
Vol.:(0123456789)1 3

CEAS Aeronautical Journal 
https://doi.org/10.1007/s13272-022-00605-2

ORIGINAL PAPER

Numerical Whirl–Flutter analysis of a tiltrotor semi‑span wind tunnel 
model

Alessandro Cocco1 · Stefano Mazzetti1 · Pierangelo Masarati1  · Stefan van’t Hoff2 · Bart Timmerman2

Received: 26 January 2022 / Revised: 16 May 2022 / Accepted: 1 August 2022 
© The Author(s) 2022

Abstract
This work presents the modeling and preliminary Whirl–Flutter stability results achieved within the Advanced Testbed for 
TILtrotor Aeroelastics (ATTILA) CleanSky2 project. The project addresses the design, manufacturing, and testing of a semi-
span wind-tunnel model of the Next Generation Civil TiltRotor. The preliminary multibody models developed in support 
of the wind-tunnel testbed design are described, illustrating the modeling technique of each subcomponent of the model, 
namely the wing, the rotor, the blades, and the yoke. The methodologies used to analyze the stability of systems subjected to 
periodic aerodynamic excitation when the problem is modeled using full-featured multibody solvers are presented in support 
of Whirl–Flutter identification during wind-tunnel testing.

Keywords Tiltrotor · Wind-tunnel testing · Whirl–Flutter · Matrix pencil estimation · Periodic operational modal analysis · 
Aeroelasticity · Multibody dynamics

1 Introduction

Tilting rotor aircraft, or tiltrotor, with their outstanding capa-
bility of taking off and landing vertically like helicopters 
and, at the same time, of achieving high speeds—up to twice 
that of helicopters—in forward flight when operating like 
conventional turboprop aircraft, represent one of the few 
successful examples of advanced vertical lift configurations.

After a long development phase that encompassed few 
experimental aircraft that successfully made it to flight—
noticeably the Transcendental Model 1-G (a tilting rotor 
concept), which flew about 100 h without ever completing a 

full conversion [26] and the Bell XV-3 (a tilting rotor con-
figuration) in the 1950s [12], and the Bell XV-15 (a tilt-
ing rotor/nacelle configuration) in the 1980s [26], unlike 
other less fortunate technology demonstrators—the concept 
finally proved its soundness with the Bell-Boeing V-22 (a 
tilting rotor/nacelle configuration) [46], a military aircraft 
that after an almost 25 years long development phase, has 
been operated by the US Marine Corps with an increasing 
reward for the last 15 years, and is entering service for car-
rier onboard delivery (COD) in the US Navy. Remaining in 
the military arena, the Bell V-280 Valor (a tilting rotor con-
figuration) after a test campaign started in 2017 is currently 
under evaluation by the US Army for its Future Long-Range 
Assault Aircraft (FLRAA) program [13]. However, with the 
then Bell-Agusta and now Leonardo AW609 (a tilting rotor/
nacelle configuration) [36] about to become operational after 
long and thorough development [15], the tiltrotor design 
appears to be mature enough to enter also the civil air trans-
port market [1].

Nevertheless, tiltrotor design remains a rather challeng-
ing engineering task, considering the various operating con-
ditions and multipurpose missions that are expected to be 
accomplished by this complex type of aircraft. In particular, 
the problem of assessing Whirl–Flutter stability limits is at 
the same time fundamental and challenging. Whirl–Flut-
ter is an aeroelastic stability phenomenon that affects both 
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turboprop and tiltrotor aircraft [6]. When a rotor mounted 
on a flexible structure rotates, the normal vibration modes 
associated with the supporting structure may interact with 
the precession motion of the rotor.

When its motion is perturbed, each point on the rotor 
axis of rotation draws paths about its reference position. 
This motion changes the way each rotor blade is affected by 
the incoming airspeed, correspondingly altering the overall 
aerodynamic loads. At the verge of whirl flutter, when this 
phenomenon is triggered, perturbations result in a periodic 
orbit. The resulting forces can lead to the divergence of the 
system response, in what represents a truly aeroelastic insta-
bility [45].

Nowadays, although the key aspects of the phenomenon 
in tiltrotor aircraft are understood, the capability to predict 
it is still limited, despite the availability of sophisticated 
aeroelastic analysis tools. The difficulty lies in its depend-
ence on several factors, including the geometrical design, 
the structural properties, the dynamics of the actuators, etc. 
which can all contribute to the Whirl–Flutter characteristics 
in ways that are not always intuitive. The problem may be 
exacerbated when unconventional configurations are consid-
ered, as is the case of propeller- and rotor-driven advanced 
air mobility concepts [22].

Aeroelastic testing, especially when it concerns stabil-
ity and flutter, can be extremely dangerous. For this reason, 
wind-tunnel testing is needed to understand phenomena 
and increase the level of trust in predictions in support of 
their mandatory verification in flight. As a consequence, the 
possibility to validate numerical predictions using experi-
mental data is of paramount importance from an industry 
standpoint.

Wind-tunnel testing of tiltrotor configurations, and its use 
for validation and correlation with numerical predictions, 
has been widely used for tiltrotor development. Due to the 
need to aeroelastically scale also the wing portion of the 
model, of extreme miniaturization of the rotor—consider for 
example the need to reproduce in detail rather complex blade 
root attachments and pitch control mechanisms—aeroelastic 
wind-tunnel models of tiltrotor aircraft can be even more 
complex than helicopter ones.

Several wind-tunnel models have been developed to 
explore the concept of Whirl–Flutter in prop- and tiltrotor 
configurations. However, specific wind-tunnel testing of 
configurations that were intended to be tested in flight only 
dates back to the early development of the V-22 when a 1/5-
scale semi-span model was designed and manufactured by 
Bell and used for wind-tunnel tests and correlation with sim-
ulation capabilities available at that time [42]. Eventually, 
this model evolved in the Wing and Rotor Aeroelastic Test 
System (WRATS), which has been in use for several years to 
explore various aspects of tiltrotor aeroelasticity, including 
aeroelastic tailoring of the wing [10, 35], several parametric 

studies (e.g., in [40]), active control for flutter suppression 
[17, 25], an interesting four-blade, articulated soft-in-plane 
configuration for hub load reduction [33, 34], and several 
numerical studies of stiff- and soft-inplane configurations 
successfully correlated with experiments [29, 30, 48, 49].

