T ]

‖uu0(t)‖l
B−σ

p q

)

< ∞ (10)

In few words, the technique exploits the properties of the linear Stokes prob-
lem. Instead of dealing with the stochastic equation (9) one introduces the auxiliary
process v = u − z solving the nonlinear random equation

dv

dt
+ ν Av + B(v, v) + B(z, v) + B(v, z) = −B(z, z) (11)

where z is theμν-stationary solution to the linear Stokes equation (8).We can analyze
pathwise this equation; now−B(z, z) plays the role of forcing term for this modified
Navier–Stokes equation and the key tool to study the equation for v is the analysis
of regularity of the term B(z, z). Using functional analysis estimates, it is hard to
estimate B(z, z) since z is a Gaussian process with nonsmooth paths; indeed one
does not know how to give a meaning to the product (z · ∇)z when z is a distribution
(z ∈ Hσ forσ < 0).However, the integral of this productwith respect to theGaussian
measure μν is well defined1:

∫
‖B(y, y)‖m

H−1−ε μν(dy) < ∞ (12)

for anym ∈ N and ε > 0 (see [2, 20, 21]). Hence, dealingwith the stationary solution
z of the stochastic Stokes equation (8) we get by stationarity

1 This is another formulation of part (ii) in Theorem 4.
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E

T∫

0

‖B(z(t), z(t))‖m
H−1−εdt = T

∫
‖B(y, y)‖m

H−1−ε μν(dy) < ∞.

This provides that B(z, z) ∈ Lm(0, T ;H−1−ε), P-a.s. Coming back to Eq. (11), we
can expect that it has a solution more regular than z and indeed one proves (pathwise)
that there exists a unique local mild solution v ∈ C([0, T∗];B−σ

p q ) ∩ Lβ(0, T∗; Bα
p q)

to Eq. (11); now the terms B(v, v), B(z, v) and B(v, z) are well defined by means of
paraproduct techniques (see Chemin [19]) involving Besov spaces, since v is more
regular (v ∈ Lβ(0, T∗; Bα

p q) with α > 0 fulfilling the assumptions of Theorem 6).
This gives the existence of a local solution u = v + z. The proof that this solution

is globally defined in time exploits again the invariance of the measure μν .
As far as pathwise uniqueness is concerned, let us consider another solution ũu0

as given by the existence result. The difference V = uu0 − ũu0 fulfills the equation

{
d
dt V (t) + AV (t) = −B(uu0(t), uu0(t)) + B(ũu0(t), ũu0(t)), t > 0

V (0) = 0
(13)

Since we proved that pathwise the r.h.s. has regularity Lm(0, T ;H−1−ε) for any
m ∈ N and ε > 0, we find that any solution V is more regular than the two solutions

uu0 and ũu0 : we have V ∈ C([0, T ];B1−ε− 2
m

2m ) ∩ Lm(0, T ;H1−ε). This is a parabolic
regularity result. Being more regular it is possible that uniqueness holds. This is
indeed proven, by working on Eq. (13) now written (using bilinearity) as

dV

dt
(t) + AV (t) + B(uu0(t), V (t)) + B(V (t), ũu0(t)) = 0

with V (0) = 0. Notice that B(uu0(t), V (t)) and B(V (t), ũu0(t)) are well defined
again thanks to the Chemin’s estimates. Since V (t) = 0 is a solution of the latter
equation, by uniqueness we get that this is the only solution. This proves pathwise
uniqueness.

These are the basic steps to prove Theorem 6. A further property of the Gaussian
measure μν has been obtained by Debussche [24]. There is exponential convergence
for the solution given in Theorem 6 in the sense that there exists a constant λ > 0
such that

∫
E|φ(uu0(t)) − φμν

|2 μν(du0) ≤ e−λt
∫

E|φ(u0) − φμ|2 μν(du0)

for any t > 0 and any φ ∈ L2(μν), where φμν
= ∫

φ(y) μν(dy).
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3.2 Research Areas Inspired by Albeverio and Cruzeiro’s
Paper

In this section we list other research lines inspired by the method and the problem
studied by Albeverio and Cruzeiro [2]; we briefly present results and open problems,
without claiming to be exhaustive.

1. Instead of dealing with a stochastic equation, one can approach the problem by
studying the associated Kolmogorov equation. Flandoli and Gozzi [33] con-
structed a solution of the Kolmogorov equation associated to the 2D Navier–
Stokes equation (9).
If one would define a unique solution, hence a semigroup {Pt }t≥0, it is important
to characterise the infinitesimal generator K (Pt = e−t K ) by finding the domain
of the Kolmogorov operator (K , D(K )) in L2(μν).
Albeverio worked on infinite dimensional Kolmogorov operators associated with
many different kinds of SPDE’s. Also that one associated to the 2DNavier–Stokes
equation (9) presented interesting features. Actually the Kolmogorov operator,
when defined on smooth cylinder functions FC∞

b , can be written as K̃ = Q + L
with Q the positive symmetric Ornstein–Uhlenbeck operator associated to the
Stokes equation (8) and L the Liouville operator associated to the Euler equation
(6) (see more details in [2–4]). It is a dissipative and closable operator in L2(μν)

and the infinitesimal invariance of the Gibbs measure of the enstrophy holds:

∫
K̃ f dμν = 0 ∀ f ∈ FC∞

b .

The question of L2(μν)-uniqueness, that is if there exists a unique C0-semigroup
in L2(μν) whose generator extends (K̃ ,FC∞

b ), is still an open problem. Partial
results were given in [1, 4, 48, 49]. For other results on Kolmogorov equation for
stochastic Navier–Stokes, see e.g. [8, 10, 34, 46].
However, for d = 1 Gubinelli and Perkowski [41] have constructed a domain for
the infinitesimal generator associated to the stochastic Burgers equation.

2. A similar uniqueness problem holds for the Liouville operator (L ,FC∞
b ) asso-

ciated to the Euler equation (6): is the operator (L ,FC∞
b ) essentially skew-self-

adjoint in L2(μν)? This is an open problem, appearing already in the first paper
by Albeverio and collaborators [3] (see also Sect. 2.9 in [8]).

3. In a couple of papersBessaih andFerrario [12, 13] studied shellmodels (including
the GOY and Sabra models) along the lines presented in the previous sections.
The aim was to introduce invariant measures of explicit (Gaussian) type also for
the shell models of turbulence.
Shell models are the most interesting and most popular examples of simplified
phenomenologicalmodels of turbulence. This is because, although departing from
reality, they capture some essential statistical properties and features of turbulent
flows, such as the energy and the enstrophy cascade and the power law decay of
the structure functions in some range of wave numbers, the inertial range.
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In the first paper [12], general shell models are considered for which only the
energy is an invariant of motion and are therefore approximation models for 3D
hydrodynamics. A Gibbs measure μE

ν , defined by means of the energy E , is
constructed and it is proved to be invariant for these shell models, both for a
stochastic viscous shell model as well as for the inviscid shell model (as done in
the previous sections for the 2D stochastic Navier–Stokes equations and the 2D
deterministic unforced Euler equations). The support of this Gaussian measure is
a Sobolev space of negative exponent and the space of finite energy initial velocity
is negligible with respect to this measure. Thus, one looks for a flow with initial
data of infinite energy.
Even if this is a model for 3D fluids, we can prove rigorous results since from
the analytic point of view the shell models are easier than the ”true” models.
Existence of a unique global solution is proved for μE

ν -a.e. initial data and there
exists a unique stationary process whose law at any fixed time is μE

ν . Moreover,
for the inviscid shell model, existence of a μE

ν -stationary process for solving it is
proved.
In the second paper [13], a Gaussian measure μν,β is constructed in such a way
that it is invariant for both a stochastic viscous shell model and the determin-
istic inviscid model. These shell models are related to the 2D hydrodynamical
equations of the previous sections. The same results as before are proved and in
addition the measure μν,β is the unique invariant measure. We can summarize
the results by saying that for 2D shell models one can prove all the properties
that one thinks are true for the 2D hydrodynamic equations but some of them are
mathematically difficult to prove on the “true” model.

4. The Gibbs measure of the energy, defined heuristically as

μE
ν (du) =′′ 1

Z
e− ν

2 ‖u‖2H0 du′′,

is a formal invariant measure for the following stochastic Navier–Stokes equation

d u(t) + [ν Au(t) + B(u(t))] dt = √
2A

1
2 dw(t). (14)

Now the spatial regularity of the noise is worse than before. Notice that the support
of the Gibbs measure of the energy is the space ∩r<− d

2
Hr .

Analysis of existence of flows for this equation is a difficult problem.
Gubinelli and Jara [40] proved an existence result for the following hyperviscous
version of equation (14) , defined for σ > 0,

d u(t) + [ν A1+σ u(t) + B(u(t))] dt = √
2A−σdw(t)

in dimension d = 2.
No uniqueness results are know.Nothing is known for theNavier–Stokes equation
(14) when d = 3.
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5. Recently Ferrario and Olivera [29] have considered a Navier–Stokes equation
similar to (9), where the Wiener process w is replaced by a fractional Wiener
process wH . This is also called cylindrical fractional white noise. This can be
represented with respect to a complete orthonormal system {ek}k of the spaceH0

as
wH (t) =

∑

k

βH
k (t)ek

where {bH
k }k is a sequence of i.i.d. fractional Brownian processes, that is each bH

k
is a centered Gaussian process whose covariance is

C(t, s) = 1

2
(|t |2H + |s|2H − |t − s|2H ).

The bigger is the Hurst parameter H ∈ (0, 1) the more regular is the fractional
Brownian motion; the case H = 1

2 corresponds to the Wiener process considered
in the previous section. The Gibbs measure μH

ν is now defined (formally) as

μH
ν (du) =′′ 1

Z H
ν

e−ν‖u‖2H2H du′′

and its support is ∩r<2H−1Hr .
In [29] there are two results: local existence and uniqueness of solutions for
7
16 < H < 1

2 and global existence and uniqueness for 1
2 < H < 1. The strategy

to solve the problem is the same as in the case H = 1
2 : splittingmethod u = v + z,

leading to two equations, one for z (similar to equation (8)) and the other one (11)
for v.Moreover there is a property analogous to (12) for the quadratic term B(z, z):
for any m ∈ N ∫

‖B(z, z)‖2m
Hρ μH

ν (dz) < ∞

where

ρ < 4H − 3 if 1
4 < H < 1

2 (15)

ρ < 2(H − 1) if 1
2 ≤ H < 1 (16)

The main difference with respect to the previous case where H = 1
2 is that the

measure μH
ν is no longer an invariant mesure for the Navier–Stokes dynamics; it

is invariant only for the stochastic Stokes equation

dz(t) + ν Az(t) dt = √
2dwH (t), t > 0

but not for the Euler equation (6). Hence for themore difficult case H < 1
2 there is

only a partial result under the restriction that H ∈ ( 7
16 ,

1
2 ), whereas for H ∈ ( 12 , 1)

the problem is easier. Indeed, when H > 1
2 the first good result is that μ

H
ν (H0) =



266 B. Ferrario and F. Flandoli

1;moreover the solution to the stochasticNavier–Stokes equation has finite energy
(we deal no more with distributions!) and the problem is well-posed in the space
Hσ for σ ∈ (0, 2H − 1).

6. The paper by Albeverio and Cruzeiro focused the attention of other researchers
to nonlinear SPDE’s with space-time white noise. Difficulties arise in dimension
d ≥ 2, since the solution is not regular in space (it is a distribution) and the
nonlinearity needs some care to be well defined. As far as other equations of
hydrodynamics are concerned, we recall the result by Zhu and Zhu [53] on the
3D Navier–Stokes equations with space-time white noise. Previous known
results of existence of global solutions were for much more regular noise (i.e.
the noise is colored in space and white in time; see, e.g. [30]). Thanks to the
theory of regularity structures introduced byMartin Hairer and the paracontrolled
distribution proposed by Gubinelli, Imkeller and Perkowski, in Zhu and Zhu [53]
local existence and uniqueness is proved.
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1 Introduction

Nematic Liquid Crystal (NLC) is a state of matter whose properties vary between
amorphous liquid and crystalline solid. Theirmolecules are long and thin and have no
positional order (like a fluid), but they tend to align along a direction called the optical
director, denoted by a unit vector d. This optical director can be easily distorted and
aligned to form a specific pattern using an external control with intensity above a
certain threshold value. This passage from one stable to another stable state, possibly
with higher energy, caused by an external force or control is called the Fréedericksz
transition and it plays an important role in many branches of applied sciences such
as in nonlinear optics and the industry of Liquid Crystal Displays (LCDs). For more
details on physical modeling of liquid crystal we refer to the books [13, 39] and the
papers [15, 28].

To model the hydrodynamics of NLC most scientists use the continuum theory
developed byEricksen [15] andLeslie [28]. From this theory Lin andLiu [32] derived
the most basic and simplest form of the dynamical system describing the motion of
nematic liquid crystals filling a bounded region O ⊂ R

2. This system is given by

∂tv + v · ∇v − �v + ∇p = − div (∇d � ∇d), in [0,T ) × O (1.1a)

∂td + v · ∇d = �d + |∇d|2d, (1.1b)

div v = 0, in [0,T ) × O, (1.1c)

v = ∂d
∂ν

= 0, on [0,T ) × ∂O, (1.1d)

|d|= 1, in [0,T ) × O, (1.1e)

(v(0), d(0)) = (v0, d0), in O. (1.1f)

The number T > 0 is a fixed real number, O is a bounded domain or R2 with
smooth boundary, the vector fields v : [0,T ) × O → R

2 and d : [0,T ) × O → R
3

represent the velocity and director fields, respectively. The function p : [0,T ) ×
O → R is the fluids pressure and ∇d � ∇d is the matrix defined by

[∇d � ∇d]ij =
3∑

k=1

∂idk∂jdk , i, j ∈ {1, 2}.

The model (1.1) is an oversimplification of a Ericksen–Leslie model of nematic
liquid crystal with the one-constant simplification of the Frank–Oseen energy density

1

2
|∇d|2.

However, the model still retains many mathematical and essential features of
the hydrodynamic equations for nematic liquid crystals. Moreover, the mathematical
analysis of the above equations is quite challengingdue to the sphere constraint (1.1e),
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the highly nonlinear coupling term − div (∇d � ∇d) and the non-parabolicity of
the problem which can be seen from the fact

�d + |∇d|2d = −d × (d × �d), for d ∈ S
2.

Because of these observations, the system (1.1) has been extensively studied and
several important results have been obtained. In addition to the paper [32] we cited
above we refer, among others, to [19, 20, 31, 33, 35, 45] for results obtained prior
to 2013, and to [11, 21–24, 29, 30, 44, 46, 47] for results obtained after 2014. For
detailed reviews of the literature about the mathematical theory of nematic liquid
crystals and other related models, we recommend the review articles [12, 17, 34]
and the recent papers [22, 30].

In this paper, we fix two numbers T , ε > 0 and consider in the 2D torus O the
following stochastic system

du + [(u · ∇)u − �u + ∇p
]
dt = −∇ · (∇n � ∇n)dt + dW, (1.2a)

div u =
∫

O

udx = 0, (1.2b)

dn + (u · ∇)ndt =
[
�n − 1

ε2
(1 − |n|2)n

]
dt + (n × h) ◦ dη, (1.2c)

u(t = 0) = u0 and n(t = 0) = n0, (1.2d)

where u0 : O → R
d , n0 : O → R

3, h : O → R
3 are given functions, W and η are

respectively independent cylindrical Wiener process and standard Brownian motion,
◦dη stands for the Stratonovich integral.

We should note that the deterministic version of (1.2), that is,

∂tv + (v · ∇)v − �v + ∇p = −∇ · (∇d � ∇d), (1.3a)

div v = 0, (1.3b)

∂td + (v · ∇)d = �d − 1

ε2
(1 − |d|2)d, (1.3c)

v = 0 and
∂d
∂ν

= 0 on ∂O, (1.3d)

v(0) = v0 and d(0) = d0, (1.3e)

was proposed in [32] as an approximation of the simplified Ericksen–Leslie system
(1.1).

Our study in this paper is motivated by the need for a soundmathematical analysis
of the effect of a stochastic external perturbation on the dynamics of nematic liquid
crystals. In fact, the effect of noise on the dynamics of the optical director has
been the subject of numerous theoretical and experimental studies, but there are still
many questions that remain unsolved. For instance, in previous studies in physics the
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fluid velocity is assumed to be negligible, hence understanding of the simultaneous
effects of the noise and the fluid velocity on the Fréedericksz transition is an open and
challenging problem. One should notice that de Gennes and Prost [13] pointed out
that the fluid velocity plays an important role in the dynamics of the optical director.
The mathematical papers that we cited above have taken into account the effects
of the fluid velocity, but their equations contain neither deterministic nor stochastic
external forces.

Rigorous mathematical results related to models for nematic liquid under random
perturbations are still very few. The unpublished manuscript [7] is the first paper
to prove the existence of strong solution of the stochastic (1.2). This result was
generalized in [4] to the case where the quadratic 1|d|≤1(1 − |d|2)d is replaced by
a more general polynomial function. The paper [6] deals with weak, both in PDEs
and stochastic calculus sense, solutions and the maximum principle. Very recently,
Hausenblas along with the first and the third authors of the present considered in [5]
the stochastic Ericksen–Leslie Equations (SELEs)

du + [u · ∇u − �u + ∇p]dt = − div (∇n � ∇n)dt + dW, in [0,T ) × O (1.4a)

dn + u · ∇ndt = [�n + |∇n|2n]dt + (n × h) ◦ dη, (1.4b)

div u = 0, in [0,T ) × O, (1.4c)

|n|= 1, in [0,T ) × O, (1.4d)

(u(0), n(0)) = (u0, n0), in O. (1.4e)

By using the Banach Fixed Point Theorem, they showed the existence of local
strong solution (u0, n0) ∈ Hα × Hα+1 for α > n

2 , where n = 2, 3 is the space dimen-
sion. There is also the paper [36] which seeks for a special weak solution (u, n) of
(1.4) with the unknown n being replaced by an angle θ such that n = (cos θ, sin θ).
This model reduction considerably simplify the mathematical analysis of (1.4).

As we mentioned the model (1.3) was proposed in [32] as an approximation
of the simplified Ericksen–Leslie system (1.1). It is also widely used in numerical
analysis to handle the sphere constraint (1.1e) in the Ericksen–Leslie equations, see
for instance [43]. Hence, a natural questions which now arises is to knowwhether the
solutions (uε, nε) converge to a solution to the stochastic Ericksen–Leslie equations
as ε → 0. This question is very interesting and has been the subject of intensive
studies in deterministic case. These studies have generated several important results
whichwerepublished in [16, 19, 20].Thesepapers are only related to the convergence
of smooth solutions solutions. The convergence of theweak solution remains an open
questions. Note that an attempt to solve this open problem was done in [32], but it is
not clear whether the limit satisfies (1.1) or not.

In the case of the stochastic case, it seems that this note is the first analysis
presenting a result on the convergence of the solutions (uε, nε) to (1.2). In particular,
we show that by studying the convergence the strong solutions of (1.2) we can
construct martingale, local strong to (1.4) with initial data in H1 × H2. Note that
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strong solution is taken in the sense of PDEs. The result we obtain is not covered
in [5] which considered the stochastic ELEs with initial data (v0, d0) ∈ Hα × Hα+1

for α > n
2 , where n = 2, 3 is the space dimension. Moreover, the approaches are

completely different.
Let us now close this introduction by giving the layout of this paper. In Sect. 2

we introduce the frequently used notations in this manuscript and our main results,
see Theorem 2.6. The proof of this main theorem is based on careful derivation of
estimates uniform in ε of the solutions (uε, nε) to (1.2) and the proof of tightness of
laws of these solutions on the space C([0,T ];H × H1) ∩ Cweak([0,T ];V × H2) ∩
L2weak(0,T ;D(A) × H3) and passage to the limits. These steps are very technical and
require long and tedious calculation. Hence, in order to save space we only sketch the
main steps of the derivations of uniform estimates in Sect. 3. Also, we only outline
the main ideas of the proof of the tightness and the passage to the limits in Sect. 4.

2 Notations, the Stochastic Model and Our Main Result

2.1 Notations and the Stochastic Model

Let us begin with a brief description of the functional setting.
We will use the symbolO to denote the 2D torusR2/(2πZ)2 = R

2/ ∼, where by
∼ we understand the standard equivalence relation on R2 defined by x = (x1, x2) ∼
y = (y1, y2) iff there exist k ∈ Z

2 such that y = x + 2πk. It is well known that O
can be equipped in a natural differentiable structure so that it becomes a compact
Riemannian manifold (without boundary). Occasionally it is convenient to view O
as the square [0, 2π ]2 with the sides identified. In particular, the Riemannian volume
measure on O can be identified with the Lebesgue measure on [0, 2π ]2 and the
Riemannian distance is equal to the following one

d([x]∼, [y]∼) =
√√√√

2∑

i=1

min{|yi − xi|, |yi − xi − 2π |}2, [x]∼, [y]∼ ∈ O,

where the both representatives x = (x1, x2) and y = (y1, y2) of [x]∼, and respectively,
of [y]∼ have been chosen from [0, 2π)2.

Throughout, we will use the following notation

M = {d : O → R
3 : |d(x)| = 1 Leb − a.e.}.

All the vector spaces defined on O can also be defined in terms of functions
defined on [0, 2π ]2 satisfying appropriate compatibility conditions on the boundary
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∂([0, 2π ]2) = [0, 2π ] × {0, 2π} ∪ {0, 2π} × [0, 2π ]. We follow here the presenta-
tion from [41, 42, Chap. VIII, Sect. 4], see also recent papers [2, 3]. In particular,
we denote by H

k(O), for k ∈ N, the Sobolev space of all vector fields defined on
O, equivalently all R2 valued functions defined on [0, 2π ]2 satisfying appropriate
compatibility conditions on the boundary ∂([0, 2π ]2), which are weakly differen-
tiable up to order k and those weak derivatives are square integrable. Obviously,
H

0(O) = L
2(O). We denote by V the space of all C∞ vector fields defined on O,

equivalently all R2 valued functions defined on [0, 2π ]2 satisfying appropriate com-
patibility conditions on the boundary ∂([0, 2π ]2), such that div u = 0. We also put

L
2
0 =
⎧
⎨

⎩u ∈ L
2(O) :

∫

O

u(x) dx = 0

⎫
⎬

⎭ . (2.1)

Then, by H we define the closure of the space V in the space L2
0 equipped with the

norm and scalar product inherited from the latter space. It is known that H is equal
to the set

{
u ∈ L

2
0 : div u = 0

}
. We also put

V = H
1(O) ∩ H, (2.2)

equipped with the norm and scalar product inherited from the space H1(O). It turns
out that V can be equipped with another scalar product and norm defined by

〈u, v〉V := 〈∇u,∇v〉L2 , u, v ∈ V, (2.3)

‖u‖2V := 〈∇u,∇u〉L2 , u ∈ V. (2.4)

It it known that the original norm is equivalent to the new one. We will only use
the latter.

We denote by A, the Stokes operator defined by

D(A) = H 2(O) ∩ H

A : D(A) � u �→ −
(�u) ∈ H,
(2.5)

where

 : L2(O) → H

is the orthogonal projection called the Leray–Helmholtz projection. It is known that
A is a positive, self-adjoint operator in H with its inverse A−1 being compact. We
will use the following norm on the space D(A):

|u|2D(A) := |Au|2L2 .
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ObviouslyD(A) is aHilbert space endowedwith that norm (and the corresponding
scalar product). Moreover, it is known that

D(A1/2) = V and 〈Au, u〉H = ‖u‖2V = |∇u|2L2 , u ∈ D(A). (2.6)

It is also well known (and follows from [41, Sect. 2.2]), that 
 and A commute
so that for every θ ≥ 0,


 : D(Aθ ) → D(Aθ ) is a bounded linear operator. (2.7)

So farwe have introducedmostly the functional spaces corresponding to the veloc-
ity field. Let us next introduce the spaces corresponding to the director field. By Hk ,
k ∈ N, we will denote the Sobolev space of all functions n : O → R

3, equivalently
allR3 valued functions defined on [0, 2π ]2 satisfying appropriate compatibility con-
ditions on the boundary ∂([0, 2π ]2), which are weakly differentiable up to order k
and those weak derivatives are square integrable. It is well known thatHk is a Hilbert
space. Let us recall that by the Sobolev embedding theorem, Hk ↪→ C(O) iff k > 1.

We now give few assumptions and notation about the stochastic perturbations.

Assumption 2.1 Throughout this paper we are given a complete filtered probability
space (�,F ,F,P) with the filtration F = {Ft : t ≥ 0} satisfying the usual hypoth-
esis, i.e., the filtration is right-continuous and all null sets of F are elements of
F0.

We introduce what we mean by a cylindrical Wiener process in the following
definition.

Definition 2.2 Assume also that Assumption 2.1 is satisfied and that K is a separable
Hilbert space with orthonormal basis {ej : j ∈ N}. By a K-cylindricalWiener process
we understand a formal series W (t) =∑∞

j=1 wj(t)ej, t ≥ 0, where wj = (wj(t))t≥0,
j ∈ N, is a sequence of i.i.d. standard Wiener processes defined on the filtered prob-
ability space (�,F ,F,P). Equivalently, see [10, Definition 4.1], a K-cylindrical
Wiener process defined on the filtered probability space (�,F ,F,P) we understand
a familyW (t), t ≥ 0 of bounded linear operators from K into L2(�,F ,P) such that:

(i) for all t ≥ 0, and k1, k2 ∈ K, EW (t)k1W (t)k2 = t〈k1, k2〉K,
(ii) for each k ∈ K, W (t)k, t ≥ 0 is a real valued F-Wiener process.

Now, by projecting the stochastic model (1.2) into the space of divergence free
functionwe obtain the following stochastic PDEswith periodic boundary conditions:

du + [Au + 
L(u · ∇u)] dt = −
L [div(∇n � ∇n)] dt + dW (2.8a)

dn + (u · ∇)n dt =
[
�n − 1

ε2
(1 − |n|2)n

]
dt + (n × h) ◦ dη (2.8b)

u(t = 0) = u0 and n(t = 0) = n0, (2.8c)
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where we assume that the initial data satisfies

n0 ∈ M, (2.9)

and ◦ dη denotes the Stratonovich differential.

2.2 Our Main Results

Let us start with some definitions about stopping times.

Definition 2.3 A random function τ : � → [0,∞] is called a stopping time, see
[26, Definition I.2.1], [37, Definition 4.1], [14, Sect. III.5], iff for each t ≥ 0, the
set {ω ∈ � : t < τ(ω)} ∈ Ft (or equivalently, {ω ∈ � : τ(ω) ≤ t} ∈ Ft). A stopping
time τ : � → [0,∞] is called accessible, see [27, Sect. 2.1, p. 45], iff there exists
an increasing sequence1 of stopping times τn: � → [0,∞) such that P-a.s. (i) for
all n ∈ N, τn < τ ; (ii) and limn→∞ τn = τ .

The sequence (τn)n∈N as above is usually called an announcing sequence for τ .

We now continue with the definition of a strong solution to (1.2), see [7] and also
[4].

Definition 2.4 Assume that ε > 0 and (u0, n0) ∈ V × H2 satisfies the constraint
condition (2.9). Assume also that Assumption 2.1 is satisfied. A process (uε, nε) :
[0,∞) → V × H2 is called a strong solution to the SGL (2.8) iff

(i) the process (uε, nε) is V-valued continuous and F-progressively measurable,
(ii) there exists an D(A) × H3-valued F-progressively measurable process (ūε, n̄ε)

such that

(uε, nε) = (ūε, n̄ε) almost everywhere w.r.t. Leb ⊗ P;

and, P almost surely,

(uε, nε) ∈ C([0,∞);V × H2) and (ūε, n̄ε) ∈ L2loc([0,∞);D(A) × H3);
(2.10)

(iii) for all t ∈ [0,∞),
|nε(t)|L∞ ≤ 1, P-almost surely,

(iv) for all t ∈ [0,∞), the following identities hold true in H and H1 respectively,
P-almost surely,

1 In the sense that for all n ∈ N, τn ≤ τn+1, P-a.s.
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u(t) = u0 −
t∫

0

[
Au + 
L(u · ∇u)

]
ds + 
L

[
div(∇n � ∇n)

]
dt + W (t),

(2.11)

n(t) = n0

t∫

0

[
−(u · ∇)n + �n − 1

ε2
(1 − |n|2)n

]
ds + (n × h) ◦ dη(s).

(2.12)

We now recall the following result about the existence and uniqueness of a global
strong solution to (1.2), see [4, Theorem 3.17]. Note that the condition (iii) of Defi-
nition 2.4 was proved in [6, Theorem 5.1].

Theorem 2.5 Assume thath = h(1, 1, 1)whereh ∈ H2(O,R). Assume thatAssump-
tion 2.1 is satisfied. Assume that W = (W (t))t≥0 andη = (η(t))t≥0 are respectivelyV
and R-valued Wiener process defined on the filtered probability space (�,F ,F,P).
Assume finally that ε ∈ (0, 1). Then, for every (u0, n0) ∈ V × H2 there exists a pro-
cess (uε, nε) : [0,∞) → V × H2 which is a unique strong solution to (2.8).

A natural questions which now arises is to know whether the solutions (uε, nε)

converge to a solution to the stochastic Ericksen–Leslie equations as ε → 0. This is
the subject of the present paper and it seems that this note is the first analysis pre-
senting a result on the convergence of the solutions (uε, nε) to the SGL. In particular,
we obtained the following result.

Theorem 2.6 Assume that K is a separable Hilbert space such that the embedding
K ↪→ V is Hilbert–Schmidt. Assume that h = h(1, 1, 1) where h ∈ H2(O,R).

There exists a filtered complete probability space (�,F , (Ft)t≥0,P), a finite stop-
ping τ > 0, a K × R-cylindrical Wiener process (W̃ , η̃), (u, n), (uε, nε) : [0, τ ] →
V × H2, such that

(uε, nε) → (u, n) a.s. in C
(
[0, τ ];D(A

α−1
2 ) × Hα

)

∩ L2
(
0, τ ;D(A

α
2 ) × H1+α

)
, α ∈ [1, 2),

for all t ∈ [0,T ], a.s. n(t) ∈ M

u(t ∧ τ) − u0 = W̃ (t ∧ τ) −
t∧τ∫

0

(Au + 
L[u · ∇u + div(∇n � n)]) ds

n(t ∧ τ) − n0 =
t∧τ∫

0

(
�n + |∇n|2n − u · ∇n

)
ds +

t∧τ∫

0

(n × h)d η̃.

Remark 2.7 In the deterministic case, Hong [19] proved that
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1

2
≤ |nε(t, x)|R3 ≤ 1, ∀t ∈ [0,T ) a.e. x. (2.13)

This is important to handle 1
ε2

(1 − |nε|2)nε when one wants to study the conver-
gence of the deterministic Ginzburg–Landau approximation. Unfortunately, we do
not know how to prove it in the stochastic case. Therefore, we will need to devise an
unusual technique.

The proof of this theorem follows the standard scheme of deriving uniform a
priori estimates, establishing tightness in a appropriate spaces, using the famous
Jakubowski–Skorokhod representation theorem to pass to the limit. However, the
steps of this scheme are quite difficult due to the non-parabolicity of the limiting
equations. Moreover, these steps involve long and tedious calculations. Therefore,
in order to save space we only give a sketch of the main ideas of the proof of the
above theorem.

