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Abstract

The permanent power loss and the deviation of the trajectory of satellites impacted by centimetre and sub-centimetre sized debris have high-

lighted the need of taking into account such small fragments in the evolutionary models of the debris population and in the assessment of the

in-orbit collision risk. When scaling down to the centimetre-millimetre range, deterministic models for propagating the fragments’ orbit suffer

from the massive computational cost required. The continuum approach for modelling the debris clouds is a well-established alternative to the

piece-by-piece propagation. A density function is formulated to describe the distribution of fragments over a suitable phase space. Accurate and

efficient continuum formulations have been developed to propagate clouds of fragments under atmospheric drag and J2 perturbations, but a gen-

eral model able to work under any dynamical regime has still to be found. This paper proposes a continuum approach that combines the method

of characteristics with the discretisation of the domain in Keplerian elements and area-to-mass ratio into bins. The problem of using a binning

approach with such a multi-dimensional phase space is addressed bounding and partitioning the domain, through probabilistic models on the way

the fragments distribute over the phase space, as consequence of a fragmentation event. The proposed approach is applied to the modelling and

propagation of a space debris cloud under the full set of orbital perturbations, and compared against a Monte Carlo simulation in terms of objects’

number and distribution. The method proves to be accurate on the medium scale, in both space and time, and guarantees statistical validity with a

reduced computational effort, leveraging its probabilistic nature.

© 2023 COSPAR. Published by Elsevier Ltd All rights reserved.
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1. Introduction1

The growing dependence of our daily lives on space services2

has caused a massive growth in space activities over the past3

decade. Since the early age of space exploration until 2016,4

the number of payloads launched in Low-Earth Orbit (LEO)5

remained below 200 per year; instead, over the last 5 years,6

this rate dramatically increased up to the almost 1800 pay-7

loads launched in 2021 (ESA Space Debris Office, 2021). Ac-8

cording to the European Space Agency, approximately 300009

objects are regularly tracked by the Space Surveillance Net-10
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work (ESA Space Debris Office, 2021). The trackability of 11

objects in space is mainly affected by distance and size (McK- 12

night & Di Pentino, 2013); in LEO, typically objects down to 13

5-10 cm can be monitored from ground, while in geostation- 14

ary orbit only objects as big as 1 m are visible. As pointed out 15

in Drolshagen (2008), millimetre sized particles can penetrate 16

exposed tanks or seriously damage certain equipment, while 17

even larger particles typically lead to the complete destruction 18

of the impacted spacecraft part (Adushkin et al., 2020). Stud- 19

ies on the permanent partial power loss suffered by Sentinel- 20

1A on 23/08/2016 seem to indicate that the satellite was im- 21

pacted by a debris fragment with a mass comparable to an alu- 22

minum sphere with a diameter of 5 mm (Krag et al., 2017). 23

The risk posed by small impacting debris was extensively anal- 24

ysed by Smirnov et al. (2015), who conducted experiments 25

ed
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to determine the crater depth as function of collision velocity26

and impactor size. In addition to the structural damage, every27

hyper-velocity impact creates plasma that might cause electro-28

magnetic interference (Drolshagen, 2008). The possible hazard29

caused by such small fragments on operational satellites high-30

lights the need of taking them into account in the evolutionary31

models of the space debris population and in the assessment of32

the risk on orbiting assets. Moreover, as motivated by Smirnov33

et al. (2020), the effect of mutual collisions between debris of34

various sizes might also be detrimental for the sustainability of35

the space environment. Deterministic approaches for the long-36

term propagation of space debris (Liou et al., 2004; Walker37

et al., 2001) are typically limited to fragments as large as 1038

cm because of the massive computational time required. In-39

cluding fragments down to the millimetre level demanded the40

introduction of simplifying assumptions on the fragments’ dy-41

namics and distribution, which allowed to address long-term42

propagation with a reasonable computational cost. The most43

viable approach demonstrated to be the characterisation of the44

debris fragments from a probabilistic perspective, which con-45

siders them no longer as single pieces but as a cloud. Chobotov46

(1990) modelled the early stage of the cloud volume evolution47

through the linearised equation for relative motion, for an ef-48

ficient assessment of the collision risk posed by a fragmenta-49

tion just after the breakup. The effect of the J2 perturbation50

was also included for the short-term propagation of the cloud51

volume. Smirnov et al. (1993, 2001, 2002), and Nazarenko52

(1997), propagated the debris population in LEO by numeri-53

cally solving the continuity equation, after having gathered the54

fragments into phases, depending on their physical properties55

and orbit type. In McInnes (1993, 1994), the first analyti-56

cal model for propagating clouds of fragments under the effect57

of atmospheric drag was developed, applying the Method Of58

Charcteristics (MOC) to the continuity equation. The model59

considers the objects moving on quasi-circular orbits, which60

allows to describe the fragments’ dynamics as function of or-61

bital radius only. In Letizia et al. (2015a), the method was ex-62

tended to a 2D model in semi-major axis a and eccentricity e.63

In order to keep the solution analytical, the effect of drag on64

fragments’ eccentricity was neglected; nevertheless, the char-65

acterisation of the debris in the 2D phase space allowed to re-66

lax the constraint of circular orbit for the objects. Neglecting67

the effect of the Earth oblateness does not allow to describe68

the early stage of the cloud evolution (McKnight, 1990; Jehn,69

1990), when the fragments form a band around the Earth under70

the effect of the J2 perturbation. As a result, the cited analyt-71

ical models numerically propagated the debris generated by a72

fragmentation event for a period of time after which the cloud73

can be assumed to be randomised in right ascension of the as-74

cending node Ω and argument of periapsis ω, according to the75

Ashenberg approximation (Ashenberg, 1994). In Letizia et al.76

(2015c), the long-term effect of the Earth oblateness (Vallado77

& McClain, 2007) was included in the continuum formulation,78

describing the density of the orbiting objects in the 3D phase79

space (a,Ω, ω). As pointed out in Letizia et al. (2015c), ne-80

glecting other perturbations in the density-based modelling of81

space debris limits the applicability of the method to an altitude82

below 1000 km, above which Solar Radiation Pressure (SRP) 83

and third-body (3B) perturbation become significant (Vallado 84

& McClain, 2007). In Letizia (2018) it was possible to propa- 85

gate clouds of fragments under the simultaneous effect of drag 86

and SRP without eclipses, after band formation, by numeri- 87

cally solving the continuity equation through finite differences. 88

In Frey et al. (2019), the Starling suite was proposed, a tool 89

that potentially extends the continuum formulation to any di- 90

mensions and any non-linear dynamics. It numerically propa- 91

gates the continuity equation along the characteristic lines, and 92

retrieves the density distribution through a Gaussian Mixture 93

Model (GMM), in the phase space of Keplerian elements and 94

area-to-mass ratio. Hence, the applicability of the model is in- 95

herently linked to the possibility of describing the fragments’ 96

density as sum of Gaussian distributions. As motivated in Frey 97

(2020), the method is not currently able to accommodate forces 98

that lead to resonances on a small subset of the phase space, as 99

it could be the case of 3B perturbation or SRP. Indeed, such res- 100

onances tend to generate bifurcations, which make it difficult to 101

fit the distribution with a GMM. 102

This work aims at developing a method for the characteri- 103

sation and propagation of fragments’ clouds under any dynam- 104

ical regime, through a continuum formulation. This objective 105

is achieved combining the MOC with the discretisation of the 106

phase space domain of Keplerian elements and area-to-mass ra- 107

tio into bins, which is expected to be agnostic to the force model 108

implemented. The main effort when dealing with a binning ap- 109

proach applied to such a multi-dimensional phase space is the 110

computational cost. The problem is here addressed by estimat- 111

ing the way the fragments distribute over the phase space as 112

consequence of a fragmentation event, by means of probabilis- 113

tic models. This allows to bound the domain reachable by the 114

ejected fragments, thus evaluating and propagating the debris’ 115

cloud only in the regions of the phase space, which are more 116

likely to host the ejected fragments over time. 117

The paper is organised as follows: 118

- Section 2 proposes a novel approach to determine the 119

phase space domain in the subset of independent Keple- 120

rian elements and area-to-mass ratio occupied by the frag- 121

ments ejected by either an explosion or a collision in space. 122

The accuracy of the mathematical model is tested on two 123

fragmentation scenarios. 124

- Section 3 presents the method developed to estimate the 125

fragments’ distribution as consequence of a fragmenta- 126

tion event, through the partitioning of the computed phase 127

space domain into bins. An innovative adaptive Monte 128

Carlo integration method is implemented to address the 129

problem of computational cost. 130

- Section 4 describes the dynamical model for the propaga- 131

tion of the fragments’ density over time, through the ap- 132

plication of the method of characteristics to the continuity 133

equation. It also demonstrates how the unfolded distribu- 134

tion in the full set of Keplerian elements is obtained from 135

the folded distribution in the subset of independent Keple- 136

rian elements, by imposing intersection between the frag- 137
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ments’ and parent orbit in the fragmentation point. Note138

that, in this work, the parent orbit refers to the osculating139

orbit of the fragmenting object (called parent object) at the140

epoch of the fragmentation.141

- Section 5 details the approach to interpolate the propa-142

gated characteristics over the phase space of slow-varying143

Keplerian elements and area-to-mass ratio, through a bin-144

ning approach. To improve the smoothness and continuity145

of the density distribution, an interpolation among neigh-146

bouring bins is also included.147

- Section 6 is devoted to the application of the presented148

model to the modelling and propagation under the main149

orbital perturbations of a fragments’ cloud, generated by a150

potential explosion of an Ariane 5 rocket body in a geosta-151

tionary transfer orbit. The accuracy of the model is tested152

against a Monte Carlo simulation.153

- Section 7 recaps the main results and achievements of the154

work.155

2. Probabilistic domain of a breakup event156

This section introduces an innovative method to bound the157

domain that the fragments ejected by either an in-orbit collision158

or explosion occupy. The proposed mathematical model takes159

as input a probabilistic breakup model and determines bound-160

aries in area-to-mass ratio and ejection velocity, on the basis161

of the fraction of fragments that, on average, the model aids to162

characterise. The computed 2D domain is eventually mapped163

into a 4D domain in a subset of three independent Keplerian164

elements and area-to-mass ratio.165

2.1. Breakup model166

The NASA Standard Breakup Model (NASA SBM) (John-

son et al., 2001) is a semi-empirical model, which characterises

the fragments generated by a collision or explosion in terms

of characteristic length L, area-to-mass ratio A/M and ejection

velocity Δv. In Frey & Colombo (2021), the model was refor-

mulated in a probabilistic fashion, through the following Prob-

ability Density Functions (PDFs):

pλ = log (10) β
10−βλ

10−βλ0 − 10−βλ1
(1a)

pχ|λ =
∑

i

αi (λ)N
(
μ(i)
χ (λ) , σ(i)

χ (λ)
)
,

∑
i

αi (λ) = 1 (1b)

pν|χ = N (μν (χ) , σν) (1c)

where β is a unit-less parameter dependent on the type of frag-167

mentation; λ, χ and ν are the logarithms to base 10 of the char-168

acteristic length L, area-to-mass ratio A/M and ejection veloc-169

ity Δv, respectively; λ0 and λ1 are the logarithms to base 10 of170

lower L0 and upper L1 boundaries on the characteristic length;171

μ(i)
χ , σ(i)

χ , μν and σν are mean and standard deviation of nor-172

mal distributions N in χ and ν, which depend on the type of173

fragmentation; αi are factors to weight the relative importance174

of the normal distributions in the conditional probability in χ 175

dependent on λ. The conditional PDFs of Eqs. (1) are used 176

to bound the domain that is probabilistically reachable by the 177

ejected fragments. 178

2.2. Limit values in ejection velocity and area-to-mass ratio 179

The desired phase space domain is defined in Keplerian el- 180

ements and area-to-mass ratio, which, according to the dynam- 181

ical model adopted in this work (Section 4), represent the set 182

of variables needed for propagating the cloud of fragments. 183

Hence, the information on the distribution of the fragments in 184

characteristic length is filtered out through marginalisation. On 185

the other hand, the knowledge on how the fragments are dis- 186

tributed in area-to-mass ratio is crucial from a cloud dynam- 187

ics point of view; indeed, atmospheric drag and solar radia- 188

tion pressure perturbations are strongly affected by this param- 189

eter. In this section, boundaries in ejection velocity and area-to- 190

mass ratio are identified by considering the Cumulative Density 191

Functions (CDFs) in logarithm to base 10 of area-to-mass ratio 192

χ, and ejection velocity ν. 193

The CDF in χ, Fχ(χ), can be computed from the joint prob-

ability pχ,λ, as follows.