Another effort towards the wind-tunnel testing of the aer-
oelastic stability of tiltrotors took place in Europe, within 
the EUROFAR program [21]. Subsequent efforts aimed at 
the development of an original European tiltrotor concept, 
ERICA [32]. This concept is characterized by the tilting of 
the outer portions of the wing, affected by the downwash 
of the rotor. These efforts resulted among the others in the 
project ADYN [5, 24], aimed at studying the aeroelasticity 
and the noise characteristics of the concept.

Currently, in the USA, a U.S. Army-coordinated pro-
gram called TRAST is ongoing for developing a testbed 
for tiltrotor aeroelasticity investigations [2, 23, 55–57]. 
Another effort is taking place at the University of Maryland, 
where a reconfigurable wind-tunnel tiltrotor model is being 
developed [11, 50, 53] and recently underwent preliminary 
Whirl–Flutter stability tests [19, 51].

At about the same time, yet another effort is ongoing in 
Europe, within the CleanSky2 initiative, within the project 
ATTILA, to design, manufacture and test a tiltrotor wind-
tunnel model in support of the Next-Generation Civil Tilt 
Rotor-Technology Demonstrator (NGCTR-TD), a fixed-
engine tilting rotor configuration. This paper illustrates the 
preliminary modeling efforts of the wind-tunnel testbed, as 
initially presented in [8, 9]. Preliminary studies were also 
conducted in [18]. Numerical models of the reference test-
bed have been developed using FLIGHTLAB1 and MBDyn2 
[28], respectively, by collaborating research teams at the 
Royal Netherlands Aerospace Centre (NLR) and Politecnico 
di Milano. To the authors’ knowledge, a direct correlation 
of Whirl–Flutter results from the two solvers has not been 
published elsewhere.

These numerical models are developed in support of the 
design of the physical wind-tunnel testbed. Pending experi-
mental characterization of the ATTILA testbed dynamics 
and Whirl–Flutter stability properties, code-to-code verifica-
tion results are here presented, compared with data obtained 
from a reference CAMRAD II model of the full-scale air-
craft. In addition to component-level models verification, 
preliminary Whirl–Flutter predictions are presented. In this 
context, the Matrix Pencil Estimation (MPE) and Periodic 
Operational Modal Analysis (POMA) eigensolution identi-
fication methods are used and compared for the first time, to 
the authors’ knowledge.

1 http:// www. fligh tlab. com/, last accessed September 2021.
2 http:// www. mbdyn. org/, last accessed September 2021.

http://www.flightlab.com/
http://www.mbdyn.org/
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2  Materials and methods

2.1  FLIGHTLAB

FLIGHTLAB is a state-of-the-art multibody, component-
based, selective fidelity modeling and analysis software 
package. It supports modeling and simulation of rotor-
craft, fixed-wing aircraft, compound aircraft, helicopters, 
multi-copters, drones, flying cars and experimental aircraft 
configurations. Rotorcraft and other aircraft models can be 
developed to fit their application with the desired level of 
fidelity. The numerical models can be used for engineer-
ing analysis, real time simulation, or both. The develop-
ment system is also used to generate run-time models for 
real time applications. The key capabilities of the software 
include:

– Multiple bodies, multibody dynamics
– Nonlinear unsteady aerodynamics
– Flight dynamics and real time simulation (including 

piloted, full flight simulators)
– Flight performance, stability, controllability, and han-

dling qualities
– Aeroelastic stability, vibration, and loads
– Aircraft systems analysis and hardware-in-the-loop 

(HIL) simulation
– Coupling with external programs, including CFD and 

Matlab/Simulink

The Whirl–Flutter analysis is usually performed through 
direct linearization of the problem about a steady trim 
solution, using central difference perturbation of the first- 
and second-order degrees of freedom. This technique per-
mits to identify the wing-pylon, drive system and rotor 
modes, providing valuable information about the underly-
ing dynamics.

A nonlinear transient analysis resulting from the appli-
cation of appropriate excitations, replicating the expected 
wind-tunnel test procedure, has also been implemented 
to verify the results of the linearized stability analysis, 
investigate various experimental excitation strategies, and 
determine the required excitation magnitude and the asso-
ciated structural loads.

2.2  MBDyn

MBDyn is a general-purpose multibody solver, developed 
at the Aerospace Science and Technology department of 
Politecnico di Milano and distributed as free software.

MBDyn automatically writes and solves the equations 
of motion of a system of entities possessing degrees of 

freedom (nodes) connected through algebraic constraints 
and subjected to internal and external loads. Constraint 
equations are explicitly accounted for, following a redun-
dant coordinate set approach. Thus, the resulting system 
of Differential-Algebraic Equations (DAE) takes the form 

 where x is the vector of the kinematic unknowns, p that of 
the momentum unknowns, � that of the algebraic Lagrangian 
multipliers, � is a configuration- and time-dependent inertia 
matrix, fi , fe are arbitrary internal and external forces, �(x) 
is the vector of the (usually nonlinear) algebraic equations 
that express kinematic (holonomic) constraints, and �∕� is 
the Jacobian matrix of the constraints with respect to the 
kinematic unknowns. Each node instantiates the correspond-
ing balance equations (1b), while only nodes with associ-
ated inertia properties instantiate the related momenta defi-
nitions (1a). Additional states associated with scalar fields 
(namely, hydraulic pressure, temperature, electric potential) 
and thus the corresponding balance equations, can be taken 
into account through dedicated sets of nodes.

Elements are responsible for the contributions to the 
balance equations through (visco-)elastic, internal forces 
�i , possibly state-dependent external force fields �e (e.g., 
aerodynamic forces), and reaction forces fc = �T

∕x
� , intro-

duced using the Lagrange multipliers � and the Jacobian 
matrix of the algebraic constraint equations in Eq. (1c).

The DAE system can be integrated using several dif-
ferent A/L stable integration methods, among which is an 
original multistep method with tunable algorithmic dis-
sipation, specifically designed for the class of problems 
usually solved with MBDyn.