Remark 2.8 Note that the previous results obtained in [5] only give the existence of a
local solution (u, n) : [0, τ ] → D(A

α
2 ) × H1+α whenever (u0, n0) ∈ D(A

α
2 ) × H1+α ,

α > d
2 , d = 2, 3. Hence, the present note improves the results from that paper.

Throughout, we put

fε(n) = 1

ε2
(1 − |n|2)n and Fε(n) = 1

4ε2
(1 − |n|2)2.

3 Ideas of the Proof of Theorem 2.6: Uniform Estimates

As mentioned the proof of Theorem 2.6 consists in deriving uniform estimates,
proving tightness results and passage to the limit. In this section we concentrate on
the first part, i.e. uniform estimates. In the following section we will deal with the
second and third parts.

In what follows we choose and fix a separable Hilbert space K such that the
embedding K ↪→ V is Hilbert–Schmidt. We also assume that assumptions of The-
orem 2.5 are satisfied, i.e. we assume Assumption 2.1 and that W = (W (t))t≥0 and
η = (η(t))t≥0 are respectively V andR-valuedWiener process defined on the filtered
probability space (�,F ,F,P), and (u0, n0) ∈ V × H2.We denote byQ ∈ L (V) the
covariance operator of W . HereL (V) is the space of all bounded linear maps from
V into itself.

In this section we also fix ε ∈ (0, 1] denote by (uε, nε) : [0,∞) → V × H2 the
unique strong solution to the SGL (2.8) guaranteed by Theorem 2.5. Since we want
to prove the existence of a local solution, we fix for the remainder of this section a
finite time horizon T > 0. In all our results below we will find estimates independent
of ε. The constants will depend on both the initial data as well as on T but we will
not make this dependence explicit.

The first estimates we get are given in the following lemma.
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Lemma 3.1 For any p ∈ N there exists a constant K0(p) > 0, independent of ε ∈
(0, 1), such that

E sup
t∈[0,T )

(|uε(t)|2L2 + |∇nε(t)|2L2 + |Fε(nε(t))|L1
)p ≤ K0(p), (3.1)

E

⎛

⎝
T∫

0

[|∇uε(t)|2 + |�nε(t) + fε(nε(t))|2L2
]
dt

⎞

⎠
p

≤ K0(p). (3.2)

Sketch of the proof of Lemma 3.1. The application of the Itô Lemma [38] to the
functional �1(u) + �2(n), where

�1(u) = 1

2
|u|2

L2 and �2(n) = 1

2
|∇n|2

L2 + 1

4ε2

∫

O

[
1 − |n|2]2 dx,

the use of the fact fε(nε) ⊥ nε × h and

〈B(uε, uε) + M (nε), uε〉 + 〈uε · ∇nε, fε(nε) − �nε〉 = 0, (3.3)

and the use of the elementary equality

|∇(nε × h)|2
L2 + 〈∇nε,∇ ([nε × h] × h)〉 = |nε × ∇h|2

L2 ,

yield the following energy equality which is the basis of the proof of the lemma:

E[uε, nε](t) + 2

t∫

s

D[uε, nε](r)dr = E[uε, nε](s) + |Q|2L (V)(t − s)

+ 2

t∫

s

〈∇nε, (nε × ∇h)dη〉 + 2

t∫

s

〈uε, dW 〉

+
t∫

s

|(nε × ∇h)|2
L2dr,

(3.4)

E[u, n](t) =
∫

O

[|u(t, y)|2 + |∇n(t, y)|2] dy +
∫

O

Fε(n(t, y))dy,

D[uε, nε](t) = |∇uε(t)|2L2 + |�nε(t) + fε(nε(t))|2L2 .

Once we have this energy estimate we can refine the approach in [6] to obtain the
estimates in Lemma 3.1. �
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The above lemma gives two natural and important uniform estimates, but they
are not sufficient for our purpose. We need to derive uniform estimates in the space
C([0,T ];V × H2) ∩ L2([0,T ];D(A) × H3). In order to derive such estimates let us
define an important stopping time.

Let δ,R > 0,

ER[u, n](t, x) =
∫

B(x,R)

[|u(t, y)|2 + |∇n(t, y)|2 + Fε(n(t, y))
]
dy,

and define the following three F-stopping times

σ ε
1 (R) := σ ε

1 (δ,R) = inf

{
t ∈ [0,∞) : sup

x∈O
ER[uε, nε](t, x) ≥ δ

}
∧ T , (3.5)

σ ε
2 = inf

{
t ∈ [0,∞) : sup

x∈O
|nε(t, x)| ≤ 1

2

}
∧ T , (3.6)

σ ε(R) = σ ε
1 (R) ∧ σ ε

2 . (3.7)

We will now use this stopping time to derive uniform estimates in C([0,T ];V ×
H2) ∩ L2([0,T ];D(A) × H3) for the stoppedprocesses (uε(· ∧ σ ε(R)), nε(· ∧ σ ε(R)))

for appropriate choice ofR. This ismotivatedby the theory from thedeterministic case
which shows that uniform estimates in C([0,T ];V × H2) ∩ L2([0,T ];D(A) × H3)

hold if the energy remains small and |n(t)|L∞ does not enter the ball B(0, 1
2 ), see [19,

Eq. 3.3].
Hereafter, we set Ot = [0, t] × O, t > 0 and recall the following important

lemma, see [40, Lemma 3.1]. Note that Struwe proved his result on a general compact
Riemannian manifold and hence his result is valid in our case of a compact 2D torus.

Lemma 3.2 (The Ladyzhenskaya–Struwe inequality) There exists two constants
c0 > 0 and r1 > 0, independent of ε ∈ (0, 1], such that for every R ∈ (0, r1] the
following inequality holds

|∇nε(t, x)|4L4(Ot)
≤ c0

⎛

⎜⎝ sup
(s,x)∈[0,t]×O

∫

B(x,R)

|∇nε(s, y)|2dy
⎞

⎟⎠

×
(
|�nε|2L2(Ot)

+ R−2|∇nε|2L2(Ot)

)
.

(3.8)

Remark 3.3 Since P almost surely (uε, nε) : [0,T ] → V × H2 is continuous, for
any δ ∈ (0, 1/8c0) one can find r0 > 0 such that for any R ≤ r0

σ ε(R) > 0 a.s.

Hereafter, we set
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R0 = r1 ∧ r0, (3.9)

σ ε = σ ε(R), for a fixed R ∈ (0,R0]. (3.10)

Lemma 3.4 Let δ ∈ (0, 1/8c0), p ∈ N r1 and r0 as in Remark 3.3. Let R0 = r1 ∧ r0
and for R ∈ (0,R0] we set σ ε = σ ε(R). Then, there exists a constant K1(p) > 0
independent of ε ∈ (0, 1], such that

E

⎛

⎝
σ ε∫

0

|�nε|2
L2ds + 1

8ε4

σ ε∫

0

|1 − |nε|2|2
L2ds +

σ ε∫

0

|∇|nε|2|2
L2ds

⎞

⎠
p

≤ K1(p). (3.11)

Sketch of the proof of Lemma 3.4. The idea of the proof consists in the following
three steps.

• We expand |�nε + fε(nε)|2
L2 , use integration by parts and the Young inequality to

obtain

|�nε|2
L2(Oσε ) + 1

ε4
|(1 − |nε|2)nε|2

L2(Oσε ) + 1

ε2
|∇|nε|2|2

L2(Oσε )

≤ |�nε + fε(nε)|2
L2(Oσε ) + 4|∇nε|4

L4(Oσε ) + 1

8ε4
|(1 − |nε|2)|2L2(Oσε ). (3.12)

• We use the fact |nε(t)|2 ≥ 1
4 for t ∈ [0, σ ε] to control the term containing |(1 −

|nε|2)nε|2 (this yields the term |1 − |nε|2|2 in the estimates (3.11)!)
• We finally use the Ladyzhenskaya–Struwe lemma and Lemma 3.1 to conclude.

�
Before proceeding further, we recall the following lemma which was proved in

[18] in the case of a general domain. For the case of the torus, it is enough to observe
that the d = 2-dimensional result follows from the d = 1-dimensional one. In the
latter case, it follows by a simple scaling argument applied to a (large) interval [0,L]
with radius R = 1 with the centers chosen by xi = i, i = 0, . . . , [L]. Here [L] denotes
the integer part of L.

Lemma 3.5 There exists a positive number C > 0 such that the following holds.
For every R > 0 there exists a natural number NR ∈ N such that NR ≤ CR−2 and

a finite set {xi : i = 1, . . . ,NR} ⊂ O such that

for every x ∈ O there exists i ∈ {1, . . . ,NR} such that B(x,R) ⊂ B(xi, 2R) (3.13)

Note that in particular O =⋃NR
i=1 B(xi, 2R).

By staying in [0, σ ε] and using the above covering lemmawe obtain the following
lemma.

Lemma 3.6 Assume that δ ∈ (0, 1/8c0), R0 as before. Then, for every p ∈ N there
exists a constant K2(p) > 0 independent of ε ∈ (0, 1] such that



282 Z. Brzeźniak et al.

E exp

(
p sup
t∈[0,σ ε]

E[uε, nε](t)
)

≤ K2(p) (3.14)

E exp
(
p

σ ε∫

0

[
|�nε|2

L2 + |∇uε|2
L2

+ 1

8ε4
|[1 − |nε|2]|2

L2 + 1

ε2
|∇|nε|2|2

L2

]
ds
)

≤ K2(p), (3.15)

E exp

⎛

⎝p
σ ε∫

0

∫

O

(|∇nε|4 + |uε|4)ds
⎞

⎠ ≤ K2(p). (3.16)

Sketch proof of Lemma 3.6. The first estimate (3.14) can be easily obtained. In fact,
by covering the torus O by balls B(xk ,R0) we obtain

sup
t∈[0,σ ε]

E[uε, nε](t) ≤
NR0∑

k=1

sup
(t,x)∈[0,σ ε]×B(xk ,R0)

ER0 [uε, nε](t, x) ≤ NR0δ,

from which we easily derive (3.14).
The proof of the second estimate (3.15) is quite long. We start using the previous

estimates and the energy inequality (3.4) and derive that

|�nε|2
L2(Oσε ) + 1

8ε4
|(1 − |nε|2)|2

L2(Oσε ) + 1

ε2
|∇|nε|2|2

L2(Oσε )

≤ |�nε + fε(nε)|2
L2(Oσε )

≤ K3 +
σ ε∫

0

〈uε, dW 〉 +
σ ε∫

0

〈∇nε, nε × ∇h〉dη + K3

R2
0

σ ε∫

0

|∇nε|2
L2ds. (3.17)

Next, by the Itô formula and the previous exponential inequality estimate (3.14)
we obtain

E

⎛

⎝exp
[
p

σ ε∫

0

〈uε, dW 〉 +
σ ε∫

0

〈∇nε, nε × ∇h〉dη + pK3

R2
0

σ ε∫

0

|∇nε|2
L2ds
]
⎞

⎠ ≤ C,

from which along with (3.17) we derive (3.15). �
We now can derive the following important sets of uniform estimates.

Lemma 3.7 For every p ∈ N there exists a constant K3(p) > 0 such that
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E sup
t∈[0,σ ε]

[|∇uε(t)|2
L2 + |�nε(t) + fε(nε(t))|2

L2 ]p ≤ K3(p), (3.18)

E

⎡

⎣
σ ε∫

0

(|Auε(s)|2
L2 + |∇[�nε(s) + fε(nε(s))]|2

L2

)
ds

⎤

⎦
p

≤ K3(p), (3.19)

E

⎡

⎣
σ ε∫

0

(∣∣∣∣
1

ε
(�nε(s)) + fε(nε(s)) · nε(s)

∣∣∣∣
2

L2

)
ds

⎤

⎦
p

≤ K3(p). (3.20)

The proof of this lemma is very similar to the proof of the following key uniform
estimates.

Proposition 3.8 Let δ ∈ (0, 1/8c0), R0 = r0 ∧ r1. Then for every p ∈ N there exists
a constant K4(p) > 0 such that

E

(
sup

t∈[0,σ ε]
[|A 1

2 uε(t)|2
L2 + |�nε(t)|2

L2 ]p
)

≤ K4(p), (3.21)

E

⎡

⎣
σ ε∫

0

(|Auε|2
L2 + |∇�nε|2

L2

)
ds

⎤

⎦
p

≤ K4(p). (3.22)

Moreover, σ ε < T is satisfied P almost surely.

To derive the above crucial uniform estimateswewill need to apply the Itô formula
to the functional � : V × H2 → [0,∞) defined by

�(u, d) = �1(u) + �2(d), (3.23)

where �1 : H2 → [0,∞) and �2 : V → [0,∞) are the energy functionals defined
by

�1(d) = 1

2
|�d |2

L2 and �2(v) = 1

2
|∇v|2

L2 , v ∈ V, d ∈ H2. (3.24)

We need to establish several lemmas involving the first and second Fréchet deriva-
tives of �1 and �2. Before stating and proving these lemmas we recall the formulae
for the derivative of �1

�′
1(d)[g] = 〈�d ,�g〉 and �′′(d)[g, p] = 〈�g,�p〉, d , g, p ∈ H2. (3.25)

We state the following lemma which can be proved using elementary inequalities.

Lemma 3.9 There exists a constant α0 such that for all v ∈ D(A) and d ∈ H3



284 Z. Brzeźniak et al.

�′
2(v)[−v · ∇v − 
L[div (∇d � ∇d)]] = −〈Av,
L[div (∇d � ∇d)]〉

≤ 1

8

(|∇�d |2
L2 + |Av|2

L2

)+ α0|∇d |4
L4 |�d |2

L2.
(3.26)

Lemma 3.10 There exists a constant α1 > 0 such that for all v ∈ D(A) and d ∈ H2

�′
1(d)[−v · ∇d ] = −〈�d ,�(v · ∇d)〉

≤ 1

8

(|∇�d |2
L2 + |Av|2

L2

)+ α1[|∇v|2
L2 + |∇d |4

L4 ]|�d |2
L2 . (3.27)

Lemma 3.11 Let h ∈ H2. Then, there exists a constant α3 > 0 such that for all
d ∈ H2

1

2
�′

1(d)[(d × h) × h] + 1

2
�′′

1(d)[d × H] ≤ α3|h|2H2

[|�d |2 + |∇d |2
L4 + |d |2

L∞
]
.

(3.28)

Lemma 3.12 Let h ∈ H2. Then, there exists a constant α4 > 0 such that for all
d ∈ H2

|�′
1(d)[d × h]|2 ≤ α4|h|2H2 |�d |2

L2

(|�d |2
L2 + |∇d |2

L4 + |d |2
L∞
)
. (3.29)

One of the most difficult term to control in the application of Itô formula for
�(v, d) is the term involving the Ginzburg–Landau functional fε(d). However, with
skillful and careful analysis we were able to derive the following important result.

Lemma 3.13 There exists a constant α2 > 0 such that for all ε ∈ (0, 1] and d ∈ H3

be satisfying
1

2
< |d(x)|2 ≤ 1 for all x ∈ O, (3.30)

�′
1(d)[fε(d)] = 〈�d ,�fε(d)〉

≤ α2

[
|∇(�d + fε(d))|2

L2 + |�d + fε(d)|4
L2 + |∇d |4

L4 + |�d |2
L2 |∇d |2

L4

]

+ 1

4
|∇�d |2

L2 − 1

2ε2
|�(1 − |d |2)|2

L2

− 1

ε2

∫

O
(1 − |d |2)

[
|∇2d |2 + |�d |2

]
dx

(3.31)

Proof Let ε ∈ (0, 1] and d ∈ H3 satisfying

1

2
< |d(x)|2 ≤ 1 for all x ∈ O. (3.32)

Now, in order to prove the lemma we will need the following identity which is
taken from [21]
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d · �2d = 1

2
�2|d |2 − 4∇d∇�d − 2|∇2d |2 − |�d |2. (3.33)

We also need the following inequality which follows from (3.30)

∣∣∣∣
1

ε2
(1 − |d |2)

∣∣∣∣ =
∣∣∣∣
1

ε2
(1 − |d |2)d

∣∣∣∣ (|d |)−1 ≤ 2|fε(d)|. (3.34)

With these two observations in mind we have

|(�d ,�fε(d))| = 1

ε2
(�2d , (1 − |d |2)d) (3.35)

= 1

ε2
((1 − |d |2), 1

2
�2|d |2 − 4∇d∇�d − 2|∇2d |2 − |�d |2)

(3.36)

= − 1

ε2
|�(1 − |d |2)|2

L2 − 1

ε2

∫

O

(1 − |d |2)[|∇2d |2 + |�d |2]dx

(3.37)

+ 4

ε2

∫

O

[(1 − |d |2)∇d∇�d ]dx (3.38)

= I1 + I2 + I3. (3.39)

It is clear that I1 ≥ 0, hence we do not need to worry about it. Since (1 − |d |2) ≥ 0
we do not need to deal with I2. Let us then estimate I3. For doing so we use (3.34)
and get

I3 ≤ 8
∫

O

[|(1 − |d |2)||∇d ||∇�d |]dx

≤ 8
∫

O

[|fε(d) + �d − �d ||∇d ||∇�d |]dx

≤ 8
∫

O

[|�d + fε(d)||∇d ||∇�d |]dx +
∫

O

[|�d ||∇d ||∇�d |]dx

= J1 + J2.

(3.40)

Using the Young, the Hölder, the Gagliardo–Nirenberg inequalities and the Young
inequality in this order yields that for any α > 0 there exists a constant C(α) > 0
such that
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J1 ≤ α|∇�d |2
L2 + C(α)

∫

O

(|�d + fε(d)|2|∇d |2)dx (3.41)

≤ α|∇�d |2
L2 + C(α)|�d + fε(d)|2

L4 |∇d |2
L4 (3.42)

≤ α|∇�d |2
L2 + C(α)|�d + fε(d)|L2 |∇(�d + fε(d))|L2 |∇d |2

L4 (3.43)

≤ α|∇�d |2
L2 + C(α)

[
|∇(�d + fε(d))|2

L2 + |�d + fε(d)|2
L2 |∇d |4

L4

]
(3.44)

Next,wedealwith J2 in a similarway.Using theYoung, theHölder, theGagliardo–
Nirenberg inequalities and theYoung inequality in this order yields that for anyα > 0
there exists a constant C(α) > 0 such that

J2 ≤ α|∇�d |2
L2 + C(α)

∫

O

(|�d |2|∇d |2)dx (3.45)

≤ α|∇�d |2
L2 + C(α)|�d |2

L4 |∇d |2
L4 (3.46)

≤ α|∇�d |2
L2 + C(α)|�d |L2 |∇�d |L2 |∇d |2

L4 (3.47)

≤ α|∇�d |2
L2 + C(α)

[
|�d |2

L2 |∇d |4
L4

]
(3.48)

The inequality (3.31) follows from (3.39), (3.40), (3.48) and (3.44) by choosing
α = 1

4 . �

Let us sum up our findings from the above lemma in the next remark.

Remark 3.14 Let h ∈ H2, v ∈ D(A) and d ∈ H3 be satisfying

1

2
< |d(x)|2 ≤ 1 for all x ∈ O. (3.49)

Let α0, α1, α2 be the constants from Lemmas 3.9–3.13 and let us put

R1(d) := α2
[|∇(�d + fε(d))|2

L2 + |�d + fε(d)|4
L2 + |∇d |4

L4

]
, (3.50)

R2(d) := α3
[|�d |2

L2 + |∇d |2
L4 + |d |2

L∞
]
, (3.51)

S(v, d) := |Av|2
L2 + |∇�d |2

L2 +
∣∣∣∣
1

ε
�(1 − |d |2)

∣∣∣∣
2

L2

+
∣∣∣∣
1

ε

√
(1 − |d |2)∇2d

∣∣∣∣
2

L2

+
∣∣∣∣
1

ε

√
(1 − |d |2)�d

∣∣∣∣
2

L2

, (3.52)

N1(d) := [α0 + α1 + α2]|∇d |4
L4 . (3.53)

Then, it follows from Lemmas 3.9–3.11 that
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�′
2(v)[−Ad − v · ∇v − 
L(div[∇d � ∇d ])]
+ �′

1(d)[�d + fε(d) − v · ∇d + 1

2
(d × h) × h] + 1

2
�′′[�(d × h)]

≤ −S(v, d) + R1(d) + |h|2H2R2(d) + N1(d)�(v, d). (3.54)

Bearing the notation of this remark in mind, we set

�1(t ∧ σ ε) = exp

⎛

⎝−
t∧σ ε∫

0

N1(nε(s))ds

⎞

⎠ , t ≥ 0.

We now state and sketch the proof of the following result.

Proposition 3.15 For any p ∈ N there exist constants K5(p),K6(p) > 0, indepen-
dent of ε > 0, such that

E
(
sup

t∈[0,T ]
[|A 1

2 v(t ∧ σ ε)|2
L2 + |�n(t ∧ σ ε)|2

L2 ]p) ≤ K5(p), (3.55)

E

[ T∧σ ε∫

0

(|Av|2
L2 + |∇�n|2

L2 + 1

2ε2
|�(1 − |d |2)|2

L2

+ 1

ε2

∣∣√(1 − |d |2)∇2d
∣∣2
L2 + ∣∣

√
(1 − |d |2)�d

∣∣2
L2

)
ds
]p ≤ K6(p). (3.56)

Proof The proof involves long and tedious calculation, so we will only outline the
main idea. Without of loss generality we only prove the estimate for p ∈ N.

We need to use the Itô’s formula for several processes. We firstly apply Itô’s
formula to �2(uε(t ∧ σ ε)) and �1(nε(t ∧ σ ε)), then to Z(t ∧ σ ε) where

Z(t ∧ σ ε) = �1(t ∧ σ ε)�(uε(t ∧ σ ε), nε(t ∧ σ ε)), t ∈ [0,T ],

and � is defined in (3.23). Using (3.54), the uniform estimates in Lemmas 3.1, 3.4,
3.7 and Proposition 3.8, and the fact �1 ≤ 1 we infer that for all p ≥ 1 there exist
constants K7 > 0 (depending only on p) and K8 > 0 which depends only on p, T ,
|Q|L (V), |h|2H2 and |(v0, n0)|4pV×H2 such that for all ε ∈ (0, 1]
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E sup
s∈[0,t]

[Z(s ∧ σ ε)]p + E

⎡

⎣
t∧σ ε∫

0

�1(s)S(uε(s), nε(s))ds

⎤

⎦
p

≤ K7
(
E[Z(0)]p + |h|2pH2

⎛

⎝E
T∧σ ε∫

0

R2(d(s))ds

⎞

⎠
p

+ E

⎛

⎝
t∧σ ε∫

0

R1(d(s))ds

⎞

⎠
p

+ E sup
s∈[0,t]

|M (s ∧ σ ε)|p)

≤ K8 + K7E sup
s∈[0,t]

|M (s ∧ σ ε)|p,

where the process M is defined by

M (s) =
s∫

0

�1(r)�
′
2(u

ε(r))dW (r)

+
∞∑

j=1

t∫

0

�1(r)�
′
1(n

ε(r))[nε(r) × h] ◦ dη(r), s ∈ [0,T ].

We now use the Burkholder–Davis–Gundy, the Hölder, the Young inequalities,
the uniform estimates in Lemmas 3.1, 3.7 and Proposition 3.8, and the fact �1 ≤ 1
to deduce that

K7E sup
s∈[0,t]

|M (s ∧ σ ε)|p ≤ 1

2
E sup

s∈[0,t]
[Z(s ∧ σ ε)]p + K8. (3.57)

Collecting all the above estimates yield there exists a constant K9 > 0 which
depends only on p, T , |h|2pH2 and |(v0, n0)|4pV×H2 such that for all ε ∈ (0, 1]

E sup
s∈[0,t]

[Z(s ∧ σ ε)]p + E

⎡

⎣
t∧σ ε∫

0

�1(s)S(uε(s), nε(s))ds

⎤

⎦
p

≤ K9. (3.58)

With this at hand, we can now estimate the E sups∈[0,T ][�(uε, nε)(s ∧ σε)]p as
follows. Let

�−1
1 = 1/�1 = exp

⎛

⎝
·∫

0

N1(nε(s))ds

⎞

⎠ .

Since �−1
1 is an increasing function of the time t we then obtain
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E sup
s∈[0,T ]

[�(uε, nε)(s ∧ σε)]p = E sup
t∈[0,T ]

[
�−1

1 (s ∧ σε)Z(s ∧ σε)
]p

≤
(
E|�−1

1 (T ∧ σε)|2pE sup
s∈[0,T ]

Z2p(s)

) 1
2

(3.59)

from which along with the definition of �1 and the exponential estimates in
Lemma 3.6 and (3.58) we derive that for any R > 0, p ≥ 1 there exists a constant
K10 such that for all ε ∈ [0, 1)

E sup
s∈[0,T ]

[|∇uε(s ∧ σε)|2L2 + |�nε(s ∧ σε)|2L2

]p ≤ K10. (3.60)

We establish the estimate (3.56) in a similar way. This completes the proof of the
proposition. �

4 Ideas of the Proof of Theorem 2.6: Tightness and Passage
to the Limit

As in the previous section, in what follows we choose and fix a separable Hilbert
space K such that the embedding K ↪→ V is Hilbert–Schmidt. We also assume that
assumptions of Theorem 2.5 are satisfied, i.e. we assume Assumption 2.1 and that
W = (W (t))t≥0 and η = (η(t))t≥0 are respectively V andR valuedWiener processes
defined on the filtered probability space (�,F ,F,P), and (u0, n0) ∈ V × H2. Since
we want to prove the existence of a local solution, we fix for the remainder of this
section a finite time horizon T > 0. But contrary to the previous section, here we
do not fix ε ∈ (0, 1] but instead consider a family (uε, nε)ε∈(0,1], where (uε, nε) :
[0,∞) → V × H2 the unique strong solution to (2.8) guaranteed by Theorem 2.5.

It will convenient to introduce the following notation. Please note that we omit
the superscript ε.

f1(t) = 1[0,σ ε](t)
(−B(uε(t), nε(t)) − 
L(div[∇nε � ∇nε])) , t ∈ [0,T ]

f2(t) = 1[0,σ ε](t), t ∈ [0, T ],
g1(t) = 1[0,σ ε](t)

(
−uε(t) · ∇nε(t) + |∇nε(t)|2nε(t) + 1

2
(nε(t) × h) × h

)
, t ∈ [0, T ],

g2(t) = 1[0,σ ε](t)nε(t) × h, t ∈ [0,T ].

We then consider the following problem
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⎧
⎨

⎩

du(t) + Au(t) = f1(t)dt + f2(t)dW, t ∈ (0,T ], (4.1a)

dn(t) − �n(t)dt = g1(t)dt + g2(t) × dη, t ∈ (0,T ], (4.1b)

u(0) = u0 and n(0) = n0. (4.1c)

This has a uniquemild solution (vε, dε) such that (vε, dε) ∈ X[0,T ] = C([0,T ];V ×
H2) ∩ L2(0,T ;D(A) × H3) almost surely. Following the idea of [8, p. 128], we can
prove that

(vε(t ∧ σ ε), nε(t ∧ σ ε)) = (uε(t ∧ σ ε), nε(t ∧ σ ε)), ∀t ≥ 0 P-a.s. (4.2)

Thanks to these observations and the uniform estimate in Lemma 3.1 and Propo-
sition 3.8 we obtain the following global estimates

Proposition 4.1 For any p ∈ N, there exists K11(p) > 0 independent of ε ∈ (0, 1]
such that

E

(
sup

t∈[0,T ]

[
|A 1

2 vε(t)|2
L2 + |dε(t)|2H2

]p) ≤ K11, (4.3)

E

⎡

⎣
T∫

0

(|Avε|2
L2 + |dε|2h3

)
ds

⎤

⎦
p

≤ K11. (4.4)

Thanks to this proposition we can prove that the family (vε, dε) satisfies the
following Aldous condition.

Proposition 4.2 There exists a constant K12 > 0, independent of ε ∈ (0, 1), such
that for every κ > 0 and every sequence (ρn)n∈N of (0,T ]-valued stopping times,

sup
0≤θ≤κ

E (|(vε, dε)((ρn + θ) ∧ T ) − (vε, dε)(ρn)|H×H1) ≤ K12κ. (4.5)

Now, let us introduce the following notation

XT = C([0,T ];H × H1) ∩ Cweak([0,T ];V × H2) ∩ L2weak(0,T ;D(A) × H3).

(4.6)
We also put

Xα
T = C

(
[0,T ];D

(
A

α−1
2 × Hα

)
∩ L2

(
0,T ;D (A α

2
))× H1+α

)
, α ∈ [1, 2),

YT = C([0,T ];V × R).

The first corollary below follows from Lemma 3.1.

Corollary 4.3 We have

(1 − |uε|2) → 0 in L2(�;C([0,T );L2)).
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The second corollary is a consequence of Lemma 3.1, Propositions 3.8 and 4.2,
and [9, Corollary 3.9].

Corollary 4.4 The family of laws of [(vε, dε); (W, η); σ ε] is tight on XT × YT ×
[0,T ].

FromCorollaries 4.3 and 4.4, applying the Jakubowski–Skorokhod representation
theorem, [25] (see also [9, Theorem 3.11]), we have the following result.

Proposition 4.5 There exist a new probability space (�,F ,P), not relabeled,XT ×
YT × [0,T ]-valued sequence (Zε) := ([(ṽε, d̃ε); (W ε, ηε); τ ε]) and XT × YT ×
[0,T ]-valued random variable Z := [(v, d); (W̃ , η̃); τ ] such that

lawXT×YT×[0,T ](Zε) = lawXT×[0,T ]([(vε, dε); (W, η); σ ε]), (4.7)

Zε → Z in (XT ∩ Xα
T ) × YT × [0,T ] P-a.s., (4.8)

P-a.s.1[0,τ ε]|d̃ε|2 − 11[0,τ ] → 0 in Lq([0,T ];L2)∀q ∈ [2,∞). (4.9)

In order to conclude the proof of Theorem 2.6 we need to pass to the limit. Thanks
to the strong convergence (4.8) the passage to the equation for the velocity v can be
done as in [9]. The passage to the limit in the director equation needs special care. In
particular, we need the convergence (4.9) and the following equivalence result which
can be established as in [1].

Proposition 4.6 Let u ∈ C([0,T ];H) ∩ L2(0,T ;V) and consider the problems

dn + u · ∇n = �n + |∇n|2n + 1

2
G2

h(n) + (n × h)dη, |n| = 1 (4.10)

and

n × dn + n × (u · ∇n) = − div(n × ∇n) + 1

2
n × G2

h(n) + n × (n × h)dη, |n| = 1.

(4.11)

If n ∈ C([0,T ];H1) ∩ L2(0,T ;H2) satisfies (4.10) then it satisfies (4.11), and vice versa.

With this proposition at hand and (4.9) we can now carry out as is done in [1] the
passage to the limit in the equations for the director field n and conclude the proof
of Theorem 2.6.

Remark 1 The proof of τ > 0 a.s. is technical and very long and will be published in
a separate paper. In fact, one must know the existence and regularity of the pressure
P which is a delicate matter. We also must establish local energy (energy on balls)
estimates which are quite long and tedious.

