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A B S T R A C T

3D reconstruction of the intra-operative scenes provides precise position information which is the foundation
of various safety related applications in robot-assisted surgery, such as augmented reality. Herein, a framework
integrated into a known surgical system is proposed to enhance the safety of robotic surgery. In this paper,
we present a scene reconstruction framework to restore the 3D information of the surgical site in real time. In
particular, a lightweight encoder–decoder network is designed to perform disparity estimation, which is the key
component of the scene reconstruction framework. The stereo endoscope of da Vinci Research Kit (dVRK) is
adopted to explore the feasibility of the proposed approach, and it provides the possibility for the migration to
other Robot Operating System (ROS) based robot platforms due to the strong independence on hardware. The
framework is evaluated using three different scenarios, including a public dataset (3018 pairs of endoscopic
images), the scene from the dVRK endoscope in our lab as well as a self-made clinical dataset captured from an
oncology hospital. Experimental results show that the proposed framework can reconstruct 3D surgical scenes
in real time (25 FPS), and achieve high accuracy (2.69 ± 1.48 mm in MAE, 5.47 ± 1.34 mm in RMSE and
0.41 ± 0.23 in SRE, respectively). It demonstrates that our framework can reconstruct intra-operative scenes
with high reliability of both accuracy and speed, and the validation of clinical data also shows its potential
in surgery. This work enhances the state of art in 3D intra-operative scene reconstruction based on medical
robot platforms. The clinical dataset has been released to promote the development of scene reconstruction in
the medical image community.
1. Introduction

Robot-assisted minimally invasive surgery (RAMIS) can improve the
performance of surgeons, because it enlarges the surgical vision and
enhances the dexterity of instruments compared with the traditional
open surgery [1]. More importantly, it opens the way for the inte-
gration of artificial intelligence in surgery [2–5]. Generally, surgeons
can observe the surgical scene in real time through the transmission of
stereo images using an endoscope. Then, the depth information of the
scene is restored thanks to human inherent ability of binocular vision
perception. However, this information only comes from the subjective
consciousness of surgeons, due to the lack of accurate depth value cal-
culation. It can be seen that the specific depth information is important,
because it is the key step for intra-operative image guidance which is
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a popular assisted technology today [6,7], e.g., for the registration of
pre-operative data, such as Computed Tomography (CT) and Magnetic
Resonance Imaging (MRI), with the intra-operative scenes, to visualize
the anatomical information of the patients during the operation. One
of the main difficulties is that the surgical scene is always changing
caused by the deformation of soft tissue and movement of instruments,
which results in inaccurate registration. The real-time reconstruction
quality of intra-operative surgical scenes directly affects the safety of
operation.

The restoration of 3D scene information using a stereo camera has
always been one of the hotspots in computer vision [8,9]. Given a
rectified image pair, the task is to build stereo correspondence through
the pixels or high-level features from left and right images. The 3D
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point cloud can then be recovered based on these estimated matching
values. Typical stereo correspondence always follows the process of cost
calculation, cost aggregation, disparity calculation and refinement [10].
Two methods based on block matching and nonparametric census trans-
form in [9] were developed to estimate disparity values of endoscopic
heart images. Preprocessing approach including specularity removal
and image equalization was implemented to remove specular highlights
and enhance contrast, and linear iterative clustering (SLIC) super-pixels
operation was added as a postprocessing way to refine the disparity
map. This strategy could reconstruct intra-operative scenes, but the
speed is not satisfactory due to the integration of many image pro-
cessing steps. An optimized Quasi-Dense Matching [11] was proposed
to perform a fast reconstruction, and it achieved the desired results
through the validation of different endoscopic datasets by running on a
GPU. Similarly, the authors in [12] first extracted initial 3D information
from stereo optical videos, then use feature-based SLAM to mosaic the
model, and effective post-processing steps, including outliers removal,
hole filling and smoothing, were finally utilized to handle low-textured
areas on soft tissue.

More recently deep learning based disparity estimation has been
gradually explored, due to the expansion of big data and the enhance-
ment of computing ability. An unsupervised learning approach was
proposed in [13] to predict disparity maps of surgical scenes using a
Generative Adversarial Network (GAN). The authors utilized a U-Net
architecture [14] based generator to predict left and right disparity
maps, and used a discriminator to judge the quality of prediction after
reprojecting the disparity maps into RGB image pairs. Although it does
not require annotated data, the reconstruction quality still needs to be
improved. In [15], the authors also proposed an unsupervised model
based on a GAN. A vertical correction module was designed for the
compensation of imperfect image rectification, and the stereo image
was reconstructed by fusing original images, estimated disparity maps
and vertical correction maps, then a discriminator was adopted to
distinguish the difference between the reconstructed images and the
original images. This approach got satisfactory prediction accuracy by
evaluating a public dataset. Supervised learning based neural networks
for stereo correspondence are more commonly designed outside of MIS
context, since the dataset with ground truth of disparity maps in the
medical field is insufficient. To encode an image pair in a convolutional
neural network, FlowNet [16] first proposed two possible strategies
including stacking two images directly, or inputting them separately
into two identical networks and then combining the feature maps using
patch-based correlation operation. Through the alternate use of convo-
lution and pooling, the high-level feature representation was generated
and finally refinement was implemented to output the predicted optical
flow with full image resolution. The second option, i.e., encoding
the image pair separately using two identical branches, was subse-
quently widely utilized in the stereo matching field. The authors in [17]
adopted two identical networks with Spatial Pyramid Pooling (SPP)
modules to extract features of the image pair, and a stacked hourglass
architecture consisting of two 3D convolution models and three small
3D U-Net modules was designed to perform the multi-scale disparity
estimation. Similarly, a coarse to fine structure [18] for disparity
estimation was proposed to refine the prediction by calculating four
different scales of disparity estimation. The authors in [19] introduced
a neural architecture search strategy to select the optimal architecture
for those modules which contain trainable parameters, and the results
showed that the accuracy can be improved while reducing computing
resources. In [20], a novel cost volume was constructed based on the
group-wise correlation and the authors trimmed the stacked hourglass
architecture in their decoder to refine the model volume. It can be
seen that constructing cost volume is an important step to regress
disparity maps, so some researchers also designed different techniques
to calculate cost volume in [21–23]. Considering that 3D convolutional
operation is computationally expensive, the authors in [24] designed a
2