The stability analysis of a nonlinear multibody model, 
formulated in an absolute reference frame, is critical since 
the problem may be time-variant. In principle, since in the 
configuration under analysis, the flow is essentially axial, 
this specific problem could be reduced to time-invariant 
through the so-called multiblade coordinates, with the pos-
sibility to determine a steady solution, when asymptoti-
cally stable, for its linearization and analysis using meth-
ods for linear, time-invariant (LTI) problems. However, 
owing to the flexibility of the wing and the opportunity to 
trim the aircraft at non-zero angles of attack, at the trim 
point the flow might not be perfectly axial; furthermore, 
aerodynamic interferences between the rotor and the wing 
may break the symmetry of the axial flow, introducing 1/

(1a)�(x, t)ẋ = p

(1b)ṗ = �T
∕x
� + fi(ẋ, x, t) + fe(ẋ, x, t)

(1c)0 = �(x),
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rev periodicity in the motion of each blade, and Nb/rev 
periodicity in the overall response of the system.

It is thus convenient to use methods specifically designed 
to address problems of this kind. A typical approach, based 
on Floquet’s theory as introduced in the stability analysis 
of rotorcraft by Peters & Hohenemser in 1971 [38], evalu-
ates the stability of linear, time-periodic (LTP) problems. It 
requires the integration of the state transition matrix of the 
problem over a revolution, which is called the monodromy 
matrix; this is often impractical when using multibody solv-
ers, which formulate the problem as a large number of non-
linear DAEs, as discussed in [4]. A generalization of Flo-
quet’s approach to nonlinear, aperiodic problems, possibly 
subjected to random excitation, has been recently proposed 
in [52], based on Lyapunov’s theory of characteristic expo-
nents (LCE); however, the applicability of this method to 
systems of DAE is still debated [27], and hardly practical 
from a computational viewpoint for large systems. An inter-
esting approach, based on the proper orthogonal decomposi-
tion (POD) of snapshots of large sets of coordinates of the 
problem, taken during free-response transients at each rotor 
revolution has been proposed in [43] and successfully used 
with MBDyn. The equivalents of Floquet’s characteristic 
coefficients are obtained from the eigenanalysis of a matrix 
that corresponds to Floquet’s monodromy matrix, resulting 
in a least-squares fitting of the snapshots.

All the previously mentioned methods can, to a different 
extent, evaluate the “contraction” characteristic of the free 
response of the system (e.g., the real part of the eigenval-
ues, when defined, or the characteristic coefficients of Flo-
quet’s theory, or the characteristic exponents of Lyapunov’s 
theory), but some are unable to determine its periodicity, 
when the free response is oscillatory [4, 43, 52], while others 
suffer from limitations in the interpretation of the imagi-
nary part of the eigenvalues of the monodromy matrix [38], 
although attempts have been made to overcome them (see 
for example [39]).

In this work, two somewhat complementary approaches 
are followed:

– Matrix Pencil Estimation (MPE), used to retrieve the 
main wing modes;

– Periodic Operational Modal analysis (POMA), used to 
take into account the periodicity of the system to extract 
not only the wing’s normal modes, which represent fun-
damental harmonics of the system’s free response, but 
also the corresponding superharmonics, namely the fun-
damental harmonic plus or minus integer multiples of the 
rotor angular velocity, resulting from the interaction with 
the rotor itself.

The workflow of the two methods is sketched in Fig. 1, 
from the MBDyn simulation results to frequency and 

damping, identified by both methods, and participation 
factors and mode shapes, only reconstructed by POMA. 
The details of each process are discussed in the following 
sections.

2.2.1  Matrix pencil estimation

The Matrix Pencil Estimation method (MPE) was designed 
by Hua et al. [20] to estimate parameters of exponentially 
damped or undamped sinusoids in the presence of noise. 
A multiple-input algorithm was subsequently proposed by 
Favale et al. [41], who applied the methodology also to 
more complex problems, such as tiltrotor Whirl–Flutter 
analysis. The method can estimate the modal parameters 
of a system from its free responses to external input.

Starting from a multibody simulation of the complete 
semi-span tiltrotor wind-tunnel model, excited using a 
sinusoidal input at the swashplate, all the available strain 
values in the beam elements and accelerations of the nodes 
are extracted. A selection process is then performed to 
ensure reliable identification and select the most mean-
ingful data. After simple data pre-processing, consisting 
of filtering and re-sampling, the identification algorithm 
is applied to compute the system poles. A further post-
processing step involving the creation of stabilization dia-
grams, as suggested in [41], is finally executed to evaluate 
the quality of the identification process and retrieve the 
desired results, such as frequency and damping ratio.

The MPE method can estimate the modal parameters of 
a system starting from its free response to external finite 
input. A general response signal y(t) will be composed 
of two contributions: the system free decay x(t) and an 
unknown noise n(t) . In discrete-time, the signal can be 
written as:

where N is the total number of samples obtained using a 
sampling frequency f = 1∕dt . According to the above 
hypothesis, the response signal of the system in discrete 
time can be approximated as a sum of complex exponentials:

where M is the order of the system and zi is equal to:

The free-response of the system can be described by its 
modal parameters: the complex amplitude Ri and poles si , 
with frequencies �i and damping ratios �i . The aim is then 

(2)y(k) = x(k) + n(k) k = 0, 1,… ,N − 1

(3)y(k ⋅ dt) ≈

M∑
i=1

Riz
k
i
+ n(k ⋅ dt) k = 0, 1,… ,N − 1

(4)zi = esidt = e

�
−�i�i+j�i

√
1−�2

i

�
dt
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to find these parameters from the recorded response of the 
system. Starting from the noiseless signal x(k) a rectangu-
lar Hankel matrix with dimensions (N − L) × (L + 1) can be 
created:

where L is called the pencil parameter, which should be 
smaller than (N − 1) . Two matrices will be then created, 
excluding the first and the last column of X:

The matrices �1 and �2 can be re-written as:

where the matrices R , Z0 , Z1 , and Z2 are functions of the 
complex amplitudes Ri and system’s poles zi:

(5)� =

⎡⎢⎢⎢⎣

x(0) x(1) … x(L)

x(1) x(2) … x(L + 1)

⋮ ⋮ ⋱ ⋮

x(N − L − 1) x(N − L) … x(N − 1)

⎤⎥⎥⎥⎦

(6)�1 = �(∶, 1 ∶ L) �2 = �(∶, 2 ∶ L + 1)

(7)�1 = �1��0�2 �2 = �1��2

(8)� = diag{R1,R2, ...,RM}

Consequently, from Eq. (7):

It can be demonstrated that M is the rank of the matrix pen-
cil if M ≤ L ≤ N −M and the diagonal elements of �0 are 
the eigenvalues of the matrix pair �2 and �1 . Finding the 
system’s poles reduces to solving the following eigenvalue 
problem:

(9)�0 = diag{z1, z2, ..., zM}

(10)�1 =

⎡
⎢⎢⎢⎣

1 1 … 1

z1 z2 … zM
⋮ ⋮ ⋮ ⋮

zN−L−1
1

zN−L−1
2

… zN−L−1
M

⎤⎥⎥⎥⎦

(11)�2 =

⎡⎢⎢⎢⎣

zL−1
1

zL−2
1

… 1

zL−1
2

zL−2
2

… 1

⋮ ⋮ ⋮

zL−1
M

zL−2
M

… 1

⎤⎥⎥⎥⎦

(12)�2 − ��1 = �1�
(
�0 − ��

)
�2

MBDyn simulation

Data selection
and preprocessing

MPE

Stabilization Diagram

POMA

Generate EMP Signals

SSI (Displacements)SSI (Strains)

– Frequency
– Damping

Participation Factor Mode Shape

Fig. 1  Flowchart of the identification methods
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The same procedure described here holds for signals dis-
turbed by noise. Hua et al. [20] suggested that to obtain the 
best results the parameter L should be chosen as high as 
possible but limited between N/3 and N/2. After creating the 
block Hankel matrix of the collected responses, � , a funda-
mental step is to perform its singular value decomposition. 
Then, a new set of filtered matrices can be obtained by trun-
cating the matrices at the first dominant values. From their 
analysis, it is possible to determine, in first approximation, 
the order of the system M: when using very high signal-to-
noise ratio data, the first M singular values can be of orders 
of magnitude greater than the others. However, when very 
noisy signals are considered, the singular values relative to 
effective system contribution do not significantly stand out 
among all the others. In this case, after having normalized 
the singular values, a possible approach is to compute their 
first derivative and identify the order corresponding to its 
maximum value. For simplicity, the previous discussion was 
performed considering a single input response. However, the 
algorithm can be easily extended to multiple input channels 
considering a matrix of responses � instead of a column 
array.

2.2.2  Periodic operational modal analysis (POMA)

Rotorcraft modal identification is typically performed in non-
rotating coordinates by applying a multiblade coordinate trans-
formation (MBC). However, when dealing with real-world 
problems, several practical issues may arise due to, e.g., small 
anisotropy of the rotor blades, or slightly different axial posi-
tion of the sensors on each blade. Furthermore, when perform-
ing a periodic stability analysis, richer insight into the system 
behavior can be retrieved: for each harmonic contribution cap-
tured with the MBC transformation approach, a (theoretically) 
infinite number of sub- and super-harmonics is obtained, each 
with its participation factor.

The algorithm called Periodic Operational Modal Analysis 
(POMA), originally proposed by Wereley and Hall [54], is 
used in this work. It is based on the harmonic transfer func-
tion concept, namely the periodic counterpart of the frequency 
response function for LTI systems. Wereley defined a new fun-
damental signal space for periodic systems, containing the so-
called exponentially modulated periodic signals (EMP). These 
have been defined as the complex Fourier series of a periodic 
signal of frequency �p , modulated by a complex exponential 
signal:

(13)
(
�H

1
�1

)−1
�H

1
�2 − ��

(14)u(t) =
∑
n∈Z

une
snt

where sn = s + nj�p , and un are the Fourier coefficients of 
u(t). The harmonic transfer function can be defined as:

The output can be expressed as:

where Ω = 2�∕Trev is the characteristic frequency of the sys-
tem (i.e. the frequency of rotation of the rotor in the case of 
a tiltrotor), and Y(�) is the Fourier transform of y(t).

In theory, to consider all the harmonics that characterize a 
linear time-periodic (LTP) system, �(�) should be an infinite 
matrix. However, for most applications, a satisfactory approxi-
mation can be obtained with (often quite) a limited number of 
harmonics. Wereley also showed the expression of the har-
monic transfer function in terms of modal parameters of the 
state transition matrix:

where � is the direct transmission term. The terms �̄r,l and 
�̄r,l are the Fourier coefficients obtained from the expansion 
of the following matrices:

where � r(t) and �r(t)
T are defined as:

and matrix �(t) can be computed as the product of �(t) and 
a matrix � containing the eigenvectors of the Floquet [14] 
factor �.

The power spectrum of the output �yy(�) can be expressed 
as a function of the harmonic transfer function:

Note that in this case, �yy(�) is the power spectrum of the 
output signals of the system which have been previously 
exponentially modulated to be able to apply the relation of 
Eq. (15).