Acknowledgements The first named author would like to dedicate this work to Professor Sergio
Albeverio, his teacher, a collaborator and a friend, on his 80th Birthday. Their collaboration on
mathematical foundations of Feynmann path integrals has led him to understand the stochastic
integral with respect to a cylindrical Wiener process.



292 Z. Brzeźniak et al.
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Abstract This is a review article which presents part of the contribution of Sergio
Albeverio to the study of existence and uniqueness of solutions of SPDEs driven
by jump processes and their stability properties. The results on stability properties
obtained in Albeverio et al. (Random Oper. Stoch. Equ. 25(2):79–105, 2017 [4]) are
presented in a slightly simplified and different way.
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1 Introduction

The theory of SPDEs driven by Brownian motion was studied for a long time and
solutions taking values in a Hilbert space are described in [6, 9] based on previous
work. Sergio Albeverio was among the first mathematicians to initiate the study of
SPDEs driven by jump processes [2] with solutions in Hilbert spaces in contrast to
Kallianpur and Xiong [11] who studied generalized solutions. In order to study these
equations in general, Sergio et al. provided the Lévy–Itô decomposition in Banach
spaces [1]. There was a previous approach by Dettweiler [7], where the stochastic
integrals are defined differently from those of Itô. In [1] it was however proven that
the definitions are equivalent. Starting from [1] (M-type 2 and type 2) Banach valued
stochastic integrals with respect to Lévy processes and compensated Poisson random
measures associated to additive processes were defined in [12, 15, 18], including
the case of separable Hilbert space valued stochastic integrals. (For the theory of
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stochastic integration on Banach spaces see also [17, 21] and references there.)
Following this, the article [3] establishes the basic generalization of classical work for
mild solutions of SPDE’s driven by Lévy processes and associated Poisson random
noise. An Itô-formula was proved in this case [19] which was later generalized in
[13] and further in [4]. It has interesting applications to stability of solutions of such
SPDEs which originated in [13] and have been continued in [12] and by Albeverio
et al. in [4].

Our project in this paper is to present first a review of the work mentioned. The
results related to the stability properties obtained in [4] are presented in Sect. 4 in a
simplified and slightly differentway, by involving a dissipativity condition (condition
i in Theorem 9). These motivated further investigations of stability properties of
SPDEs with multiple invariant measures in [8], which introduces a “generalized
dissipativity condition”, that are not reported in this paper due to stipulated page
limitations for this article.

2 Stochastic Integrals and Itô-Formula

Consider a filtered probability space (�,F , {Ft }t≥0,P) satisfying the usual con-
ditions. Let H be a separable Hilbert space with norm ‖ · ‖H and scalar product
< ·, · >H , which for simplicity we will often denote with ‖ · ‖ and < ·, · >. Let
{Lt }t≥0 be an H -valued Lévy process on (�,F , {Ft }t≥0,P). Let B(H) denote the
Borel-σ -Algebra on H . For B ∈ B(H) with 0 /∈ B, we define

N ((0, t] × B) =
∑

0<s≤t

1B(�Ls) t ≥ 0

and
N ((0, t] × {0}) = 0

We define

β : B(H) → R+ := {t ∈ R : t ≥ 0}
B → β(B) := E [N ((0, 1] × B)]

Observe that the random measure N (dt, dx) induced on B(R+) ⊗ B(H) is a
Poisson random measure with compensator ν(dt, dx) := dt ⊗ β(dx). We recall
that on the trace σ -algebra B(R+) ⊗ B(H \ {0}) the Poisson random measure and
its compensator are σ -finite measures, but might not be finite, since the jumps of the
underlying Lévy process {Lt }t≥0 in a time interval [0, T ] are numerable, but might
not be finite. These are however finite on each set [0, T ] × A with A ∈ B(H), 0 /∈ A.
We shall be dealing with non-Gaussian Lévy processes, i.e.
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Lt −
t∫

0

∫

‖x‖H ≤1

x N (dt, dx) = 0 ∀t ≥ 0

(See e.g. Proposition 3.3.8 in [12] or Sect. 4.5 in [17].)
We denote with q(dt, dx) := N (dt, dx) − ν(dt, dx) the compensated Poisson

random measure associated to N (dt, dx).
Let us remark that M· := {Mt }t≥0 with Mt := q((0, t] ∩ A × B) is for each A ∈

B(R+) and B ∈ B(H)with β(B) < ∞ a {Ft }t≥0-martingale. (See e.g. Lemma 2.4.7
in [12].)

Let F be a separable Hilbert space. Let Ad(F) denote the space of all functions
f : R+ × H × � → F which are adapted on the enlarged space

(�̃, F̃ , F̃t , P̃) = (� × H,F × B(H), (Ft × B(H))t≥0,P ⊗ β).

We can define the Itô-Integral of f w.r.t. the compensated Poisson random mea-
sure q(ds, dx) basically starting with simple functions which are square integrable
w.r.t. P ⊗ β and then by density arguments for all f ∈ L2

ad(F) := L2(�̃ × R+, F̃ ⊗
B(R+),P ⊗ β ⊗ λ; F) ∩ Ad(F), where λ denotes the Lebesgue-measure. (See e.g.
Sect. 3.5 in [12].)

The Itô-Integral of f w.r.t. the compensated Poisson random measure q(ds, dx)

Zt :=
t∫

0

∫

A

f (s, x)q(ds, dx) t ≥ 0 (1)

is then a square integrable martingale for all A ∈ B(H) such that 0 /∈ A.
Through stopping times the Itô-Integral (1) can be extended also to all f ∈

K2∞,β(F) which denotes the linear space of all progressively measurable functions
f : R+ × H × � → F such that

P

⎛

⎝
t∫

0

∫

H

‖ f (s, x)‖2q(ds, dx) < ∞
⎞

⎠ = 1 ∀t ≥ 0.

The Itô-Integral (1) is then a local martingale (see e.g. [12, Sect. 3.5], where this
theory has been discussed for F being a separable Banach space).

Let us present the Itô-Formula for the Itô-Process (Yt )t≥0, with

Yt := Zt +
t∫

0

Fsds +
t∫

0

∫

�

k(s, x)N (ds, dx), (2)

where (Zt )t≥0 is defined throughEq. (1), F· := {Ft }t≥0 is an F-valued {Ft }t≥0 adapted
process, which satisfies



298 V. Mandrekar and B. Rüdiger

P

⎛

⎝
t∫

0

‖Fs‖ ds < ∞
⎞

⎠ = 1 ∀t ≥ 0,

� ∈ B(H) is a set with β(�) < ∞, k : � × R+ × H → F is a progressively mea-
surable process. Moreover k is càdlàg or càglàd β(dx) ⊗ P–almost surely and

t∫

0

∫

�

‖k(s, x)‖ ν(ds, dx) < ∞ P − a.s.

Let H ∈ C1,2
b (R+ × H ; F), the space of functions H : R+ × H → F which

are differentiable in t ∈ R+ and twice Fréchét differentiable in x ∈ H , with bounded
derivatives. Then similar to [10] (for the finite dimensional case) it can be proven that
the following Itô-Formula holds. (See e.g. [5] or [19] for the Banach valued case.)

Theorem 1 Let A ∈ B(H). Assume

t∫

0

∫

A

‖ f (s, x)‖ν(ds, dx) < ∞ P − a.s.

or
t∫

0

∫

A

‖ f (s, x)‖2ν(ds, dx) < ∞ P − a.s.

1. We have P–almost surely

H(t, Yt ) = H(0, Y0) +
t∫

0

∂sH(s, Ys)ds

+
t∫

0

∂yH(s, Ys)Fsds +
t∫

0

∫

A

(H(s, Ys− + f (s, x))

− H(s, Ys−)
)
q(ds, dx) +

t∫

0

∫

A

(H(s, Ys + f (s, x))

− H(s, Ys) − ∂yH(s, Ys) f (s, x)
)
ν(ds, dx)

+
t∫

0

∫

�

(H(s, Ys− + k(s, x)) − H(s, Ys−)
)
N (ds, dx), t ≥ 0,

where
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2. for all t ∈ R+ we have P–almost surely

t∫

0

‖∂sH(s, Ys)‖ds < ∞,

t∫

0

∫

A

‖H(s, Ys + f (s, x)) − H(s, Ys)‖2ν(ds, dx) < ∞,

t∫

0

∫

A

‖H(s, Ys + f (s, x)) − H(s, Ys) − ∂yH(s, Ys) f (s, x)‖ν(ds, dx) < ∞,

t∫

0

∫

�

‖H(s, Ys− + k(s, x)) − H(s, Ys−)‖N (ds, dx) < ∞.

However we are often interested in applying the Itô formula to functionsHwhich
are only in C1,2(R+ × H ; H), i.e. where the Fréchét derivatives are not necessarily
bounded. Especially for stochastic models applied to physics we might be interested
in taking advantage of conservation of energy of a random process and would like
to compute ‖Yt‖2. Remark however that H(y) = ‖y‖2 is of class C2(H ;R).

Let us define

Definition 1 A continuous, non-decreasing function h : R+ → R+ is quasi-
sublinear if there is a constant C > 0 such that

h(x + y) ≤ C
(
h(x) + h(y)

)
, x, y ∈ R+,

h(xy) ≤ Ch(x)h(y), x, y ∈ R+.

In [13] the following was proved:

Theorem 2 Let us assume

(a) H ∈ C1,2(R+ × H ; F) is a function such that

‖∂yH(s, y)‖ ≤ h1(‖y‖), (s, y) ∈ R+ × H

‖∂yyH(s, y)‖ ≤ h2(‖y‖), (s, y) ∈ R+ × H

for quasi-sublinear functions h1, h2 : R+ → R+.
(b) f : H × R+ × � → F is a progressively measurable process such that for all

t ∈ R+ we have P–almost surely
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t∫

0

∫

A

‖ f (s, x)‖2ν(ds, dx) +
t∫

0

∫

A

h1(‖ f (s, x)‖)2‖ f (s, x)‖2ν(ds, dx)

+
t∫

0

∫

A

h2(‖ f (s, x)‖)‖ f (s, x)‖2ν(ds, dx) < ∞.

Then the Itô-Formula 1. with 2. holds.

Remark 1 We remark that H(y) = ‖y‖2 is of class C2(H ;R) and

Hy(y)v = 2 < y, v > and Hyy(y)(v)(w) = 2 < v,w >, (3)

so that if for all t ∈ R+ we have P–almost surely
∫ t
0

∫
A ‖ f (s, x)‖2ν(ds, dx) < ∞

and
∫ t
0

∫
A ‖ f (s, x)‖4ν(ds, dx) < ∞, then Theorem 2 can be applied to H(s, y) :=

H(y) = ‖y‖2.

3 SPDEs on Hilbert Spaces

In this sectionwe shall be studying Stochastic Partial Differential Equations (SPDEs)
driven by Lévy processes. Let (H, ‖ · ‖H ) be aHilbert space and A be an infinitesimal
generator of a semigroup {St , t ≥ 0} on H to H . This means

(i) S0 = I
(ii) Ss+t = Ss St ∀s, t ≥ 0

We also assume that {St , t ≥ 0} is strongly continuous, i.e.
(iii) limt→0 St x = x (in norm ‖ · ‖H ) for all x ∈ H

If {St , t ≥ 0} is a semigroup satisfying the above properties, we call it a “strongly
continuous semigroup” (C0-Semigroup). For such a semigroup we note that there
exists α ≥ 0 and M ≥ 1 such that the operator norm in the space L(H) of bounded
linear operators from H to H satisfies

‖St‖L(H) ≤ Meαt t ≥ 0.

We call the semigroup {St , t ≥ 0} “pseudo-contraction” semigroup if M = 1,
“uniformly bounded semigroup” if α = 0 and “contraction semigroup” if M = 1
and α = 0.

If t → St is differentiable for all x ∈ H then the semigroup {St , t ≥ 0} is differ-
entiable.
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Let {St } := {St , t ≥ 0} be a C0-semigroup on H . The linear operator A with
domain

D(A) :=
{

x ∈ H, lim
t→0+

St x − x

t
exists

}

defined by

Ax = lim
t→0+

St x − x

t

is called the infinitesimal generator (i.g.) of {St }.
The following facts for an i.g. A of a C0-semigroup {St } are well known (see e.g.

[16]):

(1) For x ∈ H limh→0
1
h

∫ t+h
t Ss xds = St x .

(2) For x ∈ D(A), St x ∈ D(A) and d
dt St x = ASt x = St Ax .

(3) For x ∈ H ,
∫ t
0 Ss xds ∈ D(A) and A

∫ t
0 Ss xds = St x − x .

(4) D(A) is dense in H and A is a closed operator.
(5) Let f : [0, T ] → D(A) be ameasurable functionwith

∫ T
0 ‖ f (s)‖D(A)ds < ∞,

then
∫ T
0 f (s)ds ∈ D(A) and

∫ T
0 A f (s)ds = A

∫ T
0 f (s)ds.

We associate with A the resolvent set ρ(A) as the set of complex numbers λ for
which λI − A has bounded inverse

R(λ, A) := (λI − A)−1 ∈ L(H)

and we call R(λ, A), λ ∈ ρ(A) the resolvent of A.
We note that R(λ, A) : H → D(A) is one-to-one, i.e.

(λI − A)R(λ, A)x = x, x ∈ H

and R(λ, A)(λI − A)x = x, x ∈ D(A),

giving AR(λ, A)x = R(λ, A)Ax, x ∈ D(A)

Remark that R(λ1, A)R(λ2, A) = R(λ2, A)R(λ1, A) for λ1, λ2 ∈ P(A).

Lemma 1 Let {St } be C0-semigroup with infinitesimal generator A. Let

α0 := lim
t→∞ t−1ln(‖St‖L(H)),

then any real number λ > α0 belongs to the resolvent set ρ(A) and

R(λ, A)x =
∞∫

0

e−λt St xdt x ∈ H
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In addition for x ∈ H

lim
λ→∞ ‖λR(λ, A)x − x‖H = 0

Theorem 3 Hille–Yosida Theorem Let A : D(A) ⊂ H → H be a linear operator
on a Hilbert space H. Necessary and sufficient conditions for A to generate a C0-
semigroup is

(1) A is closed and D(A) = H
(2) There exists α, M ∈ R such that for λ > α, λ ∈ ρ(A)

‖R(λ, A)r‖L(H) ≤ M(λ − α)−r , r = 1, 2, . . .

In this case ‖St‖L(H) ≤ Meαt , t ≥ 0.

For λ ∈ ρ(A), consider the family of operators

Rλ := λR(λ, A).

Since the range R(R(λ, A)) of R(λ, A) is such that R(R(λ, A)) ⊂ D(A), we
define the “Yosida approximation” of A by

Aλx = ARλx, x ∈ H

Using λ(λI − A)R(λ, A) = λI it is easy to prove

Aλx = λ2R(λ, A) − λI, Aλ ∈ L(H)

Denote by Sλ
t the uniformly continuous semigroup

Sλ
t x = et Aλ x, x ∈ H

Using the commutativity of the resolvent, we get Aλ1 Aλ2 = Aλ2 Aλ1 , and clearly

AλSλ
t = Sλ

t Aλ

Theorem 4 Yosida Approximation Let A be an infinitesimal generator of a C0-
semigroup {St } on a Hilbert space H. Then

(a) limλ→∞ Rλx = x, x ∈ H
(b) limλ→∞ Aλx = Ax, f or x ∈ D(A)

(c) limλ→∞ Sλ
t x = St x, x ∈ H

The convergence in (c) is uniform on compact subsets of R+ and

‖Sλ
t ‖L(H) ≤ Mexp

(
t ∧ α

λ − α

)



Stability Properties of Mild Solutions of SPDEs … 303

with constants M, α as in Hille–Yosida Theorem.

We conclude this section by introducing a concept of solution. Let us look at the
deterministic problem

du(t)

dt
= Au(t), u(0) = x, x ∈ H

Here H is a real separableHilbert space and A is an unboundedoperator generating
a C0-semigroup.

A classical solution u : [0, T ] → H of the above equation will require a solution
to be continuously differentiable and u(t) ∈ D(A). However,

ux (t) = St x, t ≥ 0

is considered as a (mild) solution to the equation [16, Chap. 4].
One can consider the non-homogeneous equation

du(t)

dt
= Au(t) + f (t, u(t)), u(0) = x, x ∈ H

then for f ∈ L1([0, T ], H), Bochner integrable, one can consider the integral equa-
tion

ux (t) = St x +
t∫

0

St−s f (s, u(s))ds (4)

A solution of (4) is called a “mild solution”, if u ∈ C([0, T ], H).
Motivated by the initial work of Sergio Albeverio with Wu and Zhang [2], we

continued with Sergio [3] and further in [12] to analyze mild solutions of stochastic
partial differential equations (SPDEs) with Poisson noise on any filtered probability
space (�,F , {Ft }t≥0,P), satisfying the usual conditions with values on a separable
Hilbert space H . (For this topic see also the monograph by Peszat and Zabczyk [17]
and references there.) Remark that the stochastic integral

∫ t
0 St−s f (s, x)q(ds, dx),

which appears in such SPDEs, is in general not a martingale. However similar to
Doob inequalities the following Lemma holds.

Lemma 2 [Lemma 5.1.9 [12]] Assume {St }t≥0 is pseudo-contractive. Let q(ds, dx)

be a compensated Poisson random measure on R+ × E, for some Hilbert space
E, associated to a Poisson random measure N with compensator dt ⊗ β(dx) on
(�,F , {Ft }t≥0,P). For each T ≥ 0 the following statements are valid:

1. There exists a constant C > 0 such that for each f ∈ L2
ad(H) we have
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E

[
sup

t∈[0,T ]

∥∥∥∥

t∫

0

∫

E

St−s f (s, x)q(ds, dx)

∥∥∥∥
2]

≤ Ce2αT
E

[ T∫

0

∫

E

‖ f (s, x)‖2β(dx)ds

]
. (5)

2. For all f ∈ L2
ad(H) and all ε>0 we have

P

[
sup

t∈[0,T ]

∥∥∥∥

t∫

0

∫

E

St−s f (s, x)q(ds, dx)

∥∥∥∥ > ε

]

≤ 4e2αT

ε2
E

[ T∫

0

∫

E

‖ f (s, x)‖2β(dx)ds

]
. (6)

where
∫ t
0 St−s f (s, x)q(ds, dx) is well defined, if the right side is finite.∫ t

0 St−s f (s, x)q(ds, dx) is càdàg.

Let us assume that we are given

F : H → H, (7)

f : H × H → H. (8)

Assume

(A) f (u, z) is jointly measurable,
(B) F(z) is measurable,
(C) there exist constants L f and L F > 0, s.th.

‖F(z) − F(z′)‖2 ≤ L F‖z − z′‖2
∫

H

‖ f (u, z) − f (u, z′)‖2β(du) ≤ L f ‖z − z′‖2

f or all z, z′ ∈ H

(D) ∫

H

‖ f (u, 0)‖2β(du) < ∞ (9)

(E) A is the infinitesimal generator of a pseudo-contraction semigroup {St }t∈[0,T ] .
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Remark that Assumptions (C) and (D) imply that there is a constant K > 0 such
that ∫

H

‖ f (u, z)‖2β(du) ≤ K (1 + ‖z‖2) < ∞, (10)

since
∫

H

‖ f (u, z)‖2β(du) ≤ 2
∫

H

‖ f (u, z) − f (u, 0)‖2β(du) + 2
∫

H

‖ f (u, 0)‖2β(du)

≤ 2max

⎧
⎨

⎩L f ,

∫

H

‖ f (u, 0)‖2β(du)

⎫
⎬

⎭ (1 + ‖z‖2) <∞

In Albeverio et al. [3, 12], we analyzed (in more generality than in Theorem 5
below) the existence and uniqueness of mild solutions of the stochastic differential
equation on intervals [0, T ], T > 0, like e.g.

d Xt = (AXt + F(Xt ))dt +
∫

H

f (u, Xt )q(dt, du) (11)

X0 = ξ, (12)

where q(dt, du) := N (dt, du) − dtβ(du) is a compensated Poisson random mea-
sure with compensator ν(dt, du) := dtβ(du).

In other words, we looked at the solution of the integral equation

Xt = St X0 +
t∫

0

St−s F(Xs)ds +
t∫

0

∫

H

St−s f (u, Xs)q(ds, du) (13)

where integrals on the r.h.s. are well defined [12].

Definition 2 A stochastic process X · is called amild solution of (11), if for all t ≤ T

(i) Xt is Ft -adapted on a filtered probability space (�,F , {Ft }t≤T ,P),

(ii) {Xt , t ≥ 0} is jointly measurable and
∫ T
0 E ‖Xt‖2H dt < ∞,

(iii) X · satisfies (13) P-a.s. on [0, T ].
Definition 3 A stochastic process X · is called a strong solution of (11), if for all
t ≤ T

(i) Xt is Ft -adapted on a filtered probability space (�,F , {Ft }t≤T ,P),
(ii) X · is càdlàg with probability one,
(iii) Xt ∈ D(A), dt ⊗ dP a.e.,

∫ T
0 ‖AXt‖H dt < ∞ P-a.s.,

(iv) X · satisfies (11) P-a.s. on [0, T ].
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Obviously, a strong solution X · of (11) is a a mild solution of (11). The contrary
is not necessarily true, since e.g. Xt ∈ D(A) might not be true. (See e.g. Sect. 2.2
in Albeverio et al. [4] where sufficient conditions for a mild solution X · of (11) are
listed, for X · to be also a strong solution.)

Let S2
T be the linear space of all càdlàg, adapted processes X · such that

E

[
sup

t∈[0,T ]
‖Xt‖2F

]
< ∞, (14)

where we identify processes whose paths coincide almost surely. Note that, by the
completeness of the filtration, adaptedness does not depend on the choice of the
representative.

Lemma 3 [Lemma 4.2.1 [12]] The linear space S2
T , equipped with the norm

‖X ·‖S2
T

= E

[
sup

t∈[0,T ]
‖Xt‖2

]1/2
, (15)

is a Banach space.

Theorem 5 [Theorem 5.3.1 [12]] Suppose assumptions (A)–(E) are satisfied. Then
for ξ ∈ L2(�,F0,P; H) and T > 0, there exists a unique mild solution X ξ· in S2

T to
(11) with initial condition ξ , and satisfying X ξ

t is Ft -measurable.

Remark 2 For each ξ, η,∈ L2(�,F0,P; H), the corresponding unique solutions
X ξ· and Y η· to (11) in Theorem 5 satisfy

E
[‖Xt − Yt‖2H

] ≤ C(T )E
[‖ξ − η‖2H

]
, t ∈ [0, T ], (16)

for some constant C(T ) depending on T > 0. (See Sect. 5.7 in [12].)
If X0 ≡ x ∈ H , then the corresponding solution X x· to (11) in Theorem 5 is

Markov. (See Sect. 5.4 in [12].) Such solution constitutes a Markov process whose
transition probabilities pt (x, dy) = P[X x

t ∈ dy] are measurable with respect to x .
By slight abuse of notation we denote by (pt )t≥0 its transition semigroup, i.e., for
each bounded measurable function f : H −→ IR, pt f is given by

pt f (x) = E
[

f (X x
t )
] =

∫

H

f (y)pt (x, dy), t ≥ 0, x ∈ H. (17)

Since due to (16) the solution depend continuously on the initial condition, it can
be shown that pt f ∈ Cb(H) for each f ∈ Cb(H), i.e. the transition semigroup is
Cb-Feller.
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Let Rn = n R(n, A), with n ∈ N, n ∈ ρ(A), the resolvent set of A, R(n, A) =
(nI − A)−1. The SPDE

d Xt = (AXt + Rn F(Xt ))dt +
∫

H

Rn f (u, Xt )q(dt, du) (18)

X0 = Rnξ(ω).

obtained by Yosida Approximation of (11) has a unique strong solution Xn,ξ· which
approximates its mild solution X ξ· of (11) with initial condition X ξ

0 = ξ . The precise
statement is given in the following Theorem:

Theorem 6 Suppose assumptions (A)–(E) are satisfied. Then for ξ ∈ L2(�,F0,

P; H) and T > 0, there exists a unique strong solution Xn,ξ· :=
{

Xn,ξ
t , t ≥ 0

}
in

S2
T to (18) with initial condition ξ , and satisfying Xn,ξ

t is Ft -measurable ∀t ≥ 0.
Moreover,

lim
n→∞E

[
sup

0≤t≤T

∥∥∥Xn,ξ
t − X ξ

t

∥∥∥
2

H

]
= 0, (19)

where X ξ· :=
{

X ξ
t , t ≥ 0

}
is the mild solution of Eq. (11) with initial condition ξ .

For the proof see Theorem 2.9 of Albeverio et al. [4].

Definition 4 Xn,ξ· is called “the Yosida approximation of X ξ· ”.

Remark 3 Let A be the infinitesimal generator of a pseudo-contraction semigroup
{St }t∈[0,T ] . Assume that X · is a strong solution of (11) and all the hypotheses in The-
orem 2 are satisfied. Then the Itô-Formula holds and can be written in the following
way:

P–almost surely

H(t, Xt ) = H(0, X0) +
t∫

0

∂sH(s, Xs)ds +
t∫

0

LH(s, Xs)ds

+
t∫

0

∫

A

(H(s, Xs− + f (s, u)) − H(s, Xs−)
)
q(ds, du)

with

LH(s, x) :=< ∂xH(s, x), Ax + F(x) >

+
∫

H

(H(s, x + f (s, u)) − H(s, x)− < ∂xH(s, x), f (s, u) >
)
β(du) (20)
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Remark 4 Assume that hypotheses (A)–(E) and all hypotheses (a) and (b) in Theo-
rem 2 are satisfied. Then the Itô-Formula for the Yosida approximation Xn,ξ· of the
mild solution X ξ· of (11) holds and can be written in the following way:

H(t, Xn,ξ
t ) = H(0, Xn,ξ

0 ) +
t∫

0

∂sH(s, Xn,ξ
s )ds

+
t∫

0

LnH(s, Xn,ξ
s )ds +

t∫

0

∫

A

(H(s, Xn,ξ
s− + Rn f (s, u)) − H(s, Xn,ξ

s− )
)
q(ds, du)

with

LnH(s, x) :=< ∂xH(s, x), Ax + Rn F(x) >

+
∫

H

(H(s, x + Rn f (s, u)) − H(s, x)− < ∂xH(s, x), Rn f (s, u) >
)
β(du)

This follows directly from Theorem 6 and Remark 3.

In the next section we will use the following result, which was obtained in [4] as a
consequence of an Itô-formula for mild solutions of SPDEs, introduced in Albeverio
et al. [4] and written in terms of Yosida approximation

Theorem 7 [Corollary 3.7 [4]] Assume conditions (A)–(E) and all the hypotheses
in Theorem 2 are satisfied. Then

lim
n→∞ |LH(s, Xn,ξ

s ) − LnH(s, Xn,ξ
s )| = 0 P − a.s. (21)

4 Some Stability Properties for Solutions of SPDEs
on Hilbert Spaces

In this sectionwe discuss how the Itô Formula in Theorem2was applied byAlbeverio
et al. [4] to establish through a Lyapunov function approach stability properties for
the mild solution of (11) converging to a unique invariant measure.

Assumption We assume in the whole section that conditions (A)–(E) are satisfied.

Themathematical tools introduced in [4] have been later extended in [8] to analyze
the limiting behaviour of mild solutions of SPDEs with multiple invariant measure.
This will however not be discussed here, due to a problem of space.
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We start to recall some definition related to the Lyapunov function approach
presented in [14] as well as [4, 9, 12].

Definition 5 We say that the solution of (11) is exponentially stable in the mean
square sense if there exists c, ε>0 such that for all t > 0 and ξ ∈ L2(�,F0,P; H)

E[‖X ξ
t ‖2] ≤ ce−εt

E[‖ξ‖2] (22)

Definition 6 Let L be defined as in (20). A function H ∈ C2(H ;R) is a Lyapunov
function for the SPDE (11) if it satisfies the following conditions:

I. There exist finite constants c1, c2 > 0 such that for all x ∈ H

c1‖x‖2 ≤ H(x) ≤ c2‖x‖2

II. There exists a constant c3 > 0 such that

LH(x) ≤ −c3H(x) ∀x ∈ D(A)

In Albeverio et al. [4] we proved the following Theorem

Theorem 8 [4] Assume that there exists a function H ∈ C2(H ;R) which is a Lya-
punov function for the SPDE (11) and the hypotheses (a) and (b) in Theorem 2 are
satisfied. Then the mild solution of (11) is exponentially stable in the mean square
sense. Moreover the constants in (22) can be chosen so that c = c2

c1
and ε = c3.

Remark that for the case H ∈ C2
b (H ;R) a proof can be found in [14, Theorem

4.2] (see also [19, Sect. 7.1] and for the Gaussian case [9, Theorem 6.4]). The results
are stated there for the Yosida approximants.

Proof Since all the hypotheses of Theorem 2 are satisfied, Itô formula can be applied
to the Yosida approximation.

ec3t
E[H(Xn,ξ

t ) − H(Rnξ)] = E

⎡

⎣
t∫

0

ec3sc3(H(Xn,ξ
s ) + LnH(Xn,ξ

s ))ds

⎤

⎦ (23)

From Condition II it follows

c3H(Xn,ξ
s ) + LnH(Xn,ξ

s ) ≤ −LH(Xn,ξ
s ) + LnH(Xn,ξ

s ) (24)

ec3t
E[H(Xn,ξ

t ) − H(Rnξ)] ≤ E

⎡

⎣
t∫

0

ec3s(−LH(Xn,ξ
s ) + LnH(Xn,ξ

s ))ds

⎤

⎦ (25)



310 V. Mandrekar and B. Rüdiger

From Theorems 6 and 7 it follows ec3t
E[H(X ξ

t )] ≤ E[H(ξ)]. Condition I implies
then

c1E[‖X ξ
t ‖2] ≤ E[H(X ξ

t )] ≤ e−c3t
E[H(ξ)] ≤ c2e−c3t

E[‖ξ‖2] (26)

and hence
E[‖X ξ

t ‖2] ≤ c2
c1

e−c3t
E[‖ξ‖2] (27)

The statement follows by choosing c = c2
c1
and ε = c3.

Using Theorem 8we can provide an easy proof of the following statement, known
in the literature from e.g. [6, Sect. 16], [17, Chap. 11, Sect. 5].

Theorem 9 Assume that the conditions (A)–(E) are satisfied for (11), and the fol-
lowing conditions hold

(i) A satisfies the “dissipativity condition”, i.e. there exists α > 0 such that

< Ax − Ay, x − y > + < F(x) − F(y), x − y >

≤ −α‖x − y‖2 ∀x, y ∈ D(A); (28)

(ii) ε := 2α − L f > 0.
(iii) ∀z ∈ H

∫
A ‖ f (u, z)‖4β(du) < ∞

Then for all ξ, η ∈ L2(�,F0,P; H)

E[‖X ξ
t − Xη

t ‖2] ≤ e−εt
E[‖ξ − η‖2] ∀t > 0 (29)

Proof The stochastic process X ξ· − Xη· is the mild solution of

d(X ξ
t − Xη

t ) = A(X ξ
t − Xη

t )dt + (F(X ξ
t ) − F(Xη

t ))dt

+
∫

H

(
f (u, X ξ

t ) − f (u, Xη
t )
)

q(dt, du) (30)

X ξ
0 − Xη

0 = ξ − η. (31)

Condition (iii) implies that all hypotheses ofTheorem2are satisfied forH(x, y) :=
‖x − y‖2. Moreover, according to the definition of L in (20), we have

L‖x − y‖2 := 2 < x − y, A(x − y) > +2 < x − y, F(x) − F(y) >

+
∫

H

‖ f (u, x) − f (u, y)‖2β(du)
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‖x − y + f (u, x) − f (u, y)‖2 − ‖x − y‖2
− 2 < x − y, f (u, x) − f (u, y) >= ‖ f (u, x) − f (u, y)‖2

Conditions (i) and (ii) imply that the functionH(x, y) := ‖x − y‖2 is a Lyapunov
function for (30) with c1 = c2 = 1 and c3 = ε. Hence X ξ· − Xη· is exponentially
stable in the mean square sense.

