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Abstract
In the context of Industry 5.0, manufacturing systems are driven by human-centered production processes, assigning high-
level supervisory tasks to operators. This necessitates that machines can perform low-level decision-making actions. This
paper presents a novel hybrid heterogeneous prognosis algorithm designed to autonomously inspect the cutting edges of
drill-bits and to forecast their Remaining Useful Life along with the associated probability density function. The algorithm
leverages specific force coefficients from spindle power and feed axis current measurements, as features correlated with tool
wear, to detect tool brittle failures. Additionally, flank wear is automatically measured through a specifically conceived image
processing algorithm, using thresholding, convolutional filters, and edge detection techniques. Direct tool wear measurements
are analyzed by a hybrid prognosis algorithm, fusing particle filter and multi-layer perceptron, to predict drill-bits’ remaining
useful lives. The proposed solution offers several advantages. It reduces the need for extensive experimental run-to-failure
tests typically required for training standard machine learning algorithms. Instead, it allows for real-time adaptation, even in
scenarios involving untested and varying cutting process conditions. Furthermore, it utilizes both indirect wear observations
during cutting operations and direct wear observations during setup times (e.g. tool changes, workpiece changes), without
interrupting the ongoing process. Exponent of Kronenberg’s models for specific force coefficients was found to be sensitive
to tool wear. Prognosis could correctly predict the 67% of end-of-lives with an average prognosis horizon of 30%.

Keywords Hybrid heterogeneous prognostics · Direct drill-bit inspection · Model-based indirect inspection ·
Particle filter and multi-layer perceptron

1 Introduction

As Industry 4.0 paved the way for advancements in produc-
tion systems, the emergence of Industry 5.0 emphasizes the
integration of societal goals into industrial objectives, neces-
sitating a shift towards human-centric production processes
[24]. In this context, operators are tasked with higher-
level supervisory responsibilities, while low-level decision-
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making is delegated to machine intelligence. Consequently,
the pursuit of intelligent strategies for monitoring manufac-
turing processes and aiding maintenance decision-making
becomes even more important.

Cutting tools monitoring and prognosis is an active
research topic in the field of manufacturing, due to the tools
significant impact on machine downtimes [27], production
economics [21], and rare material utilization [17]. However,
despite ongoing research efforts, effective solutions in this
domain are still not achieving widespread industrial adop-
tion. Current approaches often rely on indirect inspection
methods utilizing process measurements such as vibrations
[9, 25, 26], acoustic emissions [23], cutting forces [9, 14,
20, 25, 26], and cutting power [6] to estimate tool condi-
tions in a real-time fashion. Despite these techniques are
widespread, they typically extract features (e.g. mean, stan-
dard deviation, harmonic amplitudes and ranges, wavelet
decomposition [11]) influenced by process parameters [14],
like feed and spindle speed for a drilling application. Further-
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more, these features are generally passed to statistical-based
(e.g. Auto-Regressive Moving-Average models) and data-
driven models (e.g. Artificial Neural Networks and Support
Vector Machines) which need a high quantity and quality
of data to estimate whether the cutting tool has failed or
not [16]. Both the aspects above, make the conceived solu-
tions less adaptable to varying operational conditions and
not ready for an industrial implementation. This is especially
true for one-of-a-kind or small-batch production, where cut-
ting is performed under varying cutting conditions, where
system retraining is needed and only limited training data
are available [14]. Nevertheless, some researchers started
to investigate the instantaneous estimation of model-based
features, capable of separating the effect of tool wear, from
cutting conditions [7, 14]. Conversely, direct inspection tech-
niques, such as profilometric acquisitions [12] or calibrated
image analysis [8], are constrained to operate when the cut-
ting tool is not engaged in processing the workpiece.

Both inspection strategies can inform prognosis algo-
rithms aimed at estimating the Remaining Useful Life (RUL)
of cutting tools. Existing prognosis techniques fall into
four categories, including model-based, statistical-based,
data-driven, and experience-based algorithms [16]. Latest
research efforts are mostly oriented to data-driven solutions,
especially dealing with machine learning and deep learning
techniques. However, while effective for mass production
scenarios with enough data availability, these approaches
often require extensive run-to-failure (RTFs) experiments
and parameter combinations to be tested, making them
impractical for small-batch production environments. Avail-
able commercial monitoring tools suffer from the same
limitations. They typically use historical data on repetitive
operations (the case of mass production) to tune static or
dynamic thresholds. In case the workpiece features change,
available thresholds lose their efficacy.

In order to overcome the limitations above, this paper
introduces a novel hybrid solution that combines multi-
ple techniques and algorithm categories. At the same time,
the method is heterogeneous [27], incorporating both indi-
rect and direct inspection, to monitor and forecast drill-bit
wear, respectively. Cutting edge pictures (feeding the direct
method) can be taken only when the drill-bit is not engaged
in the workpiece. Indeed, depending on the industrial sce-
nario, a picture may be taken after drilling each hole or after
a set of holes is drilled. Direct inspection feeds tool prog-
nosis allowing to predict if the drill-bit is able to perform
the upcoming set of holes. Indirect monitoring checks the
stability of the cutting process and identifies brittle wear phe-
nomena. This allows to stop manufacturing before damaging
the part, even if cutting edge pictures are not available. The
proposed indirect solution is designed to be independent of
cutting parameters and adaptable to unforeseen degradation
trends. Moreover, it requires minimal preliminary data for

model calibration and training, making it suitable for small-
batch production contexts.

