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ABSTRACT
Modeling and simulation are fundamental activities in engineering
to facilitate prototyping, verification and maintenance. Declara-
tive modeling languages allow to simulate physical phenomena by
expressing them in terms of Differential and Algebraic Equations
(DAE) systems. In this paper, we focus on the problem of gener-
ating code for performing the numerical integration of the model
equations, and in particular on the overhead introduced by external
numerical solver libraries. We propose a novel methodology for
minimizing the amount of equations which require to be solved
through an external solver library, together with the number of
computations that are required to computed the Jacobian matrix of
the system. Through a prototype LLVM-based compiler, we demon-
strate how this approach achieves a linear speed-up in simulation
time with respect to the baseline.

CCS CONCEPTS
• Software and its engineering → Compilers; • Computing
methodologies→ Modeling and simulation.
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1 INTRODUCTION AND RELATEDWORKS

The changes induced by the so-called “Fourth Industrial Revolution”,
or, more commonly, Industry 4.0 have driven a renewed interest in
modeling and simulation technologies. In particular, the concept of
digital twin [3, 6, 15, 16] promises to enable a wide range of design
and maintenance tasks on real-world physical (and cyber-physical)
systems such as cars, planes, buildings and power-distribution net-
works, by employing large scale simulations of these very complex
systems. Digital twins model physical systems and phenomena that
can be expressed in terms of Differential and Algebraic Equations
(DAE). However, developing softwaremodels for large scale systems
using general purpose programming paradigms is an inefficient and
error-prone operation. To address this gap, declarative modeling
languages have been introduced. Such languages allow to create a
digital twin by writing directly the DAEs that describe the behavior
of the physical system being modeled. Modelica [17] is one such
language that has gained a significant traction.

The fundamental construct of declarative modeling languages is
the equation. However, equations cannot be directly mapped onto
statements of programming languages, as this mapping depends
on the chosen numerical integration algorithm. Several such al-
gorithms have been proposed, with different trade-offs. Explicit
methods such as Forward Euler do not require to solve implicit
equations systems but have limited numerical stability, often requir-
ing short integration steps. Implicit methods such as the Backward
Euler method suffer from complementary trade-offs, while vari-
able step methods can dynamically adapt the numerical integration
step to keep the solution error below a given tolerance [8]. From
the compiler perspective, the numerical integration method can
be either integrated in the produced simulation executable — the
obvious choice for simple techniques such as explicit methods — or
reside in an external library — preferred for implicit and variable
step methods [14]. However, when compiling large-scale models
featuring millions of equations, the amount of interface code re-
quired by such solver libraries to read the structure of the model
quickly saturates all computing resources. Indeed, methods involv-
ing the computation of a Jacobian matrix scale quadratically in time
and memory complexity with the number of equations [2]. Even
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if we were able to bypass this bottleneck by employing virtually-
unlimited resources, the run time would constitute the next blocker.

In this work, we address the scalability problem by reducing the
amount of computational resources — time and space — required by
large scale systems. More specifically, we introduce a partitioning
algorithm which aims to use the external solver only for a minimal
set of variables and equations, alongside with two other optimiza-
tions that reduce the computational effort required to generate the
Jacobian matrix. We demonstrate the advantages of our approach
using the IDA solver library — part of the SUNDIALS suite [14] —
and, in particular, its implementation of a variable order and vari-
able step size BDF algorithm. Nonetheless, the same principles can
be applied on other algorithms and solver libraries.

The nearest works to ours are those on the implementation of
equation-based modeling languages. There is a great variety of
different languages and tools in this class, both application-specific
and general-purpose. Modelica and its competitors (gPROMS [7],
Simscape [19] and Omola [5]) fall in the latter class. Considering
Modelica compilers, OpenModelica [11] is the only open source op-
tion, whereas Dymola [9] and JModelica [4] are proprietary. Consid-
ering the optimizations presented in this work, they are not specific
with respect to the compiler employed, although it is impossible
to say whether they are adopted in either Dymola or JModelica.
Given the known performance limitations of OpenModelica when
dealing with large models [1, 10], any performance benefit it might
get would still be overshadowed by the large penalties imposed by
the processing of such large models.

2 BACKGROUND
In this section, we review the concepts needed to understand the
specificities of the Modelica language and its application domain,
as well as the current state of the art in the compilation of Modelica
code.

