
reciprocal actions of all the charges within the material. Ex-
amples are the Boltzmann equation, which results from the 
semiclassical electron dynamics in a crystalline solid,4 or the 
equations describing charge (and mass) transport in electro- 
magneto-hydrodynamics.5

Here, we will show that the interpretation of the Laplace 
force as a magnetic force, typically found in textbooks, is mis-
leading. For a better understanding of such a phenomenon, 
one should consider the internal distribution of the charges 
inside the wire induced by the applied magnetic field. In the 
following, we will show that the Laplace force needs to be con-
sidered as an electric force. This conclusion solves a series of 
paradoxes and provides a better comprehension of this issue, 
which is not as straightforward as it might seem. 

Magnetic force on the charges moving inside 
the wire

Let us first evaluate the magnetic force acting on the en-
semble of charges moving inside a conductor immersed in a 
magnetic field B. We can assume that all the particles moving 
inside the wire carry the same charge q. The following conclu-
sions can be generalized in a straightforward manner if more 
than one population of charged particles contribute to the 
total current. As usual, we will also consider a wire in steady-
state conditions, i.e., with a charge density not depending on 
time.

The total magnetic force Fmag on the ensemble of the mov-
ing charges is obtained by adding the individual magnetic 
forces acting on each particle6:

Fmag =  ∑i qvi  ×  B,             (2)

where vi is the velocity of the ith particle inside the wire. By 
applying the continuum approximation and integrating over 
the wire volume V, one obtains

           (3)

with n and being the density of carriers and their average 
velocity in the volume V, respectively, and J = qn  the corre-
sponding current density. We can then explicitly express dV as 
dV =  � ∙ dS, where � is the length element aligned parallel 
to the wire axis and dS the cross-section surface element. As-
suming that the cross section of the wire is so small that the 
magnetic field B does not significantly change across it, we 
can finally transform Eq. (3) as follows:                                          

(4) 

To derive this expression, we have implicitly assumed that J 
and �  are parallel as a consequence of the small cross section 
of the wire. The first integral in the last member of Eq. (4) is 
the flux of the current density J across the section of the wire 

The macroscopic force (called the Laplace force) acting 
on a wire carrying an electric current placed in a mag-
netic field is a consequence of the Lorentz force acting 

on each charge inside the wire. Typically, the Laplace force is 
explained as a magnetic force resulting from the interaction 
of the moving charges with the external magnetic field. Such 
an interpretation, however, is too simplistic and does not take 
into account all the interactions between the various charge 
populations inside the wire. This leads to a series of paradox-
es that might hinder the understanding of this subject. For 
instance, a magnetic force cannot do any work, while a cur-
rent-carrying wire in a magnetic field represents the paradigm 
to understand the working principle of an electric motor. 
Here, we will solve this and other inconsistencies by showing, 
with simple arguments comprehensible to undergraduate stu-
dents, that the Laplace force is instead an electrostatic force. 

The study of the forces acting on electrically neutral wires 
carrying electric currents has represented a cornerstone in the 
development of modern electrodynamics.1 The pioneering 
work carried on in this field by André-Marie Ampère is of 
paramount importance in the history of science and technol-
ogy and represents a fundamental step in the process of bridg-
ing the gap between electricity and magnetism and reaching 
the awareness that these phenomena are just different mani-
festations of the same fundamental laws of nature.2

Ampère’s work anticipated the modern interpretation 
of electrodynamics in terms of electric and magnetic fields, 
which arose in the theories of Michael Faraday and later re-
ceived a full mathematical description by Lord Kelvin and 
James Clerk Maxwell.2 Actually, in the 1865 formulation of his 
field equations, Maxwell related the magnetic forces to macro-
scopic electric currents.3 At that time, it was not evident that 
currents were connected to the movement of charged particles 
inside a conductor. Joseph J. Thomson was the first to attempt 
to derive the expression of the magnetic force acting on a 
moving charged object from Maxwell’s field equations but 
included an incorrect factor of ½ in his formula. Finally, in 
1895, Hendrik Lorentz derived the modern form that carries 
his name and includes both the electric and the magnetic con-
tributions to the electromagnetic force on a point charge.2 In 
the International System of Units, the Lorentz force assumes 
the following expression: 

F  =  qE + qv × B,                                                            (1)

with q and v being the charge and velocity of the particle, and 
E and B the electric and magnetic field, respectively.