We denote by p∗
t the adjoint operator to pt defined in (17), i.e.

p∗
t ρ(dx) =

∫

H

pt (y, dx)ρ(dy), t ≥ 0.

Recall that a probability measure π on (H,B(H)) is called invariant measure for
the semigroup (pt )t≥0 if and only if p∗

t π = π holds for each t ≥ 0. LetP2(H) be the
space of Borel probability measures ρ on (H,B(H)) with finite second moments.
Recall that P2(H) is separable and complete when equipped with the Wasserstein-
2-distance

W2(ρ, ρ̃) = inf
G∈H(ρ,ρ̃)

⎛

⎝
∫

H×H

‖x − y‖2H G(dx, dy)

⎞

⎠

1
2

, ρ, ρ̃ ∈ P2(H). (32)

Here H(ρ, ρ̃) denotes the set of all couplings of (ρ, ρ̃), i.e. Borel probability
measures on H × H whose marginals are given by ρ and ρ̃, respectively, see [22,
Sect. 6] for a general introduction to couplings and Wasserstein distances.

As a consequence of our key stability estimate (29) we can provide, by following
the proof of Theorem 4.1 in [8], a proof for the existence and uniqueness of a unique
limitingdistribution in the spirit of classical results such as [17, Sect. 16], [6,Chap. 11,
Sect. 5], [20].

Theorem 10 Assume that the conditions (A)–(E) are satisfied for (11), and the con-
ditions (i)–(iii) in Theorem 9 hold. Then

W2(p∗
t ρ, p∗

t ρ̃) ≤ W2(ρ, ρ̃)e−εt/2, t ≥ 0, (33)

holds for any ρ, ρ̃ ∈ P2(H). In particular, the Markov process determined by (11)
has a unique invariant measure π . This measure has finite second moments and it
holds that

W2(p∗
t ρ, π) ≤ W2(ρ, π)e−εt/2, t ≥ 0, (34)

for each ρ ∈ P2(H).

Proof From Theorem 9 it follows

E[‖X x
t − X y

t ‖2H ] ≤ e−εt‖x − y‖2H , x, y ∈ H. (35)
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Using the definition of the Wasserstein distance, we conclude that

W2(p∗
t δx , p∗

t δy) ≤ (
E[‖X x

t − X y
t ‖2H ])1/2 ≤ ‖x − y‖He

−εt/2.

The latter one readily yields (33). Finally, the existence and uniqueness of an
invariant measure as well as (34) can be derived from (33) combined with a standard
Cauchy argument.

In [8] we introduced a “generalized dissipativity condition” and studied SPDEs
with multiple invariant measures. There we developed further the methods presented
in this section, which have been mainly derived from Albeverio et al. [4] in combi-
nation with the results obtained in [3, 12].

Acknowledgements I thank Peter Kuchling and Baris Ugurcan for a careful reading of part of this
article.
Comment by Barbara Rüdiger My co-author and friend V. Mandrekar (Atma) passed away the 23
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Volume, dedicated to Sergio Albeverio, was accepted by him with enthusiasm.
Atma and Sergio had, to my feeling, a deep respect for each other and, despite the geographic
distance, a solid friendship. I think that this friendship and respect is also due to common aspects
they have in their character and soul: both are very generous in sharing with other scientists their
original ideas. Both trust in youngsters and enjoy knowing that they can contribute to these with
their own developments and ideas, as well. This way they both are friends, supporters, coaches and
co-authors to many young (and in the meanwhile older) mathematicians and physists. I feel very
lucky to be among them.
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Random Processes on Non-Archimedean
Spaces

Witold Karwowski

Abstract The Lévy stochastic processes on p-adic numbers have been constructed
by differentmethods.We present the construction byAlbeverio andKarwowski using
the Chapman–Kolmogorov equations. This method does not rely on the algebraic
structure of p-adics and so it is applicable beyond the class of Lévy processes and
allows to enlarge the family of the state spaces to general tree structures. We indicate
the influence this results had on the subsequent research by ourselves and we point
to interactions with the work of other authors.

Keywords Hierarchical spaces · Non-Archimedean · Stochastic processes ·
Chapman–Kolmogorov equations

Mathematics Subject Classification 60J74 · 60J36 · 60J35 · 60G51

1 Introduction

I had the honour and pleasure to work with Albeverio on a number of projects. In
this note I will present our work on random processes on hierarchical spaces and
indicate further developments of the subject by other authors. Our adventure with
hierarchical spaces began in 1989 when Sergio suggested to study random processes
on p-adic numbers.

Sergio and I were not the first to work on the random processes on p-adics.
There had been studies of physical phenomena related to random processes on hier-
archical spaces. See for example [37] and references therein. Also in mathematics
the stochastic objects related to hierarchical spaces had been studied. We refer to
[18–22] as examples. In 1989 there appeared papers by Evans [18] and Brekke and
Olson [17]. Evans studied local properties of Lévy processes on totally disconnected
groups. He considered the p-adic unit ball as an example of such groups. Brekke

W. Karwowski (B)
Institute of Physics, Opole University, Opole, Poland
e-mail: witoldkarwowski@o2.pl

© Springer Nature Switzerland AG 2023
A. Hilbert et al. (eds.), Quantum and Stochastic Mathematical Physics,
Springer Proceedings in Mathematics & Statistics 377,
https://doi.org/10.1007/978-3-031-14031-0_14

315

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-14031-0_14&domain=pdf
mailto:witoldkarwowski@o2.pl
https://doi.org/10.1007/978-3-031-14031-0_14


316 W. Karwowski

and Olson constructed the class of symmetric processes on the field lQp of p-adic
numbers and discussed an application of the processes in physics. They obtained a
non-exponential formula for relaxation in spin glasses. In both papers the construc-
tions of the processes relied on algebraic properties of lQp. Our approach was based
on the Chapman–Kolmogorov equations. The algebraic properties of lQp were no
longer necessary but the group structure was used to simplify the discussion. In [1,
2] we presented solutions of the Chapman–Kolmogorov equations thus obtaining
translation invariant transition functions for the spherically symmetric processes on
lQp. We also gave an explicit formula of the Dirichlet form and generator of the
process together with its complete spectral description. The fact that the approach
using Chapman–Kolmogorov equations did not require algebraic properties of lQp
suggested a possibility to modify the procedure used in [1, 2] to investigate pro-
cesses without translation invariance of the transition functions and the processes on
hierarchical spaces other than lQp.

This possibility has indeed been exploited. Additionally the results of [2] became
a basis for further studies of stochastic processes on hierarchical spaces. For this
reason we shall present main ideas of [2] with some details. The paper is organized
as follows: In Sect. 2 we introduce the concepts of the field of p-adic numbers lQp
and a more general class of state spaces the rings lQq. Then we describe the main
ideas of [2] reformulated to include the Lévy processes on lQq. In Sect. 3 based on [5,
13, 31] we demonstrate a modification of the technique developed in [2] to construct
the processes with weighted target states. An example of further studies of random
processes on p-adics using the processes introduced in [2] is presented in Sect. 4. In
Sect. 5 we briefly indicate several problems addressed by different authors and their
relations with the results of [2].

2 Spherically Symmetric Random Processes on lQq

We begin with basic information on the state spaces lQp and lQq. Let lQ be the field of
rational numbers. For a given prime p > 1, any a ∈ lQ can be expressed uniquely by

a = pM
q

r
, (1)

for some integer M and the integers q, r, where q and r have no common factor
(except for 1) and p divides neither q nor r. For 0 �= a ∈ lQ expressed by (1) we set
‖a‖p = p−M and ‖0‖p = 0. One can show that the mapping ‖ · ‖p from lQ to IR+, is
a norm: i.e. it satisfies the following three conditions:

(a) ‖a‖p = 0 if and only if a = 0;
(b) ‖ab‖p = ‖a‖p‖b‖p, a, b ∈ lQ;
(c) ‖a + b‖p ≤ ‖a‖p + ‖b‖p, a, b ∈ lQ.
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Moreover, ‖ · ‖p has a property stronger than (c):

‖a + b‖p ≤ max{‖a‖p, ‖b‖p} (2)

and
‖a + b‖p = max{‖a‖p, ‖b‖p} (3)

when ‖a‖p �= ‖b‖p (see [34]). We call ‖ · ‖p the p-adic norm. Condition (2) is called
the non-Archimedean inequality or ultrametric property and a norm satisfying (2) is
called non-Archimedean. According to Ostrowski’s theorem (see e.g., [34, Theorem
1, p. 3]) the only nontrivial norms on lQ, (up to norm equivalence) are the absolute
value norm | · | and the p-adic norms ‖ · ‖p for every prime p > 1. The completion of
lQ in the absolute value norm is the set IR of real numbers. Completion of lQ in a p-adic
norm ‖ · ‖p is denoted by lQp and called the p-adic numbers. Since the topology of
lQp is given by a non-Archimedean norm we call it a non-Archimedean space. The
addition and multiplication of lQ extends to lQp so that it becomes a field (see [34,
Chap. 1]). It is known that every a ∈ lQp, a �= 0 has the unique representation:

a =
∞∑

i=0

am+ip
m+i, (4)

where m is an integer and 1 ≤ am ≤ p − 1, 0 ≤ ai ≤ p − 1, i = m + 1,m + 2, . . ..
The p-adic norm is then given by the map a → ‖a‖p = p−m. Expression (4) is well
defined because the series on the right hand side is convergent under the norm ‖ · ‖p.
The representation (4) provides natural rules for adding, subtracting, multiplying
and dividing p-adic numbers. Algebraically lQp is a field or more precisely a local
field. Topologically lQp is a complete, separable, totally disconnected, locally com-
pact normed space with cardinality of continuum (see [34]). Set ai = 0 for i < m.
Then

∑∞
i=N aipi = ∑∞

i=0 am+ipm+i = a for every N ≤ m. Let a ∈ lQp and M ∈ ZZ .
The set K(a, pM ) = {x ∈ lQp; ‖a − x‖p ≤ pM } is called a p-adic ball of radius pM

centered at a. We mention a characteristic property of non-Archimedean metrics: if
b ∈ K(a, pM ), then K(b, pM ) = K(a, pM ).

Let q > 1 be a (not necessary prime) integer. Similarly like in the case of lQp the
elements of lQq are represented by

a =
∞∑

i=0

am+iq
m+i =

∞∑

i=N

aip
i =

∞∑

i=0

am+ip
m+i (5)

where N ≤ m, ai = 0 for i < m, 1 ≤ am ≤ q − 1, 0 ≤ ai ≤ q − 1 for i = m +
1,m + 2, . . ..
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With the addition and multiplication rules suggested by (5) the map a → ‖a‖q =
q−m, satisfies:

(i) ‖a‖q = 0 if and only if a = 0;
(ii) ‖ab‖q ≤ ‖a‖q‖b‖q, a, b ∈ lQq;
(iii) ‖a + b‖q ≤ max{‖a‖q, ‖b‖q}.

Besides, if ‖a‖q �= ‖b‖q then ‖a + b‖q = max{‖a‖q, ‖b‖q}.
The formula

ρq(a, b) ≡ ‖a − b‖q (6)

defines a metric on lQq. Algebraically lQq is an additive Abelian group. If q is not
a prime number then it is a ring rather than a field. Topologically it is a complete,
separable, totally disconnected, locally compact metric space with cardinality of
continuum.

LetM ∈ ZZ, a ∈ lQq. The setK(a, qM ) := {b ∈ lQq, ρq(a, b) ≤ qM }will be called
a ball of radius qM centered at a. Note following properties of the balls.

(a1) Any ball is open and compact.
(a2) If K(a, qM ) ∩ K(b, qM ) �= ∅ then K(a, qM ) = K(b, qM ).
(a3) For any M ∈ ZZ there is a family KM = {KM

i }i∈IN of disjoint balls KM
i =

K(ai, qM ) such that lQq = ∪∞
i=1K

M
i .

If c /∈ K(a, qN ) resp. K(a, qN ) ∩ K(b, qM ) = ∅ then we shall write distq(c,K(a,
qN )) = ρq(c, a) resp. distq(K(a, qN ),K(b, qM )) = ρ(a, b). We finish the character-
isation of lQq introducing a Borel measure on it. Let ν be a σ -additive set function
defined by

ν(K(a, qM ) = qM . (7)

ν extends uniquely to the Haar measure under the group of q-adic translations.
It turns out that the family of spherically symmetric Lévy processes on lQp is

identical with the class of random walks introduced in [1, 2]. Here we are going
to present main steps of the construction but since it automatically extends to the
ring lQq of q-adic numbers (1 < q ∈ IN ), we take lQq for the state space. It will be
convenient to use shorthand AK for the processes on lQq constructed by the method
of [1, 2]. Our aim is to construct a Markov process with lQq as the state space but as
the first step we solve the system of forward and backward Chapman–Kolmogorov
equations to obtain a Markov chain on KM .

ṖKM
i KM

k
(t) = −ã(KM

k )PKM
i KM

k
(t) +

∞∑

j �=k

ũ(KM
j ,KM

k )PKM
i KM

j
(t), (8)

ṖKM
i KM

k
(t) = −ã(KM

i )PKM
i KM

k
(t) +

∞∑

j �=i

ũ(KM
i ,KM

j )PKM
j KM

k
(t) (9)
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with

ã(KM
i ) =

∞∑

j �=i

ũ(KM
j ,KM

i ) (10)

for t ≥ 0 and i, j, k ∈ IN , with the initial conditions

PKM
i KM

k
(0) = δik . (11)

ã(KM
j ) is interpreted as intensity of the stateKM

j and ũ(KM
i ,KM

k ) as the infinitesimal
transition probability. In all models discussed in this work the coefficients ã(KM

i )

and ũ(KM
i ,KM

j ) are chosen to be non-negative constants. It is known that under
assumed properties of the coefficients there is a unique PKM

i ,KM
j
(t) solving (8), (9)

and satisfying

PKM
i ,KM

j
(t + τ) =

∞∑

k=1

PKM
i ,KM

k
(t)PKM

k ,KM
j
(τ ). (12)

Thus PKM
i ,KM

j
(t) can be interpreted as the transition probability of a continuous

time Markov chain on a state space indexed by natural numbers.
In this chapter the coefficients in Eqs. (8), (9) are specified as follows. Let

{a(M ),M ∈ ZZ} be a given sequence of non-negative numbers satisfying

(A1)

{
(i) a(M ) ≥ a(M + 1);
(ii) limM→∞a(M ) = 0.

In this paper we shall use the shorthand “parameter sequence” for a sequence
{a(M ),M ∈ ZZ} satisfying (A1). Put

u(M ,m) ≡ (q − 1)−1q−m+1(a(M + m − 1) − a(M + m)). (13)

If i �= j then distq(KM
i ,KM

j ) = qM+j0 for some j0 ∈ IN . Then we set

ũ(KM
i ,KM

k ) ≡ u(M , j0). (14)

Accordingly ũ(KM
i ,KM

k ) depends only on the q-adic distance of the balls. As a
consequence of (10) we obtain by direct computation.

ã(KM
i ) = a(M ). (15)

Note the following simple facts:

(b1) If Kj ∈ KM , b ∈ lQq, then there is k ∈ IN so that Kj + b = Kk .
(b2) KM is invariant under translations in lQq.
(b3) Given j, k ∈ IN , there is b ∈ lQq such that Kj + b = Kk .
(b4) For any pair i, j ∈ IN and any b ∈ lQq we have distq(Ki,Kj) = distq(Ki + b,

Kj + b).
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This observations together with the fact that ã(Kj) = a(M ) is independent of j
and ũ(Ki,Kj) depends only on distq(Ki,Kj) imply that Eqs. (8) and (9) are invariant
under q-adic translations in the sense that if the spheres Kj, j ∈ IN are substituted by
Kj + b, b ∈ lQq then the resulting system coincide with (8) resp. (9).

By direct verification we obtain

Proposition 1 Let i ∈ IN be fixed and PKi,Kj (t), j ∈ IN , t ≥ 0 satisfy (8) resp. (9)

with the initial condition PKi,Kj (0) = δij . Put P̂Kk ,Kl (t) = PKi,Kj (t)where k, l are such

that Kk = Ki + b, Kl = Kj + b then P̂Kk ,Kl (t) satisfies (8) resp. (9) and the initial
conditions P̂Kk ,Kl (0) = δk,l .

By the proposition and (b3) we conclude that if we find a solution of (8), (9)
for one value of i then we can construct complete solution of (8), (9). Moreover if
PKM

i ,KM
j
solves (8), then it also solves (9). Let the spheres Ki be numbered so that

K1 = K(0, qM ). Then it is sufficient to solve (8) with i = 1. We put i = 1 and drop
the index K1 writing PKj for PK1,Kj . For m ∈ IN we write

PKM+m
j

=
∑

i

PKi (16)

where KM+m
j is a ball of radius qM+m such that Kj ⊂ KM+m

j and the summation runs

overKi ⊂ KM+m
j . If j = 1we haveKM+m

1 = K(0, qM+m). Let distq(Kj,K1) = qM+m.
After a few steps of straightforward calculations we obtain

ṖKj = −(a(M ) + u(M , 1))PKj +
m−1∑

k=1

(u(M , k) − u(M , k + 1))PKM+k
j

+
∞∑

l=0

(u(M ,m + l) − u(M ,m + l + 1))PK(0,qM+m+l). (17)

We also have

ṖK(0,qM ) = − (a(M ) + u(M , 1))PK(0,qM ) +
∞∑

i=1

(u(M , i) − u(M , i + 1))PK(0,qM+i).

(18)
If m = 1 then summing Eq. (17) over k such that distq(Kk ,K(0, qM )) = qM+1

and adding (18) we obtain

ṖK(0,qM+1) = − (a(M + 1) + u(M + 1, 1))PK(0,qM+1)

+
∞∑

i=1

(u(M + 1,+i) − u(M + 1, i + 1))PK(0,qM+i+1). (19)
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Remark 1 Note that if we substitute M by M + 1, KM −→ KM+1 then (18) is
substituted by the equation identical to (19). �

Iterating this procedure we get

ṖK(0,qM+m) = − (
a(M + m) + qmu(M ,m + 1)

)
PK(0,qM+m)

+ qm
∞∑

i=1

(u(M ,m + i) − u(M ,m + i + 1))PK(0,qM+m+i). (20)

Let l ∈ IN0. By direct computations we obtain the equation

qṖK(0,qM+m+l ) − ṖK(0,qM+m+l+1) = (q − 1)−1[qa(M + m + l) − a(M + m + l + 1)]
(21)

(qPK(0,qM+m+l) − PK(0,qM+m+l+1)). (22)

Its solution with the initial condition PK1,Kj = δ1j divided by ql+1 reads

qPK(0,qM+m+l) − PK(0,qM+m+l+1)

= (q − 1) exp
{−(q − 1)−1[qa(M + m + l) − a(M + m + l + 1)]t} . (23)

Summing (23) over l = 0, 1, . . . , k − 1 we obtain

PK(0,qM+m) − q−kPK(0,qM+m+k )

= q − 1

q

k−1∑

l=0

q−l exp
{−(q − 1)−1[qa(M + m + l) − a(M + m + l + 1)]t}

(24)

As k → ∞ we get in the limit

PK(0,qM+m)(t) = q − 1

q

∞∑

l=0

q−l exp− [
qa(M + m + l) − a(M + m + l + 1)

]
t.

(25)
To compute PKM

1 KM
j
(t) note that the number of balls KM

j with distq(KM
1 ,KM

j ) =
qM+m,m ∈ IN is (q − 1)qm−1 and the functionsPKM

1 KM
j
(t) depend only on the distance

distq(KM
1 ,KM

j ). Hence
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PKM
j
(t) = (q − 1)−1q1−m(PK(0,qM+m) − PK(0,qM+m−1))

= q−m[q−1(q − 1)
∞∑

i=0

q−iexp[−(q − 1)−1

[qa(M + m + i) − a(M + m + i + 1)]t]
− exp[−(q − 1)−1[qa(M + m − 1) − a(M + m)]t]]. (26)

Formula (25) for m = 0 together with (26) gives transition probability from
the ball K(0, qM ) to any ball KM ∈ KM . In our notation K(0, qM ) = K1 ∈ KM .
Let KM−n

1 = K(0, qM−n) ∈ KM−n, n ∈ IN . Then by Remark 1 PK(0,qM ),K(0,qM+m) =
PK(0,qM−n),K(0,qM+m). Since {0} = ⋂

n∈IN K(0, qM−n) we can define

P0,K(0,qM+m) = lim
n→∞PK(0,qM−n),K(0,qM+m). (27)

Combining (25), (26), (27) and Proposition 1 we have

Px,K(x,qN )(t) = q − 1

q

∞∑

l=0

q−l exp−(q − 1)−1[qa(N + l) − a(N + l + 1)]t, (28)

and

Px,KM (t) = q−m[q−1(q − 1)
∞∑

i=0

q−i exp[−(q − 1)−1[qa(M + m + i) − a(M + m + i + 1)]t]

− exp[−(q − 1)−1[qa(M + m − 1) − a(M + m)]t]], (29)

where x ∈ lQq, K
M is a ball of radius qM and distq(x,KM ) = qM+m.

It can be shown by direct verifications that Px,KM (t) given by (28) and (29) defines a
transition probability in lQq. Hence we have

Theorem 1 Given a parameter sequence a(M ),M ∈ ZZ. Then there is a continuous
time random process Xt, t ≥ 0 with state space lQq given by the transition proba-
bilities Px,A(t), t ≥ 0, x ∈ lQq, A a Borel subset of lQq. The transition probabilities
Px,A(t) are determined by (28), (29). �

Remark 2 When passing from (25), (26) to (28), (29) we roughly speaking kept
the target ball fixed and shrunk the initial ball to a point. The same trick is used in
Sect. 3 for nonsymmetric processes and in [3] for the processes on trees with varying
numbers of ledges. This procedure has been analysed in general setting in [38].

The transition probabilities Px,A(t) define a Markovian semigroup in L2( lQq, ν)



Random Processes on Non-Archimedean Spaces 323

Ttf (x) =
∫

lQq

Px,dy(t)f (y), f ∈ L2( lQq, ν). (30)

The semigroup (Tt, t ≥ 0) has the representation

Tt = e−Ht (31)

where H is a nonnegative self-adjoint operator. H is defined by

(Hf )(x) = lim
t↓0 t

−1
[
f (x) − (Ttf )(x)

] = lim↓0 t−1

[
f (x) −

∫
f (y)Px,dy(t)

]
(32)

whenever the strong limit exists. Put χA for the characteristic function of A ⊂ lQq. If
f = χK(a,qM ) then (32) yields

− HχK(a,qM )(x) =
⎧
⎨

⎩

a(M ), for x ∈ K(a, qM ),

−q−m+1(q − 1)−1 [a(M + m − 1) − a(M + m)] ,
if x : distq(x,K(a, qM )) = qM+m.

(33)

Let D0 stands for the linear hull spanned by the characteristic functions of all
q-adic balls. D0 is dense in L2( lQq, dx) and by linearity it is a subset of D(H ) the
domain ofH . It can be shown thatD0 is a core ofH . Hence (33) defines H uniquely.

Let KM
j ∈ KM and KM−1

ij , i = 0, 1, . . . , q − 1 the balls of radius qM−1 such that
⋃i=q−1

i=0 KM−1
ij = KM

j . The spectral properties of H are described in

Theorem 2 Let−H denote the generator of strongly continuous semigroup (Tt, t ≥
0) with the kernel defined by (28), (29). Then

(a) For any M ∈ ZZ and j ∈ IN there corresponds an eigenvalue of H given by

hM = −(q − 1)−1(qa(M ) − a(M + 1)) (34)

and a (q − 1)-dimensional eigenspace spanned by vectors of the form

eM ,j =
q−1∑

i=0

biχKM−1
ij

, (35)

where
∑i=q−1

i=0 bi = 0.
(b) Let ekM ,j, k = 1, . . . , q − 1 be the orthonormal basis of the space spanned by

the vectors (35). Then the system {ekM ,j,M ∈ ZZ, j ∈ IN , k = 1, . . . q − 1} is an
orthonormal basis in L2( lQq, dx).

(c) χKM
j
is an eigenvector of H iff a(M ) = 0. Then the corresponding eigenvalue

equals zero. �
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We also have

Corollary 1 The operator H has pure point spectrum given by the numbers

hM = −(q − 1)−1(qa(M ) − a(M + 1)).

If all states of the process are stable, i.e. limM→−∞ a(M ) < ∞ then H is bounded.
If all states are instantaneous i.e. limM→−∞ a(M ) = ∞ then H is unbounded. �

Our next aim is to describe the Dirichlet form for the process corresponding to
the semigroup (Tt, t ≥ 0).

Let −H be the generator of (Tt, t ≥ 0). Put D(H
1
2 ) for the domain of H

1
2 and

define
E(f , g) = (H

1
2 f ,H

1
2 g) for f , g ∈ D(H

1
2 ). (36)

Then by [23, 24] the quadratic form E with the domainD[E] = D(H
1
2 ) is a closed

symmetric Markovian form, i.e. a Dirichlet form. D0 is a core for H and also for
H

1
2 . Hence E restricted to D0 × D0 is closable and its closure is (E, D[E]). In other

words the last sentence can be formulated by
(1r) D0 is dense in D[E] in the norm (E1(., .)) 1

2 = [E(., .) + (., .)] 1
2 .

Put C0( lQq) for the space of continuous functions of bounded support. By the
Weierstrass–Stone theorem.

(2r) D0 is dense in C0( lQq) in the supremum norm.
A subset of D[E] enjoying properties (1r) and (2r) is called a core for E and a

Dirichlet form which posses a core is called regular. It is known [23, 24] that any
regular Dirichlet form admits the Beurling–Deny representation:

E(f , g) = E (c)(f , g) +
∫

lQq× lQq\d
(f (x) − f (y))(g(x) − g(y))J (dx, dy)

+
∫

lQq

f (x)g(x)k(dx). (37)

Without going into details we only say that the first term defines the continuous
part of the corresponding stochastic process, the second term jumps of the process
and the third part killing the process. Since lQq is totally disconnected there is no
continuous path so the first term vanishes. It can bee seen that there is no killing in
the class of processes we are discussing. Hence

E(f , g) =
∫

lQq× lQq\d
(f (x) − f (y))(g(x) − g(y))J (dx, dy). (38)

J is a symmetric Radon measure on lQq × lQq \ d , where d stands for the diagonal.
Let K(a, qM ), K(b, qN ) be disjoint i.e. distq(K(a, qM ),K(b, qN )) = qn where n >
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max{M ,N }. It can be shown that then

J (K(a, qM ),K(b, qN )) = 1

2
qN+M−n+1(q − 1)−1[a(n − 1) − a(n)], (39)

and (39) determines J uniquely.
Among the most extensively studied examples of the AK–random walks are the

so-called stable processes.

Definition 1 AnAK–randomwalk associatedwith parameter sequence {a(M ),M ∈
ZZ} is referred to be stable if a(M ) = a0cM , M ∈ ZZ for some positive constants a0
and 0 < c < 1. �

A particular class of stable processes has been studied in [39].
Let φ ∈ D0. For any α �= −1 define

Dαφ(x) := 1 − pα

1 − p−α−1

∫

lQp

‖y‖−α−1
p [φ(x − y) − φ(x)]dy. (40)

It turns out that for α > 0 the operator Dα can be interpreted as the generator of
an AK–random walk with the parameter sequence {a(M ), M ∈ ZZ} given by

a(M ) = p − 1

p(1 − p−α−1)
p−αM , M ∈ ZZ . (41)

Clearly, it is a specific class of stable random walks with a0 = p−1
p−c .

3 lQq-adic Processes with Weighted Target States

In Sect. 2 we gave a construction of the class of random walks on q-adics with trans-
lation symmetric transition functions. The symmetry followed from the fact that the
transition probabilities were assumed to depend only on the q-adic distance between
the states. In 1993 Vilela-Mendes made a remark that the p-adic processes with
weighted target states may be applicable in the study of turbulence cascades. Such
processes were presented in [31]. The authors also followed Albeverio suggestion to
consider the random processes on adeles. As expected the processes with weighted
target states found application as a technical tool in a model of turbulent cascade in
[36]. In this section we present main points of [31] and the subsequent papers [5,
13]. In contrast to [1, 2] the target states are (statistically) biased by a measure μ

on lQq. Thus the corresponding process favors some states more than the others. The
transition functions of such processes are not translation symmetric unless μ is the
Haar measure. As in Sect. 2 we begin by taking KM for the state space and solve
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the systems of Chapman–Kolmogorov Eqs. (8), (9). The coefficients ũ(KM
i ,KM

j ) are
defined by

ũ(KM
i ,KM

j ) = μ(KM
j )u(M ,m), (42)

whereμ is a Borel measure on lQq, u(M ,m) ≡ a(M + m − 1) − a(M + m), m ∈ IN
and distq(KM

i ,KM
j ) = qM+m.

In view of (8)–(11) PKM
i KM

j
(t) is a transition function of a random process onKM .

In the following presentation we shall not go into the details but indicate the main
steps and their analogies and differences with the symmetric case. Put

WKM
k

≡ −
∞∑

m=1

u(M ,m)μ
(
K(b, qM+m) \ K(b, qM+m−1)

) = −
∑

j �=k

ũ(KM
j ,KM

k ),

(43)
where b ∈ KM

k . Then by (10)

ã(KM
k ) = −WKM

k
. (44)

We further define

WKM
k

l = −
∞∑

n=l

(u(M , n) − u(M , n + 1)) μ(K(b, qM+n)), l ∈ IN . (45)

Lemma 1 Let b ∈ KM
k ⊂ KM+r

k ′ ∈ KM+r . If r < l then

WKM+r
k′

l−r = WKM
k

l . �

In particular we have

(u(M , 1) − u(M , 2))μ(K(b, qM+1)) − WKM
k

= −WKM
k

1 . (46)

We require that for any fixed M ∈ ZZ , WKM
k
and WKM

k
l are finite.

Lemma 2 Let M ∈ ZZ be fixed. The quantities WKM
k

and WKM
k

l are finite for all
k, l ∈ IN iff

∞∑

n=1

a(n)μ(K(0, qn+1) \ K(0, qn)) < ∞. (47)

�

Now, we turn to solving Eqs. (8) and (9) with initial conditions (11). Under the
notation of (42) and (43), Eq. (8) become
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ṖKM
i KM

k
(t) = WKM

k
PKM

i KM
k
(t) + μ(KM

k )
∑

j ∈ IN
j �= k

u(M ,m)PKM
i KM

j
(t) (48)

with m such that qM+m = distq(KM
k ,KM

j ) and the initial conditions

PKM
i KM

k
(0) = δik .