Substituting Eq. (18) into (21) and setting � to zero:

(15)y(�) = G(�)u(�)

(16)y(�) =
[
… yT

−1
yT
0
yT
1
…
]

(17)

=
[
… Y(� − Ω)T Y(� − Ω)T Y(� + Ω)T …

]
where Ω =

2�

Trev

(18)�(𝜔) =

N∑
r=1

∞∑
l=−∞

�̄r,l�̄r,l

i𝜔 − (𝜆r − il𝜔p)
+ �

(19)

�(t)� r(t) =

∞∑
n=−∞

C̄r,ne
in𝜔pt �r(t)

T�(t) =

∞∑
n=−∞

B̄r,ne
in𝜔pt

(20)� j(t) = colj(�(t)) �T
j
(t) = rowj

(
�−1(t)

)

(21)�yy(�) = �(�)�uu(�)�(�)H

(22)

𝐒yy(𝜔) =

N∑
r=1

∞∑
l=−∞

N∑
s=1

∞∑
k=−∞

�̄�r,l𝐖(𝜔)r,s,l,k�̄�
H
s,k[

i𝜔 − (𝜆r − il𝜔p)
][
i𝜔 − (𝜆s − il𝜔p)

]H
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where

�(�) is a function of the input spectrum and the input char-
acteristics of the system. Equation (23) shows that the auto-
spectrum of the output can be approximated by a sum of 
modal contributions if �(�) is reasonably flat at least for the 
band of interest of a specific mode. A further simplification 
can be introduced with the assumption of suitably separated 
modes reducing Eq. (22) to:

The expression in Eq. (24) can be compared to the one for 
the power spectrum of an LTI system:

Equations (25) and (24) show that the peak related to any 
super-harmonic of a given mode can be viewed as the peak 
of a mode of a generic LTI system. Standard identification 
techniques can then be used to compute frequencies, damp-
ing factors, and modal shapes from the measured spectra.

Under the assumption that the input spectrum is rel-
atively flat in the range of frequencies of the modes of 
interest, the ATTILA wing-pylon model in MBDyn was 
excited by superimposing a white noise disturbance to all 
the components of the wind speed. The resulting strains 
and displacements were pre-processed to retrieve zero-
mean signals, which were then exponentially modulated. 
Finally, a Stochastic Subspace Identification (SSI) [7, 44] 
algorithm was applied to identify the frequency and damp-
ing from the strains to remove the rotor periodicity, and the 
mode shapes from the displacements. Using displacement 
signals allowed to extract mode shapes of the system and 
better visualize the system’s deformation. This result is not 
easy to achieve for a complex multibody system. However, 
the procedure can become increasingly computationally 
expensive when a huge number of degrees of freedom are 
considered. Additionally, to retrieve accurate and reason-
able mode shapes, a selection of the input data for the 
algorithm is not always feasible, increasing the odds of 
encountering clusters of modes, also considering the pos-
sible presence of noisy data in the identification process. 
When performing the analysis using strain measurements 
is easier to isolate modes’ contributions, minimizing the 
possibility of overlapping modes by carefully selecting 
data among all available measurement channels. For the 
frequency and damping identification of wing, blade and 
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yoke strain measurements were employed. Note that for 
the extraction of mode shapes and other modal param-
eters, both rotating and non-rotating measurements were 
used in the same identification process. As a consequence, 
the computed rotor-related frequencies are expressed in a 
rotating reference frame.

In short, the steps of the identification algorithm are:

– record the response y(t) of the system to a broadband 
input;

– exponentially modulate the response y(t) to generate the 
signals ŷn(t) = y(t)e−in𝜔pt . The value of n is in the range 
[−(nh − 1)∕2, (nh − 1)∕2] , where nh is the maximum 
number of Fourier coefficients, equal to the number of 
harmonics, used to approximate the periodicity of the 
system;

– compute the autospectrum of ŷ(t) using a standard 
approach (e.g., Welch’s method);

– apply classical identification techniques to extract the 
system modal parameters. In this work, a covariance-
driven stochastic subspace identification (cov-SSI) algo-
rithm has been applied.

3  Model description

The entire model can be divided into two main subcompo-
nents: the wing-pylon assembly and the rotor. A render of 
the ATTILA multibody model is showed in Fig. 2.

3.1  Wing‑pylon model

The wing-pylon model has been developed to reproduce the 
fundamental frequencies and mode shapes of an equivalent 
finite element stick model tuned to match the full-scale air-
craft dynamics at the rotor hub.

Fig. 2  ATTILA model
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3.1.1  FLIGHTLAB

The FLIGHTLAB model contains 16 elastic beam segments 
for the wing and 4 beam segments for the nacelle. The wing 
airloads are modeled using an enhanced lifting line model 
with a Peters-He [37] finite-state dynamic inflow model.

Each structural beam segment is connected to a quasi-
steady airloads component, which uses 2D (AoA, Mach/
Reynolds) look-up table data to calculate the airloads.

The connection between the wing and the nacelle is mod-
eled by three torsional spring-damper components, collo-
cated and connected in series.

The shaft tilting hinge is modeled by a gimbal hinge, 
with a pitch-yaw stiffness that can be changed at run-time 
to switch between the downstop ON and OFF configurations 
(see Figs. 3 and 4).

3.1.2  MBDyn

The wing model consists of 3 finite volume three-node beam 
elements [3, 16] for the stiffness part, and one body element 
for each node to model the inertial component. The nacelle 
part is divided into a tilting and a non-tilting part, both mod-
eled as rigid bodies.

The parts are connected with deformable joints, which 
represent the flexibility of downstop and wing-pylon 
attachment. The aerodynamic loads are introduced through 
MBDyn’s aerodynamic beam elements, based on simple 
strip theory, each linked to the corresponding structural 
element.

3.2  Rotor model

The ATTILA proprotor is a three-bladed stiff-in-plane rotor 
with a gimballed hub. It consists of the control chain, three 
blades, and the yoke.

3.2.1  FLIGHTLAB

In FLIGHTLAB, the blade is modeled using elastic beam 
components. The beam axis of each finite element is defined 
by the locus of shear centers (the elastic axis) of the physical 
blade. Appropriate sweep and droop rotations are applied to 
approximate the position of the elastic axis relative to the 
feathering axis.

The aerodynamics of the blade are modeled using look-up 
tables with a correction for unsteady circulatory effects. The 
transition between the airfoils is non-smooth. Provisionally, 
the induced velocity is modeled as a uniform inflow with the 
Glauert distribution.

The blade is connected to the yoke at two locations, at 
the inner and outer bearings. This creates a dual load path. 
The FLIGHTLAB solver is single load path-based, where 
calculations are performed sequentially from the blade tip 
towards the rotor hub. To facilitate the modeling of the dual 
load path resulting from the combination of blade and yoke, 
the root end of the blade is modeled as a separate beam, 
inverted and connected at the physical root via two-parent 
springs representing the inner bearing. In this setup, the root 
of the torque tube acts as a second “blade tip” as far as the 
solver is concerned.