Fχ (χ) =

∫ χ

−∞

∫ λ1

λ0

pχ|λpλ dλ dχ (2)

If χ0 and χNχ are the boundaries of the domain in χ, Dχ, the

probability Pχ for a fragment to be in the semi-closed interval(
χ0, χNχ

]
is:

Pχ
(
χ0 < χ ≤ χNχ

)
= Fχ

(
χNχ

)
− Fχ (χ0) (3)

Imposing a limit ξ ∈ [0, 1) to the fraction of fragments proba-

bilistically included in the domain Dχ, the two limit values χ0

and χNχ can be found solving the following system:

⎧⎪⎪⎨⎪⎪⎩
Pχ

(
χ0 < χ ≤ χNχ

)
= ξ

pχ (χ0) = pχ
(
χNχ

) , pχ =
∫ λ1

λ0

pχ|λpλ dλ (4)

where the second equation of the system imposes the same den-

sity value at the boundary of the domain, which allows to frame

the range in χ with the highest probability of collecting debris

fragments. Indeed, note that the constraint of the first equality

of Eq. (4) may be fulfilled by an infinite couple of limit values,

χ0 and χNχ , satisfying:

⎧⎪⎪⎨⎪⎪⎩
Fχ (χ0) < 1 − ξ
Fχ

(
χNχ

)
> ξ

(5)

Nevertheless, the solution of Eq. (4) is the only one providing 194

a balanced distribution, that gives the same relevance to low 195

and high area-to-mass ratio fragments. In other words, if the 196

PDF pχ were a normal distribution, the second equation would 197

impose that χ0 and χNχ were at the same distance with respect to 198

the mean value, allowing the identification of the domain with 199

the highest probability of hosting an ejected fragment. 200
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The CDF in logarithm to base 10 of ejection velocity ν,
Fν(ν), can be computed as:

Fν(ν) =
∫ ν

−∞

∫ ∞

−∞
pν|χpχ dχ dν (6)

By imposing that χ ∈ Dχ, the probability Pν for a fragment to

be ejected with an ejection velocity Δv ≤ 10ν, can be obtained

as:

Pν(ν ≤ ν) =
∫ ν

−∞

∫ χNχ

χ0

pν|χpχ dχ dν, P(ν ≤ ν) ∈ [
0, ξ) (7)

Note that, with respect to the approach followed for setting the201

limits in χ, for the ejection velocity only the upper limit is con-202

strained. This is because when including the direction of the203

impulse and transforming the limits in ejection velocity into204

boundaries in Keplerian elements, the left bound would be any-205

way lost. Indeed, consider that, even with a high ejection ve-206

locity, one may get a zero variation of inclination if the ejection207

velocity vector lies on the orbital plane. Therefore, the distribu-208

tion in ν is here only right bounded.209

If the domain in logarithm to base 10 of area-to-mass ratio

χ, Dχ, is discretised into Nχ bins, the inner integral of Eq. (7)

can be written as a summation of integrals over the bins in χ, as

follows.

Pν(ν ≤ ν) =
∫ ν

−∞

Nχ∑
j = 1

∫ χ j

χ j−1

pν|χpχ dχ dν (8)

with:

χn = χ0 +

n∑
j = 1

δχ j (9)

Assuming the conditional probability density function pν|χ to

be independent of χ over a step δχ j in χ, allows to take it out of

the first integral. It is assumed that:

pν|χ (ν, χ) ≈ pν|χ
(
ν, χ j

)
∀χ ∈

[
χ j−1, χ j

)
(10)

with:

χ j =
χ j−1 + χ j

2
(11)

Plugging Eqs. (1c) and (10) into Eq. (8), it transforms as fol-

lows.

Pν (ν ≤ ν) =
Nχ∑
j=1

Φ( j) (ν) Pχ
(
χ j−1 < χ ≤ χ j

)
(12)

where Φ indicates the CDF of a normal distribution and Φ( j) (ν)
is defined as:

Φ( j) (ν) =

∫ ν

−∞
pν|χ

(
ν, χ j

)
dν (13)

With an abuse of notation, considering different limits in loga-

rithm to base 10 of ejection velocity ν for each bin in χ, Eq. (12)

modifies as follows.

Pν
(
ν ≤ ν) =

Nχ∑
j=1

Φ( j)
(
ν j

)
Pχ

(
χ j−1 < χ ≤ χ j

)
(14)

which allows the domain to be bounded in ejection velocity in-

dependently for each area-to-mass ratio bin, leading to Nχ do-

mains D( j)
ν in ν. Calling ζ the fraction of fragments which the

model probabilistically aims to characterise, the Nχ boundary

values in ν, ν j, and 2 boundary values in χ, χ0 and χNχ , must

satisfy the relation:

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∑Nχ
j=1
Φ( j)

(
ν j

)
Pχ

(
χ j−1 < χ ≤ χ j

)
= ζ, ζ ∈ [

0, ξ)

Pχ
(
χ0 < χ ≤ χNχ

)
= ξ, ξ ∈ [0, 1)

pχ (χ0) = pχ
(
χNχ

) (15)

Eq. (15) is a system of 3 scalar equations in Nχ + 2 unknowns.

It is reasonable to ask for the same density level at the edges

of the 2D domain Dχ,ν in (χ, ν); indeed, so far, Eq. (15) is only

constraining the overall targeted accuracy level, which one may

obtain tuning differently the boundary values χ0, χNχ and ν j.

This further consideration allows retrieving the missing Nχ − 1

equations, imposing the following constraint:

pν,χ (ν, χ) ≥ pν,χ (ζ) , ∀ (χ, ν) ∈ Dχ,ν (16)

Eq. (16) constrains the PDF pν,χ in any point (ν, χ) ∈ Dχ,ν to be 210

higher than a limit value pν,χ, which depends on the fraction of 211

fragments ζ. 212

Pursuing the same approach described previously, the bins in

χ are considered separately and the conditional distribution pν,χ
is approximated according to Eq. (10). Under these assump-

tions, Eq. (16) modifies, as follows.

pν|χ
(
ν, χ j

)
pχ (χ) ≥ pν,χ (ζ) , j = 1, . . . ,Nχ (17)

An additional assumption is held to let Eq. (17) be function of

ν only; the density value pχ is considered constant and equal to

the mean value p( j)
χ over each bin in χ, which allows modifying

Eq. (17) as:

pν|χ
(
ν, χ j

) Pχ
(
χ j−1 < χ ≤ χ j

)
δχ j

≥ pν,χ (ζ) , j = 1, . . . ,Nχ

(18)

where the integral mean rule has been applied. Finally, it is

imposed that, for each area-to-mass ratio bin, the density value

at the edges of the domain must coincide, i.e.:

pν|χ
(
ν j, χ j

) Pχ
(
χ j−1 < χ ≤ χ j

)
δχ j

= pν,χ (ζ) , j = 1, . . . ,Nχ

(19)

where, with respect to Eq. (18), the conditional distribution pν|χ
is evaluated at the limit value of ejection velocity ν j. The con-

straint of Eq. (19) allows retrieving Nχ−1 equations of the kind:

pν|χ
(
ν j, χ j

)
p( j)
χ = pν|χ

(
ν j+1, χ j+1

)
p( j+1)
χ (20)

with:

p( j)
χ =

Pχ
(
χ j−1 < χ ≤ χ j

)
δχ j

(21a)

p( j+1)
χ =

Pχ
(
χ j < χ ≤ χ j+1

)
δχ j+1

(21b)

≤ ν)

and (10

NχN∑

χ j
χ j−1

2

0) into E

j

)

+ χ j

∀χ∀ ∈ 1
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The parameters ξ and ζ are set to give the same weight to the

distributions in logarithm to base 10 of area-to-mass ratio χ and

ejection velocity ν, or, equivalently, to get the same integral of

the marginalised distributions in χ and ν, between the computed

limits. If the PDF in ν were a normal distribution independent

of χ, p∗ν, the parameter ζ could have been explicitly written as:

ζ = ξ · η (22)

where η is the hypothetical cumulative density function in ejec-

tion velocity ν, F∗ν , evaluated at the limit value ν. Remember-

ing that the distributions in ν are only right-bounded, to equally

weight the two PDFs in χ and ν, η must be set as:

η = Fχ
(
χNχ

)
= F∗ν (ν) =

1 + ξ

2
(23)

Hence, according to this analogy, the parameter ζ is constrained

to be:

ζ =
1

2
ξ (ξ + 1) (24)

or, inversely:

ξ =

√
1 + 8ζ

2
− 1

2
(25)

Combining Eqs. (15), (20 and (25) the final system of Nχ + 2

equations in Nχ + 2 unknowns is found to be:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑Nχ
j=1
Φ( j)

(
ν j

)
Pχ

(
χ j−1 < χ ≤ χ j

)
= ζ

pν|χ
(
ν1, χ1

)
p(1)
χ = pν|χ

(
ν2, χ2

)
p(2)
χ

...

pν|χ
(
νNχ−1, χNχ−1

)
p(Nχ−1)
χ = pν|χ

(
νNχ , χNχ

)
p(Nχ)
χ

Pχ
(
χ0 < χ ≤ χNχ

)
=

√
1+8ζ

2
− 1

2

pχ (χ0) = pχ
(
χNχ

)

(26)

Note that the 2 equations (Eqs. (4)) to find the 2 limits on χ, χ0

and χNχ , do not consider any simplifying assumption. On the

other hand, the other Nχ equations approximate the conditional

distribution pν|χ in each bin in χ according to Eq. (10). There-

fore, it was found to be more efficient to solve the two subset

of equations with two different approaches. The solutions of

Eqs. (4), which are independent of the remaining equations, are

obtained through a root finding routine. Instead, the Nχ limits

for the ejection velocity ν j are computed by means of a non-

linear programming algorithm, which aims to minimise the cost

function J, corresponding to the first equation in Eq. (26):

J =

∣∣∣∣∣∣∣∣
Nχ∑
j=1

Φ( j)
(
ν j

)
Pχ

(
χ j−1 < χ ≤ χ j

)
− ζ

∣∣∣∣∣∣∣∣ (27)

under Nχ − 1 equality constraints provided by the Nχ − 1 equa-213

tions of the form of Eq. (20). It is worth highlighting that the214

convergence of the minimisation process is affected by the step-215

size adopted for the bins in χ. Indeed, the larger the step-size216

is, the coarser the approximation of Eq. (10) becomes.217

In the following, Eq. (26) is validated in two different scenar-218

ios: the explosion of a rocket body and a catastrophic collisions.219

For both the cases, the lower L0 and upper L1 boundaries on the 220

characteristic length are set to 1 cm and 1 m, respectively. In 221

the explosion case, the parameter S (Johnson et al., 2001) is set 222

to 1, while an equivalent mass Me of 1000 kg is assumed for the 223

collision scenario. 224

2.2.1. Rocket body explosion 225

Figure 1 shows the 2D distribution in (χ, ν) at breakup. Note 226

that the probability density function pν,χ is here multiplied by 227

the total number of generated fragments N, which, according to 228

the NASA SBM, is 9503. 229

Fig. 1: Density distribution in (χ, ν) for a rocket body explosion.