Similarly like in the symmetric case we obtain the formula analogous to (20).

ṖKM
i ,KM+n

j
(t) = WKM

i
n+1PKM

i KM+n
j

(t)

+ μ(KM+n
j )

∞∑

l=n+1

(u(M , l) − u(M , l + 1))PKM
i KM+l

j
(t) (49)

with the initial condition PKM
i KM+n

j
(0) = 1 if KM

i ⊂ KM+n
j and PKM

i KM+n
j

(0) = 0 if

KM
i ∩ KM+n

j = ∅.
Let μ(KM+n

j ) �= 0 then we follow the procedure of Sect. 2 to obtain the analogue
of (24)

PKM
i KM+n

i
(t) − μ(KM+n

i )

μ(KM+n+m+1
i )

PKM
i KM+n+m+1

i
(t)

= μ(KM+n
i )

m∑

k=0

(
1

μ(KM+n+k
i )

− 1

μ(KM+n+k+1
i )

)
etW

KM
i

n+k+1 . (50)

If μ( lQq) = ∞. Then the limit of (50) as m → ∞ reads

PKM
i KM+n

i
(t) = μ(KM+n

i )

∞∑

k=0

(
1

μ(KM+n+k
i )

− 1

μ(KM+n+k+1
i )

)
etW

KM
i

n+k+1 . (51)

Taking the limit n → ∞ we get PKiKM (t) ≡ 1.
If μ( lQq) is finite then

P
KM
i KM+n

i
(t) = μ(KM+n

i )

⎧
⎨

⎩
1

μ(KM )
+

∞∑

k=0

( PKM
i lQq

(t)

μ(KM+n+k
i )

− 1

μ(KM+n+k+1
i )

)
etW

KM
i

n+k+1

⎫
⎬

⎭ .

(52)
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In this case the limit n → ∞ yields an identity so it does not determine PKi lQq
(t).

However direct examination shows that (52) solves Eq. (49) with the initial condition
iff PKi lQq

(t) ≡ 1.
Let c be a positive number. It follows from (45) that change of measure μ → cμ

in (51) and (52) is equivalent to changing the time scale t → ct. Hence in the case of
finite measure we can assume μ( lQq) = 1 without loss of generality. Then (52) reads

PKM
i KM+n

i
(t) = μ(KM+n

i )

(
1 +

∞∑

k=0

(
1

μ(KM+n+k
i )

− 1

μ(KM+n+k+1
i )

)
etW

KM
i

n+k+1

)
.

(53)

The next step will be to compute PKM
i ,KM

j
(t), i �= j. Then distq(KM

i ,KM
j ) =

qM+m0 , m0 ∈ IN . Again we note that if KM−n
i ⊂ KM

i for all n ∈ IN0 then PKM−n
i ,KM

i
(t)

and PKM−n
i ,KM

j
(t) is independent of n. Put x = limn→∞

⋂
n→∞ KM−n

i . This allows us
to define Px,KM

i
(t) = PKM−n

i ,KM
j
(t). We omit the technicalities and provide the result.

If μ( lQq) = 1 then

Pt(x,K(x, qM )) = μ(K(x, qM ))
{
1 +

∞∑

k=0

(
1

μ(K(x, qM+k))
− 1

μ(K(x, qM+k+1))

)
etW

K(x,qM )

k+1

}
, (54)

and if distq(x, y) = qM+n, n ∈ IN ,

Pt(x,K(y, qM )) = μ(K(y, qM ))
{
1 +

∞∑

k=0

(
1

μ(K(x, qM+n+k))
− 1

μ(K(x, qM+n+k+1))

)
etW

K(x,qM )

n+k+1

− 1

μ(K(x, qM+n))
etW

K(x,qM )
n

}
; (55)

If μ( lQq) = ∞,

Pt(x,K(x, qM )) = μ(K(x, qM ))

∞∑

k=0

(
1

μ(K(x, qM+k ))
− 1

μ(K(x, qM+k+1))

)
etW

K(x,qM )

k+1 .

(56)

Similarly if distq(x, y) = qM+n then
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Pt(x,K(y, qM )) = μ(K(y, qM ))

{ ∞∑

k=0(
1

μ(K(x, qM+n+k))
− 1

μ(K(x, qM+n+k+1))

)
etW

K(x,qM )

n+k+1

− 1

μ(K(x, qM+n))
etW

K(x,qM )
n

}
. (57)

Put Q for the σ − algebra of Borel sets in lQq. We finally obtain

Proposition 2 Pt(x,A), t > 0, x ∈ lQq, A ∈ Qq as defined by (54), (55) resp. (56),
(57) is a Markovian μ–symmetric transition function on the measurable space
( lQq,Qq). �

As a consequence of Proposition 2 the formula

(Ttu)(x) :=
∫

lQq

Pt(x, dy)u(y), u ∈ L2( lQq, μ) (58)

defines a strongly continuous Markovian semigroup (Tt, t > 0) in the Hilbert space
L2( lQq, μ). Put −H for its generator i.e. Tt = exp{−Ht}. Formula (32) yields

− HχK(a,qM )(x) =
⎧
⎨

⎩

WK(a,qM ), for x ∈ K(a, qM ),

μ(K(a, qM ))u(M , j),
if x : distq(K(a, qM ), x) = qM+j.

(59)

This formula implies that χK(a,qM ) is an eigenvector for H iff u(M , j) = 0 for all
j ∈ IN in which case WK(a,qM ) = 0 is the eigenvalue. Then the process starting in
K(a, qM ) is confined to stay in K(a, qM ) forever.

Given a ∈ lQq and M ∈ ZZ , then K(a, qM ) = KM
j ∈ KM for some j ∈ IN . Put

KM−1
ij , i = 0, 1, . . . , q − 1 for the balls of radius qM−1 such that

⋃i=q−1
i=0 KM−1

ij =
KM
j . The spectral properties of H are described in

Theorem 3 Let−H denote the generator of strongly continuous semigroup (Tt, t ≥
0) with the kernel defined by (54), (55) resp. (56), (57). Then

(a) For any a ∈ lQq, M ∈ ZZ there corresponds an eigenvalue hK(a,qM ) of H given by

hK(a,qM ) = WK(a,qM )

0 .

To this eigenvalue there is a q − 1 dimensional eigenspace spanned by vectors
of the form

eK(a,qM ) =
q−1∑

i=0

biχKM−1
ij

, where
q−1∑

i=0

biμ(KM−1
ij ) = 0. (60)
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(b) Denote by esK(a,qM )
, s = 1, 2, . . . , q − 1 the orthonormalized eigenvectors cor-

responding to hK(a,qM ). If μ( lQq) = ∞ then the orthonormal system {esK(a,qM )
,

a ∈ lQq, M ∈ ZZ, s = 1, 2, . . . , q − 1} is a basis for L2( lQq, μ). If μ( lQq) = 1
then the above vectors together with the constant function 1 form a basis for
L2( lQq, μ). �

The structure of eigenvectors of H implies

Corollary 2 D0 is a core for H.

Remark 3 In the Haar symmetric case every eigenvalue has infinite degeneracy. It
is not necessarily so in the μ–symmetric case. Indeed consider two different balls of
the same radius, say K(a, qM ) and K(b, qM ). If the process is Haar–symmetric then
both eK(a,qM ) and eK(b,qM ) are eigenvectors corresponding to the same eigenvalue

hK(a,qM ) = hK(b,qM ) = hM = (q − 1)−1[qa(M − 1) − a(M )]. (61)

If the process is μ–symmetric hK(a,qM ) = WK(a,qM )

0 and hK(b,qM ) = WK(b,qM )

0 are
not the same in general. �

Since by Corollary 2 D0 is a core for H one shows in the manner similar to that
of Sect. 2 that the Dirichlet form

E(f , g) = (H
1
2 f ,H

1
2 g), f , g ∈ D(H

1
2 ) (62)

is regular. We have

Theorem 4 The Dirichlet form corresponding to a μ–symmetric process is defined
by its Beurling–Deny representation

E(u, v) =
∫

lQq× lQq\d
(u(x) − u(y))(v(x) − v(y))J (dx, dy)

where the measure J is given by

J (dx, dy) = 1

2
(a(n − 1) − a(n))μ(dx)μ(dy) (63)

and u, v ∈ D0 ∩ L2( lQq, μ). �

We complete this section bymentioning further generalization of the construction
developed in [2]. It is well known that lQq can be identified with a tree which has
q + 1 ledges at every node. On the other hand lQq can be looked upon as a space
of numerical sequences {ai}i∈ZZ with the entries ai = 0, 1, . . . , q − 1 terminating at
i → −∞. In the paper [3] we defined classes SB of numerical sequences {ai}i∈ZZ , ai ∈
ZZ terminating at i → −∞ which correspond to the trees with varying number of
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ledges. We adopted the method of [2] to give explicit formulae for the transition
functions of random processes on SB, the generators with their spectral descriptions
and the Dirichlet forms in terms of the Beurling–Deny formula.

4 Trace Formula

In this section we present main ideas of [4]. We give a p-adic analogue of Selberg’s
trace formula relating the trace of a semigroup generated by a natural elliptic operator
with a sum over contributions coming from closed geodesics. The construction uses
probabilistic methods to define the generator.

The Laplace–Beltrami operator as defined on a given Riemannian manifold is
determined by the geometrical structure of themanifold and the boundary conditions.
Its properties and in particular the trace formula for the semigroup generated by the
Laplace–Beltrami operator are of interest not only as a puremathematical problembut
also in view of physical and technical applications. Adopting a probabilistic point of
view we demonstrate that some basic structural properties of the trace formula carry
over to lQp which is drastically different as far as topology andmetrics are concerned.
Roughly speakingwe rely on followingprocedure.TheLaplace–Beltrami operator on
the upper half-plane with the Poincaré metric generates a diffusion process Xt, t ≥ 0,
on the half-plane. Similarly the Laplace–Beltrami operator on a compact Riemann
surface M generates a diffusion process R̃t on this surface. The surface M results
from the identification of the points x ∈ F (where F is the fundamental domain
relative to a discrete subgroup 
 of the group SL(2, IR)/{1,−1} of isometries of the
upper half-plane) with the points γ x, e �= γ ∈ 
, where e is the unite element of 
.
Let pt(x, y) be the transition density for Xt . Define a process Rt onM by its transition
density qt(x, y) given by the formula

qt(x, y) = pt(x, y) +
∑

e �=γ, γ∈


pt(x, γ y), x, y ∈ F .

It turns out that the transition density q̃t(x, y) for R̃t is equal to qt(x, y). Moreover

Tre�t =
∫

F

pt(x, x)dx +
∑

e �=γ, γ∈


∫

F

pt(x, γ x)dx

is expressed in terms of lengths of closed geodesics, i.e., the distances between x and
γ x, e �= γ, γ ∈ 
.

Passing to lQp the obvious possibility, successfully explored byYasuda in [41], is to
keepwith the analogy and carry on the Selberg procedure for the upper half-plane of a
complex extension of lQp. However even the structure of lQq itself offers a possibility
for vaguely similar approach resulting in the trace formula in terms of lengths of
closed geodesics. We begin with the lQq framework and obtain the trace formula.
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Then restricting the state space to lQp we investigate connection between the trace
formula and representations of the group of isometries in lQp. Let a(M ), M ∈ ZZ be a
parameter sequence, Pt(x,A) and Tt the transition function corresponding to a(M ),
and the Markovian semigroup defined by Pt(x,A) respectively. By Theorem 2 the
generator−H of Tt has the pure point spectrum given by (34). The transition density
is defined by

pt(x, y) ≡ lim
M→−∞ q−MPt(x,K(y, qM )).

If distq(x, y) = qn then by (28), (29) and (34) we get

pt(x, y) = q−n

{
q−1(q − 1)

∞∑

i=0

q−ie−hn+i t − e−hn−1t

}

= q−1(q − 1)
∞∑

i=n

q−ie−hit − q−ne−hn−1t, (64)

pt(x, x) = q−1(q − 1)
∞∑

i=−∞
q−ie−hit = lim

y→x
pt(x, y). (65)

It can be checked that the sum in (65) converges iff

lim
n→∞

a(−n)

n
= ∞. (66)

If for some M0 ∈ ZZ , a(M0) = 0 and a(M0 − 1) > 0, then a(N ) = 0 and hN = 0
for all N ≥ M0. In this case the characteristic function of K(a, qM0) is an eigenfunc-
tion for H with eigenvalue hM0 = 0. If M < M0 − 1 then the eigenvalues hM are
given by (34). As a consequence we have

Proposition 3 Let for someM0 ∈ ZZ, a(M0 − 1) > 0 and a(M0) = 0 hold. Put Pa for
the projector in L2( lQq) onto L

2(K(a, qM0)). Then H and Pa commute. The operator
−Ha := −HPa is a generator of a random walk in K(a, pqM0). �

Remark 4 Note that Formulae (64), (65) covers the case when a(M0) = 0, a(M0 −
1) > 0. Then we put hi = 0 for i ≥ M0 and (65) resp. (65) become

pt(x, y) = q−1(q − 1)
M0−1∑

i=n

q−ie−hit + q−M0 − q−ne−hn−1t, (67)

pt(x, x) = q−M0

(
q−1(q − 1)

∞∑

l=1

qle−hM0−l t + 1

)
. (68)

The factor q−M0 in (68) is a normalization but the coefficients inside the bracket
are equal to the dimensions of the corresponding eigenspaces. Hence
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Proposition 4 Let for some M0 ∈ ZZ, a(M0 − 1) > 0, a(M0) = 0 and (66) holds
then

Tre−Hat =
∫

K(a,qM0 )

pt(x, x)μ(dx) =
∞∑

l=0

nle
−hM0−l t, (69)

where nl is the multiplicity of the eigenvalue hM0−l . �

lQq is a group under addition and any ball K(0, qM0) is its invariant subgroup. Put

M0 = lQq/K(0, qM0) and identify 
M0 = {γi : i ∈ IN } where γi are the representa-
tives of the cosets of K(0, qM0).

Then we have

(i) (γi + K(0, qM0)) ∩ (γj + K(0, qM0)) = φ for i �= j,
(ii) ∪∞

i=1(γi + K(0, qM0)) = lQq,
(iii) 
M0 is discrete.

In view of (i)–(iii) we say that K(0, qM0) is a fundamental domain for lQq relative to

M0 . To simplify notations we putM0 = 0,K := K(0, 1), and choose
0 so that
0 ∩
K = {0}. Let x ∈ K and u, u′ ∈ γ + K for some γ ∈ 
0, γ �= 0. Then pt(x, u) =
pt(x, u′) and

qt(x, y) :=
∑

γ∈
0

pt(x, γ + y), x, y ∈ K (70)

is independent of choice of the representatives
0 \ {0}.Wewill show in the following
theorem that (70) is the transition density for a process confined to K . Roughly
speaking, if at time t = 0 the original process started from x ∈ K then the probability
for the new process to be at time t > 0 at the point y ∈ K equals the probability of
the original process to be at any one of the points γ + y, γ ∈ 
0.

Theorem 5 (Trace Formula) Let −H be the generator of a random walk on lQq
defined by a parameter sequence a(M ),M ∈ ZZ. Put hM , M ∈ ZZ, for the corre-
sponding eigenvalues and pt(x, y) for the transition density. Then the sequence

ã(M ) =
{
0, M > 0,
a(M ) − qM a(0), M ≤ 0,

(71)

defines a random walk on K. If −H̃ is the generator of this process, h̃M ,M ≤ 0, are
the eigenvalues of H̃ , and p̃t(x, y) is the transition density, then

h̃0 = 0, h̃M = hM (M < 0), (72)
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and

p̃t(x, y) = qt(x, y)

= pt(x, y) +
∞∑

m=1

∑

γ ∈ 
0

‖γ ‖q = qm

pt(x, γ + y), x, y ∈ K . (73)

Vice versa if−H̃ is the generator of a randomwalk on K with eigenvalues h̃−l, l ≥
0, and the corresponding parameter sequence ã(M ) is such that

q−M (ã(M − 1) − ã(M )) > η for some η > 0 and all M ≤ −1, then any param-
eter sequence a(M ),M ∈ ZZ, satisfying

a(0) < ã(−1), a(M ) = ã(M ) + qM a(0), M ≤ −1, (74)

defines a random walk on lQq such that (72) and (73) hold.
If moreover

∑∞
l=0 q

le−h−l t < ∞ then

∞∑

l=0

nle
−h−l t = Tre−H̃ t

= pt(0, 0) +
∞∑

m=1

∑

γ ∈ 
0

‖γ ‖q = qm

pt(0, γ ) < ∞, (75)

where nl is the multiplicity of h−l .

Remark 5 In the above discussion we required that 
0 ∩ K = {0}. By this condition
the identification ofK with itself was given by identity operation x → x + 0. Besides
of that Formula (75) is independent on the choice of 
0.

Notice that (75) is independent of hi, i ≥ 0.

4.1 q-adic Closed Geodesics

Presently we invoke the tree formulation of lQq and the concept of geodesic to obtain
even closer analogy of our trace formula for lQq with the Selberg trace formula for
the Riemann surfaces. For basic facts about trees used here see [3] or [29].
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Formula (5) suggests to identify lQq with the space of sequences α = {αi}i∈ZZ ,
αi = 0, . . . , q − 1 terminating as i → −∞. Let α ∈ lQq. Put {α}k ≡ {αi}i≤k . The
nods of the tree are defined as the sets aN = {α}N , where α ∈ lQq and N ∈ ZZ .
The pairs (aN , aN+1) are the ledges. For any N ,M ∈ ZZ, N < M set RN ,M (α) =
(aN , aN+1, . . . , aM ) and RN ,∞(α) = (aN , aN+1, . . .). Then RN ,M (α) is a simple
path and hence the infinite sequence RN ,∞(α) is a geodesic ray representative
of α. Put LN ,M (α) for the length of the path RN ,M (α) and define LN ,N+1(α) =
1
2 (q − 1)q−(N+2). Then

LN ,∞(α) = 1

2

∞∑

i=N

(q − 1)q−(i+2) = 1

2
q−(N+1).

Graphically one can think of the nods as one point sets in IR2 and ledges as
the segments connecting the nods. Let us make particular choice of the parameter
sequence setting a(M ) = q−M . Then hi = (q + 1)q−(i+1) and by (64),

pt(x, γ + x) = q−m

{ ∞∑

i=0

(q − 1)(q + 1)i

qi+1 − 1

1

i! (q
−mt)i − exp

(−(q − 1)q−mt
)
}

,

where ‖γ ‖q = qm m > 0 and ‖x‖q ≤ 1. Hence {γ }−(m+1) = {0}−(m+1), {γ }−m �=
{0}−m and {x}k = {0}k for k < 0. It follows that the geodesic rays R−(m+1),∞(γ + x)
and R−(m+1),∞(x) begin at the same nod {0}−(m+1) but their next nods are dif-
ferent. Since the points x and x + γ are identified by action of γ ∈ 
0 the line
R−(m+1),∞(x) ∪ R−(m+1),∞(x + γ ) may be interpreted as a closed geodesic. The
length of it equals 2L−(m+1),∞(γ ) = qm. Thus similarly as in Selberg’s trace for-
mula, each term in the sum in (75) is expressed by the distances of points which are
identified under the action of 
0 and like in Selberg trace formula the distances equal
to the length of corresponding closed geodesics.

4.2 Representations of the Group of Isometries and Trace
Formula

In this section we shall discuss connection between our trace formula and the rep-
resentations of the group of isometries in lQp. Let M0 be an integer or ∞. We put
K(0, pM0) = lQp forM0 = ∞. With the p-norm the ballK(0, pM0) is a compact space
if M0 is finite and locally compact if M0 = ∞. We shall write X := K(0, pM0)

as a topological space and G+ := K(0, pM0) as an additive group. We also put
G∗ := K(0, 1) \ K(0, p−1) as a multiplicative group. Then G∗ defines a group of
automorphisms θz, z ∈ G∗, of G+ by θza = za, a ∈ G+.

We put G for the semidirect product of G∗ and G+ relative to θ ; G := G∗ ×θ

G+, i.e., G = {g ∈ [z, a] : z ∈ G∗, a ∈ G+} and g1g2 = [z1z2, z1a2 + a1]. It is then
natural to define an action of G on X by
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gx = [z, a]x = zx + a, x ∈ X , g ∈ G. (76)

One shows that G is a doubly transitive group of isometries for X .
In terminology of [25] G is thus a transitive group of motions of X . Let M0 be

finite. We put μ∗ and μ+ for the normalized restrictions of the Haar measure μ to
G∗ and G+ respectively. Then μ∗ and μ+ are defined by

μ∗(K(u, pk)) = (p − 1)−1pk+1, u ∈ G∗, k ≤ −1,

μ+(K(b, pm)) = pm−M0 , b ∈ G+, m ≤ M0.

If M0 = ∞ we set μ+ = μ and μ∗ as above. Finally we put μG := μ∗ × μ+ for
the product measure on G. One shows that μG is a bi-invariant measure on G. Let
us come back to the action of G on X .

The subgroup [G∗, 0] leaves the point 0 ∈ X invariant. For g = [z, a] the left
coset relative to [G∗, 0] is of the form g[G∗, 0] = [G∗, a], and the action of G on
X is covariant under the action of G on G/G∗; g′[G∗, a] = [G∗, z′a + a′], g′ =
[z′, a′]. Thus we can identify X with G/G∗. Put g = [z, a] ∈ G and consider the
set Lg := {[z1, 0]g[z2, 0] : z1, z2 ∈ G∗}. Notice that [z1, 0]g[z2, 0] = [z1z2z, z1a]. If
‖a‖p = pk and z1 runs over G∗ then z1a runs over the set Lk := {x ∈ lQp : ‖x‖p =
pk} = K(0, pk) − K(0, pk−1). On the other hand for any z, z1 ∈ G∗ we have {z1z2z :
z2 ∈ G∗} = G∗. Thus we have Lg = [G∗,Lk ], and the coset Lg/G∗ is isomorphic to
Lk . We remark that Lk and hence Lg are independent of a provided ‖a‖p = pk . Thus
it follows that a function h on G is G∗-invariant iff h(g) = h([z, a]) = h(‖a‖p).

For g ∈ G, f ∈ L2(G, μG) the formula Tgf (·) := f (g ·) defines an unitary repre-
sentation of G in L2(G, μG). Let ϕ ∈ L2(G, μG) and define the operator

Tϕ f (g) =
∫

G

ϕ(g′)f (g′g)μG(dg′) =
∫

G

ϕ(g′g−1)f (g′)μG(dg′), (77)

for f ∈ L2(G, μG). The subspace of L2(G, μG) consisting of the functions indepen-
dent of z ∈ G∗ i.e., such that f (g) = f ([z, a]) = f (a) can be naturally identified with
L2(X , μ+). In caseM0 = ∞we put ϕt(g) = ϕt(a) = pt(0, a)where pt(0, a) is given
by (68). Since pt(0, a) depends only on ‖a‖p the operator Tϕt defined by (77) is a
positive self-adjoint operator in L2( lQp, μ+).

We shall now see that in the case when M0 is finite we have an interpretation of
the left hand side of the trace formula (75) in terms of a sum over eigenvalues of an
operator Tϕ of the form (77) thus describing a unitary representation of motions of
the group of translations acting on the fundamental domain K for lQp, whereas the
right hand side of (75) is connected with an operator Tϕt acting on the whole space
L2( lQp, μ+).

Thus in case of finite M0 we take ϕ(g) = ϕ(‖a‖p) ∈ L2(X , μ+). Then Tϕ as
given by (77) is a normal compact operator on L2(X , μ+). In this case there exists an
orthonormal basis {fk}∞k=1 consisting of eigenfunctions of Tϕ . Let λk be the eigenvalue
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corresponding to fk . Then

∞∑

k=1

λk = TrTϕ =
∫

X

ϕ(0)dμ+ = ϕ(0). (78)

If in particular M0 = 0 and ϕ(‖a‖p) = p̃t(0, a), where p̃t(0, a) is given by (73),
then our trace formula (75) is expressed in the form

∞∑

k=1

λk(t) = TrTp̃t = pt(0, 0) +
∞∑

m=1

∑

γ ∈ 
0

‖γ ‖p = pm

pt(0, γ ), (79)

(where λk(t) is the value of λk in (78) obtained for ϕ(‖a‖p) = p̃t(0, a)). We remark
that the λk in (79) are degenerate i.e. as compared with (75), λk is equal to e−τl t for
certain l with multiplicity nl .

5 Miscellany

In Sects. 2 and 3 we explained with some details the technics of [2] and one of its
generalizations [5, 13, 31]. The research described in Sect. 4 does not extend the
scope of processes derived by methods of [2] but it exploits the results of it. In this
section we illustrate by a number of examples the interaction of the results of [2]
with the research on random processes on hierarchical spaces.

Stochastic differential equations. Typically the stochastic differential equations in
IRn contain differential of the Brownian motion. When discussing the stochastic
differential equations over p-adic fieldsKochubei [35], Kaneko [27] and laterKaneko
and Kochubei [28] use the differential of a process obtained in [2] instead. For
illustrationwe formulate oneof the results of [27] and comment on the generalizations
provided in [28]. Given γ ≥ 1. Put A(γ ) for the family of parametric sequences
A = {a(M )}M∈ZZ satisfying

∞∑

M=−∞
a(M )pγM < ∞. (80)

Let D([0,T ] → lQp) stands for the family of all right continuous, left limited
sample paths ω : [0,T ] → lQp. The random process X (t) of Theorem 1 defined by
parametric sequence A ∈ A(γ ) is aD([0,T ] → lQp) valued random variable. In this
section we introduce the concepts of stochastic integral with respect to the random
process X (t), stochastic differential equations, and discuss their solutions. We begin
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with the concept of stochastic integral with respect to X (t) with X (0) = 0. For the
notation and the general concepts used the reader is referred to [23, 24, 35].

Let {Ft} be a filtration such that Ft ⊃ σ [X (s)|s ≤ t] for any t. Then {Ft} is
independent of σ [X (s + t) − X (t)] [s > 0] for every t ≥ 0. Denote by ST the set of
randomvariablesφ = ∑n−1

i=0 fiχ[ti,ti+1], where {ti}i=n
i=0 is a division 0 = t0 < t1 < . . . <

tn = T of [0,T ] and each fi is an {Fti }-measurable lQp-valued random variable. Then
for any φ ∈ ST the stochastic integral with respect to X (t) is defined by

t∫

0

φ(s)dX (s) =
n−1∑

i=0

fi(X (ti+1 ∧ t) − X (ti ∧ t)) for 0 ≤ t ≤ T . (81)

{∫ t
0 φ(s)dX (s)}t∈[0,T ] is a family of theD([0,T ] → lQp) valued random variables and

can also be regarded as an {Ft}-adapted process.
Put Lγ for the set of lQp-valued random variables X such that E[‖X ‖γ

p ] < ∞ and
denote the set of Ft-adapted lQp-valued random processes regarded as continuous
maps [0,T ] → Lγ by C([0,T ] → Lγ ).

Consider a function σ(t,X ) : [0,T ] × C([0,T ] → Lγ ) −→ C([0,T ] → Lγ ) for
some γ . Assume:

(1) If X ∈ C([0,T ] → Lγ ), then σ(.,X ) ∈ C([0,T ] → Lγ ).
(2) If s ∈ [0,T ] and X ∈ C([0,T ] → Lγ ) then σ(s,X ) is a Fs random variable

depending only on the random variables X (u), u ∈ [0, s].
(3) There exists a constant CT such that

E[‖σ(t,X ) − σ(t,X ′)‖γ
p ] ≤ CTE

[
sup
0≤u≤t

‖X (u) − X ′(u)‖γ
p

]
(82)

for all X ,X ′ ∈ C([0,T ] → Lγ ) and t ∈ [0,T ].
Let X (t) be defined by A ∈ A(γ ). If {Y (t)} ∈ C([0,T ] → Lγ ) satisfies the

stochastic integral equation Y (t) = x + ∫ t
0 σ(s,Y )dX (s), 0 ≤ t ≤ T , for some start-

ing point x ∈ lQp, then {Y (t)} is called a solution of the stochastic differential equation

dY (t) = σ(t,Y )dX (t), Y (0) = x. (83)

Theorem 6 If {X (t)} is a random process defined by A ∈ A(γ ), γ ≥ 1, then the
stochastic differential equation

dY (t) = σ(t,Y )dX (t), Y (0) = x, (84)

has a unique solution {Y (t)} for every starting point x ∈ lQp.

In [28] the authors relax the continuity requirements of the coefficient in the
stochastic differential equations. They introduce a more general construction of
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stochastic integral to admit predictable integrand with finite moment. As the result
they obtain a sufficient condition for existence of a weak solution of the stochastic
differential equation driven by the the process defined by the parameter sequence
(41) a(M ) = p−1

p(1−p−α−1)
p−αM , M ∈ ZZ .

Extension of the AK technics to some hierarchical spaces. Yasuda [40] generalized
the AK construction to local fields. She has also given a necessary and sufficient
condition for a process to be recurrent.

The processes constructed in Sect. 3 could have been obtained from the AK pro-
cesses by changing the jump measure of the Dirichlet form using the multiplicative
functionals. Kaneko constructed the classes of space inhomegenous [26] and time
inhomogenous [27] processes wider than that discussed in Sect. 3. His construction
yields also the processes which cannot be obtained by multiplicative functionals.
Another extension of the AK technics was presented in [3]. The authors constructed
a class of random processes on hierarchical spaces corresponding to the trees with
varying number of ledges at the nods. They obtained explicit formulas for the tran-
sition functions, the Dirichlet forms and the generators together with their complete
spectral descriptions. Further extensions of the class of random processes on trees
obtained by the method different from that used in AK are due to Kigami [33] and
Kaneko [29]. Their starting point was to consider quadratic forms on the finite dimen-
sional spaces of functions analogical to (60). The collections of such forms were then
used to construct the Dirichlet forms in terms of nonnegative functions λ defined on
the nods and regular Borel measure μ on the ends of the tree.

Stochastic processes of diffusion in IR1, IR2 and jumps on fractal. Yet another appli-
cation of the AK processes appeared in [30, 32]. The 2-adic ball K(0, 1) ⊂ lQ2 can
be mapped onto the Cantor set on real line in an obvious way. Thus any AK process
on lQ2 with a(0) = 0 generates a random process on the Cantor set. Consequently
the 2-adic jump measure J2 determines a jump measure JC on IR × IR \ d , supported
by C × C \ d , where C stands for the Cantor set and d for the diagonal. Similarly,
given an AK process on K(0, 1) ⊂ lQq defined by a jump measure Jq one can map
the ball K(0, 1) ⊂ lQq onto a fractal set 
 ⊂ IR2 and obtain corresponding process
on 
 and the jump measure J
 on IR2 × IR2 \ d supported by 
 × 
 \ d .