hierarchically aggregated pyramid network to avoid the construction of
cost volume, and it works in different surgical image pairs, including
colon phantom, partial nephrectomy, and prostatectomy.

However, previous research has almost focused on stereo corre-
spondence or point cloud generation, and these approaches are not
integrated with real robotic platforms. It is possible to see that the
performance of these methods on the physical platform may be in-
consistent with separate test scenarios based on public datasets, due
to the potential effects of signal interference, delay, etc. Hence, it
is significant to perform the extended work, integrating the scene
reconstruction approach into the physical robotic platform, in order
to facilitate clinical application. In this paper, we built a Framework
for Real-time Scene Reconstruction (FRSR) to visualize 3D surgical
scenes interactively, and it was integrated into the da Vinci surgical
system (Intuitive Surgical Inc., Sunnyvale, California) which is the
most typical platform in RAMIS [25]. To the best of our knowledge,
this is the first paper to demonstrate the effect of real-time scene
reconstruction integrating into a known surgical robotic platform. The
main contributions of this paper are summarized as follows:

(1) A real-time scene reconstruction framework integrated into da
Vinci Research Kit (dVRK) is built to demonstrate 3D surgical scenes
interactively.

(2) A lightweight deep learning based model, consisting of the U-
Net based encoder and consecutive 3D residual modules based decoder,
is designed for disparity estimation.

(3) A clinical surgical dataset, captured from an oncology hospital,
is made and released online for the development of the medical scene
reconstruction community.1

The remainder of this paper is structured as follows. Section 2
describes the framework proposed in this paper, and it also intro-
duces the architecture of the neural network as a key component in
this pipeline. In Section 3, it presents the training strategy of the
designed network and comprehensive analysis for the reconstruction
performance using three different scenarios. Section 4 discusses the
findings and limitations of this work, and the conclusion is drawn in
Section 5.

2. Methodology

This section presents the details of our real-time scene reconstruc-
tion framework, which is integrated into the dVRK. In particular, a
lightweight neural network is introduced to perform disparity estima-
tion since it closely affects the performance of the framework.

2.1. FRSR framework description

As the standard first generation of da Vinci surgical system, dVRK
is currently developed to integrate various computer-assisted technolo-
gies as an open platform [26]. Thanks to the high integration of control
hardware and software, we choose to extend it for the experimental
study. A standard dVRK consists of the leader side and follower side:
the stereoscopic endoscope mounted on an Endoscopic Camera Manipu-
lator (ECM) captures the surgical image pairs and transmits them to the
master control terminal. Then, the surgeon can observe the procedure
through a High Resolution Stereo Viewer (HRSV) at the leader side and
adjust surgical viewpoints by teleoperating ECM. Users can intuitively
perceive the depth of scenes through different viewpoints from HRSV.
Our experimental setup adopted the stereo endoscope of dVRK to
extend the vision component.

The framework for scene reconstruction is managed by the Robot
Operating System (ROS), an open source software development kit
for robotic applications. Using ROS correspondence provides more
flexibility, such as the enhanced security for signal transmission in
the tele-surgery [27]. For the whole framework, the stereo endoscope

1 Download link: https://doi.org/10.5281/zenodo.7385603
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Fig. 1. Schematic representation of the surgical scene reconstruction framework. The name in the circles represents the ROS topics, including the compressed image pair and
the generated point cloud. The blue solid arrow indicates the workflow, which flows from the end of the previous box to the first component of the next box through specific
operations, and the green solid arrow indicates additional components necessary for these operations. The right block named stereo camera calibration is the preliminary step to
generate calibration parameters for our framework, which means that it only needs to be executed once in advance. The main components consisting of three blocks on the left
side directly affect the real-time performance of our framework, including the acquisition of raw compressed image pairs, stereo image processing and visualization of generated
point clouds.
keeps capturing surgical scenes at the follower side and publishing
them through the form of ROS topics, then the computer connected
to dVRK through ROS correspondence receives these messages and
processes surgical images based on the neural network, and finally the
specific visualizer subscribes (meaning that it receives ROS messages)
to the generated topic of point cloud and visualizes 3D surgical scenes
interactively. Fig. 1 presents the construction details of FRSR, and it is
basically composed of four parts,

(1) ‘‘Stereo camera calibration’’ is a preliminary step, and it involves
acquiring image pairs of a chessboard with known dimensions and
relating object properties with their representation in the acquired im-
ages. A 9 × 6 calibration black–white chessboard with 10 mm squares
is used to collect calibration images. Calibration parameters, including
intrinsic matrix, distortion coefficients and extrinsic matrix, are then
generated using the OpenCV library. These parameters are fixed for the
usage in later processes, so this preliminary step is performed once if
the stereo endoscope is not changed.

