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A B S T R A C T   

The integration of Renewable Energy Sources (RESs), particularly solar PhotoVoltaics (PVs) has become an 
imperative aspect of sustainable energy systems. In this pursuit, accurate and efficient simulation tools play a 
pivotal role in optimizing the performance of PV systems. Traditional simulation approaches, while effective, are 
often characterized by computational complexities and time-intensive processes. This paper introduces a 
groundbreaking paradigm in solar energy modeling by harnessing the power of Artificial Neural Networks 
(ANNs) to revolutionize the accuracy and reliability of PV system simulations. In this work, an hourly, daily, 
monthly and yearly comparison of the electrical energy obtained with the 5-parameter model and those obtained 
with the ANNs was developed. For this purpose, a very wide ensemble of localities around the world and types of 
PV systems were considered in the training and validation phase. ANNs exhibited a maximum mean absolute 
relative error of 3.5% during training and consistently maintained hourly relative errors below 5% across diverse 
localities during validation. Hourly power forecasting remains acceptable also in localities with extreme weather 
conditions. Monthly errors peak at high negative and positive latitudes in summer months when daylight 
duration exceeds nighttime. However, in the least accurate locality, yearly energy forecasting yielded a 
maximum error of 8%. Empirical equations based on the trained ANNs are proposed and a relative input-output 
importance criterion was applied to detect the impact of air temperature and solar radiation on the performance 
of each PV module. The proposed ANNs demonstrate significant utility in decision-making and real-time pro-
cesses, providing a valuable framework for managing energy flows within a network and predicting energy 
production during specific time intervals. This alternative approach surpasses conventional dynamic simulation 
methodologies found in existing literature in terms of computational cost with comparable accuracy.   

1. Introduction 

The rise of distributed PhotoVoltaic (PV) generators in distribution 
grids decreases reliance on centralized power plants. The variability in 
solar irradiance presents challenges like voltage fluctuations, reverse 
power flows, and power quality issues that can be addressed by 
considering various methods aiming to control voltage and minimize 
violations [1]. The effective utilization of solar energy is hindered by the 
need for expensive storage infrastructure to handle power fluctuations, 
and, in the absence of viable storage, the potential necessity for energy 
curtailment during peak production hours in the presence of high 
renewable energy diffusion [2]. These aspects and challenges have 
underscored the need for precise and expeditious tools to model and 
optimize the performance of PV systems [3,4]. While conventional nu-
merical methods and analytical models have proven their utility in 

simulating solar energy generation, the increasing complexity of PV 
technologies and the dynamic nature of environmental conditions 
necessitate novel approaches to enhance simulation accuracy and 
reduce computational overhead. Artificial Neural Networks (ANNs), 
inspired by the structure and function of the human brain, have emerged 
as a promising avenue for addressing the limitations of traditional 
simulation methods. They found a large application in the energy system 
field in the last decades [5–7]. ANNs possess the ability to learn intricate 
patterns and relationships within vast datasets, allowing them to capture 
the nonlinear and time-varying behaviors inherent in solar energy sys-
tems [8–11]. However, the large dependency of PV power on weather 
conditions brings a major challenge of uncertainty to system operation 
and efficiency [12]. To address this dilemma, an accurate and reliable 
forecast of PV power production is essential to stabilize and secure the 
PV electricity supply. 

Overall, ANN techniques have emerged as effective tools in modern 
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Nomenclature 

a/c Weighted circumsolar solid angle [-] 
bi Bias vector of the i-th layer in an ANN architecture 
A PV module area [m2] 
Eg yearly PV energy generated [Wh] 
F1’ Reduced brightness coefficient (circumsolar) [-] 
F2’ Reduced brightness coefficient (horizon brightening) [-] 
Fij Perez coefficients [-] 
gh Dimensionless horizontal total solar radiation [-] 
G Total radiation on the horizontal surface [W/m2] 
Gavg Yearly average total radiation on the horizontal surface 

[W/m2] 
Gb Beam radiation on the horizontal surface [W/m2] 
GbT Beam radiation on the tilted surface [W/m2] 
Gd Diffuse radiation on the horizontal surface [W/m2] 
Gdn Direct normal beam radiation [W/m2] 
GdT Diffuse radiation on the tilted surface [W/m2] 
Gex Extraterrestrial radiation [W/m2] 
Gex,n Extraterrestrial radiation at normal incidence [W/m2] 
GgT Ground reflected radiation on the tilted surface [W/m2] 
Gh Hourly total horizontal solar radiation [W/m2] 
Gh,ref Reference radiation of 1000 W/m2 [W/m2] 
Gsd Yearly standard deviation of the total radiation on a 

horizontal surface [W/m2] 
GT Total radiation on the tilted surface [W/m2] 
GT,eff Effective total radiation incident on the PV array [W/m2] 
GT,NOCT Incident radiation at NOCT conditions [W/m2] 
GT,ref Incident radiation at reference conditions [W/m2] 
I Current [A] 
Io Diode reverse saturation current [A] 
Io,ref Diode reverse saturation current at reference conditions 

[A] 
Isc Short-circuit current [A] 
Isc,ref Short-circuit current at reference conditions [A] 
IL Module photocurrent [A] 
IL,ref Module photocurrent at reference conditions [A] 
Imp Current at maximum power point along IV curve [A] 
Imp,ref Current at maximum power point along IV curve, reference 

conditions [A] 
IAM Dimensionless incidence angle modifier [-] 
IAMbeam Dimensionless incidence angle modifier for the beam 

radiation [-] 
IAMgnd Dimensionless incidence angle modifier for the ground 

reflected diffuse radiation [-] 
IAMdiff Dimensionless incidence angle modifier for the sky diffuse 

radiation [-] 
k Boltzmann constant [J/K] 
l number of layers in the ANN 
L Latitude [degrees] 
m air mass [-] 
n number of weights 
ni Number of neurons in the i-the ANN layer 
N Number of training data 
Ncs Number of individual cells in module [-] 
NR Number of routes between each input and output neuron 
NOCT Nominal operating cell temperature [◦C] 
pel Dimensionless electrical PV power produced [-] 
pel,n Normalized dimensionless electrical PV power produced 

[-] 
Pel Hourly electrical PV power produced [W] 
Ppv PV output power [W] 
Pmp PV output power at maximum power point along I-V curve 

[W] 

Ppv Power produced by the photovoltaic generator [W] 
Ppv,n Nominal power of the photovoltaic generator [W] 
q Electron charge constant [C] 
Rb Ratio of beam radiation on the tilted surface to the beam 

radiation on the horizontal surface [-] 
Rr Ratio of reflected radiation on the tilted surface to the total 

radiation on the horizontal surface [-] 
Rs Module series resistance [Ω] 
Rsh Module shunt resistance [Ω] 
R2 R-square [-] 
sij Sum of the r overall weights Wr,ij 

Sij Percentage sensitivity index 
t Time (s) 
tea Dimensionless air temperature [-] 
Tea Ambient temperature [K] 
Tea,avg Yearly average ambient temperature [K] 
Tea,ref Reference temperature of 25◦ C [K] 
Tea,sd Yearly standard deviation of the ambient temperature [K] 
Tc Cell temperature [K] 
Tc,NOCT Cell temperature at NOCT conditions [K] 
Tc,ref Cell temperature at reference conditions [K] 
UL PV thermal loss coefficient [W/m2 K] 
V Voltage [V] 
Voc Open-circuit voltage [V] 
Voc,ref Open-circuit voltage at reference conditions [V] 
Vmp Voltage at maximum power point along IV curve [V] 
Vmp,ref Voltage at maximum power point along IV curve at 

reference conditions [V] 
Wr,ij r-th overall weight 
wi Weight matrix between the (i-1)-th layer and the i-th layer 

in an ANN architecture 
x0 Input vector with n0 nodes in an ANN architecture 
y Output vector of the ANN 
yi i-th value of the output 

Greek letters 
β Slope of surface, positive when tilted in the direction of the 

azimuth specification [degrees] 
δ Solar declination angle [degrees] 
Δ Sky brightness parameter [-] 
ε Sky clearness parameter [-] 
φ Activation function in an ANN architecture 
γ Empirical PV curve-fitting parameter [-] 
γsu Azimuth angle of surface; angle between the projection of 

the normal to the surface into the horizontal plane and the 
local meridian. (facing equator = 0, west positive, east 
negative) [degrees] 

γso Solar azimuth angle [degrees] 
µIsc Temperature coefficient of short-circuit current [%/K] 
µVoc Temperature coefficient of open-circuit voltage [%/K] 
ηm Module conversion efficiency 
θ Angle of incidence of the beam radiation on the surface 

[degrees] 
θZ Solar zenith angle [degrees] 
θeff,gnd Effective angle of incidence for the ground reflected diffuse 

radiation [degrees] 
θeff,diff Effective angle of incidence for the sky diffuse radiation 

