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ABSTRACT  

Purpose. Quantification of myocardial blood flow (MBF) and functional assessment of coronary artery 

disease (CAD) can be achieved through stress myocardial computed tomography perfusion (stress-

CTP). This requires an additional scan after the resting coronary computed tomography angiography 

(cCTA) and administration of an intravenous stressor. This complex protocol has limited reproducibility 

and non-negligible side effects for the patient. We aim to mitigate these drawbacks by proposing a 

computational model able to reproduce MBF maps. 

Methods. A computational perfusion model was used to reproduce MBF maps. The model parameters 

were estimated by using information from cCTA and MBF measured from stress-CTP (MBFCTP) maps. 

The relative error between the computational MBF under stress conditions (MBFCOMP) and MBFCTP was 

evaluated to assess the accuracy of the proposed computational model. 

Results. Applying our method to 9 patients (4 control subjects without ischemica vs 5 patients with 

myocardial ischemia), we found an excellent agreement between the values of MBFCOMP and MBFCTP 

. In all patients, the relative error was below 8% over all the myocardium, with an average-in-space 

value below 4%. 

Conclusion. The results of this pilot work demonstrate the accuracy and reliability of the proposed 

computational model in reproducing MBF under stress conditions. This consistency test is a preliminary 

step in the framework of a more ambitious project which is currently under investigation, i.e. the 

construction of a computational tool able to predict MBF avoiding the stress protocol and potential side 

effects while reducing radiation exposure. 

KEY WORDS: Cardiac perfusion, computed tomography, coronary artery disease, myocardial blood 

flow, computational model 
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INTRODUCTION 

The detection of coronary artery stenosis and associated ischemia is of utmost importance in the 

identification of patients who should be addressed for further invasive evaluation and revascularization. 

To this regard, the combined use of coronary computed tomography angiography at rest (cCTA) and 

stress myocardial computed tomography perfusion (stress-CTP) have been recently introduced to 

obtain both anatomical and functional analysis of coronary artery disease (CAD) with one imaging test 

[1-4]. cCTA ensures CAD detection from an anatomical point of view, whereas stress-CTP allows the 

evaluation of myocardial perfusion through the measurement of myocardial blood flow (MBF) under 

pharmacologically induced stress conditions [5,6]. The drawback is that stress-CTP requires an 

additional scan on top of cCTA and an intravenous stressor administration with an increase of radiation 

exposure and potential stressor related side effects. 

Computational models have shown to be an effective tool in cardiovascular clinical practice. The best-

known example in the CAD clinical setting is HeartFlow®, which, starting from anatomical information 

about epicardial coronary arteries obtained from cCTA, computes fractional flow reserve (FFR) non-

invasively, by means of computational fluid dynamics (CFD) simulations. Over the past few years, 

computational models were also used to study myocardial perfusion for a better understanding of 

myocardial ischaemia [7-12]. However, only recently have computational tools been applied to real data 

for a quantitative analysis of cardiac perfusion, representing a challenging task to achieve [12]. 

In this study we provide a first assessment of the reliability of computational tools in reproducing MBF 

maps. In particular, our starting point is the previous work by Di Gregorio et al [9] where we proposed 

a new computational framework for the computation of blood flow maps. This model is based on the 

mathematical coupling between the fluid-dynamics in the large coronary (those detectable by the 

standard CT images), where 3D Navier-Stokes equations are considered, and that in the small 

coronaries and microcirculation, addressed by means of a homogenization assumption that leads to 

the equations of a fluid in a porous medium (multi-compartment Darcy equations).  Our hypothesis was 

that the computational model developed in [9], complemented by patient specific data, could predict 

MBF maps under stress conditions. The aim of this work is to present a methodology to calibrate in a 

patient-specific setting the parameters of the computational model and to compare the results of the 

computational estimates of MBF of 9 patients with the stress-CTP based measures.  
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MATERIALS AND METHODS 

Fig. 1 demonstrates a pipeline overview of the methods. 

Study Population and acquisition of clinical data 

The dataset was related to patients with a clinical indication for invasive coronary angiography with FFR 

assessment evaluated with a coronary CT angiography (cCTA) at rest plus myocardial CTP scan under 

stress extracted from the cohort of PERFECTION trial [4-6]. We randomly extracted 4 patients without 

ischemia (P1 to P4) and 5 patients with ischemia (P5 to P9) with functionally significant CAD as detected 

by invasive coronary angiography with FFR assessment (Table 1).  