2.1 DAE Models
In the most generic form, a system of DAEs can be written as shown
in Equation 1.

𝑭 (𝒙 (𝑡), ¤𝒙 (𝑡), 𝒗 (𝑡), 𝒖 (𝑡), 𝑡) = 0 (1)

The state variables vector 𝒙 , the derivative variables vector ¤𝒙 , and
the algebraic variables vector 𝒗 represents the unknowns of the
system, while the input vector 𝒖 is always known.

In order to integrate a DAE system, the equations must be causal-
ized, in other words translated into a series of assignments that
compute the state variables at each time-step. To do so, each equa-
tion is made explicit with respect to amatched variable which could
either be an algebraic unknown or the derivative of a state vari-
able, which must be unique for every equation. The whole set of
equations is then reordered in a way such that its Incidence Matrix
(IM) — i.e. a matrix which describes which variables appear in every
equation — becomes lower triangular (LT). If this is possible, then
all unknowns can be computed for the current time step, but in
the general case the IM can only be made Block Lower Triangular
(BLT), that is a matrix whose diagonal is composed of many𝑚𝑖 ×𝑚𝑖

blocks, with𝑚𝑖 ≤ 𝑛, each of which having possibly non-zero non-
diagonal elements. In this case the blocks correspond to system of
equations that have to be solved using numerical methods [8].

L
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(a) Circuit

𝑖𝑅 𝑖𝐶 ¤𝑖𝐿 ¤𝑉
𝑒𝑞1 1 0 0 0
𝑒𝑞2 1 1 0 0
𝑒𝑞3 0 0 1 0
𝑒𝑞4 0 1 0 1

(b) Incidence matrix

Figure 1: RLC Circuit

To better understand this process, let us consider as an example
the simple electrical circuit shown in Figure 1a and described by
the DAE system shown in Equation 2, whose components have
already been matched and ordered according to their dependencies.
Figure 1b represents the IM: given the cell at (𝑖, 𝑗) position, where
𝑖 and 𝑗 represent the row and the column respectively, its value
contains the 1 value if variable 𝑗 appears in equation 𝑖 . Being the
matrix LT, the equations can be translated into assignments to be
performed at each time step.




𝑒𝑞1 : 𝑖𝑅 = 𝑉 /𝑅
𝑒𝑞2 : 𝑖𝐶 = 𝑖𝐿 − 𝑖𝑅

𝑒𝑞3 : ¤𝑖𝐿 = (𝑉𝑏 −𝑉 )/𝐿
𝑒𝑞4 : ¤𝑉 = 𝑖𝐶/𝐶

(2)

Note that the state variables 𝑉 and 𝑖𝐿 are assumed to be known,
as at the first step of the numerical integration their initial values
are used, while the value computed at the previous step is used by
the numerical integration algorithm to compute the next one using
the computed derivatives.

Integration mechanisms such as the ones described are called
DAE solvers and, as anticipated in Section 1, in this document
we will focus our attention on a solver software library called
IDA implementing a variable step BDF solver for DAE systems. To
use this solver, the compiler needs to produce code to compute
the residual functions and Jacobian matrix of the system to be
integrated, which are then used by the BDF method.

Given an equation, its residual function is the difference between
its right-hand side and left-hand side values. The Jacobian matrix
is instead a square matrix defined as in Equation 3.

𝑱 =
𝜕𝑭

𝜕𝒙
=
[
𝜕𝑭
𝜕𝑥1

. . . 𝜕𝑭
𝜕𝑥𝑛

]
=


∇𝑇 𝐹1
...

∇𝑇 𝐹𝑛


=



𝜕𝐹1
𝜕𝑥1

. . . 𝜕𝐹1
𝜕𝑥𝑛

...
. . .

...
𝜕𝐹𝑛
𝜕𝑥1

. . . 𝜕𝐹𝑛
𝜕𝑥𝑛


(3)

Each of the 𝑛 rows represents an equations of the system, while
each of the 𝑛 columns represents a variable. The element at position
(𝑖, 𝑗) represents the partial derivative of the residual function of
equation 𝑖 with respect to variable 𝑗 . It should be noted that the
steps here presented are only applicable to index-1 DAE models,
that is models with a non-singular Jacobian matrix. Higher index
systems are outside the scope of this work.