Put dH (
) for the Haussdorff dimension of the fractal 
. For a class of fractals
including the Cantor set, Sierpiński carpet and Sierpiński gasket it has been shown
in [30, 32] that under the condition

lim
M→∞

M
√
a(M ) < qα,

where α = 2dH (
)−1 the quadratic form
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E(f , g) =
∫

IRn

n∑

k=1,l=1

∂f (x)

∂xk

∂g(x)

∂xl
dx

+
∫

IRn×IRn\d
(f (x) − f (y))(g(x) − g(y))j(dx, dy) (85)

(n = 1, 2) can be defined on C∞
0 and then it is closable and its closure is a regular

Dirichlet form. Thus (85) defines a random process of diffusion on IRn n = 1, 2 and
jumps on 
 ⊂ IRn. If limM→∞ M

√
a(M ) > qα , then (85) does not admit C∞

0 in its
domain. Whether under some boundary conditions on 
 (85) would define a (regu-
lar) Dirichlet form is an open question.

Infinite system of linear differential equations. As the first step in the constructions
of stochastic processes presented in [2, 3, 31] we defined the Markov chains on
the space KM of disjoint balls. Since KM is countable infinite we had to solve the
infinite systems of Chapman–Kolmogorov Eqs. (8), (9). Thus without referring to
the probabilistic context we had to solve the system

u̇i(t) =
∞∑

j=0

aijuj(t), i ∈ IN0, (86)

with the initial conditionui(0) = ci. Even ifweknew therewas a solution the effective
computation would be a problem. The procedure we used to obtain the solutions
relied on the hierarchical structures of the set of coefficients and their labelling.
Note that since the coefficients in (86) are labelled by nonnegative integers it would
be practically very difficult to recognise the hierarchical structure if there was any.
Albeverio and Zhao [12] specified a class of the systems (86) which can be solved by
using the generators of spherically symmetric processes onK0. PutR0 = K(0, 1) and
Ri = K(0, qi) \ K(0, qi−1) for i ≥ 1. Given a parametric sequence a(M )with a(0) >

0. The matrix aij i, j ∈ IN0 is defined as follows; a00 = a(0). If either i �= 0 or j �= 0
then aij = ∑

k ũ(K,Kk), where ũ is defined by (14),K is any ball of radius 1 included
in Ri and summation runs over qj−1(q − 1) disjoint balls Kk = K(ak , 1), ak ∈ Rj. It
is then shown that the system (86) with bounded sequence ui(0) = ci of the initial
conditions has the unique solution expressed in terms of (25), (26). The authors
discussed also the corresponding heat equations in linear and nonlinear cases.

Conclusions. In this note I concentrated on the ideas and procedures presented in
[2], their extensions and point interaction with various studies involving hierarchical
spaces. I must admit that many interesting developments as for instance those of
[10, 14, 16] are not included here. Also in retrospection I realized that the stochastic
processes on hierarchical spaces were only the starting point for Sergio Albeverio
engagement in the research on broad range of mathematical problems in p-adic. Nei-
ther space of this note nor my personal knowledge of the subject are adequate to give
the reader a closer look at his achievements beyond the area of stochastic processes.
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Let me however at least mention some directions of his research. As far as I can see
most of his p-adic works were based on the concept of pseudo-differential equations.
These are: the wavelet theory [7], Schrödinger type operators [8], dynamical systems
[9, 11]. There is also a substantial amount of work on p-adic distributions [6]. To
summarize, I still hope that this note, as limited as it is, distinctly demonstrates Sergio
Albeverio mathematical intuition to recognize important problems and his talent to
solve them.
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Interview to Sergio Albeverio

Barbara: Dear Sergio, we are very pleased that you agreed to do this interview for
the Volume that has been dedicated to you, which is now almost finished and titled
Quantum and Stochastic Mathematical Physics. Sergio Albeverio—Adventures of a
Mathematician. As you know there were many discussions about the title: someone
proposed Adventures of a Physicist, someone else proposed to maintain both terms,
Mathematician and Physicist, other suggested to add also Philosopher. Certainly,
in one title we can’t introduce too many concepts; the idea of this interview came
to explore something more about you and to know as much as possible about the
impact you had in the scientific community. We will ask you some questions. The
chairwoman will be Stefania Ugolini. The other participants are Astrid Hilbert, Elisa
Mastrogiacomo and SoniaMazzucchi. Paul Fischer will take care of technical issues.
Now I give the floor to the chairwoman.

Stefania: It is a great pleasure to start with the interview. The first question is: could
you give us a short summary of your life as a scientist?

Sergio: This is not an easy task. Let me try to give first a short answer: it has been
both a passionate adventure (from an original strong will of knowing to the discovery
again and again how little we can know) and a struggle (lot of work, trying not to
forget the happy and sad sides of life outside the world of science). I certainly had a
strong will that helped me in overcoming hard periods of insecurity.

In my teenage years it became clear that I was not really made for what seemed
to be a perspective, from the side of my parents, namely that I would be studying at
some technical school and later on taking over the small heating and plumbing firm
in Lugano that my father was running; I was rather oriented towards more theoretical
university studies. But finding out which subjects to study was not easy for me: when
Iwas roughly between 12 and 15 years old I was fascinated by natural sciences, at one
point it was chemistry that attracted me, but it ended soon, since the kitchen in our
rather small apartment was not really appropriate for chemical, often bad smelling
experiments …; then came botany, but in dissecting flowers I developed a terrible
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hay fever and had to give up; the construction of small electric circuits and even a
small radio were a bit more successful, but I discovered that it was really the physics
behind them that interested me: quite decisive was the discovery of an antiquarian
bookshop in Lugano, that had in a rather dark backroom, piled on the floor, several
mathematics books. They were at university level (calculus, algebra) and in Spanish
language. So I combined the study of themwith a self learning of that language, both
aspects fascinated me (and I loved Spanish language and became an enthusiastic
reader of Spanish poetry).

Barbara: Do you still have those books?

Sergio: Yes! Sometimes I still consult them, to recall some formulae (and reviving
the emotions of my first encounters with them when I was about 15). The fascination
formathematics thosewell written books gavemewas reinforced by further readings,
I remember particularly an article by A. Padoa on mathematical logic, in a further
book purchased at the same place, “Enciclopedia delle Matematiche Elementari”,
as well as a book by E. Waissman, “Introduzione alla filosofia matematica”, that I
had hired from the Biblioteca Cantonale di Lugano. I also read some popularization
books on relativity theory and non-Euclidean geometry, and soon after I was sort of
proud to understand what the physics teacher at the Liceo alluded to when he called
us in the Aula Magna to commemorate the departure of Einstein in April 1955. But
in that year the summer was particularly hot and humid, some virus attacked the
whole region, I got very sick, taken to the hospital with high fever and a very painful
long-lasting pleuritis. I had to take a few months long recovery, part of it I spent
at Nervi, a small town at the seaside near Genova. The beautiful nature there, the
long walks, the light and wonderful sunsets helped my health but also brought me to
develop other interests: I read with great enthusiasm a book on dodecaphonic music
and the modern movement in arts and something happened in my development, in
fact for a few years, until the end of the Liceo, I shifted completely my interests from
science to arts, music, poetry, literature, languages—next to philosophy, psychology
and sociology. Back in school, a fewmonths after the new year of studies had begun, I
was a very different young boy than I had been before. This changewas also enhanced
by a new student, FrancoBeltrametti, who soon after joined our class, hewas a couple
of years older than me, and he was also very interested in those topics (and later, after
studies of architecture, was to become a rather well-known poet of the Italian branch
of the “beat generation”, as Fernanda Pivano used to call it). With him I went on
discovering the world of exhibitions, readings, art, cinema, theatre—at the expense
of partly neglecting strict school learning. When the Liceo was over, July 1958, I
found myself to be not so well-prepared for taking a decision concerning my future
university studies. I was rather undecided, between choosing philosophy/psychology
versus mathematics/physics. I consulted my mathematics teacher from the Liceo, an
algebraic geometer whom I respected verymuch, Ambrogio Longhi: he reassuredme
by stating that he had no doubt I could successfully studymathematics/physics, but he
made the error of adding “and why not also philosophy/psychology”, which revived
my hesitations. At this point my mother, who had a calm, intuitive, deep insight in
human understanding advised me to get in contact with a woman psychologist she
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happened to know. So Iwent to her and shemademe go through someRorschach tests
and, after looking atmy early handwritten schoolboywritings, came to the conclusion
that I could well study anything but, being more theoretically minded rather than
suited for practical work, advised me to rather study mathematics/physics (where in
her opinion one could more quickly reach satisfactory achievements without much
practical work needed before entering a real career in areas like philosophy and
psychology). So finally in the fall of 1958 I startedmy studies at the ETH in Zürich, in
the “AbteilungMathematik und Physik”. During all studies I continued to pursue my
other interests, mainly in areas like poetry, arts, politics and societal issues, literature,
languages, as well as psychology and philosophy (in the latter I had the luck to have
as one of the teachers Ferdinand Gonseth, a mathematician and philosopher, founder
of a new movement in philosophy of mathematics around the journal “Dialectica”).

Stefania: Could you briefly describe the moment in which you decided to dedicate
to theoretical physics and started to conduct research in this field?

Sergio: For the first two years mathematicians and physicists were together, with the
same basic courses. From the third year a choice between mathematics or physics
as an area of specialization had to be taken, and I chose physics. In my case I think
what determined the choice was my regained wish to better understand physics
and nature, before going over to philosophy, the discipline I cherished most. And
at that time I had the somewhat naive idea that mathematics could be added to
my formation afterwards, being sort of a “self-contained discipline”. Also I was
genuinely fascinated by the challenge posed by problems arising in the study of
nature, whereas at that time I probably did not recognize as much challenge in
natural problems posed within mathematics. So I chose theoretical physics.

At the “Seminar für Theoretische Physik” when I started the third year of studies
there were Professor Markus Fierz (a former direct student of Gregor Wenzel and
a coworker of Wolfgang Pauli, well-known for his work in quantum field theory)
and Res Jost (who had studied Mathematics in Bern and physics in Zürich, also
with Wenzel as a teacher, Jost ist well-known for his work on scattering theory and
axiomatic quantum field theory). They attracted me by “living with the matter” they
were teaching. I thenwent toMarkus Fierz asking for a topic inmathematical physics
in view of a master’s thesis, he said something like “you see, I have some white hair
… but in mathematical physics there is David Ruelle, he has good topics to work on”,
so I went to him (who was at that time Privatdozent at ETH), he gave me to study
generalized Ising models (later on he gave me a paper that had just been produced in
preprint formhandling combinatorial aspects of suchmodels). Iworked hard andwith
David’s help I found a unified way to handle those models. And then knocked at the
door of Fierz with the partly still just handwritten “Diplomarbeit” (master thesis).
Fierz asked me to tell him shortly what I had done: I started describing the main
results, that obviously he grasped immediately, and then he took over, explaining
to me everything upstream, from the origins of the Ising model, and in which way
it is a significant approximation of more realistic models; the whole ended up in a
small, beautiful lecture, with quotations from the classics of literature (like Goethe’s
Faust) and deep insights into the nature of science, his way of exposing and his



346 Interview to Sergio Albeverio

vivid sense of the interplay between physics and mathematical formalism fascinated
me. Suddenly he realized it was late and he had to leave: “What is the title of your
work”? I hesitated since I hadn’t thought of it—then he took an ink pen from the
pocket and wrote by hand “Generalized Ising models”. I told him that I would hand
him a better typed copy, he told me to simply deliver it officially like it was, to save
time to prepare my oral examinations.

After that summer I became Ph.D. student and assistant in theoretical physics,
my interests shifted to quantum field theory, starting with writing up, with Martin
Kummer, Fierz’s lectures on an introduction to quantum field theory and elementary
particles. I enjoyed being at the “seminar of theoretical physics”, with the presence
of scientists, friends that later would become colleagues, like Philippe Blanchard,
Klaus Hepp, Walter Hunziker, Martin Kummer, Peter Minkowski, John Roberts,
Ruedi Seiler, Walter Schneider, Robert Schrader, Walter Wyss, in addition to many
visitors, including, at one point, Edward Nelson. Concerning the topic of my Ph.D.
thesis I was advised to wait until Res Jost would come back from a long stay at the
Institute for Advanced Studies in Princeton. Personally, I was trying to orient myself,
being disappointed with the situation in that area at that time, between more phys-
ical but often only heuristic approaches to cope with divergences, various axiomatic
approaches and the study of concrete but in one way or the other unsatisfactory
models. Once back in Zürich, Jost proposed me to look at the problem of rela-
tions between Wightman and Haag–Kastler axiomatic approaches form the point
of view of relating field operators appearing in those frameworks. This depends on
controlling domains of essential self-adjointness of certain operators, and there was
work by Borchers and Zimmermann concerning a sufficient condition for essential
self-adjointness from which possibly one could learn some techniques. I did some
work on an example showing that certain differential operators having similarity
with Wick powers of relativistic free fields were not essentially self-adjoint. Jost
was satisfied by the result, but he meant the original more general problem would
probably take too much time of elaboration for a thesis, so he proposed another
problem concerning scattering theory for a quantummechanical multiparticle model
(a prototype of models with point interactions I studied extensively later on). I liked
very much to work on this concrete model and found, with Res’s help, an explicit
solution, based on his important work on difference equations with meromorphic
coefficients. For this solution I had to learn a lot of classical mathematics, including
Riemann surfaces, Riemann–Roch theorem, algebraic geometry, finally the solu-
tion was expressed in terms of quotients of products of hyperelliptic functions, then
simplified (by exploiting symmetries of the problem) to products of elliptic theta-
functions. The mathematics I learned was going to enter, later on, in other work of
mine, in completely different contexts, like the one of trace formulae associated to
heat semigroups and the Schrödinger unitary group. Res was an excellent teacher,
full of wit and quite direct in his expressions. He influenced me very much, as well
as Markus, and I am very grateful to them for their generous help in difficult times.
From them I learned how mathematical concepts form a unity (and I was proud of
the positive judgement of Res when he wrote me in the 80ies on the work I was
pursuing in infinite-dimensional analysis).
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Barbara: Did you turn back to the problem he gave to you or not, later?

Sergio: Just a little. In fact in recent years I wrote papers (with Benedetta Ferrario and
MinoruYoshida) providing concrete results about anEuclideanversion of the original
essential self-adjointness problem: Euclidean methods have been very successful in
the construction of non trivial low space-time dimensional models of relativistic
quantum fields satisfying all Wightman axioms, on which I worked for many years
and still I am working in various collaborations, as part of more general studies
about singular partial differential equations. The original question can now be looked
upon as of establishing relations between different constructions of these models. So
although the original problem in four space-time dimensions is still open, solutions
inspired by it are available for lower space-time-dimensional models.

Let me add a general remark: in a sense, some problems you meet in one stage
of your development may come back in very different contexts, again and again.
Although perhaps the original motivation might be less strong, since meanwhile the
“hot problems” have changed, good problems, at the forefront of research, can still
be stimulating in new contexts.

Sonia: You studied lots of problems during your career. Which topics in science
impressed you the most and which one do you consider the most challenging?

Sergio: I found most challenging those problems that are in some sense natural, in
the sense that they arise from some compelling context in either mathematics itself or
a science like physics, biology, ecology, or even from socio-economical: and not just
as opportunities for applying pre-existing mathematical methods. In mathematics
natural problems can arise in a specific area, but again I find most interesting those
whose solutions require joint methods of different areas …

Letme take the opportunity tomention someproblems I investigated, starting from
physics. Like many researchers of my generation, I spent a lot of time to understand
whether a synthesis of relativity theory and quantum mechanics would be possible,
at least at the level of methods and models. This goes back to work I started between
London and Zürich (1968–70) and continued, especially in Princeton (1971–72), on
scattering theory in a partly relativistic model, and soon later, first in Oslo (1972–77)
and Naples (1973) I continued this research by looking more closely on the specific
construction of relativistic quantum fields models. For this I went through the elabo-
ration of areas of pure mathematics, including potential analysis, stochastic analysis,
the theory of random fields, and stochastic partial differential equations, topics I also
pursued in later years up to the present. In Oslo I started working on these topics
with Raphael Høegh-Krohn (a strong collaboration that continued until his sudden
death in 1988, just before he was going to be 50). Other collaborations with him
included in particular the work on infinite dimensional analysis, in particular inte-
gration theory on infinite-dimensional spaces, with two aspects, the oscillatory inte-
gral side (Feynman path type integrals) and the probabilistic (Wiener-type) integrals
(soon other coworkers joined us, among them Philippe Blanchard, Anne Boutet de
Monvel, Zdzisław Brzeźniak, Philippe Combe, Andrei Khrennikov, Itaru Mitoma,
Roger Rodriguez, Jorge Rezende, Madeleine Sirugue-Collin and Michel Sirugue,
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Ambar Sengupta, Oleg Smolianov, Victoria Steblovskaya, Bogusław Zegarliński;
and you, Sonia, were very crucial in very numerous later developments and their
final unification in a general theory of continuous infinite-dimensional integrals).

In another direction, early in Oslo with Raphael we discovered that the theory
of Dirichlet forms on locally compact spaces, beautifully developed particularly
by Masatoshi Fukushima, to provide a systematic framework of unification between
symmetricMarkov process and a large class of diffusion and jumpoperators, could be
extended to infinite-dimensional spaces (my work with Raphael in the direction was
then continued, with coworkers including Wolfhard Hansen Zhi-Ming Ma, Michael
Röckner, Ludwig Streit in Bielefeld, andmany other coworkers fromother places and
countries such as Masatoshi Fukushima, Alexei Daletskii, Hanno Gottschalk, Zbig-
niew Haber, Yuri Kondratiev, Yuri Kozitskii, Shigeo Kusuoka, Laura Morato, Turi
Rozanov, Francesco Russo, Barbara Rüdiger, Song Shiqui, Stefania Ugolini, Minoru
Yoshida, Jiang-Lun Wu …). This line of work also took up further extensions in
mathematics, including semigroup theory, stochastic processes and stochastic differ-
ential equations involving other types of noises or other state spaces (e.g. mani-
folds, configuration spaces, non-commutative state spaces, non-Archimedean spaces,
fractal spaces …). In all these developments many coworkers joined, too numerous
to be mentioned separately, but let me mention a perhaps less-known component
in representation theory of infinite-dimensional groups of mappings (a book with
Raphael and Jean Marion, Daniel Testard and Bruno Torrésani, that appear in ’93
and has been continued also in recent work in my collaboration withMasha Gordina,
Bruce Driver, and Anatoliı̆ Vershik).

Let me also mention problems that arose in understanding the origins of quantum
mechanics itself that sparked joint work on Ed Nelson’s stochastic mechanics which
led to the discovery of what Nelson called Albeverio–Høegh-Krohn phenomena of
confinement, further studied with Masatoshi Fukushima and Ludwig Streit.

The connection with stochastic mechanics also led (in work with Raphael and
Philippe Blanchard) to unexpected applications to the understanding of the law
of Titius–Bode for planetary orbits and other astrophysical regularity phenomena,
pursued also recently by other groups (especially aroundAubreyTruman in Swansea,
and Jacky Cresson in Paris).

I also worked on the application of mathematics (ideas, methods and models) in
other areas of science; in this I had the support of different interdisciplinary projects
in Bielefeld, Bochum, Bonn (BiBoS), and in Locarno (CERFIM and ISSI). In Bonn
I founded with Volker Jentsch an international Center for interdisciplinary research
(IZKS) (having as main topic the investigation of complex systems and extreme
events). In Trento I worked on problems of neurostochastics (mainly with Luca di
Persio and Elisa Mastrogiacomo). In Mendrisio I had the great luck to work (from
1966 to 2009) in the “Accademia di Architettura” founded by Mario Botta (with
projects on mathematics, architecture and urbanism).

In all these studies I was especially fascinated by how the power of abstraction
of mathematics, its concepts and methods help in understanding the complementary
aspects of those pairs like finite and infinite, discrete and continuous, order and
disorder, that build up the complex texture of the world.



Interview to Sergio Albeverio 349

Barbara: In your opinion, can it happen that a problem that initially seems purely
mathematical can later find several applications in physics?

Sergio: It is a rather rare phenomenon, but certainly it exists: for example both C.
Maxwell and P. A. M. Dirac wrote their respective equations (for classical elec-
tromagnetism respectively for the motion of classical relativistic electrons), essen-
tially for mathematical and aesthetic reasons, but those equations became the basis
also of much successive physics. Another example is provided by hypergeometric
functions, studied in the nineteenth century for their intrinsic mathematical interest;
funding in the following century applications to the study of the quantum mechan-
ical hydrogen atom; or even the conics studied in hellenistic times by Apollonius
of Perga that found applications in Kepler–Newton’s theory of planetary orbits …
The creation by Norbert Wiener of a mathematical theory suitable for describing the
natural phenomenon of Brownian motion is also a lucky case of a chapter of pure
mathematical work motivated by natural phenomena, and becoming afterwards the
basis for very numerous other applications in natural and socio-economical sciences.
I like to view such discoveries as “crystals or gems of knowledge” that serve as
generators of many further developments (in general such “crystals” have a lot of
symmetries, and it is in my eyes a big challenge in philosophy of mathematics to
investigate the deep reasons for their working so well).

Elisa: The scientific community believes that you have had a major impact on its
evolution in many ways. What can you say, from your point of view, about your
influence on the scientific community?

Sergio: I was very lucky to find a large number of great and enthusiastic coauthors
on my path, in mathematics and the sciences: this is certainly connected with my
enjoying collaborations, but I also firmly believe that research is basically not just a
solitary undertaking, interesting problems are in every epoch sort of around, and, on
the way of their study, you find outstretched hands joining in for their solution. I was
also lucky to find many real friends among the coauthors, and sort of grew myself
through the interaction with them. This was a main motor in my research, plus the
inspiration I got in reading thework of some of themasters. In the present publication,
at other places, it is described how the environment in Zürich, London (Imperial
College,where Iwent to aftermyPh.D., toworkwithRay Streater andwhere, besides
teaching a course on multi-particle problems in non-relativistic quantum mechanics
(an area to which I had been introduced by Klaus Hepp and Walter Hunziker), I
started to seriously study models of quantum fields, having to report in a series of
lectures on the work by James Glimm and Arthur Jaffe that had just appeared). My
stay in London ended abruptly since I rushed back to Lugano, due to the sudden
worsening of the health of my parents. Whereas my mother had to be hospitalized
due to frequent heart problems, my father’s health deteriorated rapidly and he passed
away in early summer of ‘68. I suffered very much, and had a very difficult period,
trying at the same time to help by all means my mother, staying with her, taking up
a teaching job at the local Liceo while also taking care of the small plumbing and
heating enterprise that was owned by my father. My mother’s death by heart failure
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in November that very year was a new devastating blow for me.1 I had a terrible
period of grief and depression afterwards in my hometown and I was only able to
recover through the nearness and love of several persons, and in particular my future
wife, Solvejg née Manzoni.

Over one year later I went with Solvejg to Princeton, where I found myself
immersed in an environment of collaboration between mathematics and physics,
meeting scientists like Arthur Wightman, Barry Simon, Elliot Lieb, Edward Nelson
and also guests, like Raphael Høegh-Krohn (who invited me to spend a year in Oslo
1972–1973) and Gianfausto Dell’Antonio (who invited me to Naples where I spent
the year 1973, the very same year Solvejg gave birth to our daughter Mielikki). In
Princeton I also met Daniel Kastler who invited me to Marseille (1976–77). The two
years in Princeton were decisive for my development. I first continued and brought
to an end the work I had already started in Zürich under the influence of Klaus
Hepp on spectral problems in non-relativistic quantum mechanics and on scattering
theory in a model of scalar quantum fields interacting with (spinless) quantum parti-
cles with relativistic kinematic (Nelson–Eckmann model). In the meantime, I had
become particularly interested in the study of analysis in infinite dimensions in rela-
tion with quantum fields. I followed, partly with Francesco Guerra (who had joined
Princeton from Naples), a course by Edward Nelson on Euclidean quantum fields,
and our exchanges with Raphael and Francesco on this also led to long-standing
friendships with both of them. I described in a previous publication dedicated to
Raphael how we became very close friends and coworkers, and we had a fantastic
and very productive time, first in Oslo for almost four years in the period 1972–77,
and then by continuous exchanges when I moved for permanent jobs to Germany.
Our collaboration lasted until it was ended abruptly in 1988 due to Raphael’s sudden
untimely departure. Afterwards I had a long period of depression, and I recovered
both thanks to my family and the intensive will to try and continue the research along
the lines jointly developed with Raphael.

I had learned in particular from him to ask the students about what they wanted to
do, their answers were different from epoch to epoch, mainly from topics connected,
besides in some ways with mathematical physics (when I was in Bielefeld and
Bochum) to biology and neural networks (when I was in Bochum), to mathematical
finance and complex systems, as well as pure mathematics (in Bonn). I gave them
accordingly problems motivated by their interests, keeping in mind that on one hand
the best comes out whenmotivations are present and I was always convinced and still
am that one of the most fascinating aspects of mathematics is how the different areas
of applications are linked by internal ties, similar equations and methods finding
applications to most disparate contexts. In this way, through the students I often also
found a key to enter new areas of investigations.

1 Let me take this opportunity to express my deep feelings of immense gratitude to my parents for
having given me the possibility to follow my passion of knowledge, even though it caused so much
hardship of separation and solitude for us as I had to go far away from where they lived and I had
grown up.
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As I mentioned before, the inner structure of my research is often led by an
interplay between opposites (dialectic pairs). For example, to understand better the
relation between discrete and continuum, in particular, in relation with the problem
of infinities appearing in certain problems in physics, in Oslowith Raphael we started
work on nonstandard analysis (that led to a bookwith themathematical logicians Jens
Erik Fenstad and Tom Lindstrøm) and to work on singular interactions in quantum
mechanics (with two books, one with Fritz Gesztesy and Helge Holden, and, later on,
one by myself with Pavel Kurasov, and a very fruitful and steady collaboration with
Gianfausto Dell’Antonio, Rodolfo Figari, Alessandro Teta and their many coworkers
in developing the area of singular interactions, that also included other friends in
many other countries). Another main thread for me was variation of the underlying
field of numbers, like quantum mechanics on p-adics rather than real numbers (and
this led to outcomes in stochastic analysis, particularly in collaboration with Witold
Karwowski and Kumi Yasuda, and the study of wavelets in other collaborations).2

Astrid: Iwould like to go back to the time, on the one hand, in Zürich and, on the other
hand, in Princeton. How did you integrate these experiences? As you mentioned, the
places and the interests of the people were different. How do you integrate these to
become your own?

Sergio: I learned a lot through the experience with people I met at those places, and
in a sense I understood myself and what I was looking for much better after having
been in such places, and other ones, in many countries where I have been. I have the
feeling on the other hand that it was always important for me not to lose the roots of
where I come from, because I do not think that what I can express in science can be
dissociated from what I feel, that is the reason why many collaborations of mine are
connected with friendships; and it is also the reason why again and again I tried to
maintain close connections with the places in the world that are connected with my
origins, both in Southern Switzerland and in Italy. Speaking more generally, I think it
is good for young people to go to other places, make new experiences, participate to

2 There are many other areas in mathematics where I did some work but do not manage to discuss
here due to limitations by time and by the very dynamics of the conversation. Let me take the oppor-
tunity to at least name some of them: classical and quantum dynamical systems, and ergodic theory;
measures on spaces of mappings in relation with string theory; asymptotics (of integrals and solu-
tions of differential equations); spectral analysis, functional analysis, partial differential equations
stochastic processes onmanifolds and configuration spaces; potential theory (commutative and non-
commutative); spaces of generalized functions and relative analysis; Fourier integral operators and
wavelet analysis; probability theory; random fields; kinetic theory and statistical mechanics; oper-
ator algebras, non-commutative geometry and quantum fields; fluid mechanics; polymer physics;
topology (especially knot theory); fractal analysis; algebra (Leibniz algebras, braid groups, combi-
natorics; infinite-dimensional algebras and groups and their representations); non standard anal-
ysis number theory (automorphic forms, trace formulae, complex analytic methods) graphs and
network theory; mathematical statistics; filter theory; variational calculus optimal deterministic and
stochastic control, optimization theory; astrophysics; complex systems models in economics and
finance, biology engineerings, social sciences, urbanism; epistemological and philosophical ques-
tions. In undertaking these studies I had the joy of cooperating with many scientists in very many
countries, to which I express my hearty thanks; hopefully there will be other opportunities to present
a bit more on at least some of these works.
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international meetings. I would advise to listen as much as possible to what experts
say, but at the same time keep the own autonomy of thought. In science as in society
there are fashions, but they do not last long, and even though in our current society
they play a larger role, one should not forget that they can, by their very nature,
change very quickly.

Astrid:The time in Oslo was a timewhere you could identify best, thanks to Raphael
Høegh-Krohn. You two did beautiful and outstanding mathematics. Your scientific
relationship and your creativity had a special flame. What was its essence and what
have you passed on to other collaborators?

Sergio: I am convinced that my encounter with Raphael was really exceptional, since
we had at the same time a profound friendship and an exceptional concomitance of
scientific interests and orientations.We were working very hard, the kind of intensity
you can only have when you are young as we were. But it was also a special joy
of collaboration and dreaming about the future we experienced (I wrote about this
more extensively in a publication3 dedicated to Raphael after his departure in 1988).
In Oslo we were relatively isolated at that time (around the years 1972–75), the
mathematics community in Norway was pretty small, in our area of work we had,
before we started to get our own students, mainly contacts with few mathematicians
and physicists from the countrieswe came from, but alsomathematicians fromSoviet
Union, likeGelfand,Berezin,Dobrushin,Minlos, Sinai,Maslov, Pavlov,Vershik, and
their coworkers. But those contacts were first only at the level of exchanging letters
and manuscripts (that would take a long time to reach each other, due to the cold war
that was going on. Later on, they were expanded by personal contacts and also our
spectrum of contacts reached other countries in Europe and Asia).

We had to find our own way, our main interests in the years 1972–75 were in
constructive field theory but at that time there were a strong competition between
certain centers, mainly in the US, we had to find our problems of interest, without
starting a direct competition with the strong groups at those centers. Our techniques
were more probabilistic, influenced by our respective mentors and also by work of
Irving Segal’s school, especially by Leonard Gross and by Edward Nelson. Dirichlet
forms were an example of the topics we decided to study …

Barbara: Did you start the theory of Dirichlet forms in Oslo?

Sergio: I discovered the book ofMasatoshi Fukushima onDirichlet forms (on locally
compact spaces) in the library of the mathematics institute in Oslo.4 It was so very
well written and rich in details that it permitted us to quickly start extending the
theory to the infinite-dimensional case, particularly interesting for what we had in

3 S. Albeverio: “On the Scientific Work of Raphael Høegh-Krohn”, pp. 15–92 in: S. Albeverio,
J. E. Fenstad, H. Holden and T. Lindstrøm (eds.): Ideas and Methods in Mathematical Analysis,
Stochastics, and Applications, in Memory of Raphael Høegh-Krohn (1938–1988), Vol. 1. Cambridge
University Press, 1992.

(See alsoVol. 2 by the same editors and publisher: Ideas and Methods in Quantum and Statistical
Physics, 1992).
4 I described this in an article mentioned in footnote 3.
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mind to do with quantum fields. One of the first papers we wrote had “potential
analysis” in the title. This was a lucky circumstance since a couple of years later
a position in Bielefeld was announced in that area and I got the position (1977).
Raphael and myself continued the strong collaboration also after I had left Oslo
until his untimely departure (1988), with regular trips between our places and long
joint stays in other places, especially in Bielefeld, Bochum, Leningrad, Marseille,
Moscow, Naples, Paris, Rome, Wrocław and Warsaw. Concerning the development
of the theory of Dirichlet forms we were joined by many students, colleagues and
friends, especially in China, Germany, and Japan, but also e.g. in Canada, France,
India, Italy, Mexico, Poland, Russia, Ukraine, the United Kingdom and the USA.