[degrees] 
ρg Ground reflectance [-] 
ω Mean hour angle of time step (0 at noon, mornings 

negative) [degrees] 
τα Module transmittance-absorptance product [-] 
ταnormal Module transmittance-absorptance product at normal 

incidence [-]  
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power system applications such as sustainable operation considering 
renewable uncertainties [13], PV fault detection and diagnosis [14], 
adaptive protection and control [15], and smart generation dispatch 
[16]. Das et al. presented a comprehensive and systematic review of 
various models including statistical and Machine-Learning (ML) models 
of the direct forecasting of PV power generation, highlighting the 
strengths and weaknesses of each approach [17]. Considering the ex-
pected accuracy and less complexity of the ANN approach becomes the 
most used ML method [18]. Apart from recent literature, Qin et al. [19] 
established an innovative strategy that integrates ground and satellite 
observations through deep learning to strengthen the PV output pre-
dictions. Abdullah et al. [20] introduced a communication-free moni-
toring technique for a remote grid-connected PV plant using ANN and 
impedance relay measurements from the switchgear panel to assess PV 
power generation and load consumption. Roseline et al. [21] developed 
a data-driven ANN model for energy estimation of PV and hybrid 
PV/wind power systems considering several weather factors. Instead, 
Weerasinghe et al. [22] presented a methodology for guiding building 
intenerated PV system applications with the application of commercial 
buildings, in which a support vector machine prediction model is 
applied. Another research employed ANN models to investigate the 

influence of coolant mass flow rate and atmospheric variables on key 
parameters, including electrical power production and thermal energy, 
in a PV/Thermal (PV/T) system [23]. Tavares et al. compared and 
analyzed two PV generation forecasting approaches based on a 
multi-layer feed-forward ANN and a deep NN with a case study on a 
multi-apartment residential building [24]. Ghenai et al. [25] proposed a 
predictive ANN model to anticipate the power output from bifacial solar 
PV systems installed on flat roof buildings with low and high surface 
albedo in Sharja, United Arab Emirates. Machine learning was also 
utilized for improved integration of PV power into day-ahead and 
intra-day Markets through a tool comprising four specialized Deep 
Learning forecasters aligned with auction rules [26]. Lee et al. [27] 
investigated two forecasting models by using long short-term memory 
and gate recurrent networks for hourly PV power output prediction in a 
peak zone using real data from Gumi City, South Korea. Most recently, 
Wang et al. [28] proposed an uncertainty modeling technique of 
weather data sets for robust PV energy generation of a building through 
a combined dual-stage attention-based recurrent ANN and Bayesian 
recurrent ANN. 

The key objectives in this field are represented by the investigation of 
the capacity of ANNs to effectively capture the multifaceted 

Fig. 1. Framework of Phase 1 for the Training of the artificial neural networks.  
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Fig. 2. Framework of Phase 2 for the Validation of the artificial neural networks in other localities.  
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relationships between various PV system parameters, environmental 
variables, and energy output and the exploration of the ability of ANNs 
to adapt and generalize across different PV technologies, ensuring 
applicability to a broad spectrum of solar energy systems. Another 
challenging aspect is to assess methodologies for preprocessing and 
selecting training datasets to enhance the robustness and generalization 
of the neural network models. 

Research trends indicate the importance of exploring strategies to 
optimize neural network architectures and parameters, aiming to ach-
ieve a balance between accuracy and computational speed. It is also 
crucial to compare the performance of ANN-based models with tradi-
tional simulation methods, establishing benchmarks and demonstrating 
the potential of this innovative approach. In addition, many ANN models 
for PV performance evaluation are trained and tested on a specific 
dataset and may not generalize well to different conditions or 
environments. 

Further research is needed to fully understand the potential and 
limitations of the application of ANNs for PV performance evaluation 
and to improve their generalization and robustness. 

By addressing these objectives and research gaps, this paper aims to 
present a comprehensive analysis of the transformative impact that 
ANNs can have on the field of PV simulation. This work explores the 
application of ANNs as a tool for PV simulation, aiming to provide a tool 
for hourly, monthly, and yearly prediction of solar energy produced to 
be used worldwide for different types of PV modules. 

The ANNs proposed were trained, optimized, validated and, finally, 
translated into empirical mathematical equations to evaluate even more 
easily PV modules performance. The last analysis based on the Garson 
method aims to evaluate for each PV module the impact of air temper-
ature and solar radiation on the power produced by using the charac-
teristic parameters of the ANNs. 

This study is structured as follows: Section 2 provides an account of 
the research phases and methodologies concerning the training, opti-
mization, and validation of ANNs for forecasting the performance of PV 
modules; additionally, it details the utilization of a 5-parameter model 
for generating ANN training and validation datasets across diverse 
geographical locations and various types of PV modules; Section 3 
presents the electrical and thermal characteristics of PV modules, 
alongside the climatic data for 48 different locations utilized in the 
training and validation of ANNs; furthermore, it outlines the dimen-
sionless ANN inputs and outputs employed in the analysis; Section 4 
delineates the outcomes of the ANN training and optimization processes, 
including validation results spanning hourly, monthly, and yearly re-
sults; finally, Section 5 encapsulates the principal discoveries of the 
research and outlines prospective directions for future investigations. 

2. Methodology 

The investigation unfolds in two phases, as depicted in Figs. 1 and 2. 
In the first phase, six Artificial Neural Networks (ANNs) were estab-
lished, each dedicated to predicting hourly electrical power for one of six 
different PV modules, characterized by different electrical and thermal 
behavior. The sample of PV modules was chosen to consider a wide 
range of existing PV modules in terms of performance in the standard 
test conditions. Employing MATLAB’s Neural Net Fitting tool, hourly 
temperature, and horizontal total solar radiation values for 24 locations 
were input as features, while the corresponding hourly power, obtained 
with a 5-parameter PV model, served as the output. ANNs underwent 
training with varied hidden layer neuron counts (1− 10), and the 
optimal neuron count was determined based on some common accuracy 
metrics. 

In the second phase, each ANN underwent validation using hourly 
temperature and solar radiation data from 24 additional locations, 
generating corresponding hourly electrical power predictions. A 
comparative analysis was then conducted between these predictions and 
those derived from a 5-parameter PV module. The obtained electrical 

powers, both from the 5-parameter PV module and the best-performing 
ANN, were employed to assess the ANN’s accuracy in terms of hourly, 
daily, monthly, and yearly energies. This process was replicated for six 
PV modules with distinct electrical characteristics, establishing six ANNs 
capable of predicting hourly power for each module across various lo-
cations, solely relying on hourly temperature and solar radiation inputs, 
without recourse to the 5-parameter model. 

In the subsequent subsections, the 5-parameter PV model and the 
ANN model used for this research are extensively presented. 

2.1. Modeling and dynamic simulation of PV modules using the 5- 
parameter model 

The dynamic electrical and thermal performance of the solar PV 
systems considered in this study were simulated using TRNSYS 17 
software [29] using a 5-parameter model. TRNSYS is a research simu-
lation program primarily used in the fields of renewable energy engi-
neering and building simulation for passive as well as active solar 
design. The specific Types available in standard and supplementary li-
braries in TRNSYS are used for the simulation of the dynamic behavior 
of each component in the system:  

• Type 15 for the generation and importing of the weather data into 
the TRNSYS environment;  

• Type 94 for the simulation of a PV module with a 5-parameter 
module. 

2.1.1. Type 15: Weather data processor and mathematical model for the 
generation of global solar radiation on the tilted surface 

This module interprets various standardized weather data formats, 
including TMY, TMY2, EnergyPlus Weather, IWEC, and CWEC files. 
Type 15 computes total, beam, sky diffuse, and ground-reflected solar 
radiation, along with the angle of incidence for beam solar radiation, 
and the slope and azimuth for user-defined surfaces. Additionally, it 
calculates mains water temperature and effective sky temperature for 
radiation calculations. The output includes indicators for heating and 
cooling seasons, monthly and annual temperature extremes, and aver-
ages. For estimating total tilted surface radiation, the models in this 
subroutine require knowledge of the division of total horizontal radia-
tion into beam and diffuse components. Correlations are available to 
estimate beam or diffuse radiation when only total horizontal radiation 
is measured, with options for calculating total radiation on a tilted 
surface within Type 15 [30]. 

