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Abstract: Understanding the spatial-temporal patterns of air pollution is crucial for mitigation strat- 9 

egies, a task nowadays fostered by continuous concentration maps generated by remote sensing 10 

technologies. We applied spatial modelling to analyze such spatial-temporal patterns in Lombardy, 11 

Italy, one of the most polluted regions in Europe. We conducted monthly spatial autocorrelation 12 

(global and local) of the daily average concentrations of PM2.5, PM10, O3, NO2, SO2, and CO from 13 

2016 to 2020, using 10x10 km satellite data from Copernicus Atmosphere Monitoring Service 14 

(CAMS), aggregated on districts of approximately 100,000 population. Land-use classes were com- 15 

puted on identified clusters, and the significance of differences was evaluated through Wilcoxon 16 

rank-sum test with Bonferroni correction. The global Moran’s I autocorrelation was overall high 17 

(>0.6), indicating a strong clustering. The local autocorrelation revealed high-high clusters of PM2.5 18 

and PM10 in the central urbanized zones during winter (January-December), and in the agrarian 19 

southern districts during summer and autumn (May-October). The temporal decomposition 20 

showed that values of PMs are particularly high in winter. Low-low clusters emerged in northern 21 

districts for all the pollutants except O3. Seasonal peaks for O3 occurred in the summer months, with 22 

high-high clusters mostly in the hilly and mildly urban districts in the north-west. These findings 23 

elaborate the spatial patterns of air pollution concentration, providing insights for effective land- 24 

use based pollution management strategies. 25 
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 27 

1. Introduction 28 

Air pollution is considered one of the most relevant risks to human health world- 29 

wide. Thanks to technological advancements, in the last decade a significant increase in 30 

scientific research in the field was witnessed [1]. However, while the pathophysiologic 31 

mechanisms of pollution on the human body have been known for a long time, studying 32 

the phenomenon at population scale is less straightforward, implying the collection and 33 

processing of large amounts of data. In this perspective, one of the main shortcomings of 34 

previous research in this field [2] is represented by the lack of an accurate analysis of the 35 

spatial dimension of pollution distribution, such as spatial configuration characteristics, 36 

spatial heterogeneity and spatial dependence [3], that represents a vital element in ad- 37 

dressing air pollution [4]. Taking into account the spatial patterns and clustering of air 38 

pollution is key to shed light on the dynamics of pollutants’ concentration [5]. 39 

Recently, new possibilities emerged in the field, mainly due to two driving factors: 40 

the developments in satellite imagery, which enabled the use of continuous mapping of 41 

pollution, solving many issues related to the use of ground stations [6]; the implementa- 42 

tion and widespread diffusion of advanced spatial techniques for data processing and 43 

modelling [7]. 44 
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When investigating spatial associations, the base-ground methodology usually ap- 45 

plied is spatial autocorrelation [3,5]; however, this analysis is known to affect the estima- 46 

tion of pollution effects [8], a particularly relevant aspect when addressing their impact 47 

on human health [9,10] by exposure-response relationship and, in general, when develop- 48 

ing environmental policies [4]. Specifically, literature indicates that including residual 49 

spatial error terms improves the prediction of adverse health effects [9], as well as the 50 

removal of bias due to spatial patterns is beneficial to the robustness of spatial correlation 51 

models [8], especially when estimating the covariate effect [11], thus representing a critical 52 

adjustment to be made in spatial modelling. From a methodological viewpoint, the base 53 

to study and model spatial autocorrelation is through the Local Indication of Spatial As- 54 

sociation (LISA) approach [12]. The LISA statistic quantifies the degree of spatial autocor- 55 

relation between a geographical location and its neighboring areas, identifying "hot spots" 56 

and "cold spots." For example, hot spots are areas with significantly high values sur- 57 

rounded by neighboring regions also exhibiting high values. This kind of analysis helps 58 

highlighting territories where the recorded values (either high or low) are significantly 59 

unusual, revealing a spatial pattern. Different methods and metrics have been proposed 60 

to evaluate the LISA statistics [13], the main two being Getis-Ord Gi* [14] and Moran’s 61 