The main “blade” load path consists of the yoke segments 
and the blade segments outboard from the outer bearing. The 
torque tube load path consists of the blade segments between 
the inner and outer bearings. The outer bearing is modeled 
as a series of three hinges with zero spring stiffness, allow-
ing rotation around all three axes but constraining transla-
tion. Due to the single load path nature of the FLIGHTLAB 
solver, the inner bearing cannot be modeled as a hinge-slide 
combination. Instead, two perpendicular rigid flap/lag off-
sets are located at the inner bearing, perpendicular to the 
yoke. The inboard end of the torque tube is then connected to 
the rigid offsets through two two-parent translational linear 
spring-dampers that only constrain translation. The springs 
have been assigned high stiffness to approximate a rigid con-
straint. Both the springs and the rigid offsets are identical in 
length. The length of the spring is arbitrary but large enough 
to minimize the spring restraint in the axial direction of the 
yoke in the presence of relative displacements/rotations.

As mentioned, there are two offset/spring combinations: 
one in the flapwise and one in the edgewise direction. In 
this way, translation of the inboard end of the torque tube is 
constrained to the yoke at the inner bearing location, in both 
the flapwise and edgewise directions. Due to the length of 

Fig. 3  Wing-pylon connection scheme

Fig. 4  Wing-pylon model
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the springs and rigid offsets, the angle between them will 
be small, resulting in very small off-axis forces. As such, 
translation in the spanwise direction is nearly unobstructed, 
whereas rotation is free in all axes (see Fig. 5).

The control chain is modeled as a conventional swash-
plate arrangement. The rotor hub is rigidly connected to the 
tip of the pylon shaft when analyzing the half-wing model 
and rigidly connected to the inertial system when analyz-
ing the isolated rotor. A bearing component drives the rotor 
rotation over the gimbal, which is connected to the yoke via 
an underslung offset.

The swashplate is located above the hub, connected via a 
rigid offset. The non-rotating swashplate node is connected 
to the pylon through a translational linear spring-damper, 
representing the collective spring stiffness of the control 
chain. A collocated gimbal hinge with spring-damper effects 
models the cyclic pitch spring stiffness.

The non-rotating swashplate node translates along the 
shaft axis, following the collective input through a controlled 
slider. Azimuthal rotation of the rotating swashplate node is 
achieved by a controlled hinge, which is slaved to the rota-
tional speed of the hub. The swashplate mass is fixed to the 
rotating swashplate node and is required to avoid a singular 
matrix during linearization. Each pitch link is connected to 
the rotating swashplate and offset from the shaft through azi-
muthal rotation and rigid translation. Cyclic control inputs 
are introduced at the root end of the pitch links through a 

controlled slider. A two-parent linear spring-damper repre-
sents the pitch link stiffness and is connected to the pitch 
horn on the blade. The pitch link spring does not constrain 
rotation.

3.2.2  MBDyn

The blade and the yoke are modeled in MBDyn using the 
three-node beam element, similar to the modeling of the 
wing (Fig. 6).

To describe the orthotropy of blade and yoke, the stiff-
ness matrix of the beam sections incorporates the offsets and 
relative rotations between the feathering axis and the neutral 
and elastic axes.

The aerodynamic model is constructed using MBDyn’s 
aerodynamic beam. Each aerodynamic panel can incorporate 
aerodynamic twist variation and airfoil transitions. Along 
the blade, six airfoils are placed with a non-smooth transi-
tion. The rotor aerodynamics are completed by a uniform 
inflow model, based on momentum theory with Glauert’s 
distribution and empirical corrections for tip loss and other 
standard airflow features. The resulting model represents 
a low-fidelity description of the rotor aerodynamics; how-
ever, in the tiltrotor aeromechanics literature, it is considered 
adequate for Whirl–Flutter. Future investigation will also 
consider mid-fidelity aerodynamics, involving the Vortex-
Particle Method (VPM) presented in [47].

The blade is connected to the yoke in two locations, at 
the inner and outer bearing. In MBDyn, these two bearings 
are modeled with ideal rigid constraints: for the inner one, 
both flapwise and chordwise displacements are constrained, 
whereas for the outer, all three components of translation 
are constrained.

The control chain has a traditional helicopter-like con-
figuration: it is formed by seven MBDyn nodes joined fol-
lowing the scheme of Fig. 7:

– Pylon: this node physically connects the pylon extrem-
ity and the rotor; when the isolated rotor is analyzed, this 
node is clamped.

– Airframe: this node receives the commanded collec-
tive and cyclic pitch controls. To decouple the two cyclic 
inputs, the node is positioned on a reference system that 
is rotated by the angle �sp = tan−1(xsp∕ysp) , where xsp and 
ysp are the locations of the pitch link attachment to the 
swashplate.

– Fixed Swashplate: this node’s in-plane displace-
ment components and axial rotation are rigidly con-
strained to the airframe. To take into account the flex-
ibility of the control chain, a collective spring, and two 
cyclic springs are positioned in between the airframe 
node and the fixed swashplate.

Fig. 5  FLIGHTLAB dual load path blade modeling approach. Nodes 
(white), hinge (red), yoke segments (yellow), blade segments (blue) 
and torque tube segments (green)

Fig. 6  MBDyn rotor model: engine (purple), yoke (green), mast 
(red), swashplate (cyan), blade (blue), pitch link (magenta)
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– Rotating Swashplate: this node is connected to 
the fixed swashplate by a revolute hinge, and its axial 
rotation is constrained to the mast.

– Engine: this node is connected to the mast by a tor-
sional spring to reproduce the drive-train dynamics.

– Mast: this node transmits the rotation to the hub and the 
rotating swashplate. It is connected to the pylon node by 
a revolute hinge.

– Hub: This node is constrained to the mast node by a 
spherical hinge and a gimbal rotation constraint: these 
two combined elements create an ideal constant velocity 
joint.

4  Results

4.1  Model validation

4.1.1  Wing‑pylon

To validate the wing-pylon model, a modal analysis has been 
performed comparing the frequencies and mode shapes of 
both the MBDyn and FLIGHTLAB models with a target 
NASTRAN stick model.