Section 2 of the paper presents the indirect and direct
inspection phases (Sect. 2.1), followed by a detailed expla-
nation of indirect monitoring (Sect. 2.2) and direct drill-bit
prognosis (Sect. 2.3) using a hybrid approach involving
multi-layer perceptron (MLP) and particle filter (PF). The
experiments were described at the end of the same section
(Sect. 2.4). Results and their discussions are presented in
Sect. 3, referring to the process characterization (Sect. 3.1)
and RTFs monitoring and prognosis (Sect. 3.2). The paper
ends with the presentation of the conclusions in Sect. 4.

2 Materials andmethods

The architecture of the devised approach is illustrated in
Fig. 1.

2.1 Inspection phase

2.1.1 Indirect inspection

Power and current measurements obtained from the machine
undergo pre-processing in order to derive the cutting power
and current Pcut,p, j and i cut,p, j , respectively. Indeed, the
twomeasured quantities are averaged over the stationary sec-
tions of each peck (indexed by p) of a hole (indexed by j).
Subsequently, Eq.1 is applied:

Pcut, j,p = Pmeas, j,p − Pair , j,p

icut, j,p = imeas, j,p − iair , j,p (1)

Here, Pcut, j,p and i cut, j,p represent the cutting power and
current of the p-th peck of hole j , while Pair , j,p and iair , j,p
denote the absorption required for moving the spindle and
feed axis at their speed set points (when no cutting occurs).
Pair , j,p and iair , j,p are functions of the spindle and feed
speeds, respectively. To eliminate their influence, two linear
models were fitted based on specific tests conducted without
cutting. Subsequently, specific force coefficients are derived
from the two quantities (Eq. 2):

kct, j,p = Pcut, j, p/MRR j,p

k̃ca, j,p = kca, j,p/ (τmKm) = i cut, j,p/
(
2rc j,p

)
(2)

where kct,p, j and kca,p, j represent the tangential and axial
specific force coefficients, respectively; τm is the feed axis
motor transmission ratio; Km denotes the feed axis motor
constant; r represents the drill-bit radius; and c j,p is the
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Fig. 1 Scheme of the conceived
methodology

feed per tooth of the peck. Since the motor constant and
transmission ratio are unknown, only k̃ca,p, j was estimated
(proportional to the specific axial cutting energy). The spe-
cific force coefficients estimated by Eq.2 are influenced by
the undeformed chip thickness h j,p = c j,p · sin(κt ), where
κt is half of the point angle of the drill-bit. Hence, an expo-
nential (Kronenberg’s) model is employed to mitigate this
effect (Eq. 3):

kct, j,p = kcst h
−xt
j,p

k̃ca, j,p = k̃csah
−xa
j,p (3)

Here, kcst and xt , as well as k̃csa and xa , represent the
models’ coefficients in the tangential and axial directions,
respectively, depending on the workpiece material-cutting
tool pair. Depending on the experiments under analysis, i.e.,
process characterization (experimentsE1, seeSect. 2.4.2) and
RTFs (experiments E2), a mean identification procedure and
an instantaneous identification procedure are applied to esti-
mate the four quantities, respectively.

Mean approach In order to apply the mean approach,
variable feed per tooth tests are mandatory. Thus, this
approach is followed for experiments E1. Linear regression
is applied on the logarithmic version of Eq.3, where kcst ,
xt , kcsa , and xa are the regression coefficients. Thus, four

estimates k̂cst , x̂t ,
ˆ̃kcsa , and x̂a are obtained through this

approach.
Instantaneous approach The instantaneous approach

allows to estimate the specific force coefficients when a hole
is drilled. Indeed, this approach is useful to track the evolu-
tion of a specific force coefficient as the wear of the drill-bit
progresses (experiments E2). During the drilling of a hole,
feed per tooth is constant. Thus, either kcst and kcsa , or xt

and xa , are set to the value estimated in process characteri-
zation. This allows to identify the remaining coefficients by
least-square estimation on the relative peck quantities. In this
paper, kcst and kcsa were set to the values identified during

experiments E1 (i.e. k̂cst and
ˆ̃kcsa ; the reason of this choice is

presented in Sect. 3). Indeed, in Eq.4, xt and xa are estimated
for each hole j , obtaining x̂t, j and x̂a, j , respectively:

kct, j,p = kcst h
−xt, j
j,p

k̃ca, j,p = k̃csah
−xa, j
j,p (4)

2.1.2 Direct inspection

The direct inspection of the drill-bit begins with flank
images, each undergoing four automatic pre-processing steps
aimed at centering images on the drill-bit flank surface (pre-
processing 1, Fig. 2):

• A grayscale transformation is applied to the image to
compress the image feature space [5].

• Binarization is conducted using an intensity threshold of
120 to isolate the cutting edge.

• The image is centered on the center ofmass of themasked
area.

• The image is cropped to a resolution of 900×400 pixels.