Index [12], both previously applied in similar studies about air pollution [15,16]. In this 62 

study, it was decided to opt for Moran’s Index, which is slightly more recent and is more 63 

robust to spatial outliers. Additionally, it has superior availability in open-source pro- 64 

gramming environments, thus favoring replicability of the analysis. 65 

While published studies focus on some specific areas of the world, with China being 66 

the primary source of scientific production in the field [7], less is known about the dynam- 67 

ics of air pollution concentration in Europe, an example of this approach being provided 68 

for Germany [17]. In particular, Lombardy region, in northern Italy, is one of the most 69 

polluted areas of the European continent [18] and is consequently targeted as a study ter- 70 

ritory for the assessment of health impact of air pollution [19,20,21]. Despite this, the sci- 71 

entific evidence about patterns and trends of air pollution concentration is still limited.  72 

However, the mere identification of spatial patterns of pollutants may not be in- 73 

formative enough to effectively drive policy decision making. As a matter of fact, a critical 74 

role in autocorrelation of pollution levels is played by land use [15-17,22], widely assessed 75 

to be strongly intertwined with the spatial dynamics of air pollution [3,4,15-17,22-33]. In 76 

particular, scientific literature recognizes that the main contribution to pollution is usually 77 

considered to be urbanization either at the inter-urban level [23-27] or with a larger per- 78 

spective [4,22,28,29]. Additionally, elevation, forest coverage, population density, and so- 79 

cioeconomic activities [3,30-32] are acknowledged as relevant factors, along with a protec- 80 

tive function of the natural environments, and a significant contribution to pollution con- 81 

centration from agricultural areas [33]. Accordingly, the analysis of the spatial distribution 82 

of air pollution should never neglect the role of land-use, at the risk of mistakenly inter- 83 

preting global dynamics on a local level. Compared to the current studies on this topic, 84 

our aim was to go beyond the identification of an existing correlation between land-use 85 

and clusters of air pollution concentration, and includes a quantitative assessment and an 86 

evaluation of its statistical significance. 87 

Therefore, the primary aim of this study was to analyze the spatial autocorrelation of 88 

air pollution concentration across the territory of Lombardy region, by computing the 89 

global and local Moran’s I across different districts. Such analysis addresses one critical 90 

research question: are there clearly identifiable spatial and temporal patterns in air pollu- 91 

tion in the target territory, and do they change for different pollutants? Additionally, a 92 

secondary question arises: are there significant differences in terms of land-use among 93 

areas showing specific pollution patterns? To investigate this aspect, we aimed at per- 94 

forming secondary post-hoc analysis considering the land-use subdivision in clusters 95 

identified by spatial autocorrelation, in order to assess their possible differences and their 96 

statistical significance. 97 
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2. Materials and Methods 98 

2.1 Material 99 

Target territory - the analysis was focused on Lombardy region, Italy, a territory with an 100 

overall surface of 23,844 km² where slightly more than 10M people currently live; such 101 

territory is characterized by a strong land-use diversity, encompassing densely urbanized 102 

areas (around the capital city of Milan, whose metropolitan area accounts for more than 103 

30% of the total population, with 3.25M inhabitants), a vast plain mainly covered by agri- 104 

cultural fields, lakes, and a northern mainly natural area, with mountains high up to 105 

4000m. 106 

Delineation of districts – generation of pollution is strictly related to human activities, thus 107 

generating a consistent risk of detecting spurious correlations and collinearity issues. To 108 

adjust for this, the applied strategy was to consider custom territorial districts, created by 109 

aggregating neighboring municipalities, whose resident population is as uniform as pos- 110 

sible. Targeting a total population of 100,000 residents, the resulting districts are 96. This 111 

approach was previously validated, showing a consistent robustness when studying air 112 

pollution and its effects [34]. 113 

Air quality – the hourly air quality data of PM2.5, PM10, NO2, O3, SO2 and CO from 1 Janu- 114 

ary 2016 (first date of validated sanitary data availability) to 31 December 2020 (most re- 115 

cent available pollution data) was extracted from the CAMS (Copernicus Atmosphere 116 