In the NASTRAN model, the wing is modeled with 12 
CBAR elements (two-node beam elements), whereas the 
nacelle is modeled with 4 CBAR elements. Lumped stiffness 
elements are used to join the two subcomponents. Compared 
with the NASTRAN model, the MBDyn model of the wing 

is discretized with a smaller number of beam elements (3, 
with 6 nodes vs. 12); instead, the FLIGHTLAB model is a 
one-to-one translation of the NASTRAN model.

At this stage, the comparison of the mode shapes is based 
on the Modal Assurance Criterion (MAC) defined by 
Eq. (26). In this equation, �FEM

i
 represents the ith mode 

shape calculated using the original finite element stick 
model, whereas the term �MBD

j
 represents the jth mode shape 

obtained from the two multibody codes.

The MAC matrix is presented in Fig. 8. The closer the matrix 
is to identity, the closer the results are. The differences 
between the results obtained from MBDyn and FLIGHT-
LAB and those from NASTRAN appear to be negligible. 
Close inspection of the 6-DOF mode shape at the location 
of the rotor hub confirms the rather satisfactory correlation.

4.1.2  Rotor

To validate the dynamic behavior of the rotor, its frequencies 
in vacuo (i.e., neglecting aerodynamic loads) at different 
collective pitch settings have been evaluated and compared 
to the fan plots obtained with an equivalent full-scale CAM-
RAD II rotor model.
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Fig. 7  Flowchart of blade pitch 
control system components and 
their connections
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Moreover, the rotating blade mode shapes have been com-
pared for different collective angles and with and without the 
presence of the drive train system. Remarkably good agree-
ment has been obtained between the three models, despite 
their relative complexity.

4.1.3  Trim procedure

The trim targets depend on the configuration being investi-
gated but are identical for both FLIGHTLAB and MBDyn.

Power-on trim is based on prescribing the desired rpm 
and finding the collective and cyclic pitch controls that 
achieve a target thrust and zero cyclic gimbal flap angle, 
increasing the airstream speed until the maximum torque 
is reached. From that point on, while the airstream speed 
is increased further, a constant torque trim is maintained to 
represent a steady powered descent.

During power-off trim, the rotor is de-clutched from the 
engine (i.e., no torque is transmitted), and the rotor speed 
is held constant by acting on the collective pitch while the 
airstream speed is increased.

In FLIGHTLAB, trim is achieved by a gradient-based 
iteration process. In power-off trim, the requested rotor speed 
is frozen at the target value while the swashplate controls are 
adjusted to achieve an average rotor azimuthal acceleration 
equal to zero. Post-trim, the rotor speed degree of freedom 
is released and the collective is fine-tuned to achieve the 
desired steady power-off rotor speed.

In MBDyn, power-on trim is achieved by starting from 
an initial guess of the collective angle and then applying the 
desired torque at the engine side. The desired rotor speed 
is maintained using a PI controller that sets the required 
swashplate collective as a function of the errors on the rotor 
angular velocity and its integral. The power-off condition is 
achieved by simply setting the applied torque to zero.

Figure 9 presents a comparison of the trim results for the 
power-on configuration. The results are presented in normal-
ized form due to company confidentiality reasons.

4.2  Whirl–Flutter prediction

Whirl–Flutter results mainly concern the low-frequency 
modes that characterize the aeroelasticity of the model in 
the configuration that will be tested in the wind tunnel, that 
is the wing flatwise and chordwise bending modes (respec-
tively, called “wing bending” and ”wing chord’ in the fol-
lowing), the ”wing torsion” mode, and the “pylon-yaw” 
mode. The latter mode is characterized by substantial par-
ticipation of a rotation of the pylon-nacelle body relative to 
the wing about an axis loosely normal to the wing surface. 
This latter mode is particularly sensitive to the locking of the 
downstop mechanism. The focus is on evaluating the damp-
ing associated with those modes as the wind tunnel speed 
is increased and its sensitivity to several parameters of the 
problem, with particular attention on the prediction capabili-
ties and accuracy of the algorithms considered in this work.

Figure 10 shows the Whirl–Flutter stability predictions 
for the power-on configuration with the downstop engaged. 
The figure compares the modes obtained in FLIGHTLAB 
through a direct linearization and those obtained by apply-
ing the Periodic Operational Modal Analysis to MBDyn’s 
results.

Fig. 8  Wing-pylon downstop ON MAC comparison of MBDyn and 
NASTRAN

Fig. 9  Trim comparison between CAMRAD  II, FLIGHTLAB and 
MBDyn
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Figure 11 compares the damping factors computed by 
MPE and POMA, the two identification algorithms applied 
to MBDyn’s results, in the power-on configuration.

Figures 12 and 13 show analogous results, but now in the 
power-off configuration.

4.3  POMA mode shapes

The stability analysis of a complex non-linear system 
modeled using the multibody approach cannot be easily 
addressed using analytical methods based on a linearized 
expression of the governing equations. This problem has 
been previously addressed, in analogy to what is done here, 
extracting the characteristics of the system from numerical 
experiments. In [31], the stability properties of a complete 
tiltrotor multibody model were computed using the previ-
ously mentioned POD-based approach [43].

The method used in this work, however, has the benefit 
of extracting a prescribed number of periodic mode shapes 

starting from the main harmonic contribution in the col-
lected data. The results will be presented independently for 
each identified wing mode. For each of them, the visualized 
mode shape and the participation factors computed perform-
ing the analysis using strain measurements are compared. 
This additional check allowed to verify the agreement of the 
results of the two analyses. Furthermore, after having per-
formed this comparison, it was easier to identify the modes 
looking at the patterns of the extracted participation factors 
�jn

 that are calculated as:

where �jn
 is the j − th eigenvector associated to the n − th 

harmonics.
As an example, the wing bending mode is considered. 