(2) ‘‘Raw images acquisition’’ is the first part in the framework of
this cycle. They are captured by the stereo endoscope and published
as ROS topics both in a compressed and uncompressed format. The
compressed format was chosen in FRSR because it takes less time for
image transmission without losing useful information. The computer
which hosts the visualization is connected to the ROS network and it
subscribes to these topics at 30 Hz. Then, the left and right images are
displayed separately through different windows.

(3) ‘‘Image processing’’ is the second part of our FRSR setup. To
perform the accurate disparity estimation, the image rectification is re-
quired to be conducted using stereoRectify and remap OpenCV functions,
since it facilitates the matching of pixels on the left and right images
when they are in the same epipolar line. Then, the rectified image pairs
are resized to the required resolution and input to the neural network
running on GPU for enhancing the speed, and the final disparity values
are predicted later. Considering that the neural network architecture
3

directly affects the performance of the framework, a lightweight model
will be introduced in the next section.

(4) Finally, ‘‘point cloud visualization’’ is implemented as the last
part of this cycle. The 3D surface is reconstructed based on the esti-
mated disparity values. Then, the generated point cloud is converted
to a newly created ROS topic, and the color information extracted
from the rectified left image is added to the message for the better
visualization purpose. Here, RViz, an interactive 3D visualizer for ROS
framework, is selected to visualize the generated 3D scene since it
allows to visualize and manipulate the point cloud in real time.

2.2. Network architecture

A lightweight disparity estimation network is proposed in this work,
consisting of two parts: a U-Net based 2D encoder to extract the high-
level features of stereo images, and consecutive 3D residual blocks [28]
based decoder to perform final disparity prediction. The overall ar-
chitecture of the designed prediction network is shown in Fig. 2, and
specific parameters are described in Table 1. Stereo image pairs after
rectification are extracted with high-level feature maps by sharing
encoder weights. The basic 2D convolutional blocks, composed of
convolutional operation, batch norm (BN) and leaky rectified linear
unit (Relu) activation, are utilized to extract the initial features of RGB
stereo images. Then, four strided 2D convolutional blocks are added
to further generate feature maps in a lower dimension. Similar to the
U-Net architecture, 2D convolutional blocks with upsampling layers are
implemented to enlarge the size of feature maps, and skip connection
is used to concatenate different level feature maps on the channel.

Next, a 3D cost volume is built in a combination approach. On
the one hand, we compute the difference between the left and right
feature maps at each disparity hypothesis value along the horizontal
epipolar line [18]. On the other hand, we also introduce the group-wise



Computers in Biology and Medicine 163 (2023) 107121Z. Chen et al.
Fig. 2. Architecture of the proposed network. The blue solid arrow indicates the concatenation of different level feature maps on the channel, while the green dashed one denotes
the sum operation at the end of the residual block. The 2D convolutional operation followed by Batch Norm (BN) and leaky rectified linear unit (Relu) activation function is
adopted to form the basic module of the encoder. On the decoder side, the 3D convolutional operation is utilized with BN and Relu layers as basic modules. The disparity values
are finally estimated through upsampling, softmax activation and regression operations.
correlation inspired by [20]. Hence, a combined cost volume 𝑉𝑐𝑜𝑚 can
be defined as:

𝑉𝑔𝑤𝑐 (𝑑, 𝑥, 𝑦, 𝑔) =
1

𝑁𝑐∕𝑁𝑔

⟨
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‖

(1)

Where 𝑉𝑔𝑤𝑐 is the cost volume generated by calculating group-wise
correlation, while 𝑉𝑑𝑖𝑓 is the cost volume by considering the difference
between left and right feature maps. 𝑑 is the disparity hypothesis value,
𝑔 denotes the feature group, and 𝑓𝑙 and 𝑓𝑟 represent left and right
feature maps. 𝑁𝑐 is the channel number of feature maps, while 𝑁𝑔 is the
divided group number. ⟨, ⟩ denotes the inner product, ∥ is the absolute
value operation, and ‖, ‖ represents the vector concatenation.

3D convolutional blocks are utilized in the decoder due to the
extended disparity channel, consisting of 3D convolution, BN, and Relu
activation. Considering that 3D convolutional blocks consume high
computing resources, we selected four consecutive residual blocks [17]
without extra operations to squeeze the parameter size of our model.
The disparity regression approach is implemented to estimate the final
disparity values 𝑑 by taking the sum of each disparity with its weighted
probability [29]:

𝑑 =
𝐷max
∑

𝑑=0
𝑑 × 𝜎𝑎𝑥𝑖𝑠=1

(

−𝑐𝑑
)

(2)

where 𝐷𝑚𝑎𝑥 is the maximum disparity value, 𝑐𝑑 represents the predicted
cost, and 𝜎(⋅) denotes the softmax operation. Here, 𝑎𝑥𝑖𝑠 = 1 means
that the softmax operation is performed in axis 1 (i.e., the disparity
dimension of the predicted cost 𝑐𝑑).

Regarding the loss function, we consider two different terms. On the
one hand, to compare the absolute pixel difference between the ground
truth and the predicted one, the ‘‘smooth 𝐿1’’ is adopted due to its high
robustness and low sensitivity to outliers [30], and the loss term 𝐿𝑎𝑏𝑠
is defined as:

𝐿𝑎𝑏𝑠(𝑑, 𝑑) =
1
𝑁

𝑁
∑

𝑖=1
smooth 𝐿1

(

𝑑𝑖 − 𝑑𝑖
)

(3)

in which

smooth𝐿1
(𝑥) =

{

0.5𝑥2 if |𝑥| < 1
|𝑥| − 0.5 otherwise

(4)

Where 𝑁 is the total number of pixels, and 𝑑𝑖 is the disparity value
of ground truth. On the other hand, we introduce the loss term 𝐿
4

𝑔𝑟𝑎
Table 1
Parameters of the proposed network. The encoder consisting of Layers 2 to 13 extracts
the feature maps with the dimension of (Height, Width, Channel), while the features in
the decoder from Layers 15 to 21 contain the dimension of (Height, Width, Disparity,
and Channel). The input is the stereo image with a resolution of 512 × 384 here, and
we present the dimension of a single map in the encoder part.