Following this, five additional pre-processing steps (pre-
processing 2, Fig. 2) ensure the alignment of drill-bits’
reference edges among different images (i.e. at differentwear
levels):

• Gaussian image blurring is performed using an 11 × 11
Gaussian kernel to mitigate image noise.
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Fig. 2 Direct inspection phase
workflow. Red elements
represent items identified or
used by the current step. Blue
elements represent items
identified in previous steps

• Edge detection 1 applies a 2D convolutional filter to
emphasize the vertical reference edge (specifically, edge
1).

• Alignment 1 rotates all images to maintain edge 1 in a
vertical orientation.

• Edge detection 2 utilizes a 2D convolutional filter on the
blurred image, followed by Otsu’s binarization [15] to
highlight the oblique reference edge (edge 2).

• The last step calculates the intersection of the two edges,
serving as the reference point for placing the nominal
cutting tool flank mask.

Finally, the mean flank wear is calculated. The worn drill-
bit flank is masked through binarization with an intensity
threshold of 70 (within nominal mask bounds). The mean
flank wear (VB) measurement of the cutting edge for each
image is determined as the difference between the nominal
area and the highlighted area, divided by the flank length.
As the drill-bit features two cutting edges, the flank wear
measure is computed as the mean of the two at each stop,
denoted as VBm . The kernels of the pre-processing filters
described above are listed in Table 1.

Table 1 Convolutional layers’ kernels

Layer Edge 1 detection Edge 2 detection

Kernel

⎡

⎣
−4 0 4.5
−4 0 4.5
−4 0 4.5

⎤

⎦

⎡

⎣
−1.5 · · · −1.5
0 · · · 0

1.8 · · · 1.8

⎤

⎦ [3 × 20]

2.2 Monitoring phase

The monitoring strategy employs a cusum control chart [13].
Similarly to the approaches outlined in [14] and [1], a sum-
mary index X j is computed for each hole j as follows (Eq.5):

X j =
√(

x̂t, j
x̂t,1

)2

+
(
x̂a, j

x̂a,1

)2

(5)

where X j represents an equivalent exponent of the Kronen-
berg’s model at hole j , and thus the sensibility of the specific
force coefficient to the feed per tooth as a function of tool
wear. Moreover, it is noted that brittle wear phenomena tend
to accelerate the degradation rate of the specific force coef-
ficient and increase its instability [14]. By having kept fixed
the specific force coefficients, this behaviour is expected to
affect the summary index X j . Hence, the absolute value of
the moving range of X j serves as the monitoring variable
(Eq.6):

δX j = ∣∣X j − X j−1
∣∣ (6)

where δX j represents the absolute value of the moving range
when hole j is executed, and X j denotes the summary index
estimated during the j-th hole.

A cusum control chart is implemented with standard
thresholds following [13], initially tuned on the first 25 holes.
This approach ensures that the operator assesses the drill-bit
condition to ascertain whether the brittle wear event consti-
tutes a critical failure. The choice of the cusum control chart
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is motivated by its rapid responsiveness to minor shifts in the
meanof the control variable.When a false positive occurs, the
control chart is recalibrated on 25 new observations. Conse-
quently, detecting a second change in the slope of themoving
range becomes more challenging.

2.3 Prognostics phase

In this study, a hybrid prognostic framework is formulated,
drawing inspiration from methodologies employed in crack
growth propagation and Li-ion battery prognostics [4, 19].

2.3.1 Multi-layer perceptron

TheMLP is a simple neural network, establishing a mapping
between input features and outputs. In our context, the MLP
correlates VBm with the hole number i (which may be differ-
ent from j, since the MLP can be evaluated at different hole
numbers). Consequently, the MLP comprises one input neu-
ron and a single output neuron. To constrain the complexity
of the MLP, a single hidden layer with three neurons is intro-
duced. The resultant structure of the MLP is depicted in Fig.
3. The approach followed here introduces the improvements
carried by [3] in turning application to the original version
applied for drilling in [2]. Thus, the biases of the MLP are
set to zero, and the MLP passes through the origin. Further-
more, two mapping functions, m(0) and m(2), are introduced
to normalize the input and the output of the MLP (see [3]),
respectively. The corresponding equation governing theMLP
operation is formulated as follows (Eq.7):

V̂Bm(i) = m(2)

(
3∑

s=1

θs+3 · a
(
θs · m(0)(i)

))

(7)

Here, θ1, θ2, θ3, θ4, θ5, and θ6 denote the weights of the
MLP, respectively; a(·) represents the activation function,
defined as per Eq.8:

a(u) = u/(1 + |u|) (8)

Fig. 3 Adopted multi-layer perceptron architecture

where u signifies a generic input. Consequently, given the
input hole number i , the MLP yields the corresponding pre-
dicted flank wear V̂Bm(i). Training of the MLP is conducted
based on a single RTF test.