Moreover the strong relations between Dirichlet forms, martingale methods,
Markov processes and more generally probability theory turned out to be a guide for
the study of disordered systems (an area that I started developing alsowith students in
Bielefeld, Bochum and Bonn, in particular Hannes Brasche andWerner Kirsch), and
hydrodynamics (Margarida De Faria, continued later with Ana Bela Cruzeiro and
Benedetta Ferrario), besides processes on manifold, Markov fields, quantum fields
and strings (among my students in these area and at those places were Teresa Arede,
Claas Becker, Hanno Gottschalk, Atle Hahn, Frederik Herzberg, Astrid Hilbert,
Koichiro Iwata, Hannes Brasche, Stephan Mihalache, Sylvie Paycha, Haio Roeckle,
Michael Röckner, Jörg Schäfer, Sergio Scarlatti). Let me stress that the relations
between quantum fields and stochastic analysis have constituted a main thread of my
work, through the years. This includes also my involvement in recent constructive
approach to models of relativistic quantum fields using singular stochastic partial
differential equations (stochastic quantization equations), following work initiated
by Martin Hairer and Massimiliano Gubinelli (in Bonn I am working on this with
Massimiliano himself, Luigi Borasi and Francesco De Vecchi, as well as in coopera-
tions with Seiichiro Kusuoka, Song Liang, Hiroshi Kawabi and Minoru Yoshida, in
Japan).

Stefania: What kind of testimony do you feel you leave to the new generations of
scientists?

Sergio: As I said it is important in my opinion to be informed, to know what is
going on, in particular also where the main stream goes, keeping however a certain
distance from it, not to succumb to the temptation of running from one fashion to
the next one. In fact, the judgement of importance of certain problems in science,
and elsewhere, is to a large extent relative to the given particular historical moment.
Especially nowadays we are under the pervasive influence of the media (traditional
and so called social), opinions, popularizations that are often more interested in
increasing their audience rather than being objective: very often small steps forward
are presented as sensational events. My advise is to keep calm, work hard, seek
the own path in science, develop the own judgement on the complex dynamics of
research.

Also, one should not get discouraged when one is faced with a problem that one
does not manage to solve; it could well be that it is not clearly formulated, so one can
try to reformulate it, perhaps in different settings. And one should not be intimidated
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by authorities; listen to them carefully, but do not throw away your own work. It can
also be the case that one simply does not yet have the right ideas to cope with the
problem one has at a given moment, so sometimes it is better to put the problem aside
and come back to it later looking at it from a fresh perspective. More generally, some
problems can also not be ripe yet for a mathematical treatment, but later on they
can get better into the focus of attention, because the mathematical and scientific
community has advanced in the investigations of other problems and unexpected
connections to the original problem have arisen.

Let me take as an example the study of stochastic perturbations of classical
dynamical systems.

There was a time (about as Astrid Hilbert started the research that led in 1991 to
her Ph.D. Thesis in Bielefeld, and later to joint publications with Axel Klar, Vassily
Kolokoltsov andEdyZehnder)wheremanymathematicians andmathematical physi-
cists considered with some skepticism, as a kind of undue intrusion, the study of
stochastic perturbations of classical dynamical systems, like say Newton equations
or deterministic Navier–Stokes equations. Although there existed various books on
a stochastic hydrodynamics, a stochastic approach was considered by many analysts
at best as having only some heuristic value, the real problems of hydrodynamics,
in particular understanding turbulence and instabilities being best understandable
already in a pure classical setting. This opinion has now drastically changed, for
instance stochastic initial conditions are accepted as natural since the support of
attractors of interesting classical systems have been found to be singular, hence of
the type of typical stochastic systems.

Historically such shifts of attention were quite frequent, it suffices to recall how
Ludwig Boltzmann at the turn of the nineteenth century had to suffer from opposition
to his ideas about kinetic equations because the existence of atoms and molecules
themselves, as physical entities, was still doubted: the situation changed dramatically
only a decade later, especially with Einstein and Smoluchowski theory of Brownian
motion (the history is well presented e.g. in Ed. Nelson’s book Dynamical Theory
of Brownian motion).

In the study of the kinetic equations themselves on methods of the theory of
stochastic processes have already found applications, see e.g. in work by Barbara
Rüdiger and coworkers (in which I had the great pleasure to participate), and more
is to be expected.

Let me add a more general comment on the rapidly expanding area of stochastic
processes, as an example of the present situation. It is an area were traditionally the
connections with applications has always been very strong. They started with the
study of chance in gambling and early applications in social science (e.g. in N. de
Condorcet work) and continued with Laplace’s use of chance as a tool for taming the
complexity of many particles systems, that gave origins to the methods of statistical
mechanics.

It is known at least since Kolmogorov’s axiomatic approach andWiener’s work on
Brownianmotion that, on the other hand, the theory of stochastic processes has also a
deep pure mathematical side. It seems to me that it constitutes an example of an area
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of mathematics where connections with other areas are natural, and the mutual fertil-
ization between theoretical aspects and applications are particularly strong. In my
conversation I have already mentioned the relation of stochastic processes with clas-
sical dynamical systems, statistical mechanics, fluid dynamics, quantum mechanics
and quantum field theory (the latter having nowadays a strong revival from our point
of view through the connection with stochastic quantization equations and singular
partial differential equations). All these connections extend to the geometric and
algebraic frameworks and problems to which I also gave contributions (roughly
changing the state space to have a geometric structure like a manifold rather than just
being a Euclidean or linear space; or changing to a non-commutative state space; or
else an algebraic state space, like for p-adic processes. The study of symmetries of
systems of stochastic differential equations has also undergone strong developments,
connected with Stefania Ugolini and Francesco De Vecchi and their coworkers).

Speaking of connections with other areas than mathematics and physics, let me
mention that the theory of stochastic processes has interesting active applications
and gets new stimulations also from areas like biology, ecology, hydrodynamics,
meteorology, as well as socio-economic sciences. E.g. for the investigation of the
brain in clinical patients that suffer from epilepsy (or neurodegenerative diseases like
Parkinson’s and Alzheimer’s), models involving stochastic jump-diffusion processes
have been considered. Here the conjunction of stochastic methods with those coming
from the theory of complex systems has proven to be helpful. Also very interesting are
inverse problems, where the characteristic of a stochastic neuronal network based on
observations should be determined; such investigations require, in addition to good
ways of modeling, considerable numerical and data analytic methods.

Here too the universality of mathematics makes that one can both concentrate on
particular problems or try to find newmethods, often profiting fromwhat has already
been obtained in other areas of applications. For this however collaboration between
mathematicians and specialists of other areas is essential. Progress in all areas of
knowledge is a social, communitarian enterprise, and a wonderful one!

Let me now take the opportunity to thank from the bottom of my heart my close
friends Astrid, Barbara, Elisa, Sonia and Stefania for the hard work they invested
in overcoming all difficulties concerning the conception and organization of the
conference, and the book emanating from it, including this interview. First of all, they
managed to overcome my reluctance to accept the homage, since I anticipated its
realization would require too much work for them. They made everything possible
for making the event and the book run smoothly and successfully, both from the
scientific and human side. I am also very grateful to all lecturers, participants and
contributors for expressing on this occasion their appreciation of my presence in the
community of scientists. Throughout my scientific life, my work would not have
been possible without the help of numerous students and coworkers I have had from
many countries, let me express my deep gratitude to them.

And letme also take the opportunity to expressmy hearty special thanks to Solvejg
and Mielikki, for all the love and support they always gave to me. Only with their
help I was able to pursue my dreams in science, throughout all vicissitudes of life.



Summary of Others Interviews

We propose a brief summary of the conversations we had with Sergio Albeverio’s
colleagues and collaborators,5 which give a glimpse into hismultifaceted personality.
These conversations took place during the long months of the pandemic and revealed
to be an exciting and moving experience thanks to the participants who gladly shared
their scientific and human memories.

(1) On what occasion did you meet Sergio and in what form did you
collaborate?

Philippe Blanchard: I met Sergio more than fifty years ago at Eidgenössische Tech-
nische Hochschule (ETH) in Zurich. We both arrived in Zürich–Sergio from Ticino,
the Italian part of Switzerland, I from the French side—and we worked there as
de facto foreigners. At the time, ETH was still a small university with about 6000
students. In the Physics department there were no more than twenty of us. Sergio
worked as an assistant in one of the courses I took. I want to mention the importance
of Res Jost, an exceptional human, crucial for our scientific career and development.
Not only was he an excellent scholar but also a wonderful person. Also, we were
lucky to find ourselves in a very interdisciplinary department. Physics enabled Sergio
to extend his mathematical visions and ideas. Physics, from time to time, achieves
more than the pure, hard, and abstract mathematics and allows to extend it.

Hochstrasse 60 was un endroi heureux et un espace extraordinaire. The institute
was located in a very narrow street that went downhill. I remember one time in the
winter I parked my car there. Robert Schrader was there too. I put the handbrake
on and went to the institute to discuss something with Res Jost. At some point two
policemen came in and asked Jost if he knew a certain PhilippeBlanchard. He pointed
at me, and the policemen told us that I had done something truly terrible: my car had
gone downhill and had crashed. Fortunately, nobody got hurt. However, they wanted

5 As everyone will know, Sergio’s collaborators over the years have been countless and we have
not been able to include them all in this volume. However, we hope that everyone can recognize
themselves in the words of those who have been interviewed.
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to confiscate my license and put me on trial. Jost looked at the policemen and told
them that it did not make any sense to confiscate my license as nothing bad happened
while I was actually driving. He said that my accident only happened because I did
not park correctly and that, consequently, the only reasonable thing to do was to
disallow me from parking. The policemen were so baffled and unprepared for this
answer that they finally decided not to prosecute me.

Then Sergio went to Princeton and there too he worked on excellent projects. It
was an environment full of creativity, but also pressure and competition. Finally, I
also want to mention the importance of Raphael Høegh-Krohn for Sergio’s career—
and ours too. Sergio frequently visitedMarseille where he collaborated with Raphael
achieving important results.

Ludwig Streit: I first met my longtime friends Philippe Blanchard and Sergio Albev-
erio at ETH. Philippe was already there when I arrived, Sergio was working on his
doctoral dissertation in Physics related to the 3-body problem with Markus Fierz.
I arrived in Zurich particularly interested in two papers by Araki and Coester and
Haag from the 1960s, which tried to give a rigorous mathematical description of the
dynamics in quantum field theory (QFT) in terms of fundamental states instead of
potentials. Again, no examples for their theory were found, but I was fascinated by
their approach.

I remember a member of the financing committee for our first research project (at
ZiF in 1975)—a poet, I believe—asking: “Why do you propose a project between
mathematics and physics? One understands well that physics needs mathematics,
but what can a mathematician gain from the insights of a physicist?”. One of our
colleagues replied that he really enjoyed working with physicists because of their
intuition. Sergio was formed at ETH, in an environment dedicated to physics, which
always requires a lot of imagination; there he developed his great intuition as well as
his rigor. Markus Fierz was Sergio’s advisor for his thesis. He was also a homme de
lettres, fascinating, with a very distinct sense of humor, and always open. One day,
while walking up from the main physics building to the lecture halls, Fierz asked
me: “Do you know by any chance how one measures cosmological distances? Come
to my office and I shall give you a private lecture about it”. Actually, he could have
given me a private lecture on a baroque author as well. I see a lot of Markus Fierz in
Sergio and I know that Sergio adores his teacher.

Francesco Guerra: I met Sergio when I arrived in Princeton in September 1970.
I was immediately impressed by his great humanity. In particular, he generously
and spontaneously helped me and my family in the settlement. At the time he was
a visiting researcher in Princeton, and I could appreciate his wide culture and his
lucid understanding of the physical and mathematical aspects of the hot problems
in theoretical and mathematical physics, but it was his calmness, his gentle smile
and his practical sense that impressed me most. In Sergio there is a spontaneity and
empathy toward all the people he comes into contact with. I also met his wife Solvejg
who is deeply involved with poetry and painting. On me she had an impact of the
highest human and cultural value.
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At that timeEdwardNelson held a high-level special course onEuclidean quantum
field theory in the Mathematics Department. Sergio advised me to take the course.
Nelson started with the approach of Kurt Symanzik, one of the pioneers on Euclidean
methods. I attended the first lectures, then I negligently left the course, because I
already knew Symanzik quite well. So, I was absent when Nelson began to develop
his own highly original and powerful approach, including Markov fields, Euclidean
fields and the connectionwith the fields inMinkowski space-time. Nelson’s approach
was completely new, full of deep ideas, waiting for a full development and possible
applications. And I was not there. Then, I attended a talk by Nelson in Princeton
in April 1971 and suddenly I understood that his ideas had a strategic value. So, I
immediately started searching for the content of the lost course. Sergio’s help was
crucial. His personal notes of the course were a true masterpiece. He was able to
capture Nelson’s thinking with great efficacy and depth. It is amusing to me that I
learned Nelson’s Euclidean theory from Sergio’s explanations and his notes. This is
only an example, but my involvement with the application of Euclidean methods in
constructive quantum field theory entirely started from this.

Gianfausto Dell’Antonio: I remember meeting Sergio in Princeton when he was a
young researcher there. I saw him again in Naples in 1973 where he had come to
teach for six months. He was working on constructive field theory. Then, there were
endless encounters. Sergio is able to present the most complicated works in a simple
way. We share sixty-five years of friendship. His journey has been exceptional.

Rodolfo Figari: In 1971, as part of our thesis work, Chiara Nappi and I were inves-
tigating a persistent model in Constructive Quantum Field theory. We learned that
Sergio Albeverio—at the time in Princeton with E. Nelson—was working on scat-
tering theory in a quite similar way. We wrote to him asking for technical help and
he immediately sent us some very clear unpublished notes with the indication that
should they not be useful, we could use the back of the manuscript pages to write
notes or draw. Since then I got used to such kind of understatements by him. Invited by
GianfaustoDell’Antonio, he spent 1973 inNaples working at the Theoretical Physics
Institute. It was probably the least productive year of his scientific career apart from a
few papers, which he prepared together with Raphael Høegh-Krohn spending hours
on the phone. The following year Sergio moved to Oslo and I followed him a few
months later.

Fritz Gesztesy: I met Sergio in the late summer of 1980 in Bielefeld. I was Humboldt
fellow at the University of Bielefeld and Sergio returned to Bielefeld to visit Ludwig
Streit, who was sort of my Ph.D. advisor. Sergio came with a guest. Now you can
almost guess who that was. Raphael Hoegh-Krohn. We all know he is one of the
longtime collaborators of Sergio’s. Raphaelwas a bear of aman—imagine the biggest
Russian bear—and he instantly broke the ice by putting his arm aroundmy shoulders,
which was quite impactful because in those days I was really shy and that really
changed everything. Sergio was in the room, but he was shy too and Raphael was
the only one who talked at that meeting.
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After the meeting was over, we agreed that I should visit Sergio in Bochum. So,
a bit later I took a train to Bochum and my life changed forever. We became lifelong
friends and we collaborated intensively for the next ten years. Together we wrote
many papers and a book on point interactions which appeared in 1988. It was a
success. The second edition appeared in 2005 and it was translated into Russian in
1991.

Sylvie Paycha: I was studying in Paris and I wanted to do a Ph.D. in something
related to mathematical physics, in particular about quantum field theory, but I had
no idea what it really was. I was working on analysis at that time, on Schrödinger
operators as a matter of fact, and then Anne Boutet de Monvel suggested to me some
people, Sergio was one of them. I did not know him nor Bochum. I inquired about
Bochum and it looked like a very dull, gray, rainy and industrial place … Well, I
went there and Sergio was very welcoming. I remember going into his office and
him presenting a whole blackboard for one topic and another whole blackboard for
another one. I could not understand a thing about either board but I was supposed to
choose between them and I really did not know what to do. Eventually I chose one,
it was a stochastic-probabilistic approach to string theory. He was working on that
with Raphael Høegh-Krohn.

Alessandro Teta: I met Sergio in 1984 in Bielefeld (at BiBoS). In 1985 I started
working on singular perturbations of the Laplacian. I participated at the wonderful
conferences of Ascona and Locarno, which were democratic conferences, where
everyone spoke for the same length of time. Although we have never written a work
together, we have always been friends and very close scientifically.

Pavel Kurasov: I remember precisely when I met Sergio for the first time because
it was at a conference in Dubna in 1987, and I remember trying to collect myself
and go to speak with him. But it was Sergio who came to me and we discussed
many things. For me it was a great experience. Then, I met him a second time five
years later, passing by Bochum, and again he came to me. What was surprising is
that he immediately recognized me. In addition, I was surprised that he was always
surrounded by dozens of visitors, if not more, and I wondered why he spent so much
time this way. With my current experience I cannot fathom how he managed to find
time for everybody. I can say that he changed my career completely because only
after collaborating with him I started to develop independent research; he taught me
how to swim. Each time you meet him, you get dozens of new problems to work on.

Andrei Y. Khrennikov: As many Soviets, some time ago [after the Soviet Union’s
dissolution] I had big problems and I was about to leave science because all my
friends either moved to business, died, or became billionaires. At that time, I was
in China and there I met a colleague who told me: “Why don’t you study Feynman
integrals? It may be interesting for Sergio!”. So, I wrote him a letter from Beijing.
Later, after we became friends, Sergio told me “I have never read letters from people
I do not know and especially if these people are asking something. Nevertheless, I
read yours because it is not every day that you receive a letter from China written by
a Russian”. This combination—a Russian from China—seems to have helped me to
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become a sort of son in Sergio’s eyes. Then when I finally met him, I found that he
had been deeply studying one of my papers and that he had read all the papers we had
sent him. It was amazing. After this, Sergio invited me to come for an Alexander von
Humboldt fellowship and this opportunity was my way to science because otherwise
I would not have been a scientist anymore, since in Russia there was no possibility.
And I would like to underline that I was not alone. Sergio has really helped many,
many scientists fromRussia, Ukraine, and all the other republics of the former Soviet
Union in that really terrible time. I don’t know where he found the strength because
it took huge efforts and a lot of energy on his part. But he helped us.

When I arrived in Bochum, I found such a friendly and unusual scientific school.
I have many contacts, but I have never seen this special vitality in many international
contexts. Sergio’s school was unique. As I emphasized in many interviews, I was
impressed by his great knowledge of science. I would compare him with Leonardo
da Vinci—the Leonardo da Vinci of our times. I work with many scientists and they
are brilliant in their small area of interest, but, up to now, I haven’t met anybody
with such a huge overview of science as a whole. I have spoken with him about
Feynman integrals, about the p-adics, about many different things and he always
knows everything. According to me this is the greatest part of his personality.

(2) What is, in your opinion, themain impact that the collaborationwith Sergio
had on your scientific development?

Yuri Kondratiev: Sergio belongs to the older generation of great mathematicians
like Skorokhod. The role of Sergio in my scientific life is decisive and special. I
would like to stress that Sergio was not only my teacher, I think of him as my
symmetrical counterpart, but also a prominent example of a great scientist with broad
areas of interest. I am always happy to discuss with him, not only about particular
mathematical problems, but also about several aspects in psychology, philosophy,
history, physics, etc. The main point with Sergio is clearly his attractive and friendly
personality as well as his nice style in the discussions with colleagues and students.

One of the essential properties of Sergio is that he is always open to newways, new
programs and, contrary to many very good mathematicians, he is not concentrated
only on technical questions. Some people are completely focused on one particular
topic and related technical problems and do not see the general picture. Sergio has
the absolutely fantastic property of always seeing symmetry and unity, of seeing
deep motivations coming from physics. That is very impressive. And for me it was
essential because he supportedmy attempt to understand the relation between infinite
dimensional analysis and statistical physics. His was really a crucial influence. I can
say that my scientific taste was essentially shaped by Sergio, by his relation to science
as a central point of our life, not science as a job. For Sergio, science is the main
content of life. It is my honour to call Sergio my teacher and friend.

Michael Röckner: I wouldn’t be the scientist, probably not even the person I am today
without Sergio. He had so much influence on my scientific life, but probably also on
the development of my personality and character. He was just a pure inspiration from
the first day. So, when I started to follow his lectures, I was immediately fascinated
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by the way he explained the subject and I started to work very hard, because, even
if I did not understand much of what he said, I was aware of his deep knowledge.
In addition, the way he presented each topic was somehow motivating to deepen my
own knowledge.

I would also like to mention what I call Sergio’s sense of respect. Sergio is an
adorable and very nice person. Everybody knows this, but I really want to point out
that he has respect for any piece of science made by any person in the world. So
even when I was just a student, he always respected me and tried to understand my
thoughts. And he did the same thing with other students too. I think this is very
important, in particular for young people.

Sergio is not the type of person who thinks that Mathematics has sense only if
it has consequences in applications. For Sergio, mathematics has value in itself. He
always fascinated me and the other students—even the very, very young—because
he would not shy from teaching us really difficult theories. Once, for instance, he
gave a course on abstract potential theory, and we got lost immediately. However,
he really motivated us to study such an abstract and advanced theory and he passed
along the message of its great value.

Another thing I learned from him is the joy you can get from collaborating with
somebody else on mathematics. Consequently, I wrote almost all of my papers with
co-authors because it’s so important to have feedback from colleagues.

Lastly, I have always admired Sergio for his immense networking all over the
world, as a scientist, but also as a person. I have never met a scientist who has as
many contacts and as many close relationships inside our community as Sergio. He
is, of course, very international—he speaks six or seven languages, maybe more—
and I admire the openness he approaches people with, no matter which country they
are coming from.

Tom Lindstrøm: I was only 22 when I met Sergio and I didn’t really have any prior
experience with research and things like that. So, I can’t really imagine what my
mathematical life would be like without his influence. I think he has influenced me
on many levels. Scientifically, I have never really got out of his shadow. I mean, so
much of what I did was developing the ideas that I got from him during the first
few years. On a personal level, I’m impressed by his kindness, his generosity, and
his enormous breadth of knowledge. He seems to know almost everything, I have
learned a lot from him. You ask him anything and he has this way of explaining to
you thoughts by making them resonate with you and your way of thinking. I am very
impressed by this quality.

FritzGesztesy: I alsowas struck and I’mstill struckbyhis kindness.Ours is a cutthroat
business and he’s one of the great exceptions to that. I have already mentioned earlier
that after meeting Sergio a whole new universe opened because of the international
collaborators and friends around him, a huge community. Before I met him, I was
fairly isolated in Graz, Austria, but after I met him I found myself every other year
abroad until I finally moved to the United States. I began to blossom, one might say,
after that initial contact with Sergio.
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Ludwig Streit: After our time in Zurich, we were supposed to meet again at a
conference organized by Res Jost in 1968 in Varenna, where I also met Sergio’s
brother Raphael Høegh-Krohn for the first time. Varadhan spoke on Edwards model,
a problem concerning (weakly) non-intersecting random paths. In Varenna I asked
Res Jost again about quantum dynamics in terms of the ground state. As a simple
example: what if one does not define the dynamics of the harmonic oscillator by its
ground state but, e.g. instead by the first excited state? Jost’s answer was: “Good
question”. The problem was still open. Sergio and I met again in 1975 at a confer-
ence in Marseille where Sergio and Raphael presented their fundamental paper on
dynamics in QFT using Dirichlet forms. Then, I did not understand the details of
their work but, nevertheless, it answered my question. Shortly after we organized
a one-year research program in Bielefeld with Sergio, Raphael, Philippe and many
others attending. Here we came back to work on my initial question concerning
the dynamics in QFT and I was very excited to hear that Sergio was still thinking
about the problem. In particular, he suggested defining the non-relativistic quantum
mechanical dynamics in terms of wave functions. This led to our paper on distorted
Brownian motion. Even though this paper was nearly finished, Sergio still invited
me to collaborate. I am glad that we ended up writing several sequels to this paper
to which I was able to make more serious contributions. Through our work on the
dynamics of quantum theory, Sergio introduced me to Dirichlet forms and their
uses in quantum dynamics, giving rise to non-perturbative dynamics. The theory of
Dirichlet forms provides also a link to that of Markov processes, so I was motivated
to learn more about stochastic analysis—again a result of Sergio’s impact. I must
mention that I met my wife through Sergio: she was one of his Ph.D. students. As
you can see, Sergio’s influence on my life is undeniable. While I started out trying to
correctly formulate QFT in Zurich, I eventually made contributions to stochastics.
In particular, with others we elaborated the theory of white noise analysis guided
by the insights of Takeyuki Hida. Later on, it was Freeman Dyson who suggested
reformulating constructive quantum field theory in terms of white noise. This led to
further collaborations with Sergio, Michael Röckner, and Jürgen Potthoff. Together,
we were able to describe bosonic relativistic quantum field theory in terms of white
noise. In the 2000s Sergio and Michael Röckner were able to construct Dirichlet
forms based on the Varadhan–Edwards measure with associated Markov processes
giving rise to certain stochastic differential equations. In such a long time many
things have moved in mathematics and our paths have crossed. Each time there was
yet another impulse from Sergio to move things on, not only for me but for the whole
scientific community.

Philippe Blanchard: If I had to describe Sergio very briefly, I would say that he is
first and foremost a scientific explorer. He was never scared of anything and worked
in all kinds of different areas with great success. The width of his knowledge is
incredible. The IAMP (International Association of Mathematical Physics) has a
subject classification for theoretical physics and his work is important in all of the
four subareas. Sergio is almost like a brother to me, in particular, I am the godfather
of his daughter who was born in 1973.
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Sergio is interested in absolutely everything scientific—for example, I am thinking
about problems in Astronomy and Cosmology—but he is also fascinated by the Arts
and their relationship to Science. He is a real scholar, eager to learn and discover.

Pavel Kurasov: In St. Petersburg there was the attitude to solve original problems but
not in full generality, and people liked to say “the Germans will do the rest”. When
I was a Ph.D. student I was studying delta-interactions and that was the way Sergio
and I started to collaborate. It was Sergio who taught me how to generalize; before
meeting him, I would solve each concrete problem individually. He showed me that
one can look at the same problem from a more general point of view. Maybe this is
a more Western point of view. Sergio showed me how to work. When I was working
in Bochum it was impossible to go home before Sergio; those who were in Bochum
probably remember that each evening he went home with big bags full of books that
he managed to read during the night. It was an honour to help him carry those books
to the car. And, somehow, I was also forced to work at least as much as Sergio did.
It was a great school.

Sylvie Paycha: Sergio had an enormous impact on me. I was on board for string
theory, bosonic string theory, togetherwith Sergio Scarlatti, and someof the questions
underlying this thesis have guided my research since then. One of the questions is
implicitly in the background; it is how to deal with infinity. In that work we adopted a
stochastic approach. Since then, I’ve tried other approaches, but it’s always the same
question.

From Sergio I’ve also learned generosity. He’s an extremely generous scientist,
generous with his time and his knowledge. This quality is especially precious nowa-
days when everybody is in a hurry, in such a competitive field. He is one of the
rare persons who Frenchies would call humanists for the enlightenment of his mind,
generous enough to get interested in all aspects of science, well beyond the official
borders of mathematics, physics, philosophy, but also architecture and biology. This
broadness is now very rare because it takes time to get interested in different things
that are not directly in one’s way. Nowadays the pressure is so great that not many
people take the time. It was not always easy for Sergio to take the time, I think, but
he did and I appreciate this propensity a lot. I’ve learned so much from his behavior.

Andrei Y. Khrennikov: The main lesson we got from Bochum was that we learned
to be brave and look at mathematics and science from a very general perspective.
Since then, I have not been afraid to start something new. For example, in Sweden,
I started to study the foundations of quantum mechanics and quantum information,
and, step by step, I developed these subjects. Also I spent a lot of time looking at
how Sergio organized his research and I tried to copy his methods even if I wasn’t
able to replicate all of them, because Sergio had his special know-how, in particular
he knew how to speak with people. For example, I organized very big conferences
on the foundations of quantum mechanics and I tried to contact people, very often
high-level people, by copying Sergio. All this I learned in Bochum. I absorbed part of
his personality, which is very special and which, I think, contributed to his success in
creating a network of scientists. When I got money and I tried to invite people from
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Russia, Belarus, Ukraine, I could speak with one or two people per day at the most.
After that I was tired. What Sergio would do instead was really amazing because he
could work at the same time with ten, fifteen people and on totally different topics.
I had a great example in Sergio and my career in western science had a milestone in
Bochum, this small town that maybe is not Cambridge or Oxford, but for me it was
better, since it was a great town with a great scientific school.

Francesco Guerra: It was very interesting to see how Sergiomoved after the introduc-
tion of Euclidean methods. It was the beginning of the use of stochastic methods in
quantum field theory, which in itself has nothing stochastic about it. I was working
with Barry Simon and Lon Rosen on the Glimm and Jaffe program of construc-
tive quantum field theory, through the exploitation of the new Euclidean methods.
Our results were very interesting. On the other hand, Sergio found a deep scientific
understanding and collaboration with Raphael Høegh-Krohn, another exceptional
person, forming a team of the highest scientific level, launched with the application
of probabilistic methods to a large spectrum of problems in theoretical and math-
ematical physics. After leaving Princeton I began to be also involved in the study
of Nelson’s Stochastic Mechanics, a very intriguing theory aiming at the descrip-
tion of quantum mechanics in the frame of a purely probabilistic setting. Nelson
theory was probably ahead of its time and not fully understood and accepted by
theoretical and mathematical physicists. In particular, while working in Salerno with
my brilliant student, Patrizia Ruggiero, we discovered a new very deep connection
between Nelson stochastic mechanics and Euclidean Field Theory. I must say that
the continuous flow of valuable information coming from the work by Albeverio
and Høegh-Krohn was comforting and very encouraging for us. They built very
comprehensive and general frames, as for example the Dirichlet processes, and gave
interesting application to a variety of different research fields, including for example
the structures emerging as a result of the planetary winds.

Alessandro Teta: Talking about relationships with Sergio means running the risk
of rhetoric. He has been a source of inspiration for my scientific work. I learned
a lot from him. He is a references wizard; he is always able to say who did what.
However, his influence went even further. I met his family, the private aspects of him.
When we meet, not only do we talk about mathematics but also philosophy and the
fundamentals of science. His wide culture combines with his meekness, openness
to dialogue and confrontation. His way of playing the role of the scientist is what
inspired me; he believes science and scientists have a fundamental role in the attempt
to improve the world.

(3) What is, in your opinion, the main impact that Sergio had on science and
the scientific community?

Sylvie Paycha: I think his legacy is really the interdisciplinarity that characterizes
him, that impregnates any audience who listens to him and anybody who works with
him. I would say this open mindedness to interdisciplinarity will have a great impact
on research in the long run. He thinks in an interdisciplinary way, bringing all the
aspects of one problem together. This approach inevitably opens new paths.
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FritzGesztesy: Sergio left hismark very broadly on quantummechanics, constructive
quantum field theory, singular perturbation theory and point interactions, infinite
dimensional analysis, Dirichlet forms, stochastic processes, Feynman path integrals,
statistical mechanics and also non-standard analysis. And this is just scratching the
surface because, in many ways, he has been a universalist all his life. I guess this is
due, as Sylvie said, to the humanistic nature Sergio has.