ID Layer setting Output dimension Connected to

1 Input 512*384*3 2
2 Strided Conv2D, BN, Leaky Relu 256*192*16 3
3 Conv2D, BN, Leaky Relu 256*192*16 4
4 Conv2D, BN, Leaky Relu 256*192*32 5
5 Strided Conv2D, BN, Leaky Relu 128*96*32 6
6 Strided Conv2D, BN, Leaky Relu 64*48*64 7, 12
7 Strided Conv2D, BN, Leaky Relu 32*24*128 8, 10
8 Strided Conv2D, BN, Leaky Relu 16*12*128 9
9 Upsampling, Conv2D, BN, Leaky Relu 32*24*64 10
10 Conv2D, BN, Leaky Relu 32*24*128 11
11 Upsampling, Conv2D, BN, Leaky Relu 64*48*64 12
12 Conv2D, BN, Leaky Relu 64*48*120 13,14
13 Conv2D, BN, Leaky Relu 64*48*12 14
14 Cost Volume 64*48*48*32 15
15 Strided Conv3D, BN, Relu 64*48*24*32 16,17
16 Conv3D, BN, Relu 64*48*24*32 17
17 Residual 3D Block 64*48*24*32 18
18 Residual 3D Block 64*48*24*32 19
19 Residual 3D Block 64*48*24*32 20
20 Residual 3D Block 64*48*24*32 21
21 Conv3D, Relu, Conv3D 64*48*24*1 22
22 Upsampling, Softmax, Regression 512*384*1 Output

to pay more attention to the object boundaries by comparing image
gradient [31]:

𝐿𝑔𝑟𝑎(𝑑, 𝑑) =
1
𝑁

𝑁
∑

𝑖=1

|

|

|
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)

|

|

|

+ |

|

|

𝒈𝑦
(

𝑑𝑖, 𝑑𝑖
)

|

|

|

(5)

Where 𝒈𝑥 and 𝒈𝑦 represent the gradient difference of images in the 𝑥
and 𝑦 directions, respectively. Hence, the final loss function 𝐿𝑠𝑢𝑚 can
be calculated as:

𝐿𝑠𝑢𝑚(𝑑, 𝑑) = 𝜆1𝐿𝑎𝑏𝑠(𝑑, 𝑑) + 𝜆2𝐿𝑔𝑟𝑎(𝑑, 𝑑) (6)

Where 𝜆1 and 𝜆2 denote the weights of different loss terms.

3. Experiment and demonstration

3.1. Network training strategy

Some common public stereo datasets were first utilized to train our
model, including Scene Flow [30], KITTI 2015 [32], KITTI2012 [33],
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Fig. 3. The flowchart of our evaluation framework. It was performed based on three
different surgical scenes.

and ETH3D [34]. Also, a synthetic dataset related to stereo endoscopic
images was made by Blender [35]. Here, five thousand stereo pairs
(640 × 480 resolution) with ground truth of disparity maps were
generated using a moving camera based on five different phantom
scenes. In addition, the SERV-CT dataset [36] imaged by two different
ex vivo porcine samples was adopted for finetuning the model to
enhance the generalization. Common operations of data augmentation
were performed to enlarge the training data, including random scaling
and cropping, and adjusting brightness, gamma and contrast. It can also
help to improve the generalization capability of the model [37]. Finally,
98751 image pairs were utilized to train our network from the scratch,
and finetuning contains 16 image pairs.

Images were randomly cropped to size 512 × 384 for the model
training, and the maximum disparity value 𝐷𝑚𝑎𝑥 was set to 384. Here,
we checked the images and we noticed that a few images have the
maximum disparity values which are close to 384, so we set 𝐷𝑚𝑎𝑥
to 384 in our case. The network was trained with Adam optimizer
(𝛽1 = 0.9, 𝛽2 = 0.999). It was pre-trained for 9 epochs with a learning
rate of 0.001, and we set the rate as 0.0001 in the last epoch. Then,
we finetuned the network with a constant learning rate of 0.0001 for
1000 epochs. The whole training process was performed on an Ubuntu
server with an NVIDIA A100 GPU.

Fig. 3 presents the specific components of our evaluation frame-
work. Three different surgical scenes were utilized to evaluate the
reconstruction performance. Six state-of-the-art approaches for dispar-
ity estimation were adopted to conduct the comparison study. Among
them, [10] is an optimization based method, and the other five meth-
ods [17,20–23] are based on neural networks. Hence, we retrained the
deep learning based methods using the same training datasets with the
original training configurations, and finetuned them using the same
strategy as ours for a fair comparison.
5