2.3.2 Particle filter

The PF is an advancement of the Kalman filter specifi-
cally conceived for non-linear dynamical systems and non-
Gaussian measurement noise and process disturbances. PF
approximates the state PDF of the dynamical system using
a set of nm particles (here, nm = 5000). In our developed
solution, PF serves as a means to update the MLP func-
tion (i.e. V̂Bm(i)) whenever a new flank wear measurement
becomes available. Additionally, we assume a flank wear
image is accessible every 5 holes (i.e. when j = f and
f = 0, 5, 10, . . . ). Therefore, PF updates the MLP every 5
holes as the sampling frequency. The formulated PF observes
the following dynamical system (Eq.9):

{
θ f+1 = θ f + d f

VBm, f (i) = θ10, f + ∑3
s=1 θs+6, f a

(
θs, f i + θs+3, f

) + n f

(9)

Here, θ f represents the state of the dynamical system
containing the weights of the MLP observed at hole f ; d f

denotes the process disturbances, assumed to be Gaussian
with null mean and diagonal covariance, proportional to θ f

through the disturbance intensity Q (here, Q = 0.007). The
first equation, known as the process equation, explores the
weights space at each PF iteration. The second equation,
termed the measurement equation, provides an estimation
of the measured quantity (i.e. V̂Bm) as a function of the hole
number i , with the updatedMLP. n f represents the measure-
ment noise, assumed Gaussian with null mean and standard
deviation R (here, R = 3).

During each PF cycle, a set of particles is sampled using
the process equation. Subsequently, each particle m corre-
sponds to a different state value, resulting in a different MLP.
Resampling, the second step of PF, selects the most repre-
sentative particles by assigning weights proportional to the
measurement likelihood to each particle. For details on the
resampling stage, refer to [3, 4, 19]. Here, the forgetting fac-
tor ξ introduced by [3] was set to 0.9.

To conduct prognostics, at each PF iteration, each resam-
pled MLP (m) is evaluated to identify the hole number
corresponding to the threshold intersection (here, 150μm).
The intersection hole number is designated as ˆRULm, f . The
RUL PDF ˆRUL f estimated at the f -th PF iteration is approx-
imated through ˆRULm, f , where m = 1, . . . , nm . To evaluate
the performance of the prognostics solution, two prognostic
metrics are computed: Absolute Prediction Error (APE) and
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Prognostics Horizon (PH), determined using the α − β cri-
terion with α = 0.20 and β = 0.95 [18]. APE is calculated
as a function of the normalized tool life λ (Eq. 10):

APE(λ) =
∣∣∣RULtrue − med[ ˆRUL f ]

∣∣∣ (10)

Here, λ = f /RULtrue; RULtrue represents the actual hole
number at which the flank wear overcomes the threshold;
med[ ˆRUL f ] is the median of the estimated RUL PDF at the
PF iteration f . PH serves as an indicator of how far in advance
the algorithm accurately predicts the RUL. Further details on
PH computation are available in [18].

2.4 Experimental set-up and experiments

2.4.1 Set-up

The experimental configuration comprises a RB50A balanc-
ing machine by Balance Systems S.r.l. (Fig. 4a). Throughout
the experiments detailed in this section, AISI303 stainless
steel (Fig. 4b) is utilized, employing a Balance System cus-
tomized HSS drill-bit of 5.5mm diameter and a point angle
2κt = 140◦. The acquisition system facilitates the capture of
both direct and indirect measurements (Fig. 4c). Specifically,
an external DAQ from National Instruments (NI) DAQ9174
is integrated into the machine tool setup. Two NI acquisi-

tion boards NI9205 are installed on the DAQ to gather a set
of five signals, encompassing both analog and digital data
(Fig. 4d): machining/approaching (digital), feed speed, feed
current, spindle speed, and spindle power (analog). The sam-
pling frequency for all the measured quantities was set at
1kHz. For drill-bit wear characterization during the RTFs,
an Optika SZN-T microscope was employed (Fig. 4e), with
a 3D-printed support facilitating precise positioning of the
drill-bit. In an industrial application context, the microscope
can be replaced with cameras featuring macro lenses. In this
case, a proper lighting system should be adopted to mini-
mize the effect of ambient lights on the measurements. In
order to enhance the robustness and the repeatability of the
wear characterization process, cleaning was performed by
slightly brushing the drill-bit edge, in order to remove dirt
and eventual material adhesion, before taking each picture.
This procedure can be automatized.

2.4.2 Experiments

The experimental activity encompassed two distinct phases:
the initial phase focused on the characterization of the cut-
ting process (experiments E1), while the subsequent phase
involved RTFs to develop and validate the drill-bit progno-
sis methodology (experiments E2). Each hole underwent 5
pecks, contributing to a total hole depth of 6mm, conducted
under dry conditions. A full-factorial Design of Experiments

Fig. 4 Experimental set-up: a
balancing machine RB50A; b
workpiece flange; c
measurement set-up; d DAQ; e
Optika SZN-T microscope
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(DoE) was employed for both phases, incorporating central
points and validation steps. The parameters for the DoE in
experiments E1, comprising 25 cutting tests, are outlined in
Table 2.

12 RTFs were carried out in experiments E2 (experiments
E2.1), and the related cutting parameters are shown in Table
3. The sequencing of tests was randomized to mitigate con-
founding influences. In order to see the effect of tool wear
on the specific force coefficients kcs and the exponential
coefficient x , a set of 8 holes, defined through a DoE, was
performed at the beginning of the drill-bit life, and once the
End-of-Life (EoL) was reached for each RTF test (experi-
ments E2.2). Experiments E2.2 parameters are reported in
Table 4. The tests were realized in random order, and the
mean identification procedure described in Sect. 2.1.1 was
applied for these DoEs.