Monitoring Service) European air quality re-analysis dataset, available with a spatial res- 117 

olution of approximately 10 km x 10 km [35]. The data were resampled in time to result 118 

in a daily average and spatially aggregated at the scale of districts 119 

Land use – the latest available land use data from project DUSAF 7.0 (Destinazione d’Uso 120 

dei Suoli Agricoli e Forestali [36]) were used; they are structured into five general catego- 121 

ries: anthropized areas (level 1), agricultural areas (level 2), wooded areas and semi-natu- 122 

ral environments (level 3), water bodies (level 4), and wetlands (level 5), further subdi- 123 

vided into 4 more levels of sub-classes. Due to the marginal presence of wetlands in the 124 

region, only the first four categories were considered, redefined into following custom 125 

classes: I) urbanized area (level 1.1 in the original data), II) industrial and transport facili- 126 

ties (level 1.2 in the original data), III) agricultural terrains (level 2 in the original data), 127 

and IV) natural areas (level 3 in the original data). Please notice that further information 128 

about the classification system can be found in the metadata of the original database [36]. 129 

 130 

Data processing and graphical representations were handled with Python program- 131 

ming language (v3.10), while maps were developed in QGIS (v3.28). 132 
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 133 

Figure 1. Mapping of the analyzed territory of Lombardy region, in northern Italy, with a heatmap 134 
representation of a sample of PM2.5 concentration and the superimposed boundaries of territorial 135 
districts of approximately 100,000 residents (upper left panel), together with the land-use distribu- 136 
tion across the territory (upper right panel), and administrative provinces with a qualitative indica- 137 
tion of the main land-use class characterizing the territory of each district (lower panel). 138 

2.2 Time-series analysis 139 

The daily air quality data from 2016 to 2020 were decomposed using a seasonal trend 140 

decomposition method that applies a combination of local regression (Loess smoother) 141 

[37] to extract the trend, the seasonal and the remainder components of the temporal data. 142 

The monthly peaks and valleys along with the overall trend were compared with the sub- 143 

sequent outcomes of global and local autocorrelation of the pollutants. 144 

2.3 Global autocorrelation 145 

Spatial autocorrelation helps understanding the correlation between a single variable 146 

at a location and its values in a relatively close or adjacent location in a two-dimensional 147 

space. These neighboring spatial units are defined based on a n x n binary geographic 148 

connectivity / weight matrix [38]. As the territorial units in this study were defined based 149 

on irregular administrative boundaries, contiguity-based spatial weights, defined as 150 
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queen criterion, were considered suitable as a neighbor structure. The queen criterion se- 151 

lects a maximum of eight adjoining neighbors to account for the spatial weights, W 152 

wherein: 153 

 154 

W =  [

𝑤11

𝑤21

𝑤12

𝑤22

…
…

𝑤1𝑛

𝑤2𝑛

⋮     ⋮ ⋱ ⋮
𝑤𝑛1 𝑤𝑛2 ⋯ 𝑤𝑛𝑛

] 155 

                         (1) 

The spatial weights of individual units, 𝑤𝑖𝑗  are non-zero (1 in this case) when i and j are 156 

neighbors, and zero otherwise. Similarly, for self-neighbor relation where 𝑖 =  𝑗,  𝑤𝑖𝑖 = 157 

 0 and therefore, is excluded [39]. 158 

Following the development of the connectivity matrix and spatial weights, the global 159 

Moran’s I is calculated to effectively measure the extent of spatial randomness of the con- 160 

sidered variable. For improved robustness of the analysis, and in light of the temporal 161 

consistency in data, spatial analyses were performed on the whole aggregated analysis 162 

period (January 1st 2016 to Decembre 31st 2020). The Moran’s I is the cross-product be- 163 

tween the observed variable and its spatial lag ∑𝑖∑𝑗𝑤𝑖𝑗𝑧𝑖 weighted, based on its spatial 164 

weight in the matrix: 165 

𝐼 =
∑𝑖∑𝑗𝑤𝑖𝑗𝑧𝑖 . 𝑧𝑗  / 𝑆0

∑𝑖𝑧𝑖
2 / 𝑛

   (2) 

Wherein, for an observation in the spatial unit i and its neighbor 𝑗, 𝑧𝑖 = 𝑥𝑖 −, where 𝑥̅ is 166 

the mean of variable 𝑥, and 𝑆0 = ∑𝑖∑𝑗𝑤𝑖𝑗 is the sum of all the spatial weights and n are 167 

the number of observations. However, in the case of row-standardized weights, 𝑆0be- 168 

comes equal to the number of observations. 169 

Moran’s I is based on the null hypothesis of spatial randomness, where the highest 170 

value of 1 corresponds to a completely positive autocorrelation, implying that high values 171 

would tend to be located near high values and vice versa. In contrast, the lowest value of 172 