However, describing the complex charge dynamics in real 
materials by just considering the Lorentz force resulting from 
the interaction with externally applied electric and magnetic 
fields is often inadequate. Typically, the time and spatial re-
sponse of the charges of a many-body system is reproduced 
by more complex models that need to take into account the 
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across a current-carrying wire immersed in a magnetic field.9 
In the simple geometry outlined in Fig. 1, 

                                                                   (9)

Here, we will not examine any further all the consequences 
and applications of the Hall effect. We just want to stress that 
the Laplace force experienced by the wire cannot be traced 
back to the magnetic force acting on the moving charges, 
since the latter is totally compensated by the electrostatic force 
Fel resulting from the interaction with the charges accumulat-
ed on the wire surface:

Fel   =  –Fmag.                            (10)

Origin of the Laplace force
To understand the origin of the Laplace force, we should 

recall the action–reaction law of Newton’s dynamics: the  
magnetic force Fmag on the moving charges interacting with  
B is accompanied by a force –Fmag acting on the sources of the 
magnetic field. Conversely, the static charges accumulated on 

and corresponds, by definition, to the current intensity I. We 
thus obtain the following textbook expression6:

�
    

  (5)

It would seem reasonable to associate Fmag with the La-
place force FL, i.e., with the macroscopic force acting on the 
wire. A plethora of experiments,1,2 among which many can be 
performed with simple instruments available in high school 
level laboratory classes, have indeed confirmed the empirical 
validity of this assumption, and a common trend in text-
books7,8 consists in presenting the passages leading to  
Eq. (5) as a “demonstration” that the Laplace force directly 
stems from magnetic forces acting on the moving charge car-
riers inside the wire.

We would like to stress, however, that such an interpre-
tation is incorrect and misleading for two reasons (at least). 
First, it is not consistent with the wire being in a stationary 
state. Second, a magnetic force cannot do any work,6 while 
Laplace forces acting on a moving coil in which an electric 
current is forced are exploited in electric motors to generate 
mechanical power. In the following, we will demonstrate that 
the Laplace force originates instead from the electrostatic in-
teractions between charged particles inside the wire, which 
removes any limitation on the possibility of doing work.

The Hall effect
If we assume that there are no forces acting on the moving 

charges other than the magnetic one discussed in the previous 
section, we need to conclude that the carriers will be forced to 
move in the direction of such forces with an average drift ve-
locity ⊥  perpendicular to the wire axis, generating a current 
density J^  =  qn ⊥ .  J ̂

 drives charges to the surface of the 
wire, where they accumulate. By indicating the surface charge 
density as σ and the unit vector normal to wire surface as un, 
since the charges cannot escape through the wire surface, 
charge conservation leads to

                                                 (6)

As anticipated in the previous section, this expression vio-
lates the assumption of the wire being in a steady state, leading 
to the first inconsistency outlined above. Actually, the surface 
charges create an electric field EH that will rapidly grow to 
eventually reach a value that will prevent any further charge 
accumulation, restoring the steady state, with J^  = 0 and 
⊥   = 0. This condition is reached when the average force ap-

plied to the moving charges vanishes:
                                                  (7)

which corresponds to 
                            (8)

The presence of the electric field EH perpendicular to the 
wire axis gives origin to the so-called Hall effect, consisting in 
the generation of a voltage difference VH (the Hall voltage) 

Fig. 1. (a) Illustration of the origin of the transverse electric field 
EH generating the Hall voltage VH across a wire carrying a current 
with density J in a field B. This phenomenon is due to the charges 
pushed to the edges of the wire by the magnetic force Fm acting 
on each carrier (electrons in this case). In this example, the cross 
section of the wire is rectangular (with thickness t), B is uniform 
and parallel to the y direction, perpendicular to the wire surface. 
The total force FL applied to the wire is parallel to the z-axis. 
Note that Fm is, on the average, compensated by the electric 
force –eEH. (b) Illustration of the forces acting on the background 
charges. In this case, no magnetic force is present, and only the 
uncompensated electric force qEH is active.
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way to students familiar with relativistic electromagnetic field 
transformation between reference frames. A wire moving in a 
magnetic field B with velocity vw experiences in its rest frame 
[see Fig. 2(a)] an additional electric field E , which, in the 
small velocity limit vw  <<  c, is equal to11