3 Results and discussion

3.1 Cutting process characterization

The specific force coefficients measured during experiments
E1 were plotted as a function of the uncut chip thickness
in Fig. 5. By looking at Fig. 5, the specific force coeffi-
cients, both tangential and axial, followed an exponential
trend. Thus, the exponential Kronenberg’smodel coefficients
were identified by the mean approach in Sect. 2.1.1. k̂cst was
estimated to be 2717 (2328; 3170) MPa, with an exponent
coefficient x̂t of 0.22 (0.17; 0.26). The brackets represent the
95% confidence intervals for the estimated quantity. Further-
more, when looking at the thrust specific force coefficients,
ˆ̃kcsa was estimated to be 0.52 (0.42; 0.65) Arms/mm2, with
an exponent coefficient x̂a of 0.35 (0.30; 0.41). The fitted
regression models are shown in Fig. 5. In the figure, the
regression models were reported together with the simulta-
neous prediction intervals at 95% confidence. As can be seen,
all the validation points (i.e. ID 6 and 7 from Table 2, indi-
cated by blue crosses, are comprised within these intervals,
suggesting a good prediction behaviour of the built models.
Furthermore, the models suggest that the influence of the

uncut chip thickness on the thrust specific force coefficient is
more relevant than the effect on the tangential specific force
coefficient.

3.2 Run-to-failures

During experiments E2, the direct and indirect inspection
phases were applied. The evolution of the inspected flank
wears is shown in Fig. 6. Trends in Fig. 6 were the results
of the application of the direct inspection phase. The asso-
ciated true EoL of each test is reported in Table 5. Figure6
also demonstrates how the cutting speed and feed rate influ-
ence the flankwear evolution of the drill-bits. These relations
are well known, and higher cutting speeds, as well as higher
feed rates, increase thewear rate of the drill-bit. However, the
variability of degradation rates was high, evenwhen the same
parameters were used (same colours). This is themain reason
why monitoring and prognosis phases are gaining attention
in the industrial scenario. Monitoring and prognosis phases
must face such variability which is observed not only in the
flank wear evolution but also in the signals coming from
the machine. In fact, the effect of cutting parameters is typi-
cally larger than tool wear effect. Being capable to separate
between the two is crucial for a correct application of indi-
rect monitoring. For this reason, as explained in Sect. 2.4.2,
tailored DoEs (Experiments E2.2) were carried out at the
beginning and at the end of the tool lives in order to have
a benchmark on the evolution of specific force coefficients
through a standard mean identification procedure. The mean
identification of the models’ coefficients led to Fig. 7. In this
figure, it is possible to understand the behaviour of k̂cst , x̂t ,ˆ̃kcsa , and x̂a when the drill-bit is new or at its EoL.

FromFig. 7, evenwhen the drill-bits are new (blue graphs),

the distributions of the specific force coefficients k̂cst and
ˆ̃kcsa

are really diverse, suggesting that on average, the behaviour
of the drill-bits during machining is highly variable. Even
if the tools and the material come from the same produc-
tion batch, the variability on the specific force coefficients is
quite large (from about 1000 to 4000MPa, when referring
to k̂cst ). This behaviour may be associated to the manufac-
turing repeatability of the drill-bits’ angles, which directly

Table 2 Experiments E1 - DoE
for cutting process
characterization

ID c [level] vc [level] c[mm/tooth] vc[m/min] v f [mm/s] n[rpm] Replicates

1 Low Low 0.020 52 2.0 3000 4

2 Low High 0.020 70 2.7 4051 4

3 High Low 0.040 52 4.0 3000 4

4 High High 0.040 70 5.4 4051 4

5 Mid Mid 0.030 61 3.5 3526 5

6 Val Val 0.035 66 4.4 3788 2

7 Mid Low 0.030 52 3.0 3000 2
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Table 3 Experiments E2.1 -
DoE for run-to-failure tests

ID c [level] vc [level] c[mm/tooth] vc[m/min] v f [mm/s] n[rpm] Replicates

1 Low Low 0.020 52 2.0 3000 2

2 Low High 0.020 70 2.7 4051 2

3 High Low 0.040 52 4.0 3000 2

4 High High 0.040 70 5.4 4051 2

5 Mid Mid 0.030 61 3.5 3526 2

6 Mid Low 0.030 52 3.0 3000 2

affect their behaviour during machining. Indeed, the vari-

ability associated to k̂cst and
ˆ̃kcsa makes the classification

between new and worn out drill-bits from these variables
unfeasible. The opposite is observed for the exponents rep-
resenting the effect of the chip thickness on the specific force
coefficient generated during the drilling process. By observ-
ing the histograms in the second and fourth charts on the
diagonal of Fig. 7, an evident distinction between the orange
and blue distributions can be observed. This behaviour is
associated to the modification of the rake and flank faces
of the drill-bits as the wear progresses. In fact, changing
the uncut chip thickness influences how much the modified
geometry of the lip is involved in the cutting process; while
low chip thicknesses involve mainly the damaged part of the
lip, higher values of h involve the undamaged part of the rake
surface, which preserves the original angles. This behaviour
reflects in a change of the specific force coefficient trendwith
respect to the chip thickness and, consequently, to the model
exponents x̂t and x̂a . Since no appreciable difference can be

observed in k̂cst and
ˆ̃kcsa when a drill-bit is new or at the

EoL, during the instantaneous indirect inspection approach
explained in Sect. 2.1.1, theywere kept constant and their val-
ues were set to their process characterization counterparts.