Eq. (26) is solved with 20 bins in χ and setting the parame-

ter ζ to 0.95, which means that the model is expected to char-

acterise 95% of the generated fragments. In order to validate

the approach proposed in Section 2.2, the limit value pν,χ(ζ) of

Eq. (19) is found numerically solving:

pν,χ(ζ) :

∫ ∞

pν,χ(ζ)
dpν,χ = ζ (28)

Wherever the density value is lower than the value of Eq. (28), 230

it is set equal to zero. The modified heatmap is depicted in 231

Figure 2, together with the 2 boundary values in χ, χ0 and χNχ , 232

and 20 limits in ν, ν j. In Table 1 the convergence results of the 233

root finding and minimisation processes are reported. 234

As it can be observed, the boundaries in χ capture almost 235

all the remaining distribution, expect for two small circular seg- 236

ments, where, however, the range in ejection velocity is collaps- 237

ing toward one point. The limit values in ν, instead, accurately 238

follow the upper edge of the distribution. 239

2.2.2. Catastrophic collision 240

Figure 3 presents the density distribution in (χ, ν) for the 241

catastrophic collision, from which 46755 fragments are gen- 242

erated. As it can be noticed, it remarkably differs from the one 243

shown in Figure 1, both in shape and magnitude. Collisions 244

normally generate a vast population of very small fragments 245

with high relative velocities (Barrows et al., 1996). In partic- 246

ular, the edges of the distribution reach considerable ejection 247

velocity values, which would inject a vast part of the cloud into 248
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Table 1: Convergence results of the root finding and minimisation processes for a rocket body explosion.

Function Value
Pχ

(
χ0 < χ ≤ χNχ

)
− ξ 1.33 · 10−15

pχ (χ0) − pχ
(
χNχ

)
5.93 · 10−14

Jopt 4.65 · 10−11

max j=1,...,Nχ

∣∣∣∣pν|χ (
ν j, χ j

)
p( j)
χ − pν|χ

(
ν j+1, χ j+1

)
p( j+1)
χ

∣∣∣∣ 4.77 · 10−8

Fig. 2: Density distribution in (χ, ν) for a rocket body explosion - Density values

greater than pν,χ(ζ = 0.95).

Fig. 3: Density distribution in (χ, ν) for a catastrophic collision.

hyperbolic trajectories. For this reason, the parameter ζ is here249

preferably set to 0.85, thus loosing 15% of the cloud.250

Following the same approach proposed in Section 2.2.1, in251

Figure 4 is depicted the modified heatmap with the density val-252

ues pν,χ > pν,χ(ζ = 0.85), together with the limits in χ and ν,253

while in Table 2 are reported the convergence results.254

As it can be inferred, also in this second scenario the validity255

of the model is guaranteed.256

2.3. Domain in Keplerian elements and area-to-mass ratio257

The objective of this section is to define domains in Keple-

rian elements associated to each area-to-mass ratio bin, through

a one-to-one correspondence that maps each ejection velocity

limit Δv j = 10ν j into boundaries in Keplerian elements. The

Fig. 4: Density distribution in (χ, ν) for a catastrophic collision - Density values

greater than pν,χ(ζ = 0.85).

NASA SBM does not provide any information on the distribu-

tion of the ejection velocity direction; therefore, as commonly

done in the literature (Letizia et al., 2015b), the ejection veloc-

ity is here assumed to be isotropically distributed in direction.

The ejection velocity vector Δv can be written as function of

the magnitude Δv, in-plane γ and out-of-plane ϕ angles, which

in this paper are defined with respect to the radial–transversal–

out-of-plane (RSW) reference frame, as follows.

Δv =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Δv cos γ cosϕ
Δv sin γ cosϕ
Δv sinϕ

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (29)

As demonstrated in Frey & Colombo (2021), the PDFs in γ, pγ,
and ϕ, pϕ, are defined as:

pγ =
1

2π
(30a)

pϕ =
cosϕ

2
(30b)

As it can be inferred, the in-plane angle γ is uniformly dis-

tributed over [0, 2π), while the out-of-plane angle ϕ is not uni-

formly distributed. Hence, the directional velocity distribution

pν,γ,ϕ can be computed as:

pν,γ,ϕ = pν
cosϕ

4π
(31)

In Figure 5, the directional velocity distribution for a rocket 258

body explosion is shown. Note that the density values corre- 259

spond to a fixed value of χ. 260

As it can be noticed, the density value pν,χ,γ,ϕ varies only as 261

function of the ejection velocity magnitude Δv and out-of-plane 262

angle ϕ, while it is constant over the in-plane angle γ. 263
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Table 2: Convergence results of the root finding and minimisation processes for a catastrophic collision.

Function Value
Pχ

(
χ0 < χ ≤ χNχ

)
− ξ −1.08 · 10−14

pχ (χ0) − pχ
(
χNχ

)
4.31 · 10−13

Jopt 2.47 · 10−7

max j=1,...,Nχ

∣∣∣∣pν|χ (
ν j, χ j

)
p( j)
χ − pν|χ

(
ν j+1, χ j+1

)
p( j+1)
χ

∣∣∣∣ 1.84 · 10−9

Fig. 5: Density distribution pν,χ,γ,ϕ as function of ejection velocity magnitude

Δv and angles γ, ϕ.

2.3.1. Dimensionality-preserving Cartesian to Keplerian den-264

sity transformation265

When the fragmentation occurs, the generated fragments are

assumed to share the same initial position, but to have a ve-

locity that depends on the impulse they receive. Therefore, the

fragments are distributed according to a 4D density function in

relative velocity and area-to-mass ratio only. When moving to

a distribution in Keplerian elements, the same dimensionality is

preserved; hence, the transformed distribution will be in a sub-

set of three Keplerian elements and area-to-mass ratio (Frey &

Colombo, 2021). The remaining dependent Keplerian elements

are function of the independent ones and of the fragmentation

point location. The same concept can be analysed from an-

other perspective: since no uncertainty on the initial position is

considered, the orbits of the generated fragments must intersect

the orbit of the parent object in the fragmentation point. This

means that the new orbits have only three degrees of freedom,

that can freely vary in the domain that satisfies the constraint on

velocity:

Δv (χ) ≤ 10ν j , χ ∈
[
χ j−1, χ j

)
(32)

Let us consider the 3D distribution in ejection velocity depicted266

in Figure 5. Equally-spaced samples are extracted from the dis-267

tribution and each ejection velocity vector is summed to the268

fragmentation Cartesian coordinates, keeping fixed the position269

vector. For each sample, the density value is retrieved accord-270

ing to Eq. (1). The set of Cartesian states is eventually converted271

into Keplerian elements (Vallado & McClain, 2007). The trans-272

formed samples’ coordinates are plotted in Figure 6, separat-273

ing the states in the two subsets (a, e, f ) and (i,Ω, u = ω + f ),274

where a is semi-major axis, e eccentricity, i inclination, Ω right 275

ascension of the ascending node, ω argument of periapsis, f 276

true anomaly, and u argument of latitude. The following parent 277

orbit Keplerian elements are considered, which correspond to 278

the elements of the satellite Cosmos-2292: aP = 7554.5 km, 279

eP = 0.1025, iP = 82.99 deg, ΩP = 154.77 deg, ωP = 264.28 280

deg, and fP = 120 deg, which is arbitrarily set. Note that, 281

the area-to-mass ratio is considered fixed; indeed, the objec- 282

tive here is to demonstrate that, even though the transformation 283

moves from the 3D space of ejection velocity to the 6D space 284

of Keplerian elements, the transformation of the density distri- 285

bution is dimension-preserving. 286

Fig. 6: Density distribution pν,χ as function of the Keplerian elements.

As it can be noticed, even though the transformed distribu-

tion is function of the six Keplerian elements, it still remains a

3D distribution, composed by a line- and a surface-like distribu-

tions. The choice of the two subsets of orbital elements, which

allows to graphically prove that the transformation preserves

the dimensionality of the density distribution, was driven by the
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constraints that the Keplerian elements must satisfy. The orbital

radius equation (Vallado & McClain, 2007) provides a relation

between semi-major axis a, eccentricity e and true anomaly f :

r =
a
(
1 − e2

)
1 + e cos f

(33)

where r = rP is the parent object’s orbital radius at the epoch

of the fragmentation. On the other hand, the sine and cotangent

rules applied to the spherical triangle of Figure 7, link inclina-

tion, i, right ascension of the ascending node, Ω, and argument

of latitude, u, as follows.

sin uP

sin i
=

sin u
sin iP

(34a)

cosΔΩ cos iP = cot uP sinΔΩ − cot i sin iP (34b)

where ΔΩ = Ω−ΩP, and iP, ΩP, and uP are the parent orbit in-287

clination, right ascension of the ascending node, and argument288

of latitude, respectively.289

Fig. 7: Intersection between parent and fragments orbit.

The choice of the set of three independent Keplerian ele-290

ments αi is arbitrary, but not all the combinations are possible.291

Indeed, αi must contain one element specifying the orientation292

of the orbital plane (i.e., either i or Ω) and ω and f cannot be293

taken together (Frey & Colombo, 2021). Here the subset (a, e, i)294

is chosen. As a result, the domain in Keplerian elements is com-295

puted only for semi-major axis, eccentricity, and inclination.296

2.3.2. Keplerian elements - ejection velocity relations297

In this section, the equations that relate the variation of the298

independent Keplerian elements (a, e, i) to the ejection velocity299

vector Δv of Eq. (29) are derived.300

The variation in semi-major axis can be computed from the

energy equation, as follows.