-1 implies negative autocorrelation, wherein high and low values are not clustered to- 173 

gether and are instead spatially dispersed. 174 

2.4 Local Moran’s I autocorrelation 175 

As global Moran’s I autocorrelation provides only a measure of the overall spatial 176 

pattern of the observed variable, the location of the High-High and Low-Low clusters 177 

cannot be identified with it. Therefore, the local indicator of spatial association (LISA) 178 

principle, that denotes the proportional relationship between the sum of the local statistics 179 

and a corresponding global statistic, was adopted [12]. Based on the LISA principle, local 180 

Moran statistics applies the same logic as global Moran’s I but on the individual spatial 181 

unit, and estimates the statistical significance of the pattern of spatial association at loca- 182 

tion i. For such a reason, the sum of the local Moran statistics is proportional to the global 183 

Moran’s I of the variable [12]. 184 

𝐼𝑖  =
∑𝑗𝑤𝑖𝑗𝑧𝑖 𝑧𝑗 

∑𝑖𝑧𝑖
2 

 (3) 

In local Moran statistics, significance based on the assumption of standard normal 185 

distribution is often not met; thus, a more robust approach of conditional permutation is 186 

adopted, wherein the statistic is computed for randomly reshuffled datasets. The refer- 187 

ence distribution is called, in this case, pseudo p-value and it is useful for the classification 188 

of significant High-High and Low-Low spatial clusters. Month-wise global and local Mo- 189 

ran’s autocorrelation of all the pollutants from 2016-2020 were analyzed using ESDA, an 190 

open-source python library [40] and aggregated at the scale of the districts. 191 

2.5 Differences in land use 192 
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In order to investigate possible differences in the land use for the identified clusters, 193 

a novel approach was proposed in which districts were categorized as High-High or Low- 194 

Low areas if such classification, based on local Moran’s I, resulted significant (p-value 195 

<0.05) in at least 90% of the inspected timeframes (months), or were categorized otherwise 196 

as non-clustered. This selection was repeated (with consequently different results) for 197 

each considered pollutant. 198 

Subsequently, the whole territory was divided into unit areas constituted by hexag- 199 

onal cells with a diameter of 1 km. For each cell, the percentage of territory covered by I) 200 

urban land, II) areas dedicated to industrial activity or transports, III) agricultural land, or 201 

IV) natural territory was computed. The land-use characterization of each cluster of dis- 202 

tricts (High-High, Low-Low or non-clustered) was computed as the distribution of land- 203 

use percentages across the unit area cells belonging to the corresponding districts in the 204 

different clusters. 205 

2.6 Statistical analysis 206 

To evaluate for possible differences, the distributions of land-use composition in the 207 

High-High and Low-Low clusters (separately) were compared to that of the non-clustered 208 

territory. The normality of the distributions was assessed through the Shapiro-Wilk nor- 209 

mality test, thus indicating if values were to be represented as mean ± standard deviation 210 

or median (1st - 3rd quartile). In case both distributions resulted normal, the unpaired t- 211 

test was performed to assess the statistical significance of the difference, while in other 212 

cases (at least one non-normal distribution), the Mann-Whitney U-test was implemented 213 

for the same purpose. As the total number of groups is 3, the Bonferroni correction was 214 

applied to assess significance. 215 

 216 

Figure 2. Technical roadmap of the methodologies applied to infer information about the temporal 217 
and spatial patterns of air pollution concentration in the territory of Lombardy region, in northern 218 
Italy, and about the impact of land-use into spatial clustering. 219 

3. Results 220 

3.1 Time-series analysis 221 

Out of the six pollutants studied, PM2.5, PM10, NO2 and O3 were found to exceed the 222 

WHO daily permissible levels. Descriptive statistics of air pollution levels from 2016 to 223 
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2020 and days exceeding the WHO sanitary guidelines [41] are reported in table 1. In par- 224 

ticular, PM2.5 (21.4 µg m-3 per day) and NO2 (25.05 µg m-3 per day) surpassed such levels 225 

in 60% and 40% of the days in the studied period, respectively. All the pollutants demon- 226 

strated a seasonal pattern, with a peak localized during specific months of the year. PM2.5 227 

and PM10 concentrations from 2016 to 2020 revealed almost parallel trends, with a major 228 

peak in January and a valley during summer months (May-August). Apart from the sea- 229 

sonal pattern, the trend showed a dip in 2017 and again in early 2020, coinciding with the 230 

first COVID-19 lockdown in the region. On the other hand, NO2 underwent a steady de- 231 

cline since mid-2016, with a seasonal peak observed in the winter months (November- 232 