Another observationmust be pointed out with reference to
flank wear degradation curves shown in Fig. 6. The degrada-
tion phenomenon proceeds with a multi-stage trend, where
fast degradation zones are alternated with flatter regions of
degradation. This behaviour is related to the wear mechanics
of the drill-bit. A cutting lip of the drill-bit starts to wear,
leaving the other lip more exposed to the material removal
process. This stabilizes the wear on the first lip and causes
the second lip to wear out faster. This behaviour is, in gen-

eral, oscillating between flatter and high degradation rates.
In Fig. 6, only the mean behaviour of the wear over the two
cutting lips can be appreciated. These trends are particularly
tough to be predicted and are the main reason for which
prognosis algorithms must be robust and adaptable. Static
algorithms would fail in this operation.

Two examples of correlations between the flank wear
evolution during a RTF and the specific force coefficients
exponents estimated by the instantaneous approach in 2.1.1
are shown in Figs. 8 and 9. In these figures, the pictures of
the cutting lips are reported next to the measured data and
flank wear estimation.

Figure8 shows the results of the application of the direct
and indirect inspection and monitoring phases for RTF 1
(replicate 1). In the top-left graph, the mean flank wear of
the cutters is shown. The labels with letters are placed at the
hole number at which the cutting lips pictures were taken
(stop). Thus, the associated pictures are shown on the right
of Fig. 8. By looking at flank wear of Fig. 8, a multi-stage
behaviour is observed: in a first phase, up to stop D, the tool
starts wearing out gradually near the external zone; in a sec-
ond phase, before stop E, the wear rate of the tool increases
by starting to involve also the central part of the cutting lips;
in the third phase, up to stop H, the flank wear is stable and
progresses uniformly on the whole lips of the drill-bit; in
the fourth phase, up to stop I, chipping involves the external
parts of cutters; in the last phase, flank wear is still stable,
with limited wear progression on the entire lips. The sec-
ond and third graphs on the left of Fig. 8 show the estimated
exponents of the Kronenberg models for tangential and axial
specific force coefficients, respectively. Both the x̂t and x̂a
exponents show a multi-stage behaviour similar to what was

Table 4 Experiments E2.2 -
DoE executed at the beginning
and at the end-of-life of each
run-to-failure test

ID c [level] vc [level] c[mm/tooth] vc[m/min] v f [mm/s] n[rpm] Replicates

1 Low Low 0.020 52 2.0 3000 1

2 Low High 0.020 70 2.7 4051 1

3 High Low 0.040 52 4.0 3000 1

4 High High 0.040 70 5.4 4051 1

5 Mid Mid 0.030 61 3.5 3526 1

6 Mid Low 0.030 52 3.0 3000 3
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Fig. 5 Process characterization by exponentialmodelling of specific force coefficients. (Left)model of tangential (cutting) specific force coefficients.
(Right) model of axial (thrust) specific force coefficients

seen for the VBm . Up to stop D, x̂t faces a regular decreasing
trend, whereas x̂a remains constant. Between D and E stops,
both the coefficients progressively increase their derivatives.
Between E andH stops, the two coefficients stop their growth
and remain constant. Actually, in this region, the coefficient
x̂a faces a little drop, most probably correlated to the micro-
cracks developing on the C1 lip. When the cutters loose
their external parts, a sudden drop in both the coefficients
is found, followed by a higher growth rate. These two ele-
ments started causing the control chart to react at hole 295,
finally setting an alarm at hole 331. In the last region, the
coefficients remain stable around the values 0.37 and 0.5 for

x̂t and x̂a , respectively. Since the control chart detected an
out-of-control (OOC) condition, in the last region, the param-
eters of the chart are re-trained, making it more difficult to
detect another OOC condition. The stops highlighted with
a red box around the cutter pictures represent the first stop
after a OOC condition was detected.

A similar behaviour is shown in Fig. 9. With respect to
the first RTF analyzed, this RTF was performed at high cut-
ting speed and high feed rate. As expected, this combination
led to a faster degradation of the drill-bit that reached the
EoL after 142 holes compared to the 388 holes of RTF 1 (1).
The mean flank wear during this RTF faced three stages: a
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Fig. 6 Evolution of mean flank wear of drill-bits during run-to-failures. The same color suggests the same cutting parameters. In red, the adopted
prognosis threshold
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Table 5 True end-of-life (EoL)
and prognosis horizon (PH) of
the 12 drill-bits used during
run-to-failures

Test 1 (1) 1 (2) 2 (1) 2 (2) 3 (1) 3 (2) 4 (1) 4 (2) 5 (1) 5 (2) 6 (1) 6 (2)