Δa(Δv, γ, ϕ) =
μrP

2μ − rP (vP + Δvm(Δv, γ, ϕ))2
− aP (35)

where μ is the planetary constant of the Earth; rP and vP are

the position and velocity modules of the parent object at the

fragmentation epoch; aP is the semi-major axis of the parent

orbit; Δvm is the variation of the velocity module due to the

fragmentation event, defined as follows.

Δvm(Δv, γ, ϕ) =
(
(vrP + Δv cos γ cosϕ)2

+ (vtP + Δv sin γ cosϕ)2 + (Δv sinϕ)2
)1/2 − vP (36)

where vrP and vtP are the transversal and radial components of 301

the velocity of the parent object at the fragmentation epoch. 302

The eccentricity vector of a fragment is varied by the ejec-

tion velocity vector of Eq. (29), as follows.

eP + Δe =
1

μ
(vP + Δv) × (hP + Δh) − rP

rP
(37)

with:

(hP + Δh) = rP × (vP + Δv) (38)

where hP and Δh are the angular momentum of the parent ob-

ject orbit and its variation due to the fragmentation, respec-

tively, and eP is the eccentricity vector of the fragmentation or-

bit. The variation of the eccentricity due to the fragmentation is

then computed as:

Δe (Δv, γ, ϕ) = ||eP + Δe|| − eP (39)

The variation of the inclination Δi is computed as:

Δi (Δv, γ, ϕ) = arccos

⎛⎜⎜⎜⎜⎝hin.
zP
+ Δhin.

z

hP + Δh

⎞⎟⎟⎟⎟⎠ − iP (40)

where hin.
zP

and Δhin.
z are the out-of-plane components of the an-

gular momentum of the parent object orbit and its variation due

to the fragmentation in the inertial reference frame, whose sum

is computed as follows.

hin.
zP
+ Δhin.

z = R3(ΩP)R1(iP)R3(uP)(hP + Δh) ·̂k (41)

where iP, ΩP, ωP and fP are inclination, right ascension of the 303

ascending node, argument of periapsis and true anomaly of the 304

parent object orbit at fragmentation epoch;̂k is the unitary vec- 305

tor in the direction of the Z axis of the inertial frame; R1 and R3 306

are the rotation matrices about X and Z axes; hP +Δh is the an- 307

gular momentum of the orbit of a generic fragment in the RSW 308

reference frame. 309

Figure 8 shows the variations Δa, Δe, and Δi as function 310

of the in-plane γ and out-of plane ϕ angles for the same ejec- 311

tion velocity distribution and parent orbit elements considered 312

in Section 2.3.1. Note that the pictures refer to the maximum 313

ejection velocity magnitude Δv = 650 m/s. 314

Referring to Figure 8 some considerations can be done: 315

- The maximum (minimum) of the variation in semi-major 316

axis Δa is always associated to γ = 90 deg (γ = 270 deg) 317

and ϕ = 0 deg, i.e., when the ejection velocity vector is 318

aligned with (opposite to) the parent velocity vector. In 319

addition, the higher (lower) the kinetic energy of the parent 320

(i.e., the closer to the perigee), the steeper (flatter) the kick 321

in semi-major axis. 322
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(a) fP = 0 deg, uP = 264.28 deg

(b) fP = 90 deg, uP = 354.28 deg

(c) fP = 180 deg, uP = 84.28 deg

Fig. 8: Variation of semi-major axis, eccentricity and inclination as function of in-plane and out-of-plane ejection velocity angles, for different parent object’s true

anomaly values.

- The surface of Δe is highly affected by the value of the true323

anomaly fp. The cases fp = 0 deg and fp = 180 deg are324

mirrored, as at perigee a braking manoeuvre is required325

to circularise the orbit, while at apogee an energy gain is326

needed. Note that all the surfaces are lower bounded by327

the minimum of the variation in eccentricity Δe = −eP, as328

eccentricity cannot be negative.329

- The variation in inclination Δi is independent of the in-330

plane angle γ. The maximum (minimum) change is ob-331

tained when the latitude is at minimum (maximum), i.e.,332

when the argument of latitude of the parent object up is333

either 0 (90) deg or 180 (270) deg. The orientation of334

the surface is also affected by the value of uP; indeed,335

for −90 < uP < 90 deg positive variations of inclina-336

tion are obtained for positive out-of-plane angles, while337

for 90 < uP < 270 deg positive variations of inclination338

follow negative out-of-plane angles.339

2.3.3. Keplerian elements variation due to an isotropic ejection340

velocity distribution341

The need for a unique domain in Keplerian elements for each342

ejection velocity limit Δv j implies that the desired one-to-one343

correspondence must filter out the dependency on the in-plane344

γ and out-of-plane ϕ angles of the ejection velocity vector. The345

most obvious approach would be to compute the maximum346

variation of each Keplerian element, given Δv j; however, this347

would cause the domain to be unnecessarily vast, covering re-348

gions of the phase space with an extremely low value of density.349

Indeed, it must be understood that the fragments’ orbit resulting350

from the maximisation would be achievable with a single com- 351

bination of γ and ϕ, and an ejection velocity magnitude as big as 352

Δv j. As a result, the associated minimum PDF value pν,χ(ζ) of 353

Eq. (19) would be scaled by a factor pγpϕ = cosϕ/4π ≤ 1/4π, 354

which means that it would add a negligible contribution to the 355

fragments’ distribution. Instead, the domains can be more con- 356

veniently computed through: 357

- Averaging over the in-plane γ and out-of-plane ϕ ejection 358

velocity angles, according to the PDFs pγ, pϕ. 359

- Maximisation over the ejection velocity magnitude Δv j. 360

Considering the generic function g = g(x), where the variable

x has density px, the average value of g(x), g, over the interval

[x0, x1] can be computed as:

g =
1

Fx(x1) − Fx(x0)

∫ Fx(x1)

Fx(x0)

g(x) dy (42)

where Fx is the CDF of px. Recalling that:

dy = px dx (43)

and performing the change of variables y → x = F−1
x (y), the

average value g can be computed as:

g =
1

Fx(x1) − Fx(x0)

∫ x1

x0

g(x) px dx (44)

If x0 and x1 are chosen such that Fx(x0) = 0 and Fx(x1) = 1,

then Eq. (44) reduces to:

g =
∫ x1

x0

g(x) px dx (45)
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For each independent Keplerian element αi, two boundary val-361

ues are computed for each area-to-mass ratio bin, diving the362

domainDγ,ϕ between those angles that lead to positive and neg-363

ative variations Δαi, respectively, as follows.364

Δα+
( j)
i

(
Δv j

)
= max
Δv≤Δv j

∫ γ+
2i

γ+
1i

∫ ϕ+
2i

ϕ+
1i

Δαi(Δv, γ, ϕ) pγpϕ dϕdγ

(46a)

Δα−
( j)
i

(
Δv j

)
= max
Δv≤Δv j

∫ γ−
2i

γ−
1i

∫ ϕ−
2i

ϕ−
1i

Δαi(Δv, γ, ϕ) pγpϕ dϕdγ

(46b)

where Δα±
( j)
i is the maximum (positive or negative) variation of

the ith independent Keplerian element αi subject to an ejection

velocity as big as Δv j, the plus and minus signs indicate the re-

gions in the domainDγ,ϕ that vary positively and negatively the

Keplerian element αi, respectively, and Δαi = Δαi (Δv, γ, ϕ) are

the variations of semi-major axis, eccentricity or inclinations

of Eqs. (35), (39) and (40). It is worth noticing that, as con-

sequence of a fragmentation event, the ejection velocity vec-

tor (i.e., some combinations of Δv, γ and ϕ) of some fragments

might be sufficient to inject them on a hyperbolic trajectory with

respect to the Earth. If this is the case, the averaging procedure

of Eq. (46) becomes meaningless, as it would imply including

in the mean also singular cases. In addition, it must be under-

stood that fragments escaping the Earth’s gravity field are not

relevant for the purpose of analysing the long-term effects of

space debris around the Earth, because of their short residence

time in the Earth sphere of influence. Therefore, the integrals of

Eqs. (46), which are solved through sampling over an equally-

spaced grid in γ and ϕ, are computed excluding those combina-

tions of angles satisfying:

Δvm (Δv, γ, ϕ) ≥ √2vcirc. − vP (47)

where vcirc. =
√
μ/rP is the velocity magnitude on a circular365

orbit with radius equal to the fragmentation orbital radius, and366

Δvm is the velocity magnitude variation defined in Eq. (36).367

Finally, the domains in the subset of Keplerian elements

(a, e, i) and area-to-mass ratio A/M are computed as:

D( j)
α =

[
αP + f · Δα−( j)

, αP + f · Δα+( j)
]

(48a)

D( j)
A/M = 10[χ j−1, χ j] (48b)

where f is a safety factor which may enlarge the domain, if368

needed.369

3. Estimation of the initial phase space density distribution370

Once the initial domainsD( j)
α,A/M are defined, the density dis-371

tribution is estimated through a binning approach. The phase372

space domain is partitioned into bins and the density is averaged373

over each bin volume; as a result, the density varies discretely374

through the domain.375

3.1. Gradient-driven phase space discretisation 376

The accuracy of a binning approach for approximating a

general function over a multi-dimensional phase space is in-

herently linked to its rate of change over a bin volume. The

gradient of the probability density function pν,χ with respect to

the independent Keplerian elements α, ∇αpν,χ, indicates how

fast the density is changing locally; thus, it can be used as an

indicator of how small the step-size in each Keplerian element

δαi should be in order for the discretised distribution to well ap-

proximate the actual one. By adopting the derivative chain rule,

the gradient of pν,χ with respect to the independent Keplerian

elements can be computed as:

∇αpν,χ(Δv, γ, ϕ) = pχ∇αpν|χ = pχ
∂pν|χ
∂ν

∂ν

∂Δv
∂Δv
∂α

(49)

with:
∂ν

∂Δv
=

1

Δv log 10
(50)

and the other partial derivatives computed according to 377

Eqs. (1), (35), (39), and (40). 378

As an equally-sized binning approach is adopted, the aver-

age module of the gradient of the density is chosen as reference

for defining the step-sizes in semi-major axis, eccentricity and

inclination. Note that, the averaging is carried out over χ, ν, and

the ejection velocity angles γ and ϕ, as follows.

∣∣∣∇αpν,χ
∣∣∣ = 1

χNχ − χ0

∫ χNχ

χ0

pχA(χ) dχ (51a)

A(χ) =
1

Δv(χ)

∫ Δv(χ)

0

∣∣∣∣∣∣
∂pν|χ(ν, χ)
∂ν

∣∣∣∣∣∣ B(Δv) dΔv (51b)

B(Δv) =
∂ν

∂Δv
1

2π2

∫ 2π

0

∫ π/2

−π/2

∣∣∣∣∣∂Δv
∂α

∣∣∣∣∣ dϕ dγ (51c)

The integral over the domain in χ can be written as summation

of integrals over the bins in χ. In addition, according to the

same assumption done in Section 2.2, the conditional distribu-

tion pν|χ is considered independent of χ over a step δχ j. Hence,

Eq. (51) can be approximated as:

∣∣∣∇αpν,χ
∣∣∣ ≈ 1

χNχ − χ0

Nχ∑
j=1

A
(
χ j

)
Pχ

(
χ j−1 < χ ≤ χ j

)
(52a)

A
(
χ j

)
=

1

Δv j

∫ Δv j

0

∣∣∣∣∣∣
∂pν|χ(ν, χ j)

∂ν

∣∣∣∣∣∣ B(Δv) dΔv (52b)

where the term A(χ) is evaluated discretely at χ j, which cor-

respond to the centres of the bins in χ, as defined in Eq. (11).