February) and a valley during summer. Winter peaks were also recorded for SO2 and CO, 233 

but these pollutants were found to be well under the daily WHO permissible limits 234 

throughout the year. On the contrary, O3 was the only pollutant with peaks during sum- 235 

mer months, with a steady increase until 2017 and a subsequent plateau until 2020. 236 

Table 1. Descriptive statistics of air pollution levels from 2016 to 2020 and days exceeding the WHO 237 
guidelines for the respective pollutant in the territory of Lombardy region, Italy, based on Coperni- 238 
cus’ CAMS reanalysis data. 239 

 PM2.5 NO2 PM10 O3 SO2 CO 

WHO limit (µg/m3) 15 25 45 100 40 4000 

Surpass days (%) 61.69 42.42 11.22 5.04 0 0 

Mean 21.41 25.05 25.66 49.26 2.22 299.65 

Median 

(25th-75th) 
17.88 

(12.14 - 27.39) 

22.34 

(14.9 - 33.43) 

22.24 

(15.21 - 32.66) 

48.95 

(19.2 - 74.39) 

2.11 

(1.68 - 2.65) 

261.23 

(211.51 - 365.91) 

Maximum 73.59 66.05 82.09 130.50 4.79 817.27 

Minimum 3.01 6.04 3.86 3.49 0.58 120.53 

 240 
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 241 

Figure 3. Decomposition of the pollutant concentration values (µg/m3) (through seasonal trend de- 242 
composition method based on Loess smoother), along with the resulting seasonal and remainder 243 
components, monthly peaks and valleys and overall trend, relevant to daily air quality data from 244 
2016 to 2020 (as reported by Copernicus CAMS reanalysis data) for the territory of Lombardy region, 245 
Italy. 246 

3.2 Global autocorrelation 247 

The global Moran’s I, indicating the extent of spatial randomness in the pollution 248 

concentration among the districts, produced results varying by pollutant and month. The 249 

analysis demonstrated an overall high level of clustering (as reported in figure 4), with all 250 

the months achieving values over 0.60 and soaring as high as 0.91 (recorded for CO, in 251 

April 2016 and May 2020). For NO2 and SO2, the autocorrelation was higher and more 252 

consistent in different time frames. The clustering patterns for PM2.5, PM10 and O3 resulted 253 
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different and did not indicate any periodicity by month during the study period. This 254 

strong clustering pattern in the pollutants further warrants an investigation of its detailed 255 

location, which can be determined using local spatial autocorrelation. 256 

 257 

Figure 4. Values of global Moran’s I to measure the spatial autocorrelation for different air pollu- 258 
tants, month by month from 2016 to 2020, on the territory of Lombardy region, Italy. Air pollution 259 
data were derived from Copernicus CAMS reanalysis dataset. 260 

3.3 Local autocorrelation 261 

The distribution of patterns in monthly average concentration of pollutants from 262 

2016 to 2020 was assessed by computing local Moran’s I on the 96 territorial units of ap- 263 

proximately uniform population of 100,000 residents, with complete results reported in 264 

figure 5. As suggested by the high and positive values of global autocorrelation, results 265 

revealed a significant clustering pattern for all the pollutants. A clear North-South divi- 266 

sion emerged for PM2.5, PM10, NO2, SO2 and CO, with High-High clusters in the South, 267 

especially around the metropolitan area of Milan (most densely inhabited territory) and 268 

the city of Cremona in the South-East. During the peak winter months, from November 269 

to February, a single significant High-High cluster was concentrated on the city of Milan 270 

and its eastern peripheries, up to Cremona, whereas during the rest of the year the High- 271 

High cluster spread further in the South and South-East, especially for PM10. The Low- 272 