EoL 388 84 372 129 31 111 94 142 109 165 321 220

PH [%] 13 48 27 31 26 23 0 21 96 74 0 0

first rapid flank wear growth, due to the loss of the external
part of cutter 1; a stable region before stop F; and a final
faster degradation up the EoL. The trends on the Kronen-
berg’s models exponents have similar behaviours, even if in
the second region x̂t faces a continuous increase in its value,

whereas x̂a is more stable in this phase. The control chart
detected four OOC conditions. The first was detected right
after stop E, probably related to the effects of the chipping on
theC2 lip (already visible at stopE). The other occurrences of
OOC conditions were detected right after stop F and between
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Fig. 7 The graph represents the distributions of the specific force
coefficients, for new tools (blue) and end-of-life tools (orange). Main
diagonal terms represent the histograms of each variable; off-diagonal
plots represent the scatters between the two variable on the associated

row/column. The axes of the plots are shared between the off-diagonal
graphs. Histograms share the abscissa with off-diagonal charts, whereas
their y-axes are just qualitative and do not refer to the reported tick
marks. Grey lines connect the data coming from the same RTF
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Fig. 8 Inspection and monitoring results of RTF 1 (1). On the left, from top to bottom, VBm , x̂t , x̂a , and the control chart. Label boxes with capital
letters show the stops at which the flank wear was evaluated. Red labels and flank pictures correspond to out-of-control detections

stop G and H, where the cutting lips underwent critical chip-
pings in the external parts. With respect to the control chart
related to the RTF 1 (1), the cumulative sums (control chart
indicators C+ and C−) faced higher variability during the
whole RTF. A promising result, regarding the use of x̂t and
x̂a to assist a future indirect prognosis phase, is that the two
coefficients assumed comparable values at the beginning and
at the EoL for the different RTFs. Indeed, a shared threshold
may be applied even if the cutting conditions will change.

In order to predict the evolution of flank wear of drill-bits,
prognostics phase was implemented. Prognostics algorithm
was trained on one RTF (RTF 4 (2)), performed at high feed
and high cutting speed, and tested on all the others, in order
to show the adaptivity feature of the conceived solution. It
is important to underline that the reported results represent
a critical condition for the algorithm, where only one RTF
was used for training. In a real application scenario, the used
drill-bits can be introduced in the initial state of the PF to
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increase the algorithm performances. Furthermore, progno-
sis is not directly connected to the indirectmonitoring system.
Nevertheless, the two systems assist each other in different
moments of the manufacturing processes or tool life. Prog-
nostics results are shown in Fig. 10, while the associated
APEs are shown in Fig. 11. Numerical values assumed by
the PH are shown in Table 5. Figure10 represents the trend
of the estimated RUL (ρ: RUL normalized to the true EoL)
over the normalized tool life λ. Imagewith label H represents

the case where the algorithm was tested on the training RTF
(RTF 4 (2)). It is important to track how the predicted RUL
mean (blue solid line) and RUL 95% confidence intervals
(RUL CIs, blue dashed lines) were positioned with respect
to the true RUL (red solid line) and the acceptability region
(red dashed lines) [18]. Predicted RUL and RUL CIs were
included in the acceptability regions for a wide part of the
RTF execution. Nevertheless, in the central region (λ = 0.3
to 0.7), predicted RUL was slightly out of the acceptability
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Fig. 10 Prognostic phase applied to the whole RTF set. Training was
performed on RTF 2 (2) - Label H. The graph shows the evolution of the
normalized RUL (ρ - blue solid line) and the associated 95% confidence
bounds (blue dashed line) with respect to the normalized tool life λ [-].

Normalized VB (ν) of train (orange dashed line) and validation (orange
solid line) RTFs are shown too. True normalized RUL (red dot-dashed
line) and acceptability bounds (red dot lines) are compared to ρ curves.
Green boxes highlight RTFs for which PH is above 20%

bounds. In the correspondent chart in Fig. 11, the associated
APE (ψ : APE normalized to true EoL) was shown: ψ was
almost constant and close to 0 in the first and last part of the
tool life, while reaching its maximum at λ = 0.5. Indeed, for
this combination of RTFs, PH reached a value of 21%.

More attention should be given to other tests, which repre-
sent unseen cutting tests and parameters. The analysis should

also consider that the results refer to a first application of the
prognosis algorithm (which is the most critical condition),
and as new cutting tests become available, they should be
included in the algorithm training. In each graph, the evo-
lutions of the mean flank wear of validation and training
RTFs (ν: V Bm normalized to the prognosis threshold) are
shown in orange to graphically compare the curves. RTFs

0

0.5

1

1.5

2

2.5

3

 [-
]

APE

Legend

0 0.2 0.4 0.6 0.8 1

 [-]

0

0.5

1

1.5

2

2.5

3

 [-
]

0 0.2 0.4 0.6 0.8 1

 [-]

0 0.2 0.4 0.6 0.8 1

 [-]

0 0.2 0.4 0.6 0.8 1

 [-]

0 0.2 0.4 0.6 0.8 1

 [-]

0 0.2 0.4 0.6 0.8 1

 [-]

A B C D E F

G H I J K L

Fig. 11 Prognostic phase applied to the whole RTF set. Training was performed on RTF 2 (2) - Label H. Normalized APE ψ [-] is shown. Green
boxes highlight RTFs for which PH is above 20%
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can be recognized by considering the row number as the
replicate number and the column index as the ID of the test
(e.g. chart with letter C was validated upon RTF 3 (1)). Let-
ter K (RTF 5 (2)) showed the largest difference between the
V Bm trends of training and validation RTF, bringing to a
constant, not adaptive behaviour of the prognosis algorithm.
APE is almost constant and around 3 times the true EoL for
this test. Furthermore, during tests A, G and L, it was not
possible to predict sufficiently in advance the correct EoL
of the associated drill-bits. Anyway, these tests behaved dif-
ferently from test K. In fact, for these cases, an adaptation
of the algorithm occurred. For test A, the adaptation led to
an overshoot in the estimation of the EoL, causing the RUL
estimation to overcome the upper acceptability bound for a
small region around λ = 0.8. Indeed, the PH resulted lower
than 20%. On the contrary, during test G, the adaptation of
the predictions was not fast enough to enter in the accept-
ability bounds. Thus, only 4 out of 12 validation conditions
(33% of the cases) showed a PH less than 20%.