Note that, the term B(ν) is unchanged with respect to Eq. (51).

The following heuristic relation between the step-sizes and the

derivatives of the density with respect to the Keplerian elements

is adopted: ∣∣∣∣∣∣
∂pν,χ
∂αi

∣∣∣∣∣∣ δαi =
1

r
max
χ,ν ∈ Dχ,ν

pν,χ (53)

where r is a factor that can be tuned according to the targeted

level of accuracy. The left-hand side of Eq. (53) is the aver-

age variation of the density Δpν,χ
(i)

associated to a step δαi in
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the Keplerian element αi, which is constrained to be equal to a

fraction of the maximum density value. This latter is approxi-

mated as follows.

max
χ,ν ∈ Dχ,ν

pν,χ ≈ max
j=1,...,Nχ

pχ
( j) pν|χ

(
ν = μν, χ j

)

= max
j=1,...,Nχ

Pχ
(
χ j−1 < χ ≤ χ j

)
δχ j

pν|χ
(
ν = μν, χ j

)
(54)

where the PDF in χ is averaged over each bin in χ.379

3.2. Density averaging through an adaptive Monte Carlo inte-380

gration381

The probability density function in the subset of Keplerian

elements (a, e, i) and area-to-mass ratio A/M, pα,A/M , can be

computed from the probability density function in (χ, ν), pν,χ,
through change of variables (Frey, 2020; Wittig et al., 2017), as

follows.

pα,A/M =
pν,χ

(
ψ−1

v→α(α)
)

|det Jv→α| (55)

where ψv→α is the transformation from velocity vector v = vP +382

Δv to the subset of Keplerian elements (a, e, i), and Jv→α is the383

Jacobian of the transformation, which can be found in Gonzalo384

et al. (2021).385

Defining x := (a, e, i, A/M) the set of independent phase

space variables, the average probability density function px in

the kth bin is computed as:

px
(k)
=

1

V (k)
x

∫∫∫∫
V (k)

x

px dx (56)

The integral of Eq. (56) cannot be solved in close form, thus

Monte Carlo integration is adopted. As previously mentioned,

the step-sizes for the splitting of the domain are computed ac-

cording to the average density gradient throughout the phase

space; however, the local value of the density gradient is a use-

ful information to determine how fast the density is changing

locally. The higher the gradient of the density is, the more sam-

ples are needed for accurately computing the average density

over the bin volume. Therefore, the number of samples for the

Monte Carlo integration is varied according to the local density

gradient in the bins. The gradient of the density with respect to

the independent phase space variables x can be computed as:

∇x pν,χ = pχ∇x pν|χ + pν|χ∇x pχ (57)

Separating x into α and A/M, Eq. (57) can be written as:

∇x pν,χ = pχ

⎧⎪⎨⎪⎩∇αpν|χ
∂pν|χ
∂(A/M)

⎫⎪⎬⎪⎭ + pν|χ
⎧⎪⎨⎪⎩ 03×1

∂pχ
∂(A/M)

⎫⎪⎬⎪⎭ (58)

where 03×1 is a column vector of three elements equal to zero.

The probability density function pχ, and its derivative, are av-

eraged over the jth bin in χ as follows.

pχ ≈ pχ
( j)
=

Pχ
(
χ j−1 < χ ≤ χ j

)
δχ j

(59a)

∂pχ
∂χ
≈ ∂pχ
∂χ

( j)

=
pχ

(
χ j

)
− pχ

(
χ j−1

)
δχ j

(59b)

Finally, the two derivatives with respect to area-to-mass ratio

are computed over the jth bin in χ as:

∂pν|χ
∂(A/M)

≈
∂pν|χ

(
ν, χ j

)
∂μν

∂μν
∂χ

∂χ

∂(A/M)
(60a)

∂pχ
∂(A/M)

≈ ∂pχ
∂χ

( j)
∂χ

∂(A/M)
(60b)

with:
∂χ

∂(A/M)
≈ 1

χ j log 10
(61)

Instead, the gradient of the density with respect to the indepen- 386

dent Keplerian elements α, defined in Eq. (49), is evaluated at 387

some reference points, as the integral average over the bin vol- 388

ume cannot be solved in close form. 389

The number of samples to be taken is defined according to:

Ns = Ns

4∑
i=1

Δp(i)
ν,χ

Δpν,χ
(i) = Ns

δxi · ∇xi pν,χ
4
r maxχ,ν ∈ Dχ,ν pν,χ

(62)

where Ns is a reference number of samples that can be arbitrar- 390

ily set, depending on the desired level of accuracy. Note that the 391

denominator comes from the constraint imposed in Eq. (53). 392

The probability density function px(x) defines the probabil-

ity of finding a single fragment in x. Instead, the phase space

density, which will be referred to as nx(x), describes the num-

ber of fragments present in an infinitesimal volume around x,

i.e.:

nx(x) = N px(x),

∫∫∫∫
Dx

nx dx = N (63)

where N is the number of fragments generated by the fragmen- 393

tation event, andDx is the phase space domain occupied by the 394

fragmentation cloud. 395

It is worth mentioning that the domain Dα,A/M computed in

Section 2 is a square one, as the boundaries in semi-major axis,

eccentricity and inclination are defined independently from

each other. This implies that the edges of the domain are not

equally interested by the fragmentation event, which means that

the phase space density is not constant along the borders. For

instance, on the surfaces at a = aP + fΔa±, it is more likely

to find fragments orbiting with an inclination close to the par-

ent one, as all the Δv budget given by Eq. (32) is spent to vary

the semi-major axis of the orbit. In addition, not all the regions

of the phase space are physically reachable by the ejected frag-

ments. In order for a fragment’s orbit to be able to intersect

the parent orbit in the fragmentation point, the perigee, rper, and

apogee rapo, radii must satisfy:

rper ≤ rP, rapo ≥ rP (64)

which translate into a boundary curve in the semi-major axis −
eccentricity domain, given by:

ei ≥ |a − rP|
a

(65)

Finally, since the long-term evolution of a fragmentation event

is of interest, it is convenient to discard the regions of the phase
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space for which the fragments re-enter the atmosphere just after

the breakup, i.e.:

rper ≤ RE + hatm (66)

where RE is the Earth mean radius, and hatm is the altitude limit

below which the fragments are assumed to burn in the atmo-

sphere. Also the constraint of Eq. (66) translates into a bound-

ary curve in the (a, e) domain, given by the following inequal-

ity:

er ≤ 1 − RE + hatm

a
(67)

In Figure 9 the constraints on intersection and re-entry altitude396

for the fragmentation of Cosmos-2292 reported in Section 2.3.1397

are depicted.398

Fig. 9: Intersection and re-entry constraints for a fragmentation in LEO.

Summarising, the phase space density is estimated in the399

bins satisfying the following three constraints:400

1. There exists at least one set of Keplerian elements belong-401

ing to the bin such that the perigee is above the re-entry402

altitude.403

2. There exists at least one set of Keplerian elements belong-404

ing to the bin, whose related orbit guarantees intersection405

with the parent orbit in the fragmentation point.406

3. The ejection velocity needed to reach the bin’s centre sat-407

isfies Eq. (32).408

3.3. Monte Carlo sampling in non-squared bins409

In order for the Monte Carlo integration to be accurate, the

samples must be randomly extracted from the bins. This pro-

cedure is straightforward when dealing with squared bins, i.e,

those that are not crossed by any of the constraints curves

of Figure 9. Instead, when either the intersection or re-entry

curves cross a bin, the usual routines for extracting random

samples over a given range do not apply anymore. To over-

come this issue, an inverse transform sampling procedure is

performed, based on two PDFs pi(a) and pr(a), describing the

probability for a sample to be in a region of the bin satisfy-

ing the intersection and re-entry constraints, respectively, and

having semi-major axis a. Referring to the bins sketched in

Figure 10, pi(a) and pr(a) can be defined as:

pi(a) =
da

(
e2 − e∗i (a)

)
Ai

, Ai = δa δe −
∫ a2

a1

e∗i (a) da (68a)

pr(a) =
da

(
e∗r (a) − e1

)
Ar

, Ar =

∫ a2

a1

e∗r (a) da (68b)

where the functions e∗i and e∗r are modified with respect to

Eqs. (65) and (67), as follows.

e∗i/r(a) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
ei/r(a) if e1 < e < e2

e1 if e ≤ e1

e2 if e ≥ e2

(69)

Note that ei/r is the PDF of either the intersection or re-entry 410

constraint.

Fig. 10: Bin crossed by intersection and re-entry curves.

411

The cumulative density functions Fi(a) and Fr(a) can be 412

computed integrating Eqs. (68) over semi-major axis. Finally, 413

the samples are extracted according to the following steps: 414

1. Extract a random number u from the standard uniform dis- 415

tribution U(0, 1). 416

2. Compute a = F−1
i/r (u). 417

where Fi/r is the CDF for either the intersection or re-entry con-

straint. It is worth noticing that the resulting average density is

only representative of the part of the bin satisfying the two con-

straints. However, the density value is then attributed to the

entire bin; hence, it must be scaled according to two factors

fi and fr, defining the fraction of the bin respecting the inter-

section and re-entry constraints, respectively. They are easily

computed as:

fi =
Ai

δa δe
(70a)

fr =
Ar

δa δe
(70b)

As a result of the estimation of the initial density distribu-

tion, each bin belonging to the phase space domain defined in

Eq. (48) has an associated density value. Hence, the total num-

ber of fragments generated by the fragmentation event can be

estimated as:

N =
Nb∑

k=1

V (k)
x nx

(k) (71)
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where Nb is the total number of bins, and nx
(k) is the average418

phase space density in the kth bin. Note that the bin volume V (k)
x419

is kept inside the summation because, even though the steps in420

the subset of Keplerian elements α are constant, the discretisa-421

tion in A/M can be either equally- or logarithmic-spaced, de-422

pending on the way the discretisation in χ is done when numer-423

ically solving Eq. (26).424

4. Density propagation through the method of characteris-425

tics426

The phase space density is propagated applying the method

of characteristics (MOC) (Jhon et al., 1981) to the continuity

equation, here recalled:

∂nx

∂t
+ ∇y · nxF = 0 (72)

where t is time, nx the phase space density, y the phase space

variables, and F = dy
dt the dynamics. The MOC allows trans-

forming the partial differential equation of Eq. (72) into a sys-

tem of ordinary differential equations, as follows.