2.1.1.1. Position of the sun in the sky. The location of the sun in the sky 
can be determined by indicating the solar zenith and solar azimuth 
angles. s. The zenith angle is the measurement between the vertical and 
the sun’s line of sight, calculated as 90 degrees minus the angle between 
the sun and the horizontal (solar altitude angle). Meanwhile, the solar 
azimuth angle (θz)is determined as the angle between the local meridian 
and the projection of the sun’s line of sight onto the horizontal plane (see 
Eq. (1)). A solar azimuth of zero points towards the equator, with pos-
itive values in the west and negative values in the east. Both zenith and 
solar angles (γso) can be derived using the trigonometric relationship, as 
provided by Duffie and Beckman [30] as shown in Eq. (2). 

cosθz = sinδsinL+ cosLcosδcosω (1)  

sinγso =
cosδsinω

sinθz
(2)  

2.1.1.2. Tilted surface radiation mode. Models for estimating the total 
radiation on a tilted surface require knowledge of total and diffuse (or 
beam) radiation on a horizontal surface as well as the sun’s position. In 
general, the total tilted surface radiation is calculated by estimating and 
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adding a beam, diffuse and reflected radiation components on the tilted 
surface with a β the inclination angle. All tilted surface radiation models 
use the same techniques for projecting the beam and ground reflected 
radiation onto a tilted surface; they differ only in the estimate of diffuse 
radiation on a tilted surface. The contribution of beam radiation on a 
tilted surface (in short time intervals) can be calculated by using the 
geometric factor Rb [30], as shown in Eq. (3): 

Rb =
cosθ
cosθz

(3)  

where 

cosθ = cosθzcosβ+ sinθzcos(γso − γsu) (4) 

In Eq. (4), β is the slope of the surface defined as the angle between 
the surface and the horizontal, while γsu is the surface azimuth or the 
angle between the projection of the normal to the surface into the hor-
izontal plane and the local merid. The sign convention for surface azi-
muth is identical to that for solar azimuth (zero facing equator, positive 
if west, negative if east). The slope is measured as a positive value when 
tilted in the direction of the azimuth specification. 

The direct solar radiation on the tilted surface GbT can be calculated 
by means of Eq. (5) starting from the beam radiation on the horizontal 
surface Gb.

GbT = Gb⋅Rb (5) 

The contribution of reflected radiation on a tilted surface GgT is 
calculated by assuming the ground acts as an isotropic reflector. 
Defining Rr as the ratio of reflected radiation on a tilted surface to the 
total radiation on a horizontal surface, GbT can be calculated using Eqs. 
(6) and (7): 

Rr = 0.5(1 − cosβ)ρg (6)  

GgT = G⋅Rr (7)  

Where ρg is the ground reflectivity and G is the solar radiation on the 
horizontal surface. 

The contribution of diffuse radiation on a tilted surface is determined 
by using the model developed by Perez et al. [31]. This model accounts 
for circumsolar, horizon brightening, and isotropic diffuse radiation by 
empirically derived "reduced brightness coefficients". The reduced 
brightness coefficients F′

1 and F′
2 are functions of sky clearness ε and sky 

brightness Δ parameters that can be calculated with Eqs. (8) and (9). 

ε =

[
(Gd+Gdn)

Gd
+ 1.041θ3

z

]

[
1 + 1.041θ3

z

] (8)  

Δ = m
Gd

Gex,n
=

Gd

Gex
(9)  

Where Gd is the diffuse radiation on the horizontal surface, Gdn is the 
direct normal beam radiation, Gex is the extraterrestrial radiation and 
Gex,n is the extraterrestrial radiation at normal incidence. 

To calculate the reduced brightness coefficients Eqs. (10) and (11) 

are utilized. 

F′
1 = F11(ε)+ F12(ε)⋅Δ+ F13(ε)⋅θz (10)  

F′
2 = F21(ε)+ F22(ε)⋅Δ+ F23(ε)⋅θz (11)  

where θZ is in radians and the Perez coefficients (F11, etc.) are given in 
Ref [31]. 

The tilted surface diffuse radiation GdT can be estimated by the Eq. 
(13): 

GdT = Gd

[
0.5

(
1 − F′

1

)
(1+ cosβ)+F′

1

(a
c

)
+F′

2sinβ
]

(12) 

Eq. (13) shows that the magnitude of the reduced brightness co-
efficients weighs the respective circumsolar, horizon brightening, and 
isotropic diffuse radiation components. The ratio a/c determines the 
angular location of the circumsolar region and can be calculated with 
Eq. (13). 

a
c
=

max[0, cosθ]
max[cos(85◦), cosθz]

(13) 

In general, the anisotropic sky models of Perez, et al. provide com-
parable estimates of the total radiation on a tilted surface and are rec-
ommended for general use. 

Finally, the total radiation (GT)incident on a tilted flat surface is 
reported in Eq. (14): 

GT = GbT +GdT +GgT (14)  

2.1.2. Type 94: Photovoltaic array 
This component models the electrical performance of a PV array and 

employs equations for an empirical equivalent circuit model (see Fig. 3) 
to predict the current-voltage characteristics of a single module. This 
circuit consists of a DC source, a diode and two resistors. The strength of 
the current source is dependent on solar radiation and the I-V charac-
teristics of the diode are temperature-dependent. The results for a single 
module equivalent circuit are extrapolated to predict the performance of 
a multi-module array. For crystalline modules (either single crystal or 
polycrystalline technology), Type 94 employs an equivalent electrical 
circuit model involving five mathematical parameters. The component 
will determine these values from manufacturers’ catalog data. Type 94 
also includes an optional incidence angle modifier correlation to 
calculate how the reflectance of the PV module surface varies with the 
angle of incidence of solar radiation. Other outputs include current and 
voltage at the maximum power point along the IV curve, open-circuit 
voltage, and short circuit current. 

2.1.2.1. Mathematical description (5-parameter model). The 5-parameter 
model is used to simulate dynamically the PV performance as a function 
of the incident solar radiation and air temperature [32]. This model 
permits the evaluation of the electrical performance of the PV cell 
modifying instantaneously the I-V characteristic curve of the PV cell 
from the reference to the actual conditions. It is based on an equivalent 
electrical circuit containing one diode, one ideal current generator and 
two electrical resistors. 

The performance of the PV generator is determined by solving the 
equivalent electrical circuit shown in Fig. 3, which consists of the use of 
five parameters providing a direct/ideal current generator, a diode and 
two resistors. The five parameters are the photocurrent IL, the diode 
reverse saturation current I0, the empirical PV curve-fitting parameter γ, 
the series resistance Rs and the shunt resistance Rsh. These values are 
empirical and are not directly ascertained through physical measure-
ments. Type 94 computes these values utilizing data extracted from the 
manufacturer’s catalog. 

The current-voltage equation for the equivalent circuit in Fig. 3 is 
represented by the Eq. (15): 

Fig. 3. Equivalent electrical circuit in the 5-parameter model.  

N. Matera et al.                                                                                                                                                                                                                                 



Sustainable Energy, Grids and Networks 38 (2024) 101337

7

Fig. 4. Representation of an artificial neural network with n0 inputs, nl+1 outputs and l hidden layer.  

Table 1 
ANN activation functions.  

Name Function Equation Codomain Graph 

Linear transfer function purelin(x) x (-ꝏ, +ꝏ) 

Log-sigmoid transfer function logsig(x) 1
1 + e− x 

(0, 1) 

Hyperbolic tangent sigmoid transfer function tansig(x) 2
1 + e− 2x − 1  (-1,1) 
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I = IL − I0

[

exp
(

q
γkTc

V+ IRs

)

− 1
]

−
V + IRs

Rsh
(15)  

Where k is the Boltzmann constant and Tc is the cell temperature. 
The insolation and temperature dependence of the PV module is 

given by using Eqs. (16) and (17): 

IL = IL,ref
GT

GT,ref
(16)  

I0

I0,ref
=

(
Tc

Tc,ref

)3

(17) 

Herafter, equations used to find the 5 parameters in the reference 
conditions are described. Fry [33] has shown that the negative recip-
rocal of the short-circuit IV slope closely approximates the shunt 
resistance: 

Rsh ≅
− 1

(
dI
dV

)

V=0

(18) 

This expression reduces the number of unknown quantities to four: 
IL,ref, Io,ref, γ, and Rs. Rearranging Eq. (15) (and neglecting the “-1”) at 
open-circuit oc, short-circuit sc, and maximum power mp conditions 
yields, the following expressions for IL,ref, Io,ref, γ: 

IL,ref = Isc,ref

(

1+
Rs

Rsh

)

(19)  

I0,ref =
IL,ref −

Voc,ref
Rsh

exp
(

q
γkTc,ref

− Voc,ref

) (20)  

γ =

(
q
(
Vmp,ref − Voc,ref + Imp,ref Rs

) )

kTc,ref ln

⎛

⎜
⎜
⎝

IL,ref − Imp,ref −
Vmp,ref+Imp,ref Rs

Rsh

Isc,ref −
Voc,ref

Rsh

⎞

⎟
⎟
⎠

(21)  

Where q is the electron charge constant. 
The fifth equation is derived by taking the analytical derivative of 

voltage with respect to temperature at the reference open-circuit con-
dition. This analytical value is matched to the open-circuit temperature 
coefficient, a catalog specification. Differentiating Eq. (15) with respect 
to temperature at the open-circuit condition yield, Eq. (22) is obtained: 

∂Voc

∂Tc
= µVoc =

µIsc −
I0,ref
Tc

⎛

⎜
⎝3 + qε

γ
Ncs kT

⎞

⎟
⎠exp

(
q

kγTc,ref

)

q
kγTc,ref

I0,refexp
(

q
kγTc,ref

Voc,ref

)

+ 1
Rsh

(22)  

Where Ncs is the number of cells in series. 
Type 94 uses an iterative search routine in these four equations to 

calculate the equivalent circuit characteristics, which provides the 

values of IL,ref, I0,ref, Rs,ref, Rsh and aref. To solve the equation system, an 
iterative search routine is used to find the correct values for Rs and γ by 
matching the analytical value for the temperature coefficient of open- 
circuit voltage µVoc to that given in the catalog. 