Rest cCTA was performed with a Revolution CT scanner (GE Healthcare, Milwaukee, Wisconsin). The 

following parameters were used: slice configuration 256x0.625 mm, spatial resolution 0.23 mm; gantry 

rotation time 280 ms; tube voltage was 120kV for patient P8 (BMI of 30 kg/m2), while other patients 

were assessed with 100 kV; effective tube current ranged between 500 mA and 600 mA according to 

patient BMI (500 mA if BMI< 25 kg/m2, 550 mA if 25<BMI<30 kg/m2, 600 mA if BMI≥30 kg/m2).  

Stress-CTP scans were performed after vasodilatation induced with an intravenous adenosine injection 

(0.14 mg/kg/min over 4 min). At the end of the third minute of adenosine injection the stress-CTP 

acquisition was performed during free breathing.  

To quantify the MBF from stress-CTP (MBFCTP), the arterial input function was sampled in the ascending 

aorta and the myocardial time-attenuation curves were coupled with arterial input function using a 

deconvolution model obtained by an adiabatic approximation to the ‘tissue homogeneity model’, a 

simplified version of Johnson and Wilson model. MBFCTP was obtained by tissue residue function (i.e. 

the mass of contrast in tissue over time) [13]. The study protocol was approved by the institutional ethics 

committee. 

Patient-specific geometric reconstruction 

Three-dimensional geometries of epicardial coronary arteries and the left ventricle myocardium were 

reconstructed from the resting cCTA. We performed a semi-automatic segmentation and generated a 

volumetric computational mesh, composed by hexahedral elements (Fig. 2(A-B)). The open-source 

software MITK (http://www.mitk.org/wiki/MITK) and VMTK [14], together with novel meshing tools [15] 

were used. Epicardial coronary arteries were reconstructed until the diameter of 1 mm according to the 

resolution of the cCTA. Below this value it was hard to clearly detect the vessel, so that the 

reconstruction would be not accurate. To describe the perfusion for smaller vessels, we considered a 

http://www.mitk.org/wiki/MITK
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homogenization process so that the domain of interest is the whole left ventricle myocardium. In 

particular, from each outlet of an epicardial coronary artery, the myocardial territory perfused by that 

specific outlet was identified following the strategy described in Di Gregorio et al [9]. We obtained as 

many perfusion regions from epicardial coronary artery outlets we could reconstruct from cCTA (Fig. 

2(C)).  

Computational model 

The computational model used to compute patient-specific MBF maps is built on a multi-physics 

framework based on the following models.9 

- Blood flow in the reconstructed epicardial coronary arteries was described by the 3D 

incompressible Newtonian Navier-Stokes (NS) equations (Fig. 2);  

- Blood flow in the intramural vessels was modeled as a three-compartment porous medium 

(multicompartment Darcy (MD) model), where fluid mass balance equations were considered 

in the whole myocardium domain: 

 

where uM,X and pM,X are  the blood velocity and pressure in compartment X=1,2,3; βyz, y,z=1,2,3, 

are the conductances (to be determined) between compartments y and z regulating the 

pressure drops; Ki, i=1,2,3, are the permeability tensors (to be determined); pveins=22,5 mmHg 

is the given venous pressure; γ=0.0001 (Pa s)-1 is a drain coefficient; ΩjM the myocardial region 

perfused by the j-th coronary through the interface Γj; χA the characteristic function associated 

to region A.  

This model assumes that intramural vessel network (IVN) can be described as a set of 

interconnected pores inside the cardiac tissue (Fig. 2). This strategy allowed us to account for 

the different length scales of IVN, ranging from 1 mm (small coronary arteries, compartment 1) 

to about 10 µm (capillaries, compartment 3) [16,17]; 
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- NS equations in epicardial coronary arteries and the MD model in the myocardium were 

coupled by means of suitable mathematical interface conditions. The first one is given by the 

continuity of mass and it is given by the second, fourth, and sixth equations in the 

multicompartment model. The second one states the continuity of the momentum at the 

terminal points of epicardial coronary arteries (Fig. 2): 

  

where αj are the conductances between epicardial coronaries and the myocardium.   