3.2. System performance evaluation using dVRK endoscope

To evaluate the scene reconstruction performance of the proposed
FRSR framework, a low-textured liver phantom model, was 3D printed
to test the whole pipeline. Fig. 5 shows the mean computing time
comparison of the proposed framework for scene reconstruction. 100
consecutive samples were collected for each evaluation. The duration
of computing time starts with subscribing to raw image topics and ends
with interactive visualization using RViz. It shows that our approach
is the fastest (0.0402 ± 0.0021 s), significantly less than the other
methods by an order of magnitude. In particular, we divided the
running time of the framework in each continuous frame into four
stages: Stage 1 (from N.1 to N.3 as annotated in Fig. 1) is the time of
image preprocessing, including the time to subscribe the topics of one
compressed image pair, rectify and reshape the images (640×360); Stage
2 (N.3–N.4 in Fig. 1) denotes the time to estimate final disparity values;
Stage 3 (from N.4 to N.5) shows the time to reproject the disparity map
into the 3D surface; and Stage 4 (N.5–N.6 as annotated in Fig. 1) is the
time for the interactive visualization using RViz. From the distribution
of computing time, it presents that the disparity estimation (Stage 2)
always occupies the most time, image preprocessing (Stage 1) and point
cloud visualization (Stage 4) take a similar time, and the time of the
reprojection operation (Stage 3) is minimal. Fig. 4 demonstrates the
reconstruction of 3D surfaces using the proposed framework in a 3D
printed liver phantom. It can be seen that our approach performs a
smoother surface with fewer outliers than the advanced methods.

3.3. Quantitative comparison on ex vivo dataset

To conduct the quantitative accuracy evaluation, the SCARED
dataset [38], captured using porcine cadavers, was adopted to perform
3D surgical scene reconstruction. It contains 2 test datasets with sparse
ground truth. After checking the dataset manually, we chose the
frames with useful points that are more than thirty percent, so 3018
frames were used for our quantitative evaluation. Image rectification
was performed using OpenCV functions, and the rectification error is
1.32 ± 0.46 pixels by calculating all image pairs with 30 random fea-
ture points generated by SIFT algorithm [39] on each image pair. Three
accuracy-related metrics were chosen to evaluate the reconstruction
error, comparing the estimated depth with the provided ground truth,
both expressed in millimeters. The metrics include Mean Absolute Error
(MAE), Root Mean Square Error (RMSE), Squared Relative Error (SRE),
as well as the inference time in single frame [40,41].

MAE = 1
|𝐷|

∑

(𝑥,𝑦)

|

|

𝑑(𝑥, 𝑦) − 𝑑′(𝑥, 𝑦)|
|

(7)

RMSE =
√

1
|𝐷|

∑

(𝑥,𝑦)
|𝑑(𝑥, 𝑦) − 𝑑′(𝑥, 𝑦)|2 (8)

SRE = 1
|𝐷|

∑

(𝑥,𝑦)

|

|

𝑑(𝑥, 𝑦) − 𝑑′(𝑥, 𝑦)|
|

2

𝑑′(𝑥, 𝑦)
(9)

Where 𝐷 is the set of predicted depth values for each frame, 𝑑(𝑥, 𝑦) is
the predicted depth value related to pixel in position (𝑥, 𝑦) and 𝑑′(𝑥, 𝑦)
Fig. 4. 3D surfaces of a low-textured liver phantom based on RViz. ‘‘V1’’ represents the front view, while ‘‘V2’’ is the tangential view. Red ellipses mark some unsatisfactory
reconstruction areas.
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Table 2
Quantitative evaluation of 3D surgical scene reconstruction based on the SCARED dataset. Two test datasets ’D1’ and ’D2’ are utilized for the
comparison. ‘‘ALL’’ means the whole dataset consisting of 3018 frames, ‘‘SD’’ means the Wilcoxon rank-Sum test to compute the significant
differences between different state-of-the-art methods and our model, and the result is shown as 𝑛𝑠 ∶ 0.05 < 𝑝 ≤ 1, ∗∶ 0.01 < 𝑝 ≤ 0.05,
∗∗∶ 0.001 < 𝑝 ≤ 0.01, ∗∗∗∶ 0.0001 < 𝑝 ≤ 0.001, and ∗∗∗∗∶ 𝑝 ≤ 0.0001. Parameters and FLOPs of the deep learning based models are also
provided.

Ref. [10] Ref. [17] Ref. [20] Ref. [21] Ref. [22] Ref. [23] Ours

Parameters (M) ALL N/A 3.68 6.91 10.51 5.31 139.67 1.06

FLOPs (G) ALL N/A 2330.79 2424.81 2226.82 2590.95 1840.35 116.01

MAE (mm)

D1 3.13 ± 2.17 2.63 ± 1.49 2.57 ± 1.49 2.63 ± 1.34 2.55 ± 1.42 2.63 ± 1.50 2.57 ± 1.46
D2 3.03 ± 1.38 3.03 ± 1.45 2.97 ± 1.51 3.33 ± 1.60 3.06 ± 1.55 3.13 ± 1.38 2.98 ± 1.50
ALL 3.10 ± 1.98 2.74 ± 1.49 2.68 ± 1.50 2.82 ± 1.45 2.70 ± 1.48 2.77 ± 1.49 2.69 ± 1.48
SD **** ns ns **** ns **

RMSE (mm)

D1 9.88 ± 3.89 5.64 ± 1.38 5.57 ± 1.39 5.51 ± 1.17 5.49 ± 1.24 5.80 ± 1.26 5.48 ± 1.26
D2 9.47 ± 1.78 5.64 ± 1.47 5.54 ± 1.61 6.00 ± 2.05 5.99 ± 2.26 6.67 ± 1.70 5.42 ± 1.52
ALL 9.77 ± 3.44 5.64 ± 1.41 5.56 ± 1.46 5.64 ± 1.49 5.63 ± 1.61 6.04 ± 1.45 5.47 ± 1.34
SD **** **** ns **** ** ****