As previously shown in Eqs. (16) and (17), the parameter values 
under operating conditions are obtained by updating the IL and I0 values, 
as a function of solar radiation absorbed and the cell temperature, 
respectively. The latter is calculated using the Nominal Operating Cell 
Temperature (NOCT). In this way, the characteristic curve is updated at 
each time instant as a function of the cell temperature and the solar 
radiation absorbed [34]. In addition, absorbed solar power is evaluated 
considering the Incidence Angle Modifier (IAM) [35]. 

The electric PV power produced is calculated at the maximum power 
point of the characteristic curve by Eq. (23): 

Ppv(t) = Imp(t)⋅Vmp(t) (23) 

MPPT relies on a control system designed to optimize the operation 
of a PV system by maintaining it in the most effective conditions for 
maximum power output [36]. 

2.1.2.2. Module opeating temperature. Type 94 uses temperature data 
from the standard NOCT measurements to compute the module tem-
perature Tc at each time step. The NOCT temperature (Tc,NOCT) is the 
operating temperature of the module with a wind speed of 1 m/s, no 
electrical load, and certain specified insolation and ambient temperature 
[37]. The values for insolation GT,NOCT and ambient temperature Ta,NOCT 
are usually 800 W/m2 and 20º C. Type 94 uses the NOCT data to 
determine the ratio of the module transmittance-reflectance product to 
the module loss coefficient: 

τα
UL

=

(
Tc,NOCT − Ta,NOCT

)

GT,NOCT
(24) 

Assuming that this ratio is constant, the module temperature at any 
time step is: 

TC = Ta

(
1 −

ηm
τα

)

(
GTτα

UL

) (25)  

where ηm is the conversion efficiency of the module, UL is the PV thermal 
loss coefficient and τα may be either a constant or a value calculated 
from an incidence angle correlation, as described in Section 2.1.2.3. 

2.1.2.3. Incidence angle modifier correlation. Type 94 includes an 
optional “incidence angle modifier” routine. If this routine is used, an 
empirical correlation determines the transmittance-reflectance product 
(τα) of the module at each time step. This calculation is based on the 
module slope, and the angle of incidence and intensity of each radiation 
component (direct, diffuse, and ground-reflected). For most locations, a 
given PV array will generate about 10% less energy over a year when the 
incidence angle routine is enabled. τα at normal incidence is not usually 
included in the list of manufacturer’s parameters, although 0.9 is usually 
a good estimate. The expression for the incidence angle modifier, taken 

Table 2 
PV module parameters at reference conditions [45–50].  

Name Cells Voc 

(V) 
Isc 

(A) 
Vmp,ref 

(V) 
Imp,ref 

(A) 
NOCT 
(K) 

A 
(m2) 

µIsc 

(%/◦C) 
µVoc 

(%/◦C) 
Ppv,n 

(W) 
ηm 

(%) 

TRAINING  

CanadianSolar290  60  38.50  9.72  31.60  9.18  316.15  1.64  0.050  -0.29  290.09  17.72 
Jakson250  72  44.50  7.45  35.90  6.97  320.15  1.62  0.040  -0.32  250.22  12.88 
LG300  60  40.10  9.65  32.90  9.15  318.15  1.64  0.030  -0.28  301.04  16.23 
Panasonic330  96  69.70  6.07  58.00  5.70  317.15  1.67  0.034  -0.16  330.60  19.70 
Suntech250  60  37.40  8.63  30.70  8.15  318.15  1.63  0.050  -0.34  250.21  15.40 
TallMax320  72  45.80  9.10  37.10  8.63  317.15  1.94  0.050  -0.32  320.17  16.50  
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Fig. 5. Localities belonging to the training and validation set along with the Koppen climate classification.  
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from King et. al [35] is: 

Where, in this case θ is the angle of incidence in degrees, with θ =
0 indicating normal incidence. 

The angle of incidence for the beam component of the solar radiation 
is obtained directly as an output from the Type 15 Solar Radiation 
Processor. However, Type 15 does not calculate effective angles of 

incidence for the diffuse and ground-reflected radiation components. 
Type 94 uses two additional correlations to find these effective angles of 
incidence. These correlations, developed by Duffie and Beckman [37], 
are: 

θeff,diff = 59.7 − 0.1388⋅β+ 0.001497⋅β2 (27)  

θeff,gnd = 90 − 0.5788⋅β+ 0.002693⋅β2 (28) 

The total insolation on the array is found by summing the individual 
radiation components and multiplying them by their appropriate inci-
dence angle modifiers: 

GT,eff = ταnorm
(
GT,beamIAMbeam +GT,diff IAMdiff ++GT,gndIAMgnd

)
(29)  

2.2. Artificial neural network 

The components of an ANN can be listed as (i) input layer, (ii) hidden 
layer(s), (iii) output layer, (iv) weights and biases between layers and (v) 
activation function [38]. A generalized representation of an ANN can be 
seen in Fig. 4. 

There are several types of activation functions in the literature; the 
most commonly used are reported in Table 1. 

Each ANN layer includes neurons like our brains, which are the core 
processing units of the ANNs. The output of the ANN with l hidden layer 
can be expressed in a matrix form: 

xl+1 = y = φ(wl+1xl + bl+1) (30)  

Where xl+1 is the output y from the ANN, bl+1 is the bias vector of the 
output layer and wl+1 represents the weight matrix between the l-th 
hidden layer and the output layer. The training phase foresees the 
determination of the weights between the different layers of the ANN. 
The optimal weights are determined by an optimization routine that 
minimizes the errors between the ANN output value and the target 
values used to train the ANN [39,40]. Initial simulations indicated that 
both the Bayesian and LM algorithms yielded comparable results, 
exhibiting a disparity of merely 0–1% in accuracy metrics. This phe-
nomenon stems from the limited input variables, the singular output, 
and the extensive dataset utilized during the training phase to elucidate 
the input-output correlation. 

The algorithms used in this work are related to the Deep Learning 
Toolbox [41]. The ANN architecture can be optimized by identifying the 
optimal number of neurons that maximize the accuracy, by using some 
common accuracy metrics [42]. On the basis, of the optimal architec-
ture, a sensitivity analysis of the optimal ANN model was conducted 
using Garson’s algorithm illustrated, in his reference [43], for the case 
with two input neurons, one hidden layer with two neurons and one 
output neuron. The method quantitatively demonstrates the importance 
of each input in predicting each output, namely to determine the in-
fluence of each input variable and its contribution to the output. This 
method is also used to eliminate irrelevant input; namely, the most 
significant explanatory variables are determined, and then the variables 
below a fixed threshold are excluded from the ANN. This allows the ANN 
size to be reduced and thus minimizes redundancy in the training data. 

The same method was illustrated by Gevrey et al. [44], called the weight 
method, considering the ANN with three input neurons, one hidden 
layer with four neurons and one output neuron. 

In this paper, a generalized procedure of the Garson method is pro-
posed. To determine the relative importance of each input to each 

Table 3 
Yearly average and standard deviation values of external air temperature and 
horizontal global solar radiation.  

Locality Tae,avg 

(◦C) 
Gavg 

(W/m2) 
Tae,sd 

(◦C) 
Gsd (W/ 
m2) 

Optimal PV 
angle (◦) 

Toamasina  23.30  205.87  3.59  287.75  -16 
Singapore  26.62  185.30  2.46  264.60  2 
Recife, 

Pernambuco  
28.58  241.68  2.78  324.87  -4 

Miami, Florida  24.31  204.69  4.28  279.76  26 
Lihue, Hawaii  23.92  207.60  2.63  278.78  20 
Mombasa  26.15  227.54  3.26  310.19  0 
Caracas  25.98  184.66  2.84  263.84  10 
Kano  26.29  256.41  6.18  335.16  16 
Baghdad  20.12  238.15  10.11  316.64  32 
Cairo  21.32  231.37  6.53  308.61  28 
Kabul  12.06  217.73  10.58  302.55  34 
Baku  14.57  152.41  9.42  235.40  28 
Odessa, Texas  10.16  141.77  9.47  219.53  34 
Maracaibo  27.54  179.50  3.41  258.76  10 
Buenos Aires  17.42  194.89  5.89  277.42  -28 
Milan  11.62  135.71  8.94  208.70  36 
Berlin  9.42  114.35  8.53  184.79  38 
London  10.78  105.50  5.79  174.31  36 
Vancouver, British 