At the inlet of each of the two main coronaries (left and right) we assumed a parabolic velocity profile 

and we prescribed the representative inlet coronary blood flow rate (CBF) reported in Fig. 2(E) [18], 

whose average-in-time was set in order to match the total amount of flow rate of the patient:  

1
𝑇𝑇 ∫ 𝐶𝐶𝐶𝐶𝐶𝐶(𝑡𝑡)𝑑𝑑𝑡𝑡 = 𝑀𝑀𝐶𝐶𝐶𝐶𝑎𝑎𝑎𝑎𝑎𝑎𝑉𝑉𝑀𝑀

𝑇𝑇
0 , (1) 

where VM is the myocardial volume perfused by the left and right main coronaries, and MBFavg the 

average of MBFCTP in the myocardium. For the numerical solution of this coupled problem, we 

considered the splitting scheme proposed in Di Gregorio et al [9]. Each sub problem has been 

approximated by means of the Finite Elements (FE) Method used in combination with a semi-implicit 

backward differentiation formula of order 1 for temporal discretization, with time step ∆t = 0.01 s. We 

adopted Q1/Q1 FE with SUPG-PSPG [19] stabilization for NS problem, with mesh size hNS ~ 0.4 mm, 

whereas Q1 FE for MD problem solved for the pressure, with mesh size hMD ~ 1.8 mm. Such values 

were seen to provide results which were robust with respect to mesh independency. The computational 

simulations were performed using lifex (https://lifex.gitlab.io/lifex), an in-house software library based on 

the deal.II FE library [20]. 

From our computational simulations we obtained blood pressure and flow field in epicardial coronary 

arteries and in the myocardial perfusion regions. This allowed us to calculate a computational MBF 

(MBFCOMP) under stress conditions that is the amount of blood flow that reaches the third (innermost) 

porous compartment, related to capillaries. The MBF is proportional to the difference of pressures 

between the second (pM,2) and the third (pM,3) compartments, through the conductance (inverse of 

resistance) β2,3: 

MBFCOMP = β2,3 (pM,2 – pM,3) * 60 s/min * 100 ml. 

The dimensional factors 60 s/min and 100 ml were used to express MBFCOMP in ml/min/100ml.  

https://lifex.gitlab.io/lifex


8 
 

Calibration of the model parameters 

To reproduce clinical data of MBF maps, the computational simulations required a proper set of physical 

parameters:  

- The conductance αj regulating the pressure drop between the epicardial and intramural vessels; 

- The conductance β1,2 and β2,3 regulating the pressure drop between compartments 1 and 2, 

and 2 and 3, respectively; 

- The permeability of K1, K2, K3 related to the 3 compartments in the MD problem. 

Suitable values of such parameters were estimated for each patient and assumed to vary among the 

different perfusion regions. This calibration was performed with the following steps (see Fig. 3): 

C1) an estimation exploiting IVN properties and the knowledge of the total flow rate entering in the 

system; 

C2) an adjustment to account for vasodilation under stress;  

C3) a modification of the parameters at the septum; 

C4) a final adjustment based on MBFCTP. 

In C1 we used information from cCTA at rest to determine a first guess for the parameters. In particular, 

we built a surrogate IVN, generated using the procedure previously described (Fig. 2(D)) [9]. Then, we 

solved a Poiseuille problem in such a network and we accordingly estimated the conductance as the 

ratio between the flow rate and the pressure. Notice that the IVN is built only with the purposes of 

estimating the conductances, the multi-compartment Darcy problem being solved in the whole 

myocardium domain. As for the permeability, they were initialized based on geometric issues, in 

particular for each compartment and perfusion region they were given by the ratio between the volume 

of the vessels involved in the region and the total region volume [9]. In step C2, we accounted for the 

vasodilation of arteriolar vessels induced by adenosine injection during stress pharmacological 

conditions. According to studies that highlighted the relationships between microvascular parameters 

and stress conditions [21], β1,2, β2,3, K1 and K2 were increased by 10-fold with respect to baseline 

parameters estimated for resting conditions at C1. A second adjustment was performed at step C3 

based on the observation that at the septum the values of β1,2 and β2,3 estimated at C2 were lower than 

the other myocardial regions, leading to a systematic underestimation of MBFCOMP with respect to 