SRE

D1 1.54 ± 1.76 0.41 ± 0.23 0.40 ± 0.25 0.38 ± 0.19 0.38 ± 0.21 0.44 ± 0.24 0.38 ± 0.21
D2 1.60 ± 0.88 0.59 ± 0.44 0.57 ± 0.58 0.79 ± 1.18 0.86 ± 1.73 1.09 ± 1.27 0.50 ± 0.26
ALL 1.56 ± 1.57 0.46 ± 0.31 0.45 ± 0.38 0.50 ± 0.67 0.52 ± 0.96 0.62 ± 0.76 0.41 ± 0.23
SD **** **** ns **** * ****

Inference time (s)
ALL 0.39 ± 0.04 0.78 ± 0.02 0.78 ± 0.03 0.55 ± 0.00 0.92 ± 0.03 0.61 ± 0.01 0.04 ± 0.00
SD **** **** **** **** **** ****
Fig. 5. Mean computing time distribution of our proposed framework in one frame.
Stages are defined as the preprocessing, including the time to subscribe topics, rectify
and reshape the images (Stage 1, corresponding to N.1–N.3 in Fig. 1), time to estimate
disparity values (Stage 2, corresponding to N.3–N.4 in Fig. 1), time to reproject to the
3D surface (Stage 3, corresponding to N.4–N.5 in Fig. 1), and time to visualize using
RViz (Stage 4, corresponding to N.5–N.6 in Fig. 1).

is the ground truth of depth value. It can be seen that RMSE is more
sensitive to outliers compared with MAE, and SRE is utilized to measure
the relative difference.

Table 2 presents the quantitative comparison results of the recon-
structed 3D scenes using two SCARED test datasets that consist of
3018 surgical frames, and parameters and FLOPs of the deep learn-
ing based methods are also provided. Our model has the smallest
volume when referencing the model parameter, and the FLOPs show
the lightweight advantage of our model. Furthermore, our approach
achieves promising reconstruction accuracy compared with the state-
of-the-art methods [10,17,20–23] when calculating the whole dataset
(2.69 ± 1.48 mm in MAE, 5.47 ± 1.34 mm in RMSE, and 0.41 ± 0.23
in SRE, respectively). Specifically, our method performs best when
considering both RMSE and SRE. Also, the MEA error shows that our
method can reach a high accuracy even though the MEA error of [20]
is slightly lower than ours. More importantly, our model is one order
of magnitude smaller than other methods in the inference time, which
makes it possible to run the framework in real time. Next, the statistical
results based on WILCOXON Rank-Sum Test show that our method
is significantly different from the state-of-the-art methods in the re-
construction accuracy and speed. Lastly, the qualitative reconstruction
results of 5 keyframes extracted from different scenes were shown in
Fig. 6. To give a comprehensive demonstration of the error distribution,
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we also provided the 3D error maps at the end. Our method could
generate smoother soft tissue surfaces in 3D space compared with other
approaches.

Then, we conducted the ablation study for the proposed model to
find out the best configuration. Particularly, we divided the results
of the ablation study into 3 groups, and the rank-sum test was also
performed to compare other possible configurations with our final
version,

∙ In group 1, we explored the effect of the loss function. Different
weight combinations of the loss function were set, and it can be noticed
that 𝜆2 = 0 means that the loss term 𝐿𝑔𝑟𝑎 is removed.

∙ In group 2, different cost volumes were designed to search for
the best construction approach. In our work, we considered both 𝑉𝑔𝑤𝑐
and 𝑉𝑑𝑖𝑓 to form a combination cost volume. Differently, some previous
models chose to generate the cost volume 𝑉𝑐𝑜𝑛𝑐𝑎𝑡 by concatenating the
left and right feature maps [17,29], or combining 𝑉𝑔𝑤𝑐 and 𝑉𝑐𝑜𝑛𝑐𝑎𝑡 [20].
Hence, different architectures of the cost volume were built to explore
the effect in this group.

∙ To show the simplicity of our lightweight model, we modified or
added some components in group 3 to check if the extra modules could
improve the performance: (1) We noticed that some models [17,18]
added Spatial Pyramid Pooling (SPP) module to expand the percep-
tive field when extracting high-level features, so we implemented this
module in the encoder part; (2) We did not downsample the disparity
channels after forming the cost volume to keep the larger disparity
hypothesis range; (3) We added an upsampling layer in the decoder to
generate bigger feature maps; (4) We replaced the LeakyRelu activation
with the Relu activation; (5) We built the 3D U-Net modules consisting
of three 3 × 3 convolutional layers with downsampling and upsampling
operation to replace the residual blocks.

The results of the ablation study in Table 3 show that the loss
function with proper weight setting (𝜆1, 𝜆2 are 1 and 15, respectively)
could improve the accuracy compared with the single common loss
term 𝐿𝑎𝑏𝑠. Furthermore, the combination cost volume (𝑉𝑔𝑤𝑐 + 𝑉𝑑𝑖𝑓 )
proposed by us could provide higher accuracy compared with other
existing architectures. Finally, the results of group 3 present that com-
plexing our model by introducing extra components does not enhance
the reconstruction accuracy and it slows down the speed.

3.4. Qualitative evaluation on in vivo clinical data

To measure the potential of the proposed approach in clinical
practice, a complete surgical operation named a radical prostatectomy
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Fig. 6. Qualitative comparison of reconstruction results using SCARED test frames. ‘‘Sparse GT’’ means the sparse ground truth of point clouds provided in the dataset, and the
last column gives the 3D error maps of our reconstructed scenes compared with the ground truth.
Table 3
Ablation study based on the SCARED dataset. ‘‘SD’’ means the Wilcoxon rank-sum test to check the statistical differences between different
configurations and our final model, and the result is annotated as 𝑛𝑠 ∶ 0.05 < 𝑝 ≤ 1, ∗∶ 0.01 < 𝑝 ≤ 0.05, ∗∗∶ 0.001 < 𝑝 ≤ 0.01,
∗∗∗∶ 0.0001 < 𝑝 ≤ 0.001, and ∗∗∗∗∶ 𝑝 ≤ 0.0001. The layer ID in group 3 can be found in Table 1.