Columbia  
9.84  143.96  5.83  224.71  36 

Melbourne, 
Victoria  

14.00  175.04  5.82  257.19  -30 

Bogotá, 
Cundinamarca  

13.26  193.15  4.03  283.51  2 

Wellington  13.51  160.44  4.32  243.43  -32 
Reykjavík  4.37  89.35  5.31  151.59  44 
Auckland Islands  15.09  175.10  4.12  255.73  -30 
Rome  15.21  178.21  7.19  254.13  36 
Adelaide  16.65  204.08  6.14  288.89  -28 
Porto  14.48  178.22  5.30  258.44  34 
La Coruna  14.09  139.92  4.12  215.45  32 
New Delhi  25.07  225.08  7.87  299.22  32 
Hong Kong  22.87  162.66  5.51  243.38  20 
Johannesburg  15.47  235.95  6.04  318.23  -26 
Nairobi  19.23  211.37  4.19  299.92  4 
Bucharest  10.58  151.24  10.07  229.83  34 
Toronto, Ontario  7.37  160.65  10.99  238.66  36 
Moskva  5.01  109.72  11.05  180.47  42 
Ottawa, Ontario  5.93  157.26  12.46  230.58  40 
Tromsø  2.95  72.47  6.61  129.23  46 
Anchorage, Alaska  2.64  101.62  9.77  165.48  48 
Oymyakon, Sakha 

Republic  
-16.15  122.17  24.05  188.72  52 

Verhojansk, Sakha 
Republic  

-15.05  109.11  23.73  174.86  52 

Hakkâri  10.11  196.29  11.16  284.34  30 
Cambridge Bay, 

Nunavut  
-14.56  113.79  16.11  183.37  52 

Dras  2.09  186.47  12.50  275.34  30 
Flagstaff, Arizona  7.30  213.52  9.81  289.17  36 
Beijing  11.79  148.15  11.76  219.17  38 
Seoul  11.84  138.57  10.83  211.44  34 
Pyongyang  9.58  146.57  11.95  218.39  36 
Vladivostok  4.27  150.77  12.15  217.14  44  

IAM = 1 −
(
1.098⋅10− 4)θ −

(
6.267⋅10− 6)θ2 +

(
6.583⋅10− 7)θ3 −

(
1.4272⋅10− 8)θ4 (26)   
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Fig. 6. ANN with 7 neurons in the hidden layer for the Jakson photovoltaic module (a) training state and (b) histogram of errors divided into training, validation, and 
testing data. 

Fig. 7. Regression diagram for the training, validation, testing and overall processes of the ANN with 7 neurons in the hidden layer for the Jakson photovol-
taic module. 
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output, the computation process is as follows: 

(Step 1) Identification of all routes between x0,i and yj through the 
neurons of the l hidden layers, for a couple constituted by a neuron of 
the input layer x0,i and a neuron of the output layer yj. The number of 
routes between each couple x0,i and yj is equal to the overall hidden 
neurons NR = n1 + n2 + .. + ni + … + nl. 
(Step 2) Calculation of the r-th overall weight Wr,ij, namely the 
product of all absolute values of weights of a specific route r between 
the i-th input x0,i and the j-th output yj: 

Wr,ij =
∏l+1

k=1
|wk| (31)  

This product is composed of l+1 weights wk,ij; specifically, the 
number of weight connections needed corresponds to the quantity of 
connections required to transition from the input neuron to the 
output neuron. In addition, only one weight for each hidden layer 
appears in Eq. (31) as highlighted by subscript k. 

Table 4 
RMSE, R2 and MAE values as a function of the number of neurons in the hidden layer for the different photovoltaic modules.   

Neurons RMSE 
(-) 

R2 

(-) 
MAE 
(-) 

RMSE 
increase 
(%) 

R2 

increase 
(%) 

MAE 
increase (%)   

CanadianSolar290  1  0.0521  0.9559  0.0311        
2  0.0480  0.9626  0.0267  -7.91  0.70  -14.24  
3  0.0471  0.9640  0.0241  -1.90  0.15  -9.68  
4  0.0470  0.9642  0.0234  -0.24  0.02  -3.20  
5  0.0468  0.9645  0.0230  -0.45  0.03  -1.59  
6  0.0467  0.9646  0.0229  -0.14  0.01  -0.17  
7  0.0465  0.9649  0.0226  -0.40  0.03  -1.52  
8  0.0466  0.9648  0.0228  0.09  -0.01  0.87  
9  0.0465  0.9649  0.0228  -0.07  0.01  -0.14  

10  0.0465  0.9649  0.0225  -0.02  0.00  -0.93 
Jakson250  1  0.0526  0.9556  0.0315        

2  0.0482  0.9627  0.0269  -8.32  0.74  -14.49  
3  0.0473  0.9641  0.0243  -1.93  0.15  -9.66  
4  0.0471  0.9644  0.0234  -0.34  0.03  -3.64  
5  0.0470  0.9645  0.0234  -0.25  0.02  -0.13  
6  0.0468  0.9648  0.0230  -0.31  0.02  -1.81  
7  0.0466  0.9651  0.0225  -0.53  0.04  -2.14  
8  0.0467  0.9650  0.0225  0.18  -0.01  -0.09  
9  0.0467  0.9650  0.0228  -0.03  0.00  1.42  

10  0.0466  0.9652  0.0227  -0.23  0.02  -0.51 
LG300  1  0.0537  0.9522  0.0325        

2  0.0484  0.9612  0.0275  -9.92  0.95  -15.33  
3  0.0467  0.9638  0.0232  -3.44  0.27  -15.70  
4  0.0466  0.9640  0.0227  -0.32  0.02  -2.27  
5  0.0467  0.9639  0.0233  0.23  -0.02  2.52  
6  0.0464  0.9643  0.0230  -0.61  0.05  -1.20  
7  0.0463  0.9645  0.0227  -0.18  0.01  -1.41  
8  0.0463  0.9644  0.0230  0.07  -0.01  1.51  
9  0.0463  0.9645  0.0227  -0.15  0.01  -1.38  

10  0.0463  0.9644  0.0227  0.16  -0.01  -0.15 
Panasonic330  1  0.0502  0.9605  0.0294        

2  0.0462  0.9664  0.0231  -7.85  0.62  -21.40  
3  0.0462  0.9665  0.0233  -0.12  0.01  0.76  
4  0.0461  0.9666  0.0229  -0.09  0.01  -1.86  
5  0.0460  0.9667  0.0228  -0.24  0.02  -0.49  
6  0.0458  0.9670  0.0225  -0.44  0.03  -1.10  
7  0.0458  0.9670  0.0224  -0.03  0.00  -0.61  
8  0.0456  0.9673  0.0220  -0.32  0.02  -1.50  
9  0.0457  0.9672  0.0222  0.14  -0.01  0.74  

10  0.0456  0.9673  0.0219  -0.21  0.01  -1.26 
Suntech250  1  0.0521  0.9563  0.0310        

2  0.0481  0.9627  0.0266  -7.56  0.66  -14.09  
3  0.0473  0.9639  0.0241  -1.69  0.13  -9.24  
4  0.0472  0.9641  0.0234  -0.22  0.02  -3.24  
5  0.0471  0.9642  0.0234  -0.22  0.02  0.19  
6  0.0468  0.9647  0.0226  -0.68  0.05  -3.28  
7  0.0469  0.9646  0.0230  0.18  -0.01  1.78  
8  0.0468  0.9647  0.0229  -0.23  0.02  -0.72  
9  0.0468  0.9647  0.0228  0.03  0.00  -0.38  

10  0.0467  0.9648  0.0228  -0.17  0.01  -0.15 
TallMax320  1  0.0518  0.9569  0.0308        

2  0.0480  0.9630  0.0265  -7.34  0.64  -13.96  
3  0.0471  0.9643  0.0241  -1.88  0.13  -9.06  
4  0.0470  0.9645  0.0232  -0.21  0.02  -3.73  
5  0.0469  0.9646  0.0234  -0.21  0.01  0.86  
6  0.0466  0.9651  0.0226  -0.64  0.05  -3.42  
7  0.0467  0.9649  0.0230  0.21  -0.02  1.77  
8  0.0467  0.9650  0.0228  0.00  0.01  -0.87  
9  0.0466  0.9650  0.0227  -0.21  0.00  -0.44  

10  0.0466  0.9652  0.0227  0.00  0.02  0.00  
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(Step 3) Determination of the sum sij of the r overall weights Wr,ij, 
summed overall weights, between the i-th input x0,i and the j-th 
output yj 

sij =
∑NR

r=1
Wr,ij (32)   

(Step 4) Application of Steps (1)-(3) for all (n0 • nl+1) couples of input 
neurons-output neurons 
(Step 5) Calculation of the percentage sensitivity index Sij of each i-th 
input on the j-th output with the following equation: 

Sij =
sij

∑n0

i=1
sij

100 (33)   

(Step 6) Repeat Steps (5) for the nl+1 output neurons. 

3. Case study 

In this section, data related to the different PV module and localities 
considered for the training and validation phase of the ANNs are 
extensively described. 