⎧⎪⎪⎨⎪⎪⎩
dy
dt = F
dnx
dt = −nx ∇y · F (73)

The characteristics are propagated semi-analytically, as a

consequence of the averaging of the dynamics equations

over the fast angular variable, through the software PlanO-

Dyn (Colombo, 2016). It provides the Jacobian of the av-

eraged dynamics with respect to the mean elements for at-

mospheric drag, J2 perturbation, solar radiation pressure and

luni-solar gravitational perturbations. The characteristics to be

propagated are randomly sampled from the density distribution

obtained through the procedure explained in Section 3. It is

worth noticing that at this stage the density distribution is de-

fined in the four independent variables x, which means that it

is marginalised over right ascension of the ascending node Ω,

argument of perigee ω and true anomaly f . Hence, the sam-

pled characteristics have only four coordinates defined, out of

the seven variables in y. As explained in Frey & Colombo

(2021), for each set (a, e, i) there exist four combinations of

Ω, ω, f which guarantee intersection with the parent orbit in the

fragmentation point. Calling β the set of Keplerian elements

(Ω, ω, f ), the four solutions of intersection have the following

characteristics:

β1 = (Ω1, ω1, f1)

β2 = (Ω1, ω2, f2)

β3 = (Ω2, ω3, f1)

β4 = (Ω2, ω4, f2)

(74)

and satisfy:

ω1 + f1 = ω2 + f2 = u1

ω3 + f1 = ω4 + f2 = u2

f1 = − f2

(75)

where u is the argument of latitude. Figure 11 shows the four 427

possible intersections between the Cosmos-2292 orbit, whose 428

elements are reported in Section 2.3.1, and the orbits of poten- 429

tial ejected fragments with semi-major axis a f and eccentricity 430

e f equal to the parent ones, and inclination i f = 80 deg. In 431

addition, the ejection velocity magnitude Δv, required to inject 432

the fragments on the intersecting orbits, are reported. 433

Fig. 11: Four possible intersections between parent orbit and fragments’ orbit.

By imposing the intersection, the 4D density distribution in

x, nx(x), is unfolded into a 7D distribution in y, nx(y). Note

that, despite of the different phase space upon which the den-

sity is defined, its value still corresponds to the number of frag-

ments per unit semi-major axis, eccentricity, inclination and

area-to-mass ratio. The relation between the folded nx(x) and

unfolded nx(y) ≡ nx(x,β) distributions is provided by the fol-

lowing equation:

nx(x) =

4∑
j=1

wj

∫∫∫
R3

nx (x,β) δ
(
β − β j(α)

)
dβ (76)

where δ(·) is the Dirac delta function, β j is one of the combina- 434

tions of (Ω, ω, f ) reported in Eq. (74), and wj is a weight that 435

scales the density value of each intersecting orbit, depending on 436

the needed ejection velocity. 437

Under the effect of orbital perturbations, the orbit of some

fragmentation debris might evolve such that the perigee reaches

an altitude, at which it can be assumed that the thermal stress

exerted by the atmosphere causes those fragments to burn. In

this work, the limit altitude hatm is assumed at 100 km. If a

piece-by-piece propagation method or, in general, if the dis-

tribution of the sampled characteristics in the phase space re-

sembles the phase space density (i.e., more characteristics are

sampled in the high-density regions), the number of fragments

at time t can be approximated as:

N(t) ≈ N(t0)
Nc(t)
Nc(t0)

(77)

where Nc is the number of survived characteristics. Instead, in

this work, the sampled characteristics are uniformly distributed
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in the phase space, which means that the number of survived

characteristics over time would represent the evolution of a

fragments’ cloud, whose density is described by a uniform dis-

tribution. To estimate the number of survived fragments with

phase space density nx(x), the following relation is adopted:

N(t) = N(t0)

∑Nc(t)
k=1

nx
(k)(t0)∑Nc(t0)

k=1
nx

(k)(t0)
(78)

which weights the re-entered characteristics based on the as-438

sociated density value at fragmentation epoch. Note that it is439

mandatory to refer to the fragmentation epoch to avoid a poten-440

tial unfeasible estimated evolution of the number of fragments441

over time. Indeed, the integration of the density equation of442

Eq. (72) might lead to both positive and negative variation of443

the density over time; hence, referring to a reference epoch dif-444

ferent from the initial one t0 may potentially induce an increase445

of the number of fragments over time, which is physically im-446

possible.447

5. Density interpolation through binning448

With the method of characteristics, a partial differential449

equation is transformed into an ordinary differential equation450

along the characteristic curves (Jhon et al., 1981). This means451

that the solution of the continuity equation is known only on452

the characteristic curves, at any time. Propagating a popula-453

tion of samples allows to picture the dynamical evolution of454

the fragments’ cloud; nevertheless, characteristics propagated455

to the same epoch form a scattered point cloud in the phase456

space, which must be interpolated to retrieve a density dis-457

tribution in the entire domain. Here, the propagated samples458

are interpolated through binning in a (up to) 6D phase space459

of slow-varying orbital elements (a, e, i,Ω, ω) and area-to-mass460

ratio A/M, attributing a density value to each bin, based on the461

density values of the characteristics in it. Note that the fast an-462

gular variable is not accounted in the interpolation because, as463

motivated in Jehn (1990), the fragments’ cloud can be assumed464

to be randomised in mean anomaly M after few orbital periods,465

after which the debris form a toroid around the Earth. Indeed,466

note that the objective of this work is to monitor the long-term467

evolution of clouds of fragments, which implies propagation468

times much longer than the time needed for the toroid forma-469

tion.470

The uniform distribution of the samples over the phase space

allows to consider the initial characteristics as representative

of the entire fragments’ cloud, which strictly applies only if at

least one sample is extracted from each bin in the phase space

domain. Under this condition the following equality is satisfied:

N(t0) =

Nb∑
k=1

V (k)
x nx

(k)(t0) =

Nc(t0)∑
k=1

V (k)
x nx

(k)(t0) (79)

Hence, each characteristic can be considered as representing

a number of fragments as high as N(k)(t) = V (k)
x nx

(k)(t). This

implies that the interpolation through binning can be done sum-

ming the contribution of all the characteristics that share the

same bin, i.e.:

nx
(k)(t) =

N(k)
c (t)∑
j=1

n(k)
x j (t) (80)

where n(k)
x j is the density value of the jth sample moving in the

kth bin at time t. Note that the density values are eventually

scaled by a factor fs computed according to Eq. (81), that con-

strains the integral of the density over the phase space domain

to coincide with the total number of fragments, at any time.

fs =
N(t)∑Nb

k=1
V (k)nx

(k)(t)
(81)

with N(t) defined in Eq. (78). 471

Depending on the number of propagated samples and dimen- 472

sion of the step-sizes used, parts of the interpolated density dis- 473

tributions may have holes or discontinuities, not because of the 474

actual dynamical evolution of the cloud, but due to lack of in- 475

formation (i.e., samples) in some regions of the phase space. 476

The most straightforward, but not efficient, way to overcome 477

this issue is to increase the number of propagated samples, with 478

a consequent rise of the computational cost. Instead, in this 479

work, the problem is addressed during the interpolation pro- 480

cess. The propagation of a sample on its characteristic curve 481

allows retrieving the history of the density distribution inside 482

a multi-dimensional stream-tube, whose section, at any time 483

t, is characterised by an infinitesimal volume dx. This means 484

that, in theory, an infinite number of characteristics should be 485

propagated to get the phase space density at any point in space 486

and time. Having a finite number of samples evenly distributed 487

over the domain Dx and separated, on average, by a distance 488

||δx|| at fragmentation epoch, it can be assumed that each char- 489

acteristic is representative of a finite volume V (k)
x built around 490

the sample. Under the assumption that the variation over time 491

of the finite volume is negligible, i.e. V (k)
x (t) ≈ V (k)

x (t0), it can 492

be assumed that each characteristic represents N(k)(t) fragments 493

uniformly distributed in a cuboid-like bin moving in space and 494

time. Therefore, at each time epoch at which the density dis- 495

tribution is retrieved, the density of each propagated sample is 496

divided among all the bins of the interpolation grid that intersect 497

the hypothetical cuboid around the characteristic, on the basis 498

of the shared area. Note that this process is integral preserving. 499

The use of a binning approach in a six-dimensional phase 500

space is challenging from a memory usage standpoint. How- 501

ever, in most of the cases, the debris generated by a fragmenta- 502

tion event remain bounded is certain regions of the phase space. 503

Therefore, the data storage technique for sparse distributions 504

explained in Colombo et al. (2021) is here adopted. 505

6. Application of the model to the fragmentation of Ariane 506

5 in GTO 507

The continuum formulation presented in this paper is applied

to the modelling of the cloud of fragments generated by the po-

tential explosion of an Ariane 5 rocket body in Geostationary

Transfer Orbit (GTO). The objective of this section is to assess
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the accuracy of the approach, by comparing some relevant re-

sults against a Monte Carlo simulation. The analysis here pro-

posed considers fragments in the range 1 cm - 1 m, and propa-

gates the generated debris cloud for a period of 15 years under

atmospheric drag, J2 perturbation, SRP, and luni-solar perturba-

tions through the PlanODyn propagator (Colombo, 2016). The

considered fragmentation Keplerian elements are reported in

Table 3. They correspond to the osculating elements of the Ar-

iane 5 rocket body with NORAD ID 26110 on the 06/04/2022.

Note that the fragmentation mass is set to 1190 kg. Accord-

ing to the NASA SBM, the number of objects generated by an

explosion depends on the parameter S (Johnson et al., 2001),

which, as motivated in Krisko (2011), can vary between 0.1

and 1 according to the fragmentation type. Following the same

approach proposed in Letizia et al. (2018), the parameter S is

set according to the following relations:

S =

⎧⎪⎪⎨⎪⎪⎩
k Mp [kg]

10000 [kg]
if kMp < 10000 kg

1 if kMp ≥ 10000 kg
(82)

with k = 1 for payloads and k = 9 for rocket bodies. As a result,508

the parameter S for the proposed application is set to 1.509

Table 3: Ariane 5 fragmentation Keplerian elements.

a [km] e [-] i [deg] Ω [deg] ω [deg] f [deg]

24443 0.709 6.54 253.22 271.81 43.56

6.1. Density distribution at fragmentation epoch510

The initial phase space density distribution is estimated con-511

sidering 20 equally-spaced bins in area-to-mass ratio. The pa-512

rameter ζ of Eq. (24) is set to 0.95, which implies that the model513

is expected to describe 95% of the fragments’ cloud. For the514

discretisation of the domain in Keplerian elements, the param-515

eter r of Eq. (53), which tunes the average step in the PFD pν,χ516

across a bin, is constrained to r = 10. This means that, on517

average, over a step δαi in the Keplerian element αi the PDF518

pν,χ undergoes a variation equal to the 10% of the maximum519

density value over the domain Dχ,ν. The resulting step-sizes in520

the independent Keplerian elements α, computed according to521

Eq. (53), are reported in Table 4.522

Table 4: Step-sizes in the independent Keplerian elements α for the estimation

of the intial phase space density distribution.