Low clusters for particulate matter covered the upper half of the region, characterized 273 

primarily by natural and semi-natural land cover. 274 

With regards to NO2, it remained concentrated within the jurisdiction of the metro- 275 

politan Milan area throughout the year, while the northern and eastern districts fell under 276 

the Low-Low cluster (and the rest of the region remained not significant in terms of clus- 277 

tering). This pattern could also be noticed for SO2 and CO, for whom, regardless of their 278 

overall low concentrations, the High-High significant cluster was larger than that of NO2 279 

and was found within and in the adjacent districts of the metropolitan city of Milan. 280 

Lastly, O3, which peaks during summer months, has its significant High-High clus- 281 

ters in the northern districts. However, during the peak months of June-September, the 282 

cluster shrank towards the North-West in the lake-side and urban districts of Lecco, 283 

Como, and Bergamo. The Low-Low clusters with significant Moran statistics were more 284 

fragmented throughout the year and mainly located on the southern part of the region 285 

around Milan, except for the month of August, where the northern Alpine districts of Bor- 286 

mio and Sondrio were also included. 287 
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Figure 5. Local Moran’s I computed on 96 districts of approximately uniform population of 100,000 289 
residents across the territory of Lombardy region, Italy, for different air pollutants (concentration 290 
values reported by Copernicus CAMS reanalysis data). Red and dark blue areas correspond to High- 291 
High and Low-Low clusters, respectively, while the remaining areas in grey resulted not significant 292 
for clustering purposes. 293 

3.4 Land-use analysis 294 

The land-use composition was computed for High-High cluster (HH), Low-Low 295 

cluster (LL), and non-clustered areas (Nc), separately for each pollutant according to local 296 

Moran’s I. HH and LL clusters’ compositions were respectively compared to that of the 297 

Nc districts. As all distributions resulted non-normal, the Mann-Whitney U-test (with 298 

Bonferroni correction) was applied to assess the significance of the differences. Complete 299 

results are reported in table 2. 300 

Table 2. Distribution of land-use classes for the territory of Lombardy region, Italy, comparing areas 301 
where different air pollutants that showed local High-High clusters, Low-Low clusters, or no clus- 302 
tering tendency according to local Moran’s I. The number N of unit areas (hexagonal cells with 1 303 
km diameter) composing each category is reported separately for each pollutant. Since all distribu- 304 
tions resulted non-normal, values are reported as median [1st quartile - 3rd quartile]. To assess the 305 
significance of the identified differences, p-values resulting from Mann-Whitney U-test (with Bon- 306 
ferroni correction) were reported. 307 

[Table 2 placeholder] 308 

 309 
With the only exception of urban areas percentage for PM2.5 in the HH cluster, the differ- 310 

ences resulted significant (with p-value <0.01) in all the cases. For all pollutants excluding 311 

O3, LL clusters showed an extremely evident larger amount of natural area (refer to figure 312 

1, lower panel) compared to Nc districts, whereas an inverse relationship was observed 313 

for O3, for which a higher share of natural area characterized the HH cluster. For CO, HH 314 

cluster was evidently composed by a larger amount of built-up area (urban, industrial or 315 

devoted to transport facilities, again referred in figure 1), with a similar yet less evident 316 

distribution characterizing HH cluster for SO2, and also for NO2, for which it was further- 317 

more possible to identify a much more consistent difference in industrial and transport 318 

areas. Considering particulate matters (either 2.5 or 10), a significant difference emerged 319 

for industrial/transport territory, but the most considerable gap was that of agricultural 320 

areas, which were more diffused in HH clusters as compared to Nc districts. 321 

4. Discussion 322 
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Copernicus’ CAMS re-analysis data for the period 2016-2020 were used to study the 323 

distribution of air pollution concentration on the territory of Lombardy region, Italy, thus 324 

overcoming the limitations related to the use of a sparse system of ground stations. Tem- 325 

poral trends emerging from time-series analysis confirmed well-established knowledge, 326 

showing peaks of pollutants during winter [21,42,43], except for O3, that instead reached 327 

its maximum during summer, showing a reversed dynamic that is confirmed in literature 328 

[16]. As a primary aim of this study, the spatial trends and patterns of the concentration 329 

were inspected through spatial autocorrelation, which showed globally a strong tendency 330 

to cluster, resulting in global Moran’s I always above 0.6, reaching a maximum of 0.91. 331 