Fig. 8. Regression diagram between the target and output for the different optimal ANNs of the network.  
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3.1. Photovoltaic modules 
In total, eight PV modules were examined, and their electrical and 

thermal characteristics under reference conditions are detailed in 
Table 2. 

The primary parameters for the PV module under reference condi-
tions include: open-circuit voltage (Voc,ref), short-circuit current (Isc,ref), 
voltage at the maximum power point (Vmp,ref), current at the point of 
maximum power (Imp), NOCT, module area A, temperature coefficient of 
short-circuit current (μIsc), temperature coefficient of open-circuit 
voltage (µVoc), nominal power (Ppv,n) obtained by multiplying voltage 
and current at the point of maximum power, and module efficiency (ηm). 
These values are provided by the manufacturer [45–50] and are essen-
tial for Type 94 in TRNSYS to calculate the power output using the 
5-parameter model. Reference conditions are defined at a temperature 
of 25◦C and solar radiation of 1000 W/m2. 

3.2. Climatic data 
With the aim to provide a forecasting tool able to forecast PV per-

formance in any climatic condition, different worldwide localities 
belonging to different climate zones were identified. In the first phase, 
80 localities were selected. Successively, localities were reduced main-
taining the general validity tool condition with the following rationale: 
(i) at least two localities for each Koppen climate sub-group [51–53] (as 
shown in Fig. 5); (ii) the choice of localities has to determine a uniform 
distribution of localities in the different continents and latitudes based 
on the continent’s size and population; (iii) the choice of localities has to 
lead to climatic conditions very different with very and low sunny lo-
calities, very hot and cold localities and very and low windy localities (as 
shown in the Table 3). 

Consequently, in order to enhance the versatility and adaptability of 
the ANNs to various locations, 48 sites representing diverse climate 
groups in the Köppen classification, each characterized by distinct 

Fig. 9. Error boxplots of the dimensionless electrical power as a function of the number of neurons.  
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climates, were taken into account [51–53]. Specifically, two locations 
were considered for each climate subgroup, except for the Cfb subgroup, 
which encompasses four locations. Fig. 5 illustrates the 48 locations 
examined in this study. 

For each location, the TRNSYS library provides known hourly values 
of air temperature and horizontal solar radiation in a typical year tm2 

file. Yearly average and standard deviation values of external air tem-
perature, Tae,avg and Tae,sd, and horizontal global solar radiation, Gavg 
and Gsd, are provided in Table 3. In addition, the table provided the 
optimal tilt angle associated with the maximum PV electricity for each 
locality. 

Fig. 10. Dimensionless electrical hourly power error boxplots using the ANNs in the 24 localities of the validation dataset.  
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Fig. 11. Hourly trend throughout the year of the electrical energy produced by the Jakson250 PV module in Singapore calculated with TRNSYS and with the ANN.  
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Fig. 12. Hourly trend throughout the year of the electrical energy produced by the Jakson250 PV module in Auckland Island calculated with TRNSYS and with 
the ANN. 
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Fig. 13. Hourly trend throughout the year of the electrical energy produced by the Jakson250 PV module in Cambridge Bay calculated with TRNSYS and with 
the ANN. 
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Fig. 14. Hourly trend throughout the year of the electrical energy produced by the Panasonic330 PV module in Singapore calculated with TRNSYS and with 
the ANN. 
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Fig. 15. Hourly trend throughout the year of the electrical energy produced by the Panasonic330 PV module in Auckland Island calculated with TRNSYS and with 
the ANN. 
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Fig. 16. Hourly trend throughout the year of the electrical energy produced by the Panasonic330 PV module in Cambridge Bay calculated with TRNSYS and with 
the ANN. 
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3.3. Input and output data for ANN training 
The dimensionless input and output data are represented by: the 

hourly ratio tea of the external air temperature Tea and the reference 
temperature Tea,ref of 25◦ C; the hourly ratio gh of the total horizontal 
solar radiation Gh and the reference radiation Gh,ref of 1000 W/m2; the 
hourly ratio pel of the electrical power Pel and the nominal power of the 
PV module considered, obtained from the product between voltage and 
current at the point of maximum power Pmp. The dataset, comprising 
pairs of ratios of the air temperature and horizontal total solar radiation 
data, was randomly divided into three subsets: 70% for training, 15% for 
testing, and the remaining 15% for validation. Subsequently, both input 
and output vectors are scaled to fit within the range of [-1, +1] directly 
within the Matlab software, ensuring equal significance for each input 
during ANN training. This normalization procedure sets the minimum 
and maximum values to − 1 and 1, respectively. Following the ANN 
training, the output vector is restored to its original scale through 
denormalization. 

4. Results 

4.1. Training of the artificial neural networks 
The ANN was trained by varying the number of neurons in the hid-

den layer; the results, in terms of hourly electrical powers calculated by 
the ANN and the error vector given by the difference between the 
training hourly electrical powers and those predicted by the ANN, were 
saved. 

The ANN training process is interrupted when the validation error 
has increased six times in a row. As shown in Fig. 6a for the case of the 
ANN of the Jakson PV module with seven neurons, this occurred after 
four minutes and 194 iterations. The histogram of errors divided into 
training, validation and testing data is reported in Fig. 6b. 

In particular, the training process is interrupted with a gradient value 
of 8.081 × 10− 5 and a damping parameter "μ" value of 1×10− 7. In 
correspondence with epoch 40, there is an increase in the validation 
error for five consecutive times and in correspondence with epoch 100, 
there is an increase in the error for three consecutive times. The ANN 
training is interrupted in correspondence with epoch 194 because since 
epoch 188 there is an increase in the validation error for the following 

Fig. 17. Daily trend throughout the year of the electrical energy produced by the Jakson250 PV module in Singapore, Auckland and Cambridge Bay calculated with 
TRNSYS and with the ANN. 
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six iterations. The error histogram highlights that most of the training, 
validation and test data are included in the bins around the zero error. 
Fig. 7 illustrates the regression diagram for the training, validation, 
testing and overall processes. 

The dashed line represents the perfect result in which the output 
obtained with the ANN coincides with the target, while the continuous 
line provides an indication of the relationship between the ANN output 
obtained and the target. The regression performance is very high given 
the high value of the R accuracy metric for all data typologies. 

The ANN Matlab script and the results obtained, i.e. the dimen-
sionless hourly electrical powers obtained during the ANN training 
phase and the errors made by the difference between the targets and the 
ANN outputs, were saved for all PV modules and number of neurons. 

From the comparison of the hourly electrical powers calculated with 
the ANN and with the 5-parameter model, the values of the Root Mean 
Square Error (RMSE), R-Square (R2) and Mean Absolute Error (MAE) 
were obtained [42]. The values obtained by varying the number of 
neurons in the hidden layer, for all PV modules considered in the 
training phase, are reported in Table 4. 

For all PV modules, the optimal number of neurons was identified by 

analysing the percentage increase of the RMSE, R2 and MAE values. For 
example, for the Jakson module, the metrics are almost unchangeable 
from the seventh neuron onwards; in this way, the highest value of R2 

and the lowest value of RMSE and MAE are obtained with 7 neurons in 
the hidden layer. A sharp change in accuracy metrics is observed from 
one neuron to three neurons in the hidden layer; after the optimal 
number of neurons, the values remain almost constant, as highlighted by 
the percentage increase. In the same way, the ANNs related to the other 
PV modules. 

Fig. 8 shows the regression diagrams obtained for the optimal ANNs 
for each PV module. 

The optimization of the accuracy of the ANNs led to regression 
curves very close to the bisector with very high R2 and low intercepts 
and almost unitary angular coefficients for all PV modules. 

Moreover, to evaluate the ANN performance as the neurons vary, the 
errors given by the difference between the target and ANN output values 
of the dimensionless electrical power were calculated and elaborated in 
terms of a boxplot in Fig. 9 for all PV modules. In the boxplots, also the 
nocturnal values were considered despite the differences between the 
target nil values and those predicted by the ANNs are very low. In 

Fig. 18. Daily trend throughout the year of the electrical energy produced by the Panasonic330 PV module in Singapore, Auckland and Cambridge Bay calculated 
with TRNSYS and with the ANN. 
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addition, the boxplot outliers were not reported to better highlight the 
mean, variance and symmetry properties of the boxplots. 

For all PV modules, a further increase of the neurons compared to the 
optimal values does not produce noticeable improvements. As expected, 
the maximum accuracy improvements are obtained by increasing neu-
rons from 1 to 3. 

4.2. Validation of the artificial neural networks. Fig. 10 highlights the 
error dispersion through boxplots for each PV module in all 24 localities 
of the validation set. Also in this case, the outliers were not shown and 
the errors during the nocturnal hours were included. 

From the Fig. 10, it is evident that the errors are generally low for all 
PV modules and localities since the boxplot is placed around the nil 
error. In some localities, the errors are prevalently placed on the positive 
values which means an underestimation of the dimensionless power, 
while the ANNs lead to an overestimation in other localities. Overall, the 
predictions in localities belonging to the Koppen D subgroups, in blue 
color, highlight a wider error interquartile range, that measures the 
variance breadth or dispersion around the mean value. This is owing to 
the very extreme weather conditions characterizing these localities. 
Nevertheless, the error range can be retained as acceptable. 