Tests B, C, F, and I behaved similarly with a stable algo-
rithm performance, allowing to estimate the correct RUL
with an acceptable anticipation (PH > 20%). These tests
showed a constant slope in the initial phase of the tool lives,
indicating no adaptability at the beginning of the drill-bit
life. At abound λ = 0.1, the algorithm starts changing the
slope of the RUL predictions by adapting to the new trend
of the mean flank wear. This behaviour is clearly visible in
the APE plots, where in the initial phase the error remains
constant, whereas after 10% of tool life the error starts con-
verging toward 0. Test D followed instead the behaviour of
test H (validation on training RTF).

Table 5 reported that PHs were for the 67% of the cases
over the 20% of tool lives, meaning that the RUL could be
robustly predicted in advance with a minimum of 20% lead-
ing time. It must be noted that the PH was expressed as the
last hole where the 95% of the estimated RUL PDF was
included in the acceptability region (i.e. a really restrictive
condition), indicating that the confidence on a correct pre-
diction was really high. Thus, PHs were low in general (30%
on average), despite the errors in the prediction mean were
still limited (Fig. 11).

Compared to similar adaptive techniques applied in lit-
erature, the conceived solution exhibits comparable perfor-
mances. In [19], the authors used Radial Basis Functions
(RBFs) in place of the MLP to make prognosis of Li-ion
batteries discharge. A PH of 16% was achieved, while pre-
diction errors oscillated between 15 and 25%. The authors
of [19] underlined the advantages of an adaptive approach
when prognosis works outside of its training region. Worse
results with respect to model-based approaches but adaptiv-
ity to changed dynamics of degradation were expected. A
similar methodology was adopted by [4], where the authors
dealt with structural health monitoring, i.e. crack length

propagation. PHs between 55 and 63% were achieved on
simulated data under fixed and variable loading conditions
and experimental data under variable loading conditions. In
[3], prognosis of tool wear data in turning was carried out.
Here, the results were reported over 25 cases (representing
5 different training conditions). The authors obtained a PH
over 20% (40% average) for the 80% of the cases. In [22],
the authors proposed a solution based on particle filter and
support vector regression. The study was conducted on a sin-
gle experimental milling test with fixed cutting conditions.
Prognosis was performed on the evolution of the wear of
three flutes belonging to the same mill. PH was estimated to
be at least 33%, even if the authors did not report it in the text.
In [10], the authors applied prognostics to oil pump degra-
dation, feeding indirect measurements to a relevance vector
machine within an adaptability framework. PHs resulted to
be 45% and 20% for two pumps. Higher PHs found in the
reported literature may be relatable to multiple reasons. The
measured voltage degradation curves [19], crack propaga-
tion data [4], and turning wear data [3] exhibited smoother
trends in comparison with the experimental data used in this
paper, which showed multiple inflection points and made
prognosis more challenging. PH was also overestimated by
the use of the deterministic formulation; in the case of [4],
such high prediction bounds would have caused a low prob-
abilistic PH according to the α − β criterion of [18] used
in this paper. Information leakage from training to valida-
tion is another source of PH overestimation, like in [22],
where prognosis was made on different flutes of the same
mill).

4 Conclusions

In this paper, a complete PHM strategy for drill-bits was
developed. Indirect inspection and monitoring of cutting
power and current was implemented to detect drill-bit chip-
pings, while direct inspection was the input of a hybrid
adaptive prognosis solution. The main aspects dealt with in
this paper are summarized in the following:

• A mean estimation of Kronenberg’s specific force coef-
ficients, set their baseline values for the instantaneous
identification approach used on 12 run-to-failure tests.

• The exponents of the Kronenberg’s models, representing
the effect of the undeformed chip thickness on the specific
force coefficients, resulted to be more sensible to tool
wear, and insensible to the variability associated to the
drill-bits manufacturing accuracy.

• The evolution of the exponents was tracked during the
12 run-to-failures.Monitoring them throughout each run-
to-failure allowed to detect critical chippings and brittle
damages on the cutting lips of the drill-bits.
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• A hybrid prognosis algorithm, with particle filter and
multi-layer perceptrons, allowed for adaptively estimat-
ing the remaining useful life probability density function
online, providing a robust tool to support themaintenance
decision-making.

• Prognosis adaptivity allowed to predict drill-bit wear
under unseen process parameters, using just one train-
ing run-to-failure. A total of 67% of tool end-of-life was
correctly estimatedwith an anticipation greater than 20%
(30% on average). The method is applicable for small-
batch or one-of-a-kind production scenarios, where worn
data are scarce.

Future works will be oriented to the development of a
heterogeneous prognosis approach, where specific force
coefficients will be included in the prediction of flank wear,
providing a cutting parameter independent feature, in order
to update the remaining useful life prediction even when a
pit-stop is not an option.
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