The channels used in the identification process are the 
wing root out of plane bending moment and additional 

(27)�jn
=

‖�jn
‖∑

n ‖�jn
‖

Fig. 10  Power-ON configuration: comparison between FLIGHTLAB 
and MBDyn identified through POMA. Wing bending (red), wing 
chord (blue), wing torsion (black) and pylon-yaw (cyan)

Fig. 11  Power-ON configuration: comparison between MBDyn 
POMA and MPE results. Wing bending (red), wing chord (blue), 
wing torsion (black) and pylon-yaw (cyan)

Fig. 12  Power-OFF configuration: comparison between FLIGHT-
LAB and MBDyn results identified through POMA. Wing bending 
(red), wing chord (blue), wing torsion (black) and pylon-yaw (cyan)

Fig. 13  Power-OFF configuration: comparison between MBDyn 
results from POMA, MPE, and POD. Wing bending (red), wing 
chord (blue), wing torsion (black) and pylon-yaw (cyan)
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ones related to the rotor, the gimbal angle, and the blades 
out of plane bending moments, to also capture the rotor 
contribution in the superharmonics. Figure 14 shows the 
complex mode indicator function for the above listed chan-
nels for the powered condition at minimum speed.

The peaks associated with the wing bending mode and 
its relative superharmonics are clearly visible and distin-
guishable, assuring a high-quality identification. The wing 
bending frequency, �b , is smaller than the rotor angular 
velocity, so the �b − Ω superharmonic is reflected in the 
positive half-plane of the complex mode indicator func-
tion, resulting in the lower superharmonic in the Figure. 
Of particular interest is the response of the system at the 
identified superharmonics frequencies. Clearly, in the 
non-rotating frame, the wing subsystem is almost time-
invariant, while the measurements in the rotating frame, 
related to the rotor, exhibit a more periodic behavior domi-
nating the two superharmonics. This is observed in the 
mode shapes identified using displacement measurements 
and by computing the participation factors of the identified 
eigenvectors using strain data.

As described in Fig. 15, it is evident that the wing contri-
bution in the response is limited to the main harmonic; the 
participation of the wing bending moment to the eigenvec-
tors is negligible in both superharmonics. Nevertheless, the 
rotor contribution is predominant and is mainly associated 
with a variation of the rotor gimbal angle. The bending of 
the wing and the flapping of the rotor dominate the overall 
response of this mode. The latter is induced by the transverse 
wind component the rotor experiences during wing out-of-
plane motion.

Observing the mode shapes, depicted in Fig.  16, the 
behavior noticed from the computed participation factor is 
more easily visualized. In addition, the +Ω superharmonic 
shows, not only a major contribution of gimbal mode, but 
also of in-plane blade bending.

5  Discussion

In Fig. 10, the results from the two codes show similar 
trends for the wing bending mode (red) and the wing 
chord mode (blue). The FLIGHTLAB model predicts a 
lower damping value when considering the torsional mode 
(black) and pylon-yaw mode (cyan).

The firsts three modes (wing bending, wing chord, 
and wing torsion) show a good match in Fig. 11. A non-
negligible difference is found for the pylon yaw mode. 
The damping curve predicted by the MPE method changes 
slope at a lower speed compared to the one obtained with 
the POMA method. This discrepancy may be due to 
the different types of excitation used to trigger the time 
responses analyzed by the two methods. Since the MBDyn 
model is nonlinear, what is interpreted as a modal response 
may differ when excited by turbulence rather than a deter-
ministic excitation applied to the blade pitch through the 
swashplate.

The comparison of the Whirl–Flutter stability predic-
tions for the power-off configuration presented in Fig. 12 
and obtained with MBDyn, identified using the POMA 
method, and FLIGHTLAB exhibits an overall good agree-
ment. In this case, the wing bending mode identified in 
FLIGHTLAB shows a slope slightly steeper than that 
identified from MBDyn’s results, whereas the damping 
predicted for the pylon yaw mode is higher in the MBDyn 
analysis. The wing chord and torsion modes, instead, 
match almost perfectly.

The damping factors shown in Fig. 13, identified from 
MBDyn’s results with the two proposed algorithms, show 
an almost perfect agreement for the wing beam bending 
and the wing chord modes. When identified through the 
MPE method, the wing torsion mode does not show a 
change in slope. As in the power-on configuration, the 
pylon-yaw mode shows different trends between the two 
identification methods.

Fig. 14  Complex mode indicator function for the data used in the 
wing bending identification process in powered configuration at mini-
mum test speed

Fig. 15  Participation factor plot of the identified mode shape relative 
to wing bending
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6  Conclusions

Two multibody models of the Next-Generation Civil TiltRo-
tor-Technology Demonstrator (NGCTR-TD) wind-tunnel 
testbed, independently developed using FLIGHTLAB and 
MBDyn, are presented. Both models are in good agreement 
with a reference CAMRAD II rotor model and NASTRAN 
wing-pylon stick model. After thorough validation of the 
aeromechanics predictions, aeroelastic characteristics of 
the experimental set-up have been assessed utilizing three 
methods to identify its aeroelastic modes. The first method 
is based on state linearization as adopted in FLIGHTLAB. 
The Matrix Pencil Method and Periodic Operational Modal 
Analysis have been applied to time histories simulated 
using MBDyn. The results show good agreement for the 
wing beam bending, chord and torsion modes, with residual 
discrepancies for pylon-yaw. They are attributed to residual 
differences in the underlying dynamics of the models rather 
than to the identification methodologies. The last method 

can easily extract the shapes of both wing-pylon and rotor 
modes. Their visualization grants the possibility of a deeper 
understanding of the system behavior and instability mecha-
nisms. The analyses confirm the absence of Whirl–Flutter 
instability in the airstream speed range of interest. The sat-
isfactory agreement between the different approaches con-
sidered in this work gives us sufficient confidence in view 
of the continuation of the research towards the experimental 
verification of the aeroelastic stability of the system. Future 
work will address more accurate predictions using mid-fidel-
ity aerodynamic models, model updating after preparatory 
and ground vibration testing of the wind-tunnel model, and 
correlation with test results when available.

Funding Open access funding provided by Politecnico di Milano 
within the CRUI-CARE Agreement. This research received funding 
from the Clean Sky 2 – H2020 Framework Program, under grant agree-
ment N. 863418 (the ATTILA project).

Fig. 16  Wing bending superharmonics mode shapes estimated using POMA
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