The next analysis aims to evaluate the accuracy of the ANNs in the 
prediction of the hourly, daily, monthly and yearly energy produced by 
the PV modules in the 24 localities considered in the validation phase. 
This analysis permits the identification of how accuracy metric values 
are linked to the energy forecasting capacity of the ANNs and the ac-
curacy grade required to obtain low errors in PV energy forecasting. 

4.2.1. Hourly analysis. At an hourly level, the localities with the 
highest, intermediate and lowest accuracy, respectively Singapore, 
Auckland Island and Cambridge Bay, were selected to evaluate the ac-
curacy of the ANNs. Despite Auckland representing the intermediate 
locality, since has an accuracy very close to the overall mean accuracy of 

all localities, most of the localities have values of accuracy metrics be-
tween those related to Singapore and Auckland Island. This is owing to 
the low accuracy, compared to that of the other localities, of some lo-
calities belonging the Group D. 

The three localities are characterized by extreme geographical 
placement since Singapore is very close to the equator, Cambridge Bay is 
placed on a very high positive latitude and Auckland Island is on a very 
high negative latitude. The produced electrical energy by two charac-
teristic PV modules, the one with the maximum nominal power (Pana-
sonic330) and the one with the minimum nominal power (Jakson250) 
among all PV modules considered in the network, was considered. 

Figs. 11–13 show the hourly trend throughout the year of the elec-
trical energy produced by the Jakson250 PV module in Singapore, 
Auckland Island and Cambridge Bay calculated with TRNSYS and with 
the ANN. Instead, the same comparisons are illustrated for the Pana-
sonic330 PV module in Figs. 14–16. 

From the figures, the following conclusions can be deducted for both 
PV modules:  

• In Singapore, the highest accuracy demonstrated by the metrics leads 
to an hourly trend of the electrical power obtained with the ANNs 
superimposed on that calculated with the 5-parameter of TRNSYS.  

• In Auckland Island, the intermediate accuracy demonstrated by the 
metrics leads to an hourly trend of the electrical power obtained with 
the ANNs almost superimposed on that calculated with the 5-param-
eter of TRNSYS; a slight underestimation during the peak hours can 
be observed in the autumnal and winter period of the southern 
hemisphere (from March to September) and, vice versa, a slight 
overestimation in the spring and summer period (from November to 
February) of the southern hemisphere.  

• In Cambridge Bay, the worst accuracy demonstrated by the metrics 
leads to an underestimated hourly electrical power calculated with 
the ANNs compared to the TRNSYS one during the peak hours: this 

Fig. 19. Monthly electrical energy produced by the Panasonic330 PV module in Singapore, Auckland and Cambridge Bay, calculated with TRNSYS and with 
the ANN. 
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underestimation is quite slight in the spring and summer period of 
the northern hemisphere (from March to August) and, increases 
during the autumnal and winter period of the northern hemisphere 
(from September to February, except from November to January, 
when the locality has no daylight hours); in May and June, an 
overestimation is observed during the nocturnal hours, when there 
are 24 hours of daylight.  

• The qualitative trends obtained from the ANNs follow perfectly the 
TRNSYS trend, also when abrupt variations occur.  

• The accuracy improves in the spring, summer, and autumn periods 
both in the northern and southern hemispheres, namely when the 
production of electrical energy is the highest. 

Considering that the ANNs can reliably predict the change in the 
hourly energy produced in the locality characterized by very extreme 

weather conditions and by worst accuracy in terms of accuracy metrics, 
the previous considerations demonstrate that the ANNs are very reliable 
in the forecasting of the hourly electrical energy produced by any PV 
module belonging to the network. This reliability becomes very high in 
the majority of the worldwide localities since they are characterized by 
intermediate weather conditions compared to those of Cambridge Bay 
and Singapore. Most of the worldwide localities belong to the Koppen 
groups A, B and C, where the ANNs demonstrated the highest reliability 
and accuracy. 

4.2.2. Daily analysis. Similarly to the hourly analysis, at a daily 
level, the same PV modules and localities were considered to evaluate 
the performance of the ANNs. Figs. 17 and 18 illustrate the trend of the 
daily electrical energy produced, respectively, by the Jakson250 and 
Panasonic330 PV modules in the three characteristic localities. 

The figures provide further details on the accuracy and reliability of 

Fig. 20. Yearly electrical energy produced by the CanadianSolar290 and Jakson250 PV modules in the 24 localities of the validation set calculated with TRNSYS and 
with the ANN. 
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the ANNs in the different localities by changing the season:  

• In Singapore, the daily energy forecast is excellent in all seasons. 
• In Auckland Island, the highest accuracy is observed in the inter-

mediate seasons, while in the summer and winter period, an overall 
overestimation and underestimation, respectively, is observed on the 
daily trends.  

• In Cambridge Bay, the daily energy exhibits great accuracy during 
the winter season and the first part of the spring season, and an 
evident overestimation in the days characterized by 24 hours of 
daylight, namely the second part of the spring season and in the first 
part of the summer period, given to the greater estimations during 
the nocturnal hours that are prevalent compared to the underesti-
mation of the energy during the peak hours; instead, this over-
estimation can be considered low during the second part of the 

summer season; finally, the autumnal season is characterized by very 
high accuracy in the first part, while in the second part, the ANNs 
underestimate the daily energy.  

• In general, also in this case, the qualitative trends can be considered 
very close to those deriving from the 5-parameter model.  

• This analysis confirms that the ANNs are very reliable in daily energy 
forecasting, given that the majority of worldwide localities consid-
ered have accuracy metrics between those obtained for Singapore 
and Auckland Island. 
4.2.3. Monthly analysis. At a monthly level, the comparison be-

tween the results obtained from the ANNs compared with those obtained 
from TRNSYS is shown in Fig. 19 for the three characteristic localities 
and the Jakson250 and Panasonic330 PV modules. 

The comparison highlights also the high accuracy of the ANNs in the 
worldwide monthly energy forecasting and the main findings observed 

Fig. 21. Yearly electrical energy produced by the LG300 and Panasonic330 PV modules in the 24 localities of the validation set calculated with TRNSYS and with 
the ANN. 
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in the hourly and daily analyses. In addition, this further analysis points 
out that the highest monthly error occurs in the summer months of 
worldwide localities with very high positive or negative latitudes when 
the day duration is much higher than the night duration; in particular, in 
Cambridge Bay, this phenomenon is amplified given the presence of 
24 hours of daylight in May, June and July. 

4.2.4. Yearly analysis. The yearly analysis is fundamental to sum-
marize the previous findings and to evaluate the relation between the 
accuracy metrics obtained and the reliability and accuracy of the ANNs 
in the worldwide yearly energy forecasting. 

The goodness of the ANNs created was also estimated by comparing 
the predicted yearly electrical energy produced in each locality of the 
validation set with the yearly energy obtained with the target hourly 
electrical power provided by the TRNSYS software. Figs. 20–22 show the 
yearly energies, for all six PV modules by varying the locality, obtained 

with the ANN and TRNSYS software and the percentage relative errors. 
The different ANNs related to the various PV modules are perfectly 

able to predict the energy in all localities considered since the relative 
errors are very small. Consequently, in the locality where the ANNs 
highlighted the worst accuracy with the lowest R2 and highest RMSE and 
MAE, the maximum error in the yearly energy forecasting is 8%, which 
is very low considering that any complex non-linear model was used to 
solve the exponential equation system characterizing a PV 5-parameter 
model. It can be deduced that the slight hourly, daily, and monthly 
overestimation or underestimation highlighted are compensated at a 
yearly level. 

ANNs have undergone global validation and are applicable for pre-
dicting the electrical energy output of a PV module without reliance on 
the TRNSYS software. 

Fig. 22. Yearly electrical energy produced by the Suntech250 and TallMax320 PV modules, in the 24 localities of the validation set, calculated with TRNSYS and 
with the ANN. 
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4.3. Model equation for the PV electrical power forecasting based on 
trained ANNs. Based on the work developed by Das et al. [54], an 
empirical model equation can be obtained starting from the knowledge 
of the weight and bias values of the optimal ANNs. The dimensionless 
hourly electrical power produced can be calculated using Eqs. (34)-(36). 

pel,n = b2 +
∑n1

i=1
w2,1i

(
2

1 + e− 2Ai
− 1

)

(34)  

where, 

Ai = b1,i +w1,1i • tea,n +w1,2i • gh,n (35) 

Finally, the output is to be denormalized as follows: 

pel =
1
2
(
pel,n + 1

)(
pel,max − pel,min

)
+ pel,min (36) 

In Table 5, the values of the elements of the weight matrices w1 and 
w2 and bias matrices b1 and b2 are reported for each PV module of the 
ANNs. 