This result indicates that a strong mutual influence of adjacent areas occurred, confirming 332 

what similar studies reported on different territories [2,4,16,22,44], a factor often mistak- 333 

enly ignored in previous research [22]. From this evidence, it is possible to state that, re- 334 

gardless of the analyzed territory, clear spatial and temporal patterns in air pollution 335 

could be identified, once again in accordance with similar studies [16]. 336 

To better investigate and characterize spatial interactions, a local spatial autocorrela- 337 

tion analysis was also performed, computing local Moran’s I. Again with the exception of 338 

O3, an overall common trend could be observed for all other pollutants, with a High-High 339 

cluster encompassing the most urbanized area, and a Low-Low cluster covering the nat- 340 

ural northern part of the territory, once again showing coherence with similar studies con- 341 

ducted on other territories [2,3,16,17,44,45]. An exactly opposite behavior was observed 342 

for O3, also in agreement with previous studies [16], that represented the exception to 343 

what can be considered, in first approximation, the dynamics valid for all air pollutants. 344 

Furthermore, in an attempt to overcome the state-of-art and deepening the under- 345 

standing of spatial dynamics in air pollution concentration, after the identification of clus- 346 

ters through local Moran’s I, an additional analysis was implemented to take into account 347 

their differences in land-use, to better characterize the impact of this factor. Some addi- 348 

tional details emerged, with almost all differences being statistically significant, allowing 349 

to state that the secondary research question (whether there are significant differences in 350 

terms of land-use among areas showing specific pollution patterns) has an affirmative 351 

answer. In particular, the most significant results were relevant to particulate matters. De- 352 

spite the fact that the HH cluster included the most urbanized area, the differences in 353 

terms of % of urban area in that HH cluster are comparable to that of the Nc districts, at 354 

the point that, for PM2.5, the difference even resulted non-significant (PM10: 3.0 [1.0-14.5] 355 

% in HH against 3.0 [0.7-11.1] % in Nc, p-value <0.01; PM2.5: 2.8 [1.0-12.3] % in HH against 356 

3.0 [0.7-11.1] % in Nc, p-value 0.03). To the contrary, a significant difference emerged for 357 

areas devoted to industrial activity or transports (PM10: 7.4 [2.9-21.7] % in HH, against 3.6 358 

[0.3-12.0] % in Nc, p-value <0.01; PM2.5: 7.3 [2.9-18.0] % in HH against 3.5 [0.3-11.9] % in 359 

Nc, p-value <0.01) and even more consistently for the amount of agricultural area (PM10: 360 

80.2 [51.7-91.4] % in HH against 73.3 [29.3-91.1] % in Nc, p-value <0.01; PM2.5: 80.7 [58.3- 361 

91.4] % in HH against 73.1 [28.6-91.1] % in Nc, p-value <0.01), as can also be observed from 362 

figure 5, where the extension of the HH cluster towards the south-eastern agricultural area 363 

of the region was evident. These findings indicate that the mutual influence on air pollu- 364 

tion concentration of neighboring urban areas is mainly correlated to these activities (i.e., 365 

mainly agriculture, but also transport and industry), rather than urbanization itself. Such 366 

a result, despite not being widely present in literature, is fully coherent with a previous 367 

analysis conducted on the same territory with the aid of GeoAI [33]. Similarly, additional 368 

insightful considerations could be drawn for other pollutants. For instance, regarding 369 

NO2, the HH cluster showed a higher percentage of urban area compared to Nc districts 370 

(16.4 [3.6-38.5] % in HH against 3.0 [0.7-10.6] % in Nc, p-value <0.01), but the most evident 371 

difference stands in the share of areas devoted to industrial activity or transport (33.7 372 

[12.0-52.9] % in HH against 3.8 [0.5-11.4] % in Nc, p-value <0.01), which is coherent with 373 

the well-established knowledge that NO2 is mainly generated by traditionally fueled 374 

(combustion engines) transport vehicles [17]. Based on these observations, it is possible to 375 
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conclude that the role of land-use, widely discussed in literature [3,4,15-17,22-33], is sta- 376 

tistically significant. Moreover, further details on the separate impact of different emission 377 

sources into the spatial clustering of pollution concentration could be effectively inferred 378 

with the proposed approach. 379 

From the viewpoint of policymakers, two main results should be taken into account. 380 