δa [km] δe [-] δi [deg]

514.4 0.00571 0.133

To prove the importance of an automatised tool for setting523

the step-sizes for the grid in Keplerian elements, the average524

density gradient with respect to the independent Keplerian ele-525

ments of Eq. (51), and the resulting step-sizes δα, are computed526

for N = 72 initial argument of latitude up of the parent object.527

The resulting profiles of the averaged partials (blue lines) and528

step-sizes (red lines) are reported in Figure 12. Note that for529

generating the plots, the argument of periapsis ωp is set to zero,530

while the true anomaly fp is varied from 0 to 360 deg.531

As it can be observed, the fragmentation location along the 532

orbit strongly affects how the fragments distribute over the 533

phase space. As already motivated in Section 2.3.2, the higher 534

the kinetic energy is (i.e., the closer to the periaspsis), the more 535

widely the fragments spread over semi-major axis. Indeed, the 536

average partial derivative with respect to semi-major axis (step 537

δa) has a minimum (maximum) at fp = 0 deg. The step-size 538

in eccentricity has two maxima at perigee and apogee and two 539

minima when the true anomaly is either 120 deg or 240 deg. 540

Finally, the partial derivative with respect to inclination has two 541

thin, high peaks for up = 90 or 270 deg, because, as explained 542

in Section 2.3.2, the farther the fragmentation occurs from the 543

equatorial plane, the narrower the fragments are distributed over 544

inclination. As it can be further noticed, when the fragmenta- 545

tion occurs at the apogee of the parent orbit, the explosion af- 546

fects the most the fragments inclination, as the velocity magni- 547

tude is at minimum and, thus, the velocity vector can be rotated 548

more easily to change the inclination. 549

In Figure 13 the initial density distribution in the subset of 550

the independent variables x is depicted. As already highlighted 551

in Section 3.2, the fragments are bounded by the constraints on 552

intersection with the parent object and re-entry altitude. As a 553

result, in the semi-major axis - eccentricity domain, the frag- 554

ments occupy the small portion of the phase space between the 555

two curves of Eqs. (65) and (67). Instead, by looking at the 556

distributions in area-to-mass ratio, it can be appreciated how 557

the density reaches the same minimum density value at differ- 558

ent value of the Keplerian elements α (i.e., different ejection 559

velocities) for each area-to-mass ratio bin. This result allows to 560

graphically interpret the equality constraints of Eq. (20), where 561

it was asked to solve for the ejection velocity limits ν j to guar- 562

antee the same density value at the edges of the distribution. 563

6.2. Cloud propagation 564

From the density distribution of Figure 13, one characteristic

is randomly sampled from each bin. By imposing intersection

with the parent orbit in the fragmentation point, the samples are

expanded in the full set of 7 coordinates. Among the expanded

characteristics, only those with a density nx (y) > nmin are prop-

agated, with nmin computed as:

∑
k : n(k)

x >nmin

n(k)
x V (k)

x = 0.99 · N (83)

where N is the estimated total number of fragments, reported in 565

Eq. (71). Indeed, it must be understood that the domain bound- 566

aries are defined in the subset of Keplerian elements α and, as 567

detailed in Section 4, for each α there exist 4 sets of depen- 568

dent Keplerian elements β, characterised by a different density 569

value, according to Eq. (76). Note that, depending on the par- 570

ent orbit, the difference might be of several order of magnitude. 571

The sampling procedure resulted in 27040 characteristics to be 572

propagated. The density distribution is retrieved every 30 days 573

through the interpolation procedure explained in Section 5. Fig- 574

ure 14 shows the density distributions in the slow-varying Kep- 575

lerian elements, at fragmentation epoch and 5, 10, and 15 years 576

after fragmentation. 577
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(a) Semi-major axis (b) Eccentricity (c) Inclination

Fig. 12: Average partial derivatives of the PDF pν,χ with respect to the independent Keplerian elements α and resulting step-sizes δαi.

Fig. 13: Phase space density distribution in the subset of the independent vari-

ables x, at fragmentation epoch.

By looking at Figure 14 the following considerations can be578

done:579

- Under the effect of atmospheric drag, the fragments char-580

acterised by a sufficiently small perigee radius undergo a581

circularisation of the orbit.582

- SRP and luni-solar perturbations induce notable variations583

in the orbits’ inclination over time. In addition, they cause584

a bifurcation in the semi-major axis - eccentricity domain,585

happening approximately at a = 14000 km and e = 0.5.586

- The distribution in right ascension of the ascending nodeΩ

and argument of periapsis ω domain remains confined on

two thin diagonal lines. This is in contrast with the typical

behaviour of a LEO fragmentation, where each combina-

tion of Ω, ω is approximately characterised by the same

density value, which allows to get rid of the these vari-

ables, except for the very first stage of the cloud evolu-

tion. The different behaviour is due to the high eccentric-

ity of the considered orbit, which causes the fragments to

gather in a small range of values in ω, differently from the

quasi-circular orbits of the LEO region. The angular co-

efficient m(Ω,ω) of the resulting line-like distribution is ap-

proximately given by the arc-tangent of the ratio between

the long-term rates of change Ω̇J2
and ω̇J2

induced by the

J2 perturbation, here recalled (Vallado & McClain, 2007):

Ω̇J2
= −W

cos i
(1 − e2)2

(84a)

ω̇J2
= W

5 cos2 i − 1

2(1 − e2)2
(84b)

with W oblateness parameter. The resulting angular coef-

ficient is:

m(Ω,ω) = arctan

(
−5 cos2 i − 1

2 cos i

)
≈ −63.4 deg (85)

6.3. Accuracy analysis against Monte Carlo simulation 587

To validate the continuum formulation presented in this pa-

per, a Monte Carlo simulation is performed. It involves 20 sep-

arate clouds’ propagations; for each of them, the NASA SBM is

used for generating the population of ejected fragments, whose

coordinates are propagated under the same force model consid-

ered in Section 6.2, for a total of 189925 propagated character-

istics (the number corresponds to 20 times the average number

of generated fragments, according to the NASA SBM). Note

that this number is probably not sufficiently high for a Monte

Carlo simulation, in particular for well-characterising the low-

density regions, where only few characteristics are sampled.

However, this choice was constrained by the massive compu-

tational time required for propagating the huge population of

samples under the relatively complex dynamical model consid-

ered. The fragments distributions are retrieved through binning

at the same time epochs, counting the fragments belonging to

the same bin. The results of the 20 simulations are eventually

summed up. In Figure 15, the continuum approach and the

Monte Carlo simulation are compared in terms of the number

of survived fragments N (i.e., those that did not re-entered the

atmosphere) over time. The percentage relative error between

the methods is also displayed. It is computed as:

Err.%(t) =
NMC(t) − NCA(t)

NMC(t)
· 100 (86)

with NMC and NCA number of in-orbit fragments estimated by 588

the Monte Carlo simulation and continuum approach method, 589

respectively. 590

As it can be observed, the continuum approach captures ap- 591

proximately 94.1% of the cloud at fragmentation epoch, which 592
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(a) Epoch: 0 years after fragmentation (b) Epoch: 5 years after fragmentation

(c) Epoch: 10 years after fragmentation (d) Epoch: 15 years after fragmentation

Fig. 14: Phase space density distribution in the slow-varying Keplerian elements over time.

Fig. 15: Number of in-orbit fragments over time, comparison between contin-

uum formulation and Monte Carlo simulation.

is expected because of the constraint on ζ and the pruning of593

the low-density characteristics according to Eq. (83). In addi-594

tion, over the 15 years of propagation, the percentage relative595

error oscillates between the 4.25% and the 6.25%, and it does596

not follow a monotonic trend over time. Therefore, the model597

is expected to be valid even for longer propagation times. As598

it can further appreciated, for the Monte Carlo simulation the599

number of survived fragments smoothly varies over time; on600

the contrary, some sudden variations are estimated by the con-601

tinuum formulation. The different behaviour is explained by the 602

different philosophy of the two approaches. The Monte Carlo 603

simulation accounts for a series of piece-by-piece propagations, 604

where the number of fragments burned in the atmosphere varies 605

continuously once the coordinates of the samples are such that 606

the orbits cross the established re-entry altitude. On the other 607

hand, in the continuum approach, when a characteristic falls in 608

the atmosphere, the number of lost fragments is weighted by 609

the density associated to the characteristic. As a result, when a 610

sample with a high density re-enters, an instantaneous decrease 611

of the number of in-orbit fragments is experienced. 612

The comparison on the number of in-orbit fragments over 613

time is not sufficient to demonstrate the validity of the model. 614

It is also necessary that the phase space density distribution es- 615

timated by the continuum formulation resembles the fragments 616

distribution of the Monte Carlo simulation. In other words, by 617

placing a control volume in different regions of the phase space, 618

the number of hosted fragments measured by the two methods 619

must be comparable. Considering that the right ascension of 620

the ascending node Ω and argument of periapsis ω are rapidly 621

changing, monitoring a fixed area in the 5 slow-varying Keple- 622

rian elements would result in a profile where most of the time 623

a null flux of fragments is experienced. Therefore, the com- 624

parison is here performed after having marginalised the density 625

er of in-

n and

dens tion

ter fragmentati
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distribution over Ω and ω. A set of five coordinates in the inde-626

pendent variables α are monitored, located in different regions627

of the phase space. The choice is also density-driven: points628

P1 and P2 are located in a low-density region, P3 and P4 in629

medium-density region, while P5 is placed in correspondence630

of the density peak at fragmentation epoch. Note that, in order631

for the comparison to be statistically valid, a sufficiently high632

number of fragments must cross the control volume over time;633

hence, the very low-density regions are not considered in the634

analysis. The set of five chosen coordinates is listed in Table 5,635

and displayed above the density distribution in Figure 16.636

Table 5: List of coordinates for the comparison with the Monte Carlo simula-

tion.

a [km] e [-] i [deg]

P1 20617 0.656 7.01

P2 29363 0.757 6.34

P3 23189 0.694 5.94

P4 26276 0.729 7.54

P5 24218 0.706 6.61

Fig. 16: Location of the coordinates for the comparison with the Monte Carlo

simulation above the initial density distribution in the independent Keplerian

elements α.