 E   =  vw  ×  B.                              (11)

The component of E  perpendicular to the wire axis is com-
pensated by the Hall field E H  created by charges accumulated 
at the wire surface. However, to maintain the same current 
density J that would flow in the wire at rest, an extra electric 
field Eextra is required from the generator supplying current to 
the wire:

Eextra  =  –E|| ,                             (12)

E||  being the projection of E  on J. To create this additional 
field, the generator is required to deliver an additional power 
Wextra to the wire [see also Eq. (4)]:                                              

(13)

�

� �

L

ww

w w
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This expression for Wextra coincides with the mechanical 
power associated with FL. As is to be expected, such a power is 
provided by the generator supplying the current I necessary to 
maintain, through Fmag, the surface charge distribution re-
sponsible for the Laplace force itself.

The same result can also be obtained by describing this 
phenomenon in the laboratory frame [see Fig. 2(b)]. In this 
case, the (average) velocity of the moving charges is equal to 

 + vw, with  = J/(qn), and on each charge is applied an 
(average) magnetic force F m equal to

F m  =  q (  + vw )  ×  B.         (14)

In the steady state, the component of F m perpendicular to 
the wire axis is compensated by the electrostatic force  
qE H  due to the Hall field. Instead, to maintain the same cur-
rent density J that would flow in the wire at rest, the compo-
nent of F m parallel to the axis needs to be compensated by the 
electrostatic force qEextra exerted on each charge q by an addi-
tional field Eextra equal to the projection of F m on J, which, J 
being parallel to , coincides with the projection of qvw × B 
on J. We can thus conclude that the extra power required from 
the generator would then be                                                            

(15)

               

�w

As expected, this expression reproduces the result already de-
rived in Eq. (13). Note that the magnetic forces acting on the 
charges that are either moving or fixed within the wire do not 
do any mechanical work.

the wire surface experience an electrostatic force  
–Fel  = Fmag  as a consequence of the force Fel  = –Fmag  
[see Eq. (10)] they exert on the moving ones. The surface 
charges are held in place by electrostatic interactions with 
background static charges in the volume of the wire, which 
prevent surface charges from escaping in the vacuum.4 There-
fore, the total force acting on the background charges, cor-
responding to force acting on the wire as a whole and to the 
Laplace force FL, is electrostatic, despite the fact that it assumes 
the same expression as Fmag: –Fel = Fmag. This conclusion on 
the nature of the Laplace force solves the second contradiction 
pointed out at the end of the “Magnetic force on the charges 
moving inside the wire” section: an electrostatic force can do 
work, justifying the fact that an electric motor can indeed ex-
ploit Laplace forces to deliver mechanical power.

Work done by the Laplace force
Arguments similar to those presented in the previous 

section, valid when the wire is fixed in the laboratory frame, 
were already partially discussed in Ref. 10. Here, however, we 
would like to better illustrate the phenomena occurring when 
the wire is moving. This case can be explained in the following 

Fig. 2. Current-carrying wire moving in a magnetic field. In this 
example, the wire moves with velocity vw parallel to FL. The elec-
tromagnetic forces are either described in (a) the wire rest frame 
or (b) the laboratory frame. In both cases, the electric field EH 
responsible for the Hall effect is the same as in Fig. 1. However, 
to maintain the same current density J that would flow in the wire 
at rest (as in Fig. 1), an extra electric field Eextra is required from 
the generator (not shown) that forces the electric current through 
the wire.



Conclusions
In summary, we have discussed the nature of the Laplace 

force acting on a current-carrying wire immersed in a mag-
netic field. The conventional interpretation of this phenom-
enon in terms of a magnetic force is not compatible with the 
wire being in a stationary current regime and with the possi-
bility of doing mechanical work. Instead, we have clarified the 
electrostatic nature of the Laplace force. In this way, we solve 
all inconsistencies and provide a better understanding of the 
origin of such phenomenon.
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