First, local phenomena have significant relevance, as demonstrated by the significance of 381 

differences in land-use of the concentration spatial clusters; as a consequence, prevention 382 

and mitigation strategies developed by large-scale assessments are at risk of being poorly 383 

effective. Secondarily, at the same time, the existence of consistent spatial and temporal 384 

clusters implies that policies implemented at a local level could be ineffective, as already 385 

suggested by previous studies [2,22,44]. Therefore, the challenge to achieve better future 386 

mitigation results will be to implement policies on a large scale, while tailoring the specific 387 

interventions to a small local perspective. 388 

The proposed study set-up presented some limitations. First of all, the use of satellite 389 

imagery, which allowed to overcome the most relevant issues related to the use of ground- 390 

stations data, still has two important drawbacks: I - Spatial resolution: CAMS re-analysis 391 

grid has a 10x10km cells dimension, which is therefore by some means too coarse to cor- 392 

rectly intercept strongly local phenomena (especially considering its crossing with a terri- 393 

torial subdivision based on administrative boundaries); II - Measurement quality: alt- 394 

hough CAMS data are recognized to be compliant with requirements of scientific re- 395 

search, the gold standard for pollution concentration in terms of accuracy still is repre- 396 

sented by the measurement stations. 397 

Moreover, as the specific computation of CAMS re-analysis also takes into account 398 

land-use for post-processing of satellite imagery, this could possibly create a short-circuit 399 

with the performed land-use analysis, having this feature being considered both in data 400 

generation and in the following statistical analysis. However, as land-use data were de- 401 

rived from a different source than CAMS, this risk should be considered acceptable for 402 

the purpose of this study. In addition, the utilized general experimental set-up, while be- 403 

ing capable of identifying spatial trends and assessing the differences among territorial 404 

clusters, is not detailed enough to precisely quantify and model the impact of land-use 405 

into spatial trends. 406 

On the basis of the obtained results, some future developments on the topic are rec- 407 

ommendable. First, a higher level of detail about land-use and human activities in the 408 

territory could help to shed light on the punctual local dynamics from a cause-effect rela- 409 

tionship viewpoint, thus providing additional valuable insights for policymakers. In par- 410 

allel, a higher robustness could be obtained for pollution mapping, through the combina- 411 

tion of multiple models derived from satellite observation or ground stations. Such in- 412 

creased robustness could foster an improved assessment about the impact of spatial and 413 

temporal patterns of air pollution concentration into human health, both at long and short- 414 

term, with the consequent possibility for data-driven policymaking in terms of prevention 415 

and mitigation strategies as well as resources allocation. 416 

5. Conclusions 417 

The proposed study analyzed the spatial patterns of air pollution concentration in 418 

the period 2016-2020, considering six different pollutants (CO, NO2, O3, PM2.5, PM10, SO2) 419 

for the territory of Lombardy region, in northern Italy, recognized to be one of the most 420 

polluted European areas. After a preliminary temporal explorative analysis based on 421 

time-series, a spatial autocorrelation analysis was implemented through the computation 422 

of both global and local Moran’s I. Results mainly confirmed previous findings obtained 423 

from the analysis of different territories, showing higher pollutants’ concentration peaks 424 

in winter (except for O3) and a general strong global tendency to form spatial clusters, 425 

with local dynamics highlighting that High-High clusters mainly regarded urbanized ar- 426 

eas while Low-Low clusters embraced natural territories. More detailed information was 427 

derived from a post-hoc assessment of the land-use characteristic for the different clusters, 428 
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additionally indicating that agricultural areas have a strong influence in creating High- 429 

High clusters of particulate matters, while transportation is the main source of High-High 430 

clusters of NO2. At the same time, natural territories were confirmed as the best resource 431 

for pollution mitigation, showing a strong influence on nearby areas resulting in Low- 432 

Low pollution clusters. 433 

Based on these results, confirming strong spatial trends, patterns, and interactions, it 434 

is possible to reaffirm the need, in agreement with scientific literature’s call, for a more 435 

consistent interregional perspective for policymaking in pollution management and miti- 436 

gation strategies [2,22,44], despite the difficulties generated not only by administrative 437 

procedures, but also by the different economic levels, social disparities and resources 438 

availability that may characterize the involved areas [4]. Such renewed perspective is 439 

nowadays more important than ever, with the increasing impact of pollution on human 440 

health, especially in developed countries where this phenomenon intersects with an age- 441 

ing, and therefore more fragile, population. 442 
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