MBFCTP (about 10 times). This may be due to the fact that not all the septal epicardial coronaries could 

be seen by CT images. To overcome this, we multiplied β1,2 and β2,3 at the septum by a factor 5. This 
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value has been calibrated in order to maximize the accordance with the measured blood flow maps and 

it seemed to be quite robust with respect to the patient. Finally, in step C4 we started from the values 

of β1,2 and β2,3 obtained at C3 and we corrected them by changing their values to reduce the 

discrepancies with MBFCTP. If the discrepancy in a perfusion region was such that the computational 

simulation overestimated the average measured perfusion, then the corresponding β1,2 and β2,3 were 

decreased by a factor proportional to the ratio between MBFCOMP and MBFCTP; otherwise, β1,2 and β2,3 

were accordingly increased. Notice that the values of β1,2 and β2,3 are constant in each perfusion region, 

with such constants that could be different among different perfusion regions. Instead, we did not 

consider their variation in time, according to the fact that MBF are steady maps obtained as an average 

during the diastolic phase.  

Errors calculation 

For the evaluation of the accuracy of the computational model we calculated the mismatch between 

measured and computed MBF (error). Given the two perfusion maps under stress conditions, i.e. 

MBFCOMP and MBFCTP, we first defined MBFjCOMP and MBFjCTP as the corresponding average-in-space 

values in each j-th perfusion region (Fig. 4). Then, we defined 𝑀𝑀𝐶𝐶𝐶𝐶� CTP as the global perfusion map 

given by the collection of MBFjCTP and in an analogous way we introduced the global computed map 

𝑀𝑀𝐶𝐶𝐶𝐶� COMP. This allowed us to compute the global error map Err as the collection of the local errors 

(Fig. 4). Finally, we calculated the mean Errmean of all the errors among the perfusion regions, 

weighted over the corresponding volume.  

To have a clinical evaluation of the myocardial perfusion we also investigated the results exploiting a 

tetra-colorimetry visualization of 𝑀𝑀𝐶𝐶𝐶𝐶� CTP and 𝑀𝑀𝐶𝐶𝐶𝐶� COMP associated to the entity of myocardial ischemia 

and CAD. In this way, we were able to recognize the physiological perfused regions (in red - MBFj > 

150 ml/min/100ml) from the ischemic ones, and we could evaluate the severity of the myocardial 

ischemia considering 3 different levels of hypoperfused regions: green - 100 < MBFj < 150 

ml/min/100ml; light blue - 50 < MBFj < 100 ml/min/100ml; blue - MBFj < 50 ml/min/100ml.  

 

RESULTS 

The characteristics of the CT scan protocol for both rest and stress acquisitions together with the 

percentage of perfused volumes were reported in Table 2. Table 3 reports the number of perfusion 

regions for each patient. 



10 
 

Consistency test 

For each patient we reported the values of the discrepancies Errmean (Table 3). The error is always 

smaller than 4% highlighting a small discrepancy between the computational results and clinical data. 

In Fig. 5, we showed the comparison between the computational (𝑀𝑀𝐶𝐶𝐶𝐶� COMP) and the measured 

(𝑀𝑀𝐶𝐶𝐶𝐶� CTP) perfusion maps under stress conditions, together with the error Err and the epicardial 

coronaries and myocardial reconstructions. There was excellent agreement between computational 

results and clinical data for all patients, as shown by the boxplots of the error Err. We notice that the 

large errors were obtained for the ischemic patients P6, P7, P8, P9, whose error is also highly variable 

over the perfusion regions. Probably this was due to the presence of stenotic coronaries that makes the 

calibration harder. In particular, the relative error was less than 5%, apart from the stenotic cases P6, 

P8, P9 where not more than 3 regions featured a greater error, less than 7% and with a low variability.  

These results highlighted the ability of the proposed computational model in reproducing the perfusion 

maps for both healthy subjects and stenotic patients with great accuracy.  

Towards a blind application 

Since we aim to predict MBF by means of our computational tool for patients where MBFCTP is not 

available, it was important to ask the ability of our method to work without this information. MBFCTP was 

used to suitably calibrate the model parameters (step C4).  