2.2 Automatic differentiation
The computation of the Jacobian matrix of the system requires the
computation of the partial derivatives, which can be performed

345



Clever DAE: Compiler Optimizations for Digital Twins at Scale CF ’23, May 9–11, 2023, Bologna, Italy

through automatic differentiation (AD). There are multiple algo-
rithms for performing AD, in this work we only consider the for-
ward accumulation algorithm (forward AD).

In forward AD, the first step is to establish the independent
variable with respect to which the differentiation is performed. To
this end, every variable is associated with a seed derivative, which
is set to 1 if we are differentiating with respect to that variable,
and to 0 otherwise. The algorithm proceeds by substituting the
derivative of inner functions by recursively applying the chain rule.
The recursion ends when encountering a variable whose derivative
is the previously set seed [13].

As an example, let us consider the following function:

𝑓 (𝑥1, 𝑥2) = 𝑥1𝑥2 + sin𝑥1

To compute its derivative with respect to 𝑥1, first we decompose
the computation of 𝑓 in elementary operations, whose results are
assigned to temporary variables𝑤𝑖 . Now, we compute the derivative
¤𝑤𝑖 for each temporary variable through the chain rule. This process
is shown in the following table.

Original operations Derivative operations

𝑤1 = 𝑥1 ¤𝑤1 = 1 (seed)
𝑤2 = 𝑥2 ¤𝑤2 = 0 (seed)
𝑤3 = 𝑤1 ·𝑤2 ¤𝑤3 = ¤𝑤1 ·𝑤2 +𝑤1 · ¤𝑤2
𝑤4 = sin𝑤1 ¤𝑤4 = cos𝑤1 · ¤𝑤1
𝑤5 = 𝑤3 +𝑤4 ¤𝑤5 = ¤𝑤3 + ¤𝑤4

2.3 The Modelica Language
Modelica [17] is a declarative, object-oriented, multi-domain mod-
eling language, developed for component-oriented modeling of
complex systems. It allows users to model physical systems using a
set of variables, differential and algebraic equations.

A model example can be seen in code listing 1, which describes
the heat transfer in a wire. It is important to note how, differently
from imperative languages, the equal sign = does not represent
an assignment operation nor it states causality among variables,
but rather represents just the declaration of an equation. Another
notable feature is the possibility of declaring parametric multidi-
mensional arrays, for example to discretize the length of the wire.
This is effectively equivalent to a declaration of several scalar vari-
ables at once. Last but not least, for-loops within Models do not
represent control flow inside the simulation, but are used to express
multiple similar equations in a compact form.

The two most used Modelica compilers are currently OpenMod-
elica Compiler (OMC) [11] and Dymola [9]. Both of them share the
same pipeline: (1) Parsing and Flattening: The Modelica source
code is parsed and transformed into an Abstract Syntax Tree. Then,
all object oriented structures and other syntactic sugar such as for-
loops are lowered. (2)Matching: Each scalar variable is assigned to
a scalar equation that will update its value. (3) SCC resolution: Al-
gebraic loops are found and solved, when possible. (4) Scheduling:
Every scalar equation is made explicit with respect to its matched
variable and the whole list of equations is ordered accordingly to
their mutual dependencies, so that the system can be sequentially

model ThermalWire
parameter Rea l a r e a = 0 . 0 0 0 5^2 ∗ 3 . 1 4 ;
parameter Rea l l e ng t h = 0 . 1 ;
parameter Rea l c o n d u c t i v i t y = 4 0 1 ;
parameter Rea l s p e c i f i c h e a t c a p a c i t y = 3 8 5 ;
parameter Rea l d e n s i t y = 8 9 6 0 ;
parameter Rea l g = c o n d u c t i v i t y ∗ a r e a / l e ng t h ;
parameter Rea l c = s p e c i f i c h e a t c a p a c i t y ∗

d e n s i t y ∗ a r e a ∗ l e ng t h ;
parameter Rea l Thigh = 400 + 2 7 3 . 1 5 ;
parameter Rea l Tlow = 20 + 2 7 3 . 1 5 ;
parameter I n t e g e r nx = 1 0 ;
Rea l [ nx ] T ( each s t a r t = Tlow ) ;
Rea l [ nx +1] Tb ;
Rea l [ nx +1] Qb ;

equation
for x in 1 : nx loop

c ∗ der ( T [ x ] ) = Qb[ x ] − Qb[ x + 1 ] ;
Qb[ x ] = 2 ∗ g ∗ ( Tb [ x ] − T[ x ] ) ;
Qb[ x +1] = 2 ∗ g ∗ ( T[ x ] − Tb [ x + 1 ] ) ;

end for ;
Tb [ 1 ] = Thigh ;
Tb [ nx +1] = Tlow ;

end ThermalWire ;
Listing 1: Heat transfer in a 1D wire

simulated. (5) Lowering: The executable code that simulates the
model using the specified method and parameters is generated.