The dimensions of the control volume considered are the fol-637

lowing: Δa = 500 km, Δe = 0.01, Δi = 0.5 deg. Note that638

the control volume is set sufficiently big on purpose; indeed,639

it is worth recalling that the model here proposed aims to esti-640

mate the evolution of a cloud of fragments from a probabilistic641

perspective, within a feasible computational time. The random642

sampling of the characteristics from the initial bins’ population643

implies that the resulting cloud evolution is not expected to co-644

incide on the small scale. Instead, what is reasonable to ask, is a645

similar estimation of the cloud evolution on the medium scale,646

both in space and time. Requiring a high accuracy on the very647

small scale would imply increasing considerably the resolution648

of the initial density distribution (i.e., very small step-sizes δα),649

which would translate into a massive population of characteris-650

tics to be propagated.651

Figure 18 depicts the profiles of the number of fragments

hosted by the five control volumes over time, measured by the

continuum approach and the Monte Carlo simulation. Note

that, on top of each plot, the average percentage relative error

between the two simulations is displayed. It is computed as:

Err.% =
1

Nt

Nt∑
j=1

∣∣∣∣N( j)
MC
− N( j)

CA

∣∣∣∣
max

(
N( j)

MC
, 1

) (87)

where N( j)
MC

and N( j)
CA

are the number of fragments in the con- 652

trol volume at the jth time epoch estimated by the Monte Carlo 653

simulation and continuum approach, respectively, and Nt is the 654

number of time epochs considered. Figure 17, instead, repre- 655

sents the cumulative number of fragments over time. In this 656

case, the percentage relative error at the end of the propagation 657

is shown. 658

As it can be observed, the results of the two approaches 659

are similar in most of the cases; in particular, the two profiles 660

follow the same behaviour, which is characterised by consid- 661

erable oscillations, for all the control volumes except for the 662

one placed in P1, where the curves start diverging 5 years after 663

fragmentation. Note that, as already mentioned, this behaviour 664

might be caused by a not sufficiently high number of propa- 665

gations performed in the Monte Carlo simulation. As a result, 666

the estimated fragments’ distribution in the low-density regions 667

may lack of accuracy. On the other hand, in correspondence of 668

the peaks, the profiles show some relevant differences in terms 669

of magnitude. However, the error in the estimated cumulative 670

number of fragments over time is less than 20% for all the cases. 671

Determining the effect of this inaccuracy is a hard task and de- 672

pends on the way its impact is assessed. In future works, the 673

results of the cloud propagation model will be provided as input 674

to a density-based collision risk method to compute the effect of 675

a fragmentation on a given target satellite. In that framework, 676

the error introduced by the model will be assessed in terms of 677

estimated collision probability. So far, the reported percentage 678

error is adopted just as an indicator of the model accuracy, and 679

the results obtained are considered to satisfy the objective of the 680

proposed method, which aims at finding a compromise between 681

accuracy and computational efficiency. 682

7. Conclusions 683

The impact with centimetre or sub-centimetre fragments, 684

moving at a relative speed as high as 10 km/s, proved to be 685

sufficient to cause serious damages on active satellites. When 686

reducing to such a small size for the debris, the deterministic 687

approaches, as Monte Carlo simulations, demonstrated not to 688

be viable, due to the massive computational cost required. As a 689

result, continuum formulations, which treat the space debris as 690

a cloud, has been investigated, most of the times under simpli- 691

fied force models. 692

This paper aimed at extending the continuum approach to 693

any non-linear dynamics, which would guarantee the applica- 694

bility to any orbital region. Therefore, combined to the MOC, a 695

binning approach was used to interpolate the propagated char- 696

acteristics at some specified time epochs, as it is supposed to 697
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(a) Control volume P1 (b) Control volume P2

(c) Control volume P3 (d) Control volume P4

(e) Control volume P5

Fig. 17: Number of fragments hosted by the control volumes with middle point defined in Table 5.

be agnostic to the dynamical regime considered. The poten-698

tial issue related to the use of a binning approach in a multi-699

dimensional phase space was addressed through probabilis-700

tic models that dramatically limited the computational effort.701

Firstly, the semi-analytical model for determining the bound-702

aries in ejection velocity and area-to-mass ratio, which were703

then transformed into a series of domains in Keplerian ele-704

ments and area-to-mass ratio, allowed to accurately target the 705

regions of the phase space which are more likely to host the 706

ejected fragments. The gradient-driven discretisation of the 707

phase space, as well as the adaptive Monte Carlo integration, 708

provided an automatised estimation of the fragments’ density, 709

which can be applied to any fragmentation type and orbit. The 710

comparison against a Monte Carlo simulation on the poten- 711

P3

volume P2
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(a) Control volume P1 (b) Control volume P2

(c) Control volume P3 (d) Control volume P4

(e) Control volume P5

Fig. 18: Cumulative number of fragments hosted by the control volumes with middle point defined in Table 5.

tial fragmentation of an Ariane 5 rocket body in GTO gave712

promising results. Indeed, even though some differences were713

registered, the model proved to be sufficiently accurate on the714

medium scale.715
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Colombo, C., Trisolini, M., Gómez, J. L. G. et al. (2021). Design of a software739

to assess the impact of a space mission on the space environment. In Proc.740

of the 8th European Conference on Space Debris.741

Drolshagen, G. (2008). Impact effects from small size meteoroids and space742

debris. Advances in Space Research, 41, 1123–1131. doi:10.1016/j.asr.743

2007.09.007.744

ESA Space Debris Office (2021). ESA’s annual space environment report.745

Technical Report.746

Frey, S. (2020). Evolution and hazard analysis of orbital fragmentation con-747

tinua. Ph.D. thesis Politecnico di Milano.748

Frey, S., & Colombo, C. (2021). Transformation of satellite breakup distribu-749

tion for probabilistic orbital collision hazard analysis. Journal of Guidance,750

Control, and Dynamics, 44(1), 88–105. doi:10.2514/1.G004939.751

Frey, S., Colombo, C., & Lemmens, S. (2019). Application of density-based752

propagation to fragment clouds using the starling suite. In Proc. of the First753

International Orbital Debris Conference.754

Gonzalo, J. L., Colombo, C., & Di Lizia, P. (2021). Analytical framework for755

space debris collision avoidance maneuver design. Journal of Guidance,756

Control, and Dynamics, 44(3), 469–487. doi:10.2514/1.G005398.757

Jehn, R. (1990). Dispersion of debris cloud from in-orbit fragmentation events.758

ESA Journal, 15(1), 63–77.759

Jhon, F., LaSalle, J. P., & Sirovich, L. (1981). Partial Differential Equations.760

(4th ed.). New York: Springer.761

Johnson, N. L., Krisko, P., Liou, J.-C. et al. (2001). Nasa’s new breakup model762

of evolve 4.0. Advances in Space Research, 28(9), 1377–1384. doi:10.763

1016/S0273-1177(01)00423-9.764

Krag, H., Serrano, M., Braun, V. et al. (2017). A 1 cm space debris impact onto765

the sentinel-1a solar array. Acta Astronautica, 137, 434–443. doi:10.1016/766

j.actaastro.2017.05.010.767

Krisko, P. H. (2011). Proper implementation of the 1998 nasa breakup model.768

Orbital Debris Q. News, 15, 4–5.769

Letizia, F. (2018). Extension of the density approach for debris cloud propa-770

gation. Journal of Guidance, Control, and Dynamics, 41(12), 2651–2657.771

doi:10.2514/1.G003675.772

Letizia, F., Colombo, C., & Lewis, H. (2015a). 2d continuity equation method773

for space debris cloud collision analysis. In Proc. of the AAS/AIAA Space-774

flight Mechanics Meeting 2015 (pp. 1473–1492).775

Letizia, F., Colombo, C., & Lewis, H. (2015b). Analytical model for the776

propagation of small-debris-object clouds after fragmentations. Journal777

of Guidance, Control, and Dynamics, 38(8), 1478–1491. doi:10.2514/1.778

G000695.779

Letizia, F., Colombo, C., & Lewis, H. (2015c). Multidimensional extension780

of the continuity equation method for debris clouds evolution. Advances in781

Space Research, 57(8), 1624–1640. doi:10.1016/j.asr.2015.11.035.782

Letizia, F., Colombo, C., Lewis, H. et al. (2018). Development of a debris index.783

Astrophysics and Space Science Proceedings, (pp. 191–206). doi:10.1007/784

978-3-319-69956-1_12.785

Liou, J.-C., Hall, D., Krisko, P. et al. (2004). Legend – a three-dimensional786

leo-to-geo debris evolutionary model. Advances in Space Research, 34(5),787

981–986. doi:https://doi.org/10.1016/j.asr.2003.02.027.788

McInnes, C. R. (1993). An analytical model for the catastrophic production of789

orbital debris. ESA Journal, 17, 293–305.790

McInnes, C. R. (1994). Compact analytic solutions for a decaying, precess-791

ing circular orbit. The Aeronautical Journal, 98, 357–360. doi:10.1017/792

S0001924000026920.793

McKnight, D. (1990). A phased approach to collision hazard analysis. Ad-794

vances in Space Research, 10(3), 385–388. doi:10.1016/0273-1177(90)795

90374-9.796

McKnight, D., & Di Pentino, F. R. (2013). New insights on the orbital debris797

collision hazard at geo. Acta Astronautica, 85, 73–82. doi:https://doi. 798

org/10.1016/j.actaastro.2012.12.006. 799

Nazarenko, A. I. (1997). The development of the statistical theory of a satellite 800

ensemble motion and its application to space debris modeling. In Proc. of 801

the 2nd European Conference on Space Debris (p. 233). volume 393. 802

Smirnov, N., Kiselev, A., & Nazarenko, A. (2002). Mathematical modeling of 803

space debris evolution in the near earth orbits. Moscow University Mechan- 804

ics Bulletin, 57, 33–41. 805

Smirnov, N., Kiselev, A., Nazarenko, A. et al. (2020). Physical and mathemat- 806

ical models for space objects breakup and fragmentation in hypervelocity 807

collisions. Acta Astronautica, 176, 598–608. doi:10.1016/j.actaastro. 808

2020.02.050. 809

Smirnov, N., Kiselev, A., Smirnova, M. et al. (2015). Space traffic hazards 810

from orbital debris mitigation strategies. Acta Astronautica, 109, 144–152. 811

doi:10.1016/j.actaastro.2014.09.014. 812

Smirnov, N. N., Dushin, V. R., Panfilov, I. I. et al. (1993). Space debris evolu- 813

tion mathematical modelling. In Proc. of the 1st European Conference on 814

Space Debris. volume 1. 815

Smirnov, N. N., Nazarenko, A. I., & Kiselev, A. B. (2001). Modelling of the 816

space debris evolution based on continua mechanics. In Proc. of the 3rd 817

European Conference on Space Debris (pp. 391–396). volume 473. 818

Vallado, D. A., & McClain, W. D. (2007). Fundamentals of astrodynamics and 819

applications. (2nd ed.). Dordrecht: Springer. 820

Walker, R., Martin, C., Stokes, P. et al. (2001). Analysis of the effective- 821

ness of space debris mitigation measures using the delta model. Advances 822

in Space Research, 28(9), 1437–1445. doi:https://doi.org/10.1016/ 823

S0273-1177(01)00445-8. 824

Wittig, A., Colombo, C., & Armellin, R. (2017). Long-term density 825

evolution through semi-analytical and differential algebra techniques. 826

Celestial Mechanics and Dynamical Astronomy, 128. doi:10.1007/ 827

s10569-017-9756-x. 828

5.

Colom

uity e

57(

ombo, C

s and S

all deb

ntrol, and D

o, C., & Le

uation m

on a

(pp.

& Lewis, H. (

ris-object cl

ynamic

H. (2

alysis

473–

y approac

l, and Dynamic

). 2d

P

434

e 1998 nasa bre

for deb

ce deb

43. do

k

al Equations

reakup mod

4. doi

on

evolu

Celestia
s10569-

Co

ion t

,

ce debris m

Res 28
77(01)004

ombo,

gh se

s

lain

d ed.

C., Sto

mitigat

ased on co

n Space Debr
W. D. (2007

ordrecht:

Proc. of th

& Kiselev, A

ontinua m

et a

es. ct
.014

I. et al. (

e 1st E

2015). Sp

a Astronautic

993)



Declaration of interests 
 

 The authors declare that they have no known competing financial interests or personal relationships 
that could have appeared to influence the work reported in this paper. 
 
☐The authors declare the following financial interests/personal relationships which may be considered 
as potential competing interests:  
 

 
 
 
 

 