In Fig. 6 we reported the computed MBFCOMP, together with the error, for three healthy subjects 

(P2,P3,P4) and one patient with functionally significant CAD (P8) when we used only steps C1-C3. As 

expected, the errors were increased with respect to the previous analysis. We also reported the tetra-

colorimetric maps. Healthy subjects (P2-P4) showed a fully red map (perfusion always greater than the 

physiological threshold), which was completely predicted by our computations. For P8, there were 

significant differences. 

 

DISCUSSION 

In this work, we report a first analysis on the reliability of a computational model in predicting MBF maps 

under stress conditions and in providing an alternative to the stress protocol. In particular, we have 

applied the computational tool proposed in Di Gregorio et al [9] to 9 patients, 4 without and 5 with 

functionally significant CAD. To the best of our knowledge, this is the first application of a mathematical 

perfusion model to a real-world data-set with the aim of reproducing MBF.  
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Our calibration of model parameters was composed by 4 steps, C1-C4. The ultimate goal of this 

research is to calibrate the computational tool in order to be able to predict MBF with only steps C1-C3. 

Indeed, these steps are independent of the stress-CTP acquisition: step C1 is obtained by using 

geometric cCTA data at rest. Steps C2 and C3 are adjusted based on considerations about the 

vasodilation effect of adenosine and the low MBFCOMP at the septum. The only information coming from 

stress-CTP that has been used in steps C1-C3 is the inlet CBF prescribed at the inlet of the epicardial 

coronaries. However, inlet CBF, i.e.the amount of blood flow incoming in the most proximal coronaries 

(see Figure 2) could be alternatively measured by other techniques, such as Doppler ultrasound. Thus, 

steps C1-C3 could lead to a calibration which is completely CTP free, leading to a computational tool 

which may be an alternative to stress CT acquisitions.  

We have observed from our results (Fig. 6) that for selected patients these 3 steps alone were not able 

to obtain in general small errors in predicting MBF. However, for the patients with no ischemia we were 

able to precisely predict the tetra-colorimetric maps which often are enough for clinicians to make a 

diagnosis. Instead, for CAD patients and in general when considering the complete maps, the 

agreement significantly deteriorated. 

A crucial role in the accurate prediction of MBF was demonstrated by the inclusion of step C4 that 

incorporated specific quantities extracted from the knowledge of the measured MBFCTP. This still did 

not allow our computational prediction usable in current clinical practice. However, our results showed 

the ability of our tool to accurately predict MBF providing a fundamental and necessary first step in view 

of developing an effective predictive tool.  

Several strategies could be investigated in future studies to improve steps C1-C3 and obtain the 

information needed by the model parameter circumventing step C4 and thus stress-CTP acquisition. 

For example, an IVN fitted with anatomical data [22] or machine learning techniques could be very 

useful for this purpose. In this way, the computational model will depend only on cCTA images and 

could be used in a predictive way to obtain MBF under stress avoiding the stress protocol. 

Notice that this is not a statistical study, rather a computational one. This means that we built an a priori 

model based on the physical principles and not an a posteriori model based on data and measurements 

as required by statistics. For such a reason, our sample could not be considered too limited and it 

proved the validity of our model. We also notice that the computational time needed to obtain the 
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estimated MBF is about 12/15 hours per patient. This should not affect the clinical applicability of our 

method since it is not needed a real time answer.  

The potential impact of this computational technique in the clinical assessment of patients with 

suspected CAD is of great interest. First, we notice that virtual scenarios with different perfusion 

conditions (different from the real one) could be simulated for a patient to understand the range of 

variability of her/his clinical answer. Moreover, the unique ability of cCTA to detect atherosclerosis non-

invasively not only is fundamental for a mere diagnostic purpose but represents a key aspect in 

determining patient prognosis, as a prompt recognition of atherosclerotic plaques and subsequent 

appropriate medical management leads to significant reduction in major cardiovascular events [23]. For 

this reason, national and international societies decided to strengthen the indication to cCTA in the 

diagnostic work-up of patients with stable chest pain [24,25]. Interestingly, these guidelines 

recommended investigating further with functional imaging if the cCTA result is not diagnostic or 

atherosclerosis of uncertain degree is detected. Unfortunately, this chance is quite common, due to 

extensive calcific atherosclerotic burden often detected in patients with high likelihood of CAD [26]. 