Group 1: Different weights of the loss function

MAE (mm)/SD RMSE (mm)/SD SRE/SD Inference time (s)/SD
𝜆1 = 1, 𝜆2 = 0 2.80 ± 1.49/*** 5.53 ± 1.34/* 0.42 ± 0.23/ns 0.04 ± 0.00/ns
𝜆1 = 1, 𝜆2 = 5 2.81 ± 1.49/*** 5.54 ± 1.34/* 0.43 ± 0.27/* 0.04 ± 0.00/ns
𝜆1 = 1, 𝜆2 = 10 2.87 ± 1.51/**** 5.57 ± 1.36/*** 0.43 ± 0.23/** 0.04 ± 0.00/ns
𝜆1 = 1, 𝜆2 = 20 2.77 ± 1.46/** 5.52 ± 1.31/* 0.43 ± 0.24/* 0.04 ± 0.00/ns
𝜆1 = 1, 𝜆2 = 15 (Ours) 2.69 ± 1.48 5.47 ± 1.34 0.41 ± 0.23 0.04 ± 0.00

Group 2: Different combination modes of the cost volume

MAE (mm)/SD RMSE (mm)/SD SRE/SD Inference time (s)/SD
𝑉𝑔𝑤𝑐 2.81 ± 1.46/**** 5.57 ± 1.31/*** 0.44 ± 0.27/*** 0.04 ± 0.00/ns
𝑉𝑑𝑖𝑓 2.74 ± 1.47/ * 5.50 ± 1.32/ns 0.42 ± 0.23/ns 0.04 ± 0.00/ns
𝑉𝑐𝑜𝑛𝑐𝑎𝑡 2.91 ± 1.49/**** 5.61 ± 1.34/**** 0.44 ± 0.25/**** 0.04 ± 0.00/ns
𝑉𝑔𝑤𝑐 + 𝑉𝑐𝑜𝑛𝑐𝑎𝑡 2.77 ± 1.47/** 5.51 ± 1.33/* 0.42 ± 0.24/ns 0.04 ± 0.00/ns
𝑉𝑔𝑤𝑐 + 𝑉𝑑𝑖𝑓 (Ours) 2.69 ± 1.48 5.47 ± 1.34 0.41 ± 0.23 0.04 ± 0.00

Group 3: Modify the different components of the proposed architecture

MAE (mm)/SD RMSE (mm)/SD SRE/SD Inference time (s)/SD
Add SPP between layers 8 and 9 2.85 ± 1.48/**** 5.70 ± 1.45/**** 0.52 ± 0.61/**** 0.04 ± 0.00/ns
No striding in layer 15 2.71 ± 1.53/ns 5.48 ± 1.37/ns 0.42 ± 0.23/ns 0.07 ± 0.00/****
Upsampling before layer 19 2.85 ± 1.48/**** 5.57 ± 1.31/*** 0.43 ± 0.23/**** 0.13 ± 0.00/****
Adopt Relu activation in the encoder 2.69 ± 1.50/ns 5.50 ± 1.33/ns 0.43 ± 0.26/ns 0.04 ± 0.00/ns
Adopt 3D U-Net modules in the decoder 2.78 ± 1.47/** 5.49 ± 1.34/ns 0.41 ± 0.22/ns 0.09 ± 0.00/****
Simplest configuration (Ours) 2.69 ± 1.48 5.47 ± 1.34 0.41 ± 0.23 0.04 ± 0.00
with lymphadenectomy was recorded with a 3D HD video recorder
(HVO-3300MT, SONY, Tokyo) based on the da Vinci Xi surgical system
at European Institute of Oncology (IEO, Milan, Italy). The endoscope
calibration process was also performed at the hospital to obtain the
intrinsic and extrinsic parameters. The keyframes from four different
surgical phases divided by a senior surgeon were extracted and per-
formed the scene reconstruction using our pipeline, as shown in Fig. 7.
We demonstrated the qualitative evaluation using the comparison study
with five deep learning based advanced methods. Furthermore, we also
tested the reconstruction quality in the challenging surgical scenes,
including smoke, specularity and blur. It can be seen that our approach
could get smoother 3D surfaces compared with other existing methods
in different phases as well as the challenging scenes. Also, other meth-
ods are prone to outliers from boundary regions while ours is not. The
scene with smoke is more challenging than that with specularity and
blur in our observation.
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To promote the development of the medical scene reconstruction
community, we further created a clinical dataset with annotated surgi-
cal context information (phases, steps, and types of instruments). This
dataset contains 145,694 image pairs with a resolution of 1920 × 1080,
and calibration parameters are also provided for image rectification and
triangulation. It could be utilized for the evaluation of surgical scene
reconstruction models, also the training of unsupervised learning based
networks. Moreover, it provides the possibility for surgical workflow
recognition based on stereo images or point clouds. This dataset has
been released online.