With this knowledge of modeling languages it is now possible
to introduce the problem addressed in this paper and describe the
proposed solution.

3 PROPOSED SOLUTION
To integrate a model using a DAE solver, it is necessary to generate
the required code to inform the solver about the equations com-
posing the system. The easiest approach is to feed the entire set of
equations and variables to the solver. This reduces the amount of
analyses the compiler needs to perform: all the mathematical as-
pects would be entirely delegated to the external tool. The downside
of this approach is its poor scalability. Most real-world phenomena
only contain a small amount of differential equations and algebraic
implicit equations while the rest are typically alias definitions or
linear equations that can be eliminated [18].

To address the problem of scalability, we can take into account
two different aspects. The first regards the identification of the
BLT blocks that are strictly required by the DAE solver, to make it
operate on a reduced system: by reducing the number of variables
and equations, also the memory and time footprint can be reduced.
The second is to optimize the runtime computation of the Jacobian
matrix, which can be achieved by analysing the structure of equa-
tions and by taking advantage of mathematical properties coupled
with forward AD.
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3.1 Computation of the Reduced System
We conceptually divide variables into two categories: trivial and
non-trivial variables. The former contains the variables whose
matched equations can be made explicit by the compiler through
proper algebraic manipulations. The latter contains the derivative
variables of the system, which must be handed over to the DAE
solver, together with the variables that have been matched with
implicit equations or equations belonging to unsolved cycles.

Starting from the DAE system 𝑭 of Equation 1, the vector of
algebraic variables can be unpacked as 𝒗 = [𝒔 𝒘], where 𝒔 are the
trivial variables and𝒘 are the non-trivial variables. The system 𝑭
can be now split according to Equation 4.

{
𝑭 (𝒙 (𝑡), ¤𝒙 (𝑡),𝒘 (𝑡), 𝒖 (𝑡), 𝑡) = 0
𝒔 (𝑡) = 𝑭 (𝒙 (𝑡), ¤𝒙 (𝑡), 𝒗 (𝑡), 𝒖 (𝑡), 𝑡) (4)

𝑭 represents the implicit subsystem of the original model that must
be solved with a DAE solver, while 𝑭 is the subsystem that can be
trivially solved.

To transform the original systems 𝑭 into the system in the form
of Equation 4, two steps must be performed:

• Identification of the vector 𝒚 = [ ¤𝒙 𝒘], representing the vari-
ables handled by the DAE solver. While doing this operation,
also the respective matched equations must be identified to
separate the two systems.

• Removal of the dependencies from 𝒔 inside the equations
handled by the DAE solver.

The first task can be performed through a linear scan of the
equations, marking as non-trivial the ones that are matched with a
derivative variable. Implicit equations can be also identified while
performing the search of differential equations. Unsolved algebraic
loops have already been identified during the SCC resolution pro-
cess, and so they can be added without additional analyses.

Afterwards, the externalized equationsmust be transformed such
that they do not contain any dependency from the trivial variables
and thus their execution can be grouped together. For example,
consider the example system in Equation 5 and its incidence matrix
(IM) shown in Figure 2. It is clear how the externalized equations –
marked in red – are interleaved with the others – marked in green
– making each subsystem dependent on the other.




𝒔3 = 𝒇 ′6 (𝒙, 𝒖, 𝑡)
𝒇3 (𝒙, 𝒔3,𝒘8, 𝒖, 𝑡) = 0
𝒔1 = 𝒇 ′′8 (𝒙, 𝒔3, 𝒖, 𝑡)
𝒔7 = 𝒇 ′2 (𝒙, 𝒔1,𝒘8, 𝒖, 𝑡)
𝒇4 (𝒙, 𝒔3,𝒘4,𝒘5, 𝒔7, 𝒖, 𝑡) = 0
𝒇1 (𝒙, 𝒔1,𝒘4,𝒘5,𝒘8, 𝒖, 𝑡) = 0
𝒔2 = 𝒇 ′9 (𝒙,𝒘5, 𝒔7,𝒘8, 𝒖, 𝑡)
𝒇7 (𝒙, ¤𝒙, 𝒔2, 𝒔3,𝒘5, 𝒔7, 𝒖, 𝑡) = 0
𝒔6 = 𝒇 ′5 (𝒙, ¤𝒙, 𝒔1,𝒘4,𝒘8, 𝒖, 𝑡)