Complementary assessment with myocardial ischaemia detection thus represents a mandatory step in 

the management of many patients with CAD. The possibility to get both anatomical and functional data 

with the same diagnostic test represents the most appealing strategy. Currently, CT is the only 

diagnostic technique capable to fulfil both needs: atherosclerotic detection with cCTA and functional 

assessment with either FFRCT or Stress-CTP. Both combined approaches, cCTA+FFRCT and 

cCTA+Stress-CTP, have been shown to be very accurate in detecting functionally relevant coronary 

stenosis [5,27], with the advantage of FFRCT analysis over Stress-CTP to be obtained without further 

radiation exposure and contrast administration [6]. Indeed, it is necessary to perform dynamic stress 

CTP acquisition after cCTA in order to obtain MBF estimation under stress conditions with a subsequent 

relevant increase of overall effective dose (MBF estimation can vary between 5 to 9 mSv according to 

different technology available). For this reason, the implementation of a computational method able to 

derive MBF estimation from a cCTA dataset can remarkably reduce the overall radiation exposure. 

Computational approaches, as proved by HeartFlow, are accurate, reproducible, cost-effective [28], 

safe in minimizing biological exposure to radiation dose and iodinated contrast, effective in correctly 

stratifying patient prognosis, and safe in avoiding unnecessary invasive coronary angiography [29]. 

However, this approach is limited to the assessment of the epicardial component of the coronary 
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vascular bed. Instead, the computational model provided in this study, being focused on the MBF 

estimation rather than the FFR, could provide crucial insight about another element of the coronary 

physiology, i.e. the microvascular compartment.  

 

Limitations 

Several are the limitations of the work. First, the consistency test has been performed by using the 

knowledge of CT-stress MBF to calibrate the parameters. This is of course not directly usable in the 

clinical practice. However, we believe that this test was mandatory in order to understand the reliability 

and future application of our method.  

A second limitation relies in step C3 of the calibration process. In this work we have used the same 

factor (5), tuned in a heuristic way, for all patients to increase the conductances at the septum. More 

patient specific adjustements will be needed for future studies based on a deeper knowledge of why at 

the septum there was a systematic underestimation of blood flow maps.  

Also, further investigations on the impact of a stenotic coronary tract on the perfusion will be needed to 

improve the computational model. In particular, the 3D fluid-dynamics problem accounts for the 

presence of a stenosis since the reconstructed geometry of the stenotic tract is used for the 

computational study. Besides this, it should be also investigated how conductances in the multi-

compartment model could be modified by the presence of a proximal stenosis.  
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Table 1 Characteristics of the study population 

 

Patient ID Age (yrs) Gender BMI (kg/m2) Risk factors Symptoms CAD-RADS 
P1 55 M 30 1-5 TA 1 
P2 64 F 23 3-5 TA 2 
P3 72 M 19 - TA 4B 
P4 53 M 26 2-3-5 TA 4A 
P5  69 M 26 1-2-3-5 TA 4B 
P6 61 M 25 2-4-5 TA 3 
P7 71 M 28 1-2-3-4-5 TA 4A 
P8 61 M 30 1 TA 4A 
P9 76 M 23 2-5 AA 5 

 

BMI = body mass index; Risk factors: 1 = hypertension; 2 = smoker; 3 = hyperlipidemia; 4 = 

diabetes; 5 = family history of coronary artery disease; TA= typical angina; AA = atypical 

angina; CAD-RADS = Coronary Artery Disease Reporting and Data System 
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Table 2 Characteristics of cCTA scan protocols and stress parameters of the study population 

 

 
Patient 
ID 

Rest cCTA scan protocol Stress-CTP scan protocol 

HR 
before 
scanni

ng 
(bpm) 

β-bloc-
ker 

dosage 
(mg) 

HR 
during 
scanni

ng 
(bpm) 

 

DLP 
(mGy-

cm) 

ED 
(mS
v) 

HR 
during 
scanni

ng 
(bpm) 

DLP 
(mGy-

cm) 

ED 
(mS
v) 

MBFavg 
(ml/min/
100ml) 

% 
Perfused 
volume 

(left/right) 