The collection of data was in accordance with the ethical standards
of the Istituto Europeo di Oncologia and with the 1964 Helsinki decla-
ration, revised in 2000. No personal data was recorded. All the subjects
involved in this research were informed and agreed to data treatment
before the intervention.
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Fig. 7. Reconstruction demonstration of surgical scenes in a radical prostatectomy with lymphadenectomy. The first row represents the rectified left images photoed from the
stereo endoscope. Examples from four phases (Phase 1: collapse of the peritoneum, Phase 2: prostate removal, Phase 3: lymphadenectomy, Phase 4: anastomosis) are extracted in
sequence, and the challenging surgical scenes including smoke, specularity and blur are also provided. The red ellipses mark some undesirable reconstruction areas.
4. Discussion

Integrating scene reconstruction into surgical robot platforms is
significant to promote clinical application. However, we found that
there is a lack of details on the integrated approach when surveying
the relevant literature. Hence, a real-time surgical scene reconstruction
framework was proposed in this paper to enhance the visualization
of intra-operative scenes for the safety of surgery. It was integrated
into da Vinci Research Kit, a popular surgical system in RAMIS today.
This framework is developed based on ROS, which ensures the safety
of signal transmission and its high possibility of migration to other
robot platforms. The specific time distribution of the 3D reconstruction
pipeline can be seen in Fig. 5, and it shows that the speed of our
method is significantly faster than other methods. The reasons could
be explained by that on the one hand, to squeeze the model volume
and speed up the inference time, we adopted four consecutive residual
blocks in our decoder, which is lighter than other decoders such as the
stacked 3D hourglass network which is more time-consuming [17,20];
On the other hand, we adopted the strided convolution operation to
downsample the dimension of cost volume at the beginning of our
decoder, which can further accelerate the time because of the smaller
resolution. Additionally, Fig. 5 also presents that disparity estimation
8

is the most time-consuming step in the framework. To perform a real-
time reconstruction, there are two proper approaches to accelerate
the pipeline, one is to downsample the resolution of the raw images,
and another one is to adopt a lightweight model especially in the 3D
decoder part since 3D convolution takes much time.

The SCARED dataset was adopted to conduct the quantitative com-
parison study between our network and other advanced methods since
it contains sufficient surgical images with ground truth. The com-
parison result in Table 2 shows that our model can provide reliable
reconstruction quality in surgical scenes, and real-time performance is
also a highlight. The rank-sum test presents the statistical differences
between our approach and others when calculating different metrics.
Furthermore, the ablation study in Table 3 shows the feature of our
lightweight model: simplification of the model will not deteriorate the
reconstruction quality. More specifically, the contour information of the
scene can be beneficial to the accuracy of the model to a certain extent
if the proper weight was set in the loss function, while it may also im-
pair the performance with an inappropriate weight. Next, considering
both the feature correlation and feature difference when establishing
the cost volume could enhance the estimation performance, while
concatenating the feature maps directly as the cost volume presents the
worst result. We could also notice that the SPP module cannot improve
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Fig. 8. An instance to show the limitation of our work. All methods fail to separate
the thin surgical sutures from the background. The green ellipses mark the position of
the sutures.

the accuracy of our network. Moreover, using the feature maps with
higher resolution not only does not help the accuracy of the model
but also slows down the inference speed. Also, adopting the 3D U-Net
modules with the downsampling and upsampling operations does not
present a promising result compared to using the 3D residual blocks in
our case.

Insufficient stereo endoscopic datasets hinder the evaluation of 3D
reconstruction methods in the medical field, so we made a clinical
dataset by capturing a complete surgical operation at an oncology hos-
pital. The qualitative evaluation based on this clinical dataset in Fig. 7
shows the potential of our approach in the real surgical environment.
We noticed that other advanced methods can perform better when
evaluating the public SCARED test datasets, while the reconstruction
quality of the clinical dataset is not satisfactory. Some apparent outliers
can be observed from the results generated by other methods, especially
in scenes with smoke. As a comparison, our method can still keep a
high reconstruction quality with a smoother surface and fewer outliers
in these clinical scenes.

Nevertheless, a limitation of the proposed framework can be found
in the evaluation of the clinical dataset. The environment inside the hu-
man body is always complex and challenging. For instance, we noticed
that all methods occasionally failed to extract some small instruments
(such as the thin surgical suture) from the background, as shown in
Fig. 8. It can be seen that the reconstructed sutures were attached to
the background, while there should be a certain distance between the
sutures and the background in the realistic scene. On the one hand,
we think that there is a lack of annotation for such small targets in
the training set, so the model has unsatisfactory adaptability when
such targets appear in the test set. Adding annotations containing small
targets in the training set may enhance the performance of the model.
On the other hand, we could also consider enhancing the fine feature
extraction ability of the model in a complex surgical environment, and a
possible solution is to concatenate special layers focusing on extracting
local fine features when constructing the cost volume, although it will
slow down the prediction speed of the model.

Another limitation comes from the stereo matching itself in surgical
scenes. The disparity calculation relies on searching for the corre-
sponding pixels on the stereo images. However, human organs do not
have apparent texture in some areas, which increases the difficulty to
estimate the accurate disparity values in these textureless areas. One
possible solution is to augment our training images by introducing some
textureless scenes to enhance the adaptability of our network in dealing
with such regions. Also, more depth estimation approaches, such as
the feature points based monocular estimation, could be introduced to
compare the applicability in real surgical applications.

5. Conclusion

To conclude, the comprehensive evaluation results show that the
proposed framework can not only achieve promising results in the
9

endoscopic scene reconstruction quality, but also real-time performance
is a significant highlight in this work. It provides the possibility and
potential to be implemented in the clinical procedure. The next step
is to extract interesting soft tissues from the reconstructed 3D surgi-
cal scenes. A promising strategy is to segment the region of interest
from the endoscopic images and match the generated masks with
the predicted disparity maps. Both optimization based segmentation
method [42] and deep learning based method [43] will be compared
and explored to implement a high-performance segmentation in accu-
racy and speed. In this way, we can perform the registration between
pre-operative models and intra-operative soft tissues for image-guided
surgery [44–46].
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