Instead, Table 6 lists all the parameters required for the normaliza-
tion of the inputs and denormalization of the output. 

4.4. Relative input-output importance by the Garson method. To extract 
the physical behavior of the six PV modules located in the 24 localities 
used for the ANN training, the generalized procedure of the Garson 
method, described in Section 2.2, was used to evaluate the percentage 
impact of the dimensionless air temperature and horizontal total solar 
radiation on the dimensionless PV power produced. 

The results of this analysis are summarized in terms of the percentage 
sensitivity index Sij of the input i on the output j for each PV module in 
Fig. 23. 

The index demonstrates that the effect produced by the air temper-
ature and solar radiation depends on the PV module typology, namely 
on its electrical and thermal characteristics. In particular, the electrical 
behavior of the CanadianSolar290 PV modules depends almost on the 
same measure of the hourly variation of the two inputs, while that of 
Suntech250, TallMax320 PV and LG300 PV modules depends slightly 
more on the air temperature. Instead, the electrical behavior of the 

Table 5 
Elements of the weight matrices w1 and w2 and bias matrices b1 and b2 for each PV module of the ANNs.  

Weight matrix w1 

CanadianSolar290 
w1 =

[ 6.39 − 4.93 6.72 − 0.59 − 3.02 2.64 − 1.02

− 4.05 − 0.27 − 2.26 1.35 − 5.57 1.12 − 4.02

]

Jakson250 
w1 =

[0.05 0.39 − 2.96 − 6.51 − 3.92 − 6.47 2.70

1.09 1.52 2.88 0.12 1.54 0.04 5.44

]

LG300 
w1 =

[
− 5.24 1.72 0.77 − 2.56 3.43 − 4.56 − 0.76

− 0.44 − 1.90 1.09 − 3.74 − 1.28 − 0.54 4.16

]

Panasonic330 
w1 =

[2.87 8.83 − 0.88 7.94 0.75 − 6.62 − 0.93 − 0.64

2.53 − 0.90 − 2.07 0.82 1.84 3.13 1.70 − 3.93

]

Suntech250 
w1 =

[0.09 − 1.31 6.91 0.31 6.70 − 1.99

1.65 1.97 0.11 2.75 0.47 − 7.42

]

TallMax320 
w1 =

[0.08 − 1.33 6.91 0.37 6.70 − 1.99

1.62 1.98 0.11 2.58 0.45 − 7.46

]

Weight matrix w2 

CanadianSolar290 w2 = [0.06 0.15 − 0.11 1.02 − 0.37 0.26 − 0.10 ]

Jakson250 w2 = [2.07 − 0.94 0.15 1.76 0.27 − 1.78 0.43 ]

LG300 w2 = [ − 0.57 − 0.46 0.78 − 0.76 − 0.46 0.74 0.12 ]

Panasonic330 w2 = [0.05 − 0.09 4.22 0.11 5.27 0.04 0.630.12 ]

Suntech250 w2 = [0.47 0.47 − 0.36 0.21 0.37 − 0.30 ]

TallMax320 w2 = [0.48 0.45 − 0.37 0.22 0.39 − 0.29 ]

Bias vector b1 

CanadianSolar290 Jakson250 LG300 Panasonic330 Suntech250 TallMax320 

b1 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

− 6.11

1.45
1.24
0.74

− 7.23

0.18
3.37

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

b1 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0.08

− 0.22
2.05
1.21

− 0.99

0.12
7.02

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

b1 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

2.54

− 1.21
0.39
− 5.50

1.18

2.08
− 2.47

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

b1 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

− 2.89

− 2.42
− 2.08
− 0.56

1.95

− 0.83

0.78

3.34

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

b1 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1.03

0.89
− 1.37
− 2.30

− 0.96

− 8.76

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

b1 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1.02

0.91
− 1.37
− 2.24

− 0.97

− 8.79

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Bias vector b2 

CanadianSolar290 Jakson250 LG300 Panasonic330 Suntech250 TallMax320 
b2 = [ − 0.48] b2 = [ − 0.32] b2 = [ − 0.56] b2 = [ − 0.86] b2 = [ − 0.42] b2 = [ − 0.41]

Table 6 
Parameters required for the normalization of the inputs and denormalization of the output.  

Denormalization CanadianSolar290 Jakson250 LG300 Panasonic330 Suntech250 TallMax320 
pel,min = 0 pel,max =

1.039 
pel,min = 0 pel,max =

1.032 
pel,min = 0 pel,max =

1.029 
pel,min = 0 pel,max =

1.074 
pel,min = 0 pel,max =

1.048 
pel,min = 0 pel,max =

1.011 

Normalization tea( − ) gh( − )

xmin = − 2.440 xmax = 1.784 xmin = 0.000 xmax = 1.236  
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Jakson250 PV module depends strongly on the air temperature, while, 
vice versa that of the Panasonic330 is strongly influenced by solar 
radiation. 

By comparing the thermal and electrical parameters of the six PV 
modules can be highlighted that:  

• The Jakson250 PV module is characterized by the lowest reference 
efficiency and highest NOCT; for this reason, the thermal losses, and 
consequently the energy production, of the PV module are greatly 
influenced by the temperature. 

• The Panasonic330 PV module is characterized by the highest refer-
ence efficiency, number of cells, open-circuit voltage, voltage at the 
maximum power point, percentage variation of open-circuit voltage 
with the temperature and the lowest current at the maximum power 
point; given the high efficiency, the solar radiation is the main 
responsible of the energy production. 

5. Conclusions 

This research presents a comprehensive analysis of Artificial Neural 
Networks (ANNs) for the accurate prediction of electrical power output 
from PhotoVoltaic (PV) modules across various geographic locations. 
ANNs were trained, optimized, and validated on a global scale across 
various types of PV modules, assessing their accuracy and reliability in 
predicting worldwide hourly, daily, monthly, and yearly energy 
production. 

The study systematically explored the impact of varying the number 
of neurons in the hidden layer of the ANN on prediction performance. By 
monitoring error metrics such as RMSE, R2 and MAE, optimal configu-
rations were identified for different PV modules. Notably, significant 
improvements in accuracy were observed by increasing neurons from 1 
to 3, beyond which marginal gains were achieved. 

The validation process across 24 diverse localities further under-
scored the robustness of the ANN models. Despite extreme weather 

Fig. 23. Percentage sensitivity index of the dimensionless air temperature and horizontal total solar radiation on the dimensionless PV power produced for all PV 
modules belonging to the ANNs. 
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conditions in certain regions, the ANNs consistently demonstrated low 
prediction errors, validating their efficacy across different climates. 

In the training phase, ANNs showed a maximum mean absolute error 
of 3.5%, while in the validation phase, developed considering other 
localities and PV modules, the hourly relative error is in all cases below 
5%. 

Hourly, daily, monthly, and yearly analyses provided granular in-
sights into prediction accuracy under varying temporal scales. Overall, 
hourly power forecasting is less accurate but acceptable in localities 
around the globe with very extreme weather conditions, such as those 
characterized by extended daylight or extreme temperature fluctua-
tions. At a monthly level, the highest errors occur in the summer months 
of worldwide localities with very high positive or negative latitudes 
when the day duration is much higher than the night duration. On a 
yearly basis, in the locality where the ANNs highlighted the worst ac-
curacy, the maximum error in the yearly energy forecasting is 8%, which 
is very low considering that any complex non-linear model was used to 
solve the exponential equation system characterizing a PV 5-parameter 
model. It can be deduced that the slight hourly, daily, and monthly 
overestimation or underestimation highlighted are compensated at a 
yearly level. 

To enhance user-friendly forecasting of PV module performance, 
empirical equations derived from the trained ANNs, dependent on 
weight and bias matrices, were provided minimizing the expertize 
required. 

In the final analysis, the Garson method was employed to identify the 
relative input-output importance, quantifying the percentage impact of 
weather conditions on power production. In other words, sensitivity 
analyses revealed the nuanced influence of air temperature and solar 
radiation on PV power output, highlighting the module-specific 
dependencies. 

The developed hourly ANNs prove instrumental in decision-making 
and real-time processes, facilitating energy flow management in the 
grid, offering forecasts for hourly, daily, monthly, and yearly perfor-
mance, and serving as an alternative to classical methods for PV system 
sizing. The results obtained using ANN training and validation in many 
localities around the globe constitute a concrete tool to detect the per-
formance of PV systems around the world. In addition, the results can be 
used by other researchers as a reference to compare their investigations. 

The application of ANNs allows for the rapid and straightforward 
estimation of electric power produced by a PV module, eliminating the 
need for computationally expensive algorithm codes. 

Several promising avenues can enhance this research work, such as 
exploring the use of ANN architectures like recurrent or convolutional 
neural networks, integrating additional environmental data such as 
cloud cover and humidity, integrating ANNs developed with energy 
management systems to optimize energy scheduling and enhance grid 
stability. These future directions hold promise for advancing the field of 
PV energy forecasting, leading to more resilient and efficient renewable 
energy integration. 
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