P1 70 10 63 195.97 2.74 85 432.00 8.79 334.25 66.1/33.9 

P2 56 0 55 56.05 0.78 94 379.17 6.09 314.94 55.9/44.1 

P3 58 0 57 177.13 2.48 69 396.86 8.04 246.75 72.3/27.7 

P4 100 15 70 165.39 2.32 75 376.70 7.59 281.38 73.7/26.3 

P5  67 5 57 213.84 2.99 74 380.08 8.31 172.51 68.8/31.2 

P6 59 0 55 64.40 0.90 68 393.22 6.41 165.95 79.3/20.7 

P7 50 0 42 288.47 4.04 64 401.71 9.66 121.86 67.7/32.3 

P8 78 0 81 252.40 3.53 97 347.99 8.41 151.74 67.2/32.8 

P9 60 0 59 192.64 2.70 61 422.81 8.62 122.93 62.7/37.3 

 

HR = heart rate; cCTA = coronary computed tomography angiography; stress-CTP = stress 

myocardial computed tomography perfusion; DLP = Dose length product; ED = Effective 

Dose; MBFavg = average myocardial blood flow from stress-CTP 
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Table 3. Number of perfusion regions and mean error in the estimation of myocardial blood 
flow. 

Patient ID Number of perfusion regions  Errmean [%]  
P1 19 1.07 ± 1.34 
P2 15 1.79 ± 1.30 
P3 21 1.05 ± 0.62 
P4 27 0.98 ± 0.70 
P5 25 1.27 ± 0.72 
P6 29 1.65 ± 1.30 
P7 29 2.78 ± 0.15 
P8 25 3.54 ± 2.04 
P9 46 2.32 ± 1.31 

 

Errmean values ± SD. Errmean = weighted mean among the perfusion regions of discrepancies 

between measured and computational myocardial blood flow. 
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Figure 1. Generation of computational myocardial perfusion. a) Geometry reconstruction from cCTA; 

b) generation of the intramural vascular network; c) generation of the computational meshes; d) 

estimation of parameters - steps C1-C3; e) measurement of MBF map from stress CTP; f) optimization 

of parameters guided by MBFCTP - step C4; g) computation of MBFCOMP. CT = computed tomography; 

cCTA = coronary computed tomography angiography; CTP = computed tomography perfusion; 

MBFCOMP = computational myocardial blood flow; MBFCTP = measured myocardial blood flow. 
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Figure 2. Example of geometry reconstruction in patient P4. (A) Mesh of epicardial coronary arteries; 

(B) mesh of the myocardium; (C) epicardial coronary arteries with perfusion regions; (D) epicardial 

coronary arteries with the surrogate intramural vascular network; (E) inlet coronary blood flow profile 

(blue). CBF = coronary blood flow; T = heartbeat period. 
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Figure. 3 Schematic representation of the calibration procedure. 
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Figure 4. Computation of the relative error between MBFCTP (top) and MBFCOMP (bottom): (a) subdivision 

in perfusion regions; (b) computation of the average-in-space MBF for each perfusion region; (c) 

collection of all MBFjCTP and MBFjCOMP in a unique map (𝑀𝑀𝐶𝐶𝐶𝐶� CTP and 𝑀𝑀𝐶𝐶𝐶𝐶� COMP); (d) computation of the 

relative error. Err = relative error between 𝑀𝑀𝐶𝐶𝐶𝐶� CTP and 𝑀𝑀𝐶𝐶𝐶𝐶� COMP. 𝑀𝑀𝐶𝐶𝐶𝐶� COMP = averages in space of 

measured perfusion maps; 𝑀𝑀𝐶𝐶𝐶𝐶� CTP = averages in space of computational perfusion maps. 
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Figure 5. Panel A. From left to right: reconstructed epicardial coronaries and myocardium with 

perfusion regions; 𝑀𝑀𝐶𝐶𝐶𝐶� COMP; 𝑀𝑀𝐶𝐶𝐶𝐶� CTP; Err. Panel B. Boxplots of Err for each patient. Err = relative error 

in all the perfusion regions. Abbreviations as in Fig. 4. 
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Figure 6. Left: 𝑀𝑀𝐶𝐶𝐶𝐶� COMP and 𝑀𝑀𝐶𝐶𝐶𝐶� CTP; Middle: Percentage error Err;  Right: 𝑀𝑀𝐶𝐶𝐶𝐶� COMP and 𝑀𝑀𝐶𝐶𝐶𝐶� CTP in 

the tetra-colorimetric maps. 4 selected cases (P2,P3,P4,P8). Abbreviations as in Fig. 4. 
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