Michael Röckner: If I can use an image from physics, I would look at Sergio as an
energy operator. First of all, his spectrumwould not be bounded. Definitely, it would
not be a pure point. Definitely, it would have an enormous essential part. And finally,
spectra are usually subsets of complex numbers with two dimensions. I think that
Sergio’s spectrum is not a d-dimensional set, but an infinite dimensional set.

Of course, among the areas to which Sergio has contributedmost, there are infinite
dimensional analysis, Feynman path integrals, Dirichlet forms, infinite dimensional
group theory, non-standard analysis, Schrödinger operators and, in particular, point
perturbations. There is absolutely no question; all these areas have benefited from
his work. But Sergio is too nice a person to advertise his work.

I also want to stress what we call Sergio’s family. All of us belong to this huge
family, which also comprehends many other people. When he organized one of his
many conferences he would always link his family to other groups and families. Or
sometimes other groups were simply sort of swallowed by his big welcoming family.

When I was a young scientist, this was very important. We had contacts with
other groups like the one led by Paul Malliavin and Terry Lyons and other many very
famous people who knew and liked Sergio. This was because the atmosphere at his
conferences was always friendly. Sometimes, conferences can be very competitive,
people can fight. This never happened with Sergio. Everybody loved to participate at
his conferences because there was respect between all participants. Everybody knew
everybody and if ever there was some friction somebody could always mediate. It
was fantastic. Sergio’s huge network was not only in Europe, but also in the United
States, in Russia, in Japan and in China. He had a lot of connections also in Africa,
in particular Tunisia.

Giuseppe Da Prato: This is not a simple question because Sergio has worked on
many topics, so I will answer by not considering all his production, but only the one
with which I have had contact. Some of his fundamental results are the theory of
Dirichlet forms in infinite dimension and their application to stochastic differential
equations in infinite dimension. I think he did other important things, for example in
mathematical physics.

Philippe Blanchard: At the time of my studies in France, mathematicians, at least
at ENS, did not consider probability theory to be a real part of mathematics. Sergio
did a lot of work in explaining the importance of probability to the mathematical
community. In particular, he emphasized that probabilitywas not only benefiting from
mathematical axiomatization but that mathematics itself was to be revolutionized by
probabilistic ideas. That is an undeniable impact of Sergio’s on the mathematical
community.
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I want to stress the depth of his interactions with collaborators. In a certain sense if
two or three decide to work together the final result is a kind of convolution between
them and the strength of their interaction. Due to his character, Sergio interacts
very strongly. Sergio emerged from a group of researchers who produced brilliant
scientific works. Additionally, I want to recall the respect and affection, the interest,
the passion, the kindness and the generosity that people experience with Sergio.

Ludwig Streit: Another prominent feature of Sergio’s is his passion for the interaction
between Arts and Science. He wrote a lot about their relation. It is actually easier to
list the subjects Sergio was not interested in than the other way around. That runs in
the family. He found a wife who fits into the relation between Arts and Science.

Yuri Kondratiev: When I was a student my teacher gave me a preprint by Sergio
and Raphael. This preprint was about Dirichlet forms in linear spaces, and it did
completely changemy understanding of the subject. I understood that infinite dimen-
sional analysis is in some sense really dangerous, because in each point you can go
in infinite directions. This work by Sergio and Raphael was a problem of zero-time
quantum fields, scalar quantum fields and corresponding generators and so on. It was
a beautiful combination of analysis from one side, and quantum field theory from
the other. With Sergio and Michael, we did several works related to these devel-
opments of infinite dimensional analysis, but in concrete directions motivated by
statistical physics and stochastic dynamics and so on. Sergio was able to translate
some ideas, which are very obscure for mathematicians, from theoretical physics
into mathematical language. And after that, such problems became a big part of our
mathematical world, and we could work on them. Also, this beautiful possibility to
translate questions from one area to another is absolutely exceptional and not at all
obvious for many experts. So, I can say that one of the central advances that Sergio
made in science is really the organization of concrete, deep connections between
applications, precisely between theoretical physics and mathematics in a completely
rigorous sense.

Pavel Kurasov: After listening to a speaker at a conference, one usually goes to them
saying: “You know, I have a paper on this subject, you can read it!”. However, the
usual reaction from Sergio was different. He would say: “Do you know that there is
a paper on this subject by this guy and that guy? You should read it!”

The second thing I learned from Sergio is to listen. When Sergio speaks usually
the first impression you get is that he is completely relaxed, apparently speaking
without putting serious thoughts into his words. But if you speak to him at length,
then you will understand that you have to listen to his every word. He has such a
particular way of speaking that is completely different from other people.

Andrei Y. Khrennikov: Sergio and Raphael’s preprint was, I think, one of the first
mathematical papers on Feynman integrals, which beforewere considered something
mystical. In his career Sergio has published plentiful results and papers in different
domains of science, but not once did he say “Look at what I did!”. Even though
many people spend their lives working on a paper of the same caliber, Sergio never
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boasted. He also gave a really great contribution to infinite dimensional analysis and
p-adic analysis. But his name is also well known in many other domains.

Gianfausto Dell-Antonio: Sergio had a huge impact on science and what he did is
exceptional. Sergio is a very open person beyond mathematics. He is a humanist, a
Renaissance type personality. It should be considered a great merit that he has many
faces, not just the scientific one. Sergio chose mathematical physics as a profession,
he did his job like everyone else, but he is not just a mathematical physicist!

Rodolfo Figari: Peculiarities of his way of working are his calm, patience, and
generosity. The number of his collaborations is enormous, an attitude that sometimes
has generated criticism. In fact, he agreed to work in many sub-disciplines giving
visibility and motivation to many collaborators and working in research groups with
few or no links to the rest of the scientific community. Some people have found this
attitude to be in conflict with the ideology of “excellence”, but there is no doubt that
many of Sergio’s collaborators reached levels of excellence and, last but not least,
that many mathematical physicists love him as a teacher.

FrancescoGuerra: Sergio gave a very important contribution to science, characterized
by an impact on the new generations that is bound to grow over time. There are
valuable results and directions of research that will have more and more relevance. I
would like tomention the important evergreen problemof the globalMarkov property
in Euclidean field theory, which Sergio has pursued for many years. I must say that
generosity is essential in the context of culture. Sergio’s personality is comparable to
the one of aRenaissanceman, full ofmagic content. In relationwith the contemporary
world of research and with young people in particular, Sergio showed a remarkable
generosity, which I consider a really rare and precious positive feature. He has had
such an influence on research that it has certainly brought him great satisfaction.
Sergio has chosen to always be himself: to always be kind to people.

TomLindstrøm:Hismain influence spreads through all his students and all the people
he has collaborated with. They have been spreading the words, the methods, the
attitude, the kindness and thewillingness to engagewith anyonewho is interested in a
subject. So, his largest contribution is through all these people and all the interactions
he had with them and the ways he has been combining methods from different fields
and creating new possibilities, seeing new openings that other people hadn’t seen
before.

(4) Doyou think that there areTheories orTopics in science thatwe can identify
with Sergio’s name?

Francesco Guerra: Surely the possibility to give precise attribution to method and
results is a very fundamental problem in the History of Science: who did what?
There is a kind of international Albeverio’s school, including, among other things,
problems such as Dirichlet forms, Feynman path integrals (according to Albeverio
and Høegh-Krohn approach), stochastic dynamics, strongly localized interactions.
These last topics point to very important issues. For example, they are at the heart
of the explanation of the slow neutron effects, studied by Enrico Fermi. The impetus



Summary of Others Interviews 369

that Sergio has givenmay have future important developments. In particular, I believe
that his followers should dedicate the highest attention to the globalMarkov property,
a topic that will gain more and more weight in the future developments of the theory.
The fact that the future does depend on the past through essential elements in the
present, but for some intrinsically purely stochastic unstructured external influence,
seems to be at the core of any realistic rational interpretation of Nature. Let me end
with a sentence that after half a century still reverberates in my mind. A seminar
by Sergio in Princeton (1971) began with the sentence: “We live in a time in which
everythingwe saymust be rigorously proven”. Amethodologicalmanifesto that links
Sergio to the best and strictest Galilean tradition and is part of his legacy to future
generations. To the young people I say: “Be consistent with yourself, as Sergio was”.

Giuseppe Da Prato: I will limit myself to my point of view. I identify him as the
inventor of the theory of Dirichlet forms in infinite dimension. The passage from the
finite dimension to the infinite dimension is not at all obvious—actually, it is very
difficult. There are some detractors, who say that this passage has no value because
the results on Dirichlet forms in infinite dimension are obtained up to functions of
zero capacity, which are a very large set in infinite dimension. I would say that this
opinion has been proven wrong by the huge amount of work that has been done using
Dirichlet forms in infinite dimension.

Ludwig Streit: This is a difficult question since I am not competent enough to assess
the full and vast scope of Sergio’s influence. I will thus only focus on my personal
perspective. From what I could appreciate, his impact is most felt in the use of
Dirichlet forms in physics and beyond. I also want to emphasize Sergio’s tremen-
dous influence on the development of the University of Bielefeld in the 1970s. With
Philippe and Sergio, we founded the BiBoS Research Group in Stochastics at Biele-
feld that saw the rise of very eminent mathematicians who were Ph.D. students of
Sergio’s. However, the list of schools that were strongly influenced by the interaction
with Sergio is very very long.

Michael Röckner: Sergio was one of the founding fathers of non-standard analysis
and he was also a founding father of the mathematical theory of Feynman path
integrals. I think there is no doubt about it. These are the two topics I would like to
put first. On a bit smaller scale, I would like to mention the paper with Raphael from
1977. This was a breakthrough paper on the theory of Dirichlet forms, also in infinite
dimensions with connections to quantum field theory. The original idea there was
that a �2-quantum field can be identified with the path measure of a Markov process
that comes from a Dirichlet form for the time-zero quantum field. This means that if
you can prove the global Markov property for the�2-quantum field, then it would be
related to the Markov process that comes from the Dirichlet form for the time-zero
quantum field. It would be exactly the path measure that has the time-zero field as
invariantmeasure. It’s unproven up to today, but it’s a fantastic idea. Iwould definitely
put this paper under the most influential papers of Sergio’s in mathematics. I can also
mention his results in the theory of Dirichlet forms and about the characterization of
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the existence of corresponding Markov processes. There are also many other things
about particle systems and so on.

Yuri Kondratiev: Several directions in mathematics, mathematical physics and
physics, were initiated for the first time by Sergio. For example, Sergio and Raphael
were probably the first to use Feynman integral representation in quantum statistical
physics. The same for the case of the so-called perturbation. This direction was initi-
ated by Sergio and Raphael in 1975. After their paper, a lot of people worked in
this direction by using this technique, but the crucial idea of representing quantum
states with Feynman integral was already there. According to me, he is the father of
several absolutely new research lines inmathematical physics and in pure and applied
mathematics. One peculiar aspect of Sergio’s activity can be very well formulated by
the sentence: “I am working in applied physics. I apply physics to mathematics”. To
apply physics tomathematics, on a philosophical level, on the level of understanding,
it is absolutely a beautiful ability of Sergio’s.

Pavel Kurasov: For me the main contribution is, of course, the theory of point inter-
actions. I just checked that actually the book by Albeverio, Gesztesy, Holden and
Høegh-Krohn has been cited two thousand three hundred sixty-five times, it’s impres-
sive. This book was useful, people read it. But what was impressive was Sergio’s
attitude towardsmathematics. He taught me that you should think about mathematics
as pursuing the truth and not what you have done yourself. There are a lot of ways
you can teach mathematics: you can give lectures, exercise lessons, and so on, but
there are very few ways you can teach how to be a human. You have only to show
your personal approach to mathematics, nothing else. This is what Sergio was doing
to many of us.

Andrei Y. Khrennikov: The mathematical theory of Feynman integral is maybe his
greatest contribution on the level of ideas. Forty years ago, the Feynman integral
was something so tricky, which was used by physicians without any mathematical
meaning. The second main contribution is non-standard analysis, and, in some way,
it was very exciting for Sergio.

Gianfausto Dell’Antonio: Sergio founded the study of point interactions. Raphael
and Sergio’s book is fundamental. There are also important articles on non-standard
analysis by Sergio and collaborators on Feynman integration and Dirichlet forms
theory.

AlessandroTeta: Fundamental contributions of Sergio’s are: Schrödinger’s operators,
stochastic analysis and quantum field theory. I would also like to mention his ability
to train many young people. During the crisis of the Soviet system, Bochum was a
meeting point for scientists and provided economic support as well. For many years
it has been at the center of a network of great human and scientific relationships.
Sergio also created the conditions for the development of science. He supported and
encouraged a precise method of doing science, without excessive competition and
aggression.
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Rodolfo Figari: Just because he has never worked alone it is difficult to identify
him with a research group or with a specific research field. One could say: quantum
field theory, zero-range interactions, Feynman path integrals and Markovian random
fields.

Fritz Gesztesy: Sergio characterizes himself as someone who focuses his efforts on
mathematics, but he does that by building bridges between different areas of research,
including applications to physics, astrophysics, biology, medicine, economics and
philosophy. So, again, this makes it very difficult to single out special examples, but
I guess his universal approach to sciences can be considered his principal legacy.

Sylvie Paycha: I think that it would be a shame to reduce his great impact to contri-
butions to some specific areas. Sergio’s characterizing feature is that he sprinkles all
over science. The way he proposes his ideas is very delicate. He is a very sensitive
person and that’s also why he can work with so many people. I think he has left
his footprint in so many areas—a very delicate but very deep footprint thanks to his
meekness.

(5) How do you think Sergio will impact the future and the next scientific
generation?

Pavel Kurasov: Sergio has seventy-eight registered students and two hundred three
descendants. It’s impressive. He has a direct registered influence on two hundred
three people. Maybe if one adds another one hundred of Humboldt fellows that he
supervisedwith all their descendants, it will be something like one thousand young, or
not so young people, that he influenced directly. Because he changed us, he changed
our students. This is his personal influence, and it is very important.

Luciano Tubaro: I think that Sergio’s impact on the young generations is direct, not
just indirect. In front of me now there are five womenwho are currently collaborating
with him.

Giuseppe Da Prato: One of his qualities is the extraordinary ability to collaborate
with many people.

Fritz Gesztesy: His future impact on generations is realized through us, his collab-
orators and his students. There are 36 Ph.D. students, 110 diploma theses and 20
habilitations that were written under his direction. So you could say that all of our
students are already impacted by what he has instilled in us. I think that having this
world of scientists around him that all feel very closely connected to him is really
the lifeline for his future impact.

Rodolfo Figari: Hiswork has left a great legacy for young researchers. Sergio’s search
for an encyclopedic knowledge and his multi-disciplinary gaze on science constitute
a way of countering the exasperated technicalities of current scientific research.

Alessandro Teta: I hope that his example and his human and scientific skills will influ-
ence young people. The hope is that there is a generational passing of the baton. His
collaborators should carry on Sergio’s way of working. This is a great responsibility.
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Andrei Y. Khrennikov: The main lesson I learned from Sergio is to teach our students
that science is central in their life, because now for many people science has become
just a joke or a business. It’s not an easy thing to convey, but we should try to do it.

PhilippeBlanchard: Iwould alsomention his exceptional talent in educating students.
Sergio is a good professor according to my definition, i.e., one is a good professor
exactly when one stops trying to be one. A good professor has to create ties of
friendship with his scholars. Sergio was able to do so and that quality of character
is not given to everyone. Once his students trusted him, he started to bring forward
his words of wisdom. He went on this way and he pursued an exceptional education.
This is how Sergio was able to pass down his knowledge in the most efficient way.
To summarize, Sergio is at the same time an amazing teacher and a great scientific
explorer.

Michael Röckner: I would like to mention that Sergio is still influencing young
people; in Bonn he is working with very young people again. The duty of his former
students is to pass this tradition on to the next generation. It is not easy to do it with
the same intensity Sergio has, but we have to try. There are a few essential aspects of
how hemanaged to put together such a large family and such a large network. Maybe
when life will turn normal again, we should think of having a revival of these big
conferences. For instance, we used to have a conference every three years in Europe
or in the United States to keep the groups together. They were very successful, but
this is maybe a little bit dormant now. We have of course small conferences, but I
think in the future we should try to organize some of these big ones that combine the
areas; this is Sergio’s legacy. On the other hand, I am not so worried about the future
because Sergio’s family is a large family, and it is still multiplying.

Ludwig Streit: Look at Sergio to understand how you can be an extremely successful
scientist and, at the same time, be kind with all your collaborators, in particular the
young ones.

Yuri Kondratiev: We already mentioned that Sergio works very intensively and
productively with young students. And for all of us, he is a teacher. We are then
extremely thankful to Sergio for our high scientific education and for having produced
a lot of very nice Ph.D. students during the last several years and for continuing to
teach. I tried to somehow extend the approach of Sergio to science and life to my
students. So, if we are children of Sergio, they are all grandchildren of Sergio. And
as they become professors, their students will continue to be part of the family. So I
am sure that the tradition created by Sergio will be continuing.
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Philippe Blanchard’s Homage to Sergio
Albeverio

This text is a homage tomy dear friend SergioAlbeverio. Sergio’s talent hasmanifold
facets. The diversity and the difference in the level of difficulty of the treated examples
perfectly reflects the variety of different mathematical and physical methods to be
met in Sergio’s multiform works.

Sergio is incomparable amongst mathematicians, simultaneously a perceptive
physicist, and also a bit of an artist. Mastering passion and creativity, he depicts and
translates reality into equations. His trace is permanent in his domains.

His capacity towork is extraordinary. He is able to establish relationships amongst
manifold subjects of interest, revealing close connections between seemingly
unrelated questions. This is reflected in the immensity of his written production.

Sergio has worked on many questions concerning both mathematics and physics.
To speak of Sergio’s contributions is to speak of the history of mathematical physics
since 1960.

As Cécile Dewitt-Morette formulated: “between physics and mathematics there
are bridges, which means there are architects, brick layers, and also pedestrians”.
Sergio is one of the best representatives of a “savanturier” (savant aventurier),
“Scientist adventurer”.

Beyond mathematics and physics, he is interested in all contemporary science (of
his era) and by extension, through his vast knowledge, in all of science.6

For Plato, Descartes, and Kant, without mathematics, there will be no philosophy,
and for Heisenberg, without philosophy there will be no good physics.

Science means having an idea, and hence phantasy, and proving whether this
idea is right is vital. The process is democratic and indeed the notion of democratic

6 I described on the occasion of Sergio’s 60th birthday some of these aspects in more details, see
pp. 37-39 in Stochastic processes physics and geometry: new interplays. A volume in honor of
Sergio Albeverio, Eds. F. Gesztesy et al., Can. Math. Soc. ad AMS, 2000.
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376 Philippe Blanchard’s Homage to Sergio Albeverio

thought emerged in Greece at the same time as mathematics. In science, facts have
the power of veto.

While the Greeks were unable to overcome chance, Pascal knew how to subject
chance to the laws of science. Pascal laid the foundation for the modern theory of
probability rooted in geometry. Pascal holds that

Truth is that “Idea” consisting of three facets:

• Grasp Truth by enquiry
• Prove it when grasped
• Contrast it with the False 7

According to Badiou “real life” is to live under the guidance of an “idea” (Éloge
des Mathématiques, Flammarion, Café Voltaire, 2015).

For Sergio, “real life” is a blend of Pascal’s spirit of geometry and Voltaire’s art
of persuasion.

7 On peut avoir trois principaux objects dans l’étude de la vérité; l’un, de la découvrir, quand on la
cherche, de la démontrer, quand on la possède, le dernier, de la discerner d’avec le faux quand on
l’examine (Blaise Pascal, Géometrie I).



CV of Sergio Albeverio

I was born in Lugano (Ticino, Southern Switzerland) on January 17, 1939. My
parents were Olivetta Albeverio née Brighenti (born in Rivera, Ticino), and Luigi
(Gino) Albeverio (born in Luino, Italy). My mother was a tailor and then housewife,
my father was a plumber, then owner of a small heating and plumbing firm.

I am married since 1970 with Solvejg Albeverio Manzoni, born in Arogno
(Ticino), an artist and writer. We have a daughter, Mielikki (Aglaja, Olivetta)
Albeverio, born in Lugano, Dipl. Social Sciences.

I grew up in Lugano, and after the Liceo, from 1958, I studied Mathematics
and Physics at the Eidgenössische Technische Hochschule (ETH) in Zürich, ending
in 1962 with a Diploma (Master) in theoretical physics, in the area of statistical
mechanics (generalized Ising models) under the supervision of Markus Fierz and
David Ruelle. I then continued at the “Seminar für Theoretische Physik” as Assistant
of Markus Fierz and Res Jost, getting the Dr. rer. nat. (Ph.D.) under their supervision
with work on mathematical physics (quantum mechanical scattering theory).

During the academic year 1967–68 I was a lecturer at Imperial College (IC)
London (with joint support of the Swiss National Foundation (SNF) and IC),
following invitations by Paul Matthews, Abdus Salam (Theoretical Physics) and
Ray F. Streater (Applied Mathematics). For family reasons (sickness and untimely
departure of my parents) I returned already in the course of spring to my own town,
taking up a job as mathematics and physics teacher at the local Liceo.

This was followed in the fall of ‘69 by a fellowship of the SNF, first at ETH
Zürich and then at Princeton University, where I then spent the years 1970–71 in the
Departments of Mathematics and Physics (as researcher associated with Arthur S.
Wightman and Edward Nelson).

From 1972 to 1977 I have been a visiting lecturer or professor at various
universities and institutes:

• University of Oslo (1972 and 1974–1977) with Raphael Høegh-Krohn,
• University of Naples (1973), Institute for Theoretical Physics, with Gianfausto

Dell’Antonio,
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• University and CNRS, Aix-Marseille (Luminy) (1976–78), with Daniel Kastler
and Raymond Stora.

During this period, I also gave lectures at various other institutes, including
summer schools at the University of Boulder (1971) and at the Advanced Study
Institute, Denver (1973), and a winter school in Karpacz (1975). I also lectured at the
IV. International Symposium on Information Theory, organized by R. L. Dobrushin
(1976 in Leningrad), a conference in Torún (1976), and a Cours de IIIème Cycle at the
École Polytechnique Fédérale de Lausanne (1977). Further stays and lectures I gave
in that period include a course on quantum mechanics at the Postgraduate School
of the Italian Mathematical Society in Catania (1977) and a series of lectures at the
University of Bielefeld and the Institute for Interdisciplinary Research (ZiF), where
Ludwig Streit organized a research year in 1975–1976.

In 1977 I got tenure as Associate Professor at the Department of Mathematics,
University of Bielefeld (in the section Analysis/Potential Theory). I remained asso-
ciated with that University in various ways since then, including the founding,
with Philippe Blanchard and Ludwig Streit, of the Research Center for Stochastic
Processes, BiBoS (initially funded by a five-year project of the Volkswagenstiftung),
and the membership in the scientific committee of ZiF.

In 1979 I became a full professor (Chair for Probability andMathematical Physics)
at the Ruhr-University Bochum. There I remained until 1997, when I moved to the
University of Bonn as a full professor with the Chair of Probability andMathematical
Statistics, where I still working (since 2007 as Professor Emeritus).

Both in Bochum and Bonn I have been member of several Collaborative Research
Centers (SFB) of the DFG and directed other collaboration projects of the DFG, and
of the European Community. I have also hosted over 30 scientists of the Alexander
von Humboldt Foundation, including several of their prize winners.

Moreover, I had with Hans Föllmer a long-ranging collaboration project of the
Volkswagenstiftungwith scientists coming fromcountries of the former SovietUnion
(in particular Russia, Ukraine, Uzbekistan). In Bonn Iwas also a foundingmember of
an Excellence Cluster in Mathematics which then gave rise in 2006 to the Hausdorff
Center for Mathematics (HCM), of which I have been first a steady member, and
then since 2020 an associate member. Furthermore, I founded and directed with
Volker Jentsch the Interdisziplinäres Zentrum für Komplexe Systeme (IZKS) of the
University of Bonn.

Besides carrying out the activities directly connected with my positions in
Germany, I had also long ranging commitments as visiting professor with several
universities and institutions. In particular I developed scientific collaborations and
activities in various countries within Europe, and outside, including long stays
in China (Beijing, Wuhan), Japan (Fukuoka, Hiroshima, Katata, Kyoto, Kyushu,
Kumamoto, Osaka, Sendai, Tokyo, Nagoya, Nara), Mexico (CINVESTAV), Russia
(St. Petersburg, Moscow), Saudi Arabia ( KFUPM Dharhan), Tunisia (Tunis).

A particular intensive collaboration with Universities and Institutes in Italy has
lead to further longer stays, especially at following places: Trento (University and
CIRM), Verona (University), Trieste (SISSA), Pisa (Scuola Normale Superiore and
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Centro de Giorgi), Universitá dell’Insubria (Como and Varese), Universitá di Roma
(La Sapienza and Tor Vergata), Universitá degli Studi, Milano (where since 2020 I
am also member of the Collegio di Dottorato).

In Switzerland from 1996 to 2009 I have been Professor and Director of the
Mathematics Department at the Accademia di Architettura in Mendrisio (founded
by Mario Botta); in 2015 I have organized and directed (with A. B. Cruzeiro and
D. Holm) a research semester on Stochastic Geometric Mechanics at the Bernoulli
Center of Mathematics, EPFL. With my region of origins, Canton Ticino, I also
maintained other connections, particularly as a scientific director of the research
center CERFIM in Locarno. With this center we organized several international
conferences in Locarno and Ascona, on themes from stochastic processes, geometry,
quantum physics, to fractals and biology.

I have given plenary talks at over 250 international conferences and workshops.
My publications include over 950 articles in scientific journals, 12 monographs,
and 40 volumes of proceedings. I have been/am on the editorial board of over
20 specialized journals or book series and served as scientific advisor of various
research centers (in Czechoslovakia, France, Portugal, Sweden, Switzerland, United
Kingdom). I have supervised over 110 Master’s Theses, supervised or co-supervised
over 70 Ph.D. Theses and 25 Habilitations.

Honors and Awards

• 2021: Socio Straniero della Accademia Nazionale dei Lincei (Foreign Member
of Accademia dei Lincei, Rome)

• 2021: Member of Academia Europaea (London)
• 2019: Conference in Honor of S. Albeverio for his 80th birthday, Verona

(publications in preparation, Springer Verlag)
• 2018: Doctor honoris causa, University of Stockholm
• 2015: Director (with A. B. Cruzeiro and D. Holm) of Research Semester on

GeometricMechanics, Variational and StochasticMethods, Centre Interfacultaire
Bernoulli (CIB), École Polytechnique Fédérale (Lausanne)

• 2011–2015: Excellence Chair Professorship in Mathematics, KFUPM (Dhahran)
• 2005: Plenary lecture for the 90th birthday of K. Itô, University of Oslo
• 2003: Prize for an interdisciplinary collaboration project on Extreme Events,

University of Bonn
• 2002–2010: Long-term Professorship (part time) “per chiara fama”, University

of Trento, and Research Leader of Project “Neurostochastics”
• Since 2002: Listed in International Statistics Institute (ISI) (Thomson) “Highly

Cited Researchers”
• 2002: Doctor honoris causa, University of Oslo (on the bicentennial of the birth

of Niels H. Abel)
• 2000: St. Flour Lecture (on the 30th anniversary of St. Flour Probability Lectures)
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• 2000: Conference in Honor of S. Albeverio for his 60th birthday, Max-Planck-
Institute for Mathematics in the Sciences (Leipzig, 2 volumes of Proceedings
on Stochastic Processes, Physics and Geometry, Eds: F. Gesztesy, H. Holden, J.
Jost, S. Paycha, M. Röckner and S. Scarlatti CMS Conference Proceedings, AMS
2000)

• 1999: Plenary lecture at Wiener Memorial Symposium, East Lansing
• 1998: Nomination for Professorship “per chiara fama”, University of Rome II

(Tor Vergata)
• 1995: Solomon Lefshetz Memorial Lecture, AMS and Mexican Math. Society,

Mexico City
• 1992: Max-Planck-Award in Mathematics (with. Z. M. Ma and M. Röckner)
• 1988: Plenary lecture at the International Congress of the Association of Mathe-

matical Physics (ICMP), Swansea; likewise in 1986 (Marseille), 1983 (Boulder),
1981 (Berlin), 1977 (Rome)

• Over 250 invited lectures at international conferences in mathematics, physics,
and applications and over 30 invited lectures in other areas of culture at various
Centers including ZiF, University of Bielefeld; Centro Monte Verità, Ascona,
Academia Vivarium Novum, Frascati; Centro Internazionale Insubrico “Carlo
Cattaneo” e “Giulio Preti”, Varese.



Links to Publications by Sergio Albeverio

• Webpage at Institute for Applied Mathematics, University of Bonn: https://wt.
iam.uni-bonn.de/albeverio/publications/

• Webpage at the Hausdorff Center for Mathematics, University of Bonn: http://
www.hcm.uni-bonn.de/people/profile/sergio-albeverio/

• Entry at MathSciNet: https://mathscinet.ams.org/mathscinet/search/author.html?
mrauthid=24435

• Entry at Mathematics Genealogy Project: https://genealogy.math.ndsu.nodak.
edu/id.php?id=23869

• Profile at ResearchGate: https://www.researchgate.net/profile/Sergio-Albeverio
• Entry at Wikipedia: https://en.wikipedia.org/wiki/Sergio_Albeverio
• Entry at Accademia dei Lincei (Roma), https://www.lincei.it/it/soci/categorie-sci

enze-fisiche or https://www.lincei.it/it/content/albeverio-sergio
• Entry at Academia Europaea (London), https://www.ae-info.org/ae/Member/Alb

everio_Sergio

File folder with list of Sergio Albeverio’s publications at Cloud service for orga-
nizing science in Nordrhein-Westfalen (Cloud-Service für den Wissenschaftsbetrieb
in Nordrhein-Westfalen) sciebo:

https://uni-bonn.sciebo.de/s/z37qK7ztMo7OQtZ
It contains pdf and source files originally arranged by Timo Weiss.

File folder with Sergio Albeverio’s CV at Accademia dei Lincei via Link:
https://uni-bonn.sciebo.de/s/x1MRANySz1WQ863
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Photo of Sergio Albeverio during the Conference in the honor of his 80th birthday “Geometry and

Invariance in Stochastic Dynamics”, Verona, Italy, March 25–29, 2019
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Photo of Sergio Albeverio’s daughter Mielikki Albeverio honoring Sergio with music during the

dinner of the Conference “Geometry and Invariance in Stochastic Dynamics”, Verona, Italy, March

25–29, 2019. The dinner took place at Villa San Michele in Valpolicella. Mielikki played and sang

“La Tarara”, from the collection “Cantares populares” by Federico Garcia Lorca, one of the poets

Sergio likes most.
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Non avevo purtroppo potuto partecipare all’ evento di Verona e dedico alle autrici
di questo bel volume per Sergio una dellemie incisioni, un po’ “alchemica”, intitolata
“Il giullare gioca insidiosamente con il sole”.

Solvejg Albeverio Manzoni

Etching by the artist Solvejg Albeverio Manzoni, for this volume
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