(5)

This overlap can be solved by substituting the usages of the trivial
variables inside the externalized equations with their equivalent
expressions. This explains the need for the trivial variables to be
matched with equations that can be made explicit, and thus the

𝒔3 𝒘8 𝒔1 𝒔7 𝒘5 𝒘4 𝒔2 ¤𝒙 𝒔6
𝒇 ′6 1 0 0 0 0 0 0 0 0
𝒇3 1 1 0 0 0 0 0 0 0
𝒇 ′′8 1 0 1 0 0 0 0 0 0
𝒇 ′2 0 1 1 1 0 0 0 0 0
𝒇4 1 0 0 1 1 1 0 0 0
𝒇1 0 1 1 0 1 1 0 0 0
𝒇 ′9 0 1 0 1 1 0 1 0 0
𝒇7 1 0 0 1 1 0 1 1 0
𝒇 ′5 0 1 1 0 0 1 0 1 1

Figure 2: Example of incidence matrix after scheduling

𝒘8 𝒘5 𝒘4 ¤𝒙 𝒔3 𝒔1 𝒔7 𝒔2 𝒔6
𝒇 ′3 1 0 0 0 0 0 0 0 0
𝒇 ′4 0 1 1 0 0 0 0 0 0
𝒇 ′1 0 1 1 0 0 0 0 0 0
𝒇 ′7 0 1 0 1 0 0 0 0 0
𝒇 ′6 0 0 0 0 1 0 0 0 0
𝒇 ′′8 0 0 0 0 1 1 0 0 0
𝒇 ′2 1 0 0 0 0 1 1 0 0
𝒇 ′9 1 1 0 0 0 0 1 1 0
𝒇 ′5 1 0 1 1 0 0 0 0 1

Figure 3: Example of incidence matrix after substitution of
trivial variables

delegation of implicit equations and unsolved cycles to the DAE
solver.

Once the replacements have been performed and the scheduling
process re-executed, the resulting IM will have the form shown in
Equation 6, with 𝐴 being BLT and 𝐷 being LT.

𝐼𝑀 =

[
𝐴 0
𝐶 𝐷

]
(6)

Considering again the example system in Equation 5, the resulting
IM is shown in Figure 3.

3.2 Jacobian Matrix Computation
To compute the Jacobian matrix of the system, as required by the
variable-step BDF method discussed in Section 2.1, the compiler
needs to generate the derivative of the system equations w.r.t. all
the variables handled by DAE solver. As anticipated in Section 2.2,
we employ automatic differentiation to compute them.

Reduction of computed derivatives. More in detail, forward accu-
mulation AD has been preferred over backward mode AD, despite
the former having a greater computational complexity [12]. In fact,
by collecting the set of variables accessed by each equation, it is
possible to obtain compile-time knowledge about which indepen-
dent variables lead to zero-valued derivatives for that equation,
which therefore do not need to be computed. As real-world sys-
tems often are highly sparse — as it can be seen even just from the
example IM in Figure 2 — these zero-valued derivatives form the
great majority of the cells in the Jacobian matrix. Since forward
accumulation AD only computes a single derivative at once, it is
possible to skip known-zero derivatives, thus introducing the first
optimization which reduces both compilation and simulation times.
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On the other hand, backward mode AD cannot compute a subset of
the partial derivatives for a given equation, thus always requiring
the computation of the entire Jacobian matrix unconditionally.

Optimization of AD seeds. Moreover, the IDA solver uses an
approximation of the Jacobian matrix given by Equation 7.

𝑱 =
𝜕𝑮

𝜕𝒙
=

𝜕𝑭

𝜕𝒙
+ 𝛼

𝜕𝑭

𝜕 ¤𝒙 (7)

By starting from Equation 7 and defining the new operator 𝝏𝜶 as in
Equation 8, it is possible to obtain the equality given by Equation 9.

𝝏𝜶 =
𝜕

𝜕𝑥
+ 𝛼

𝜕

𝜕 ¤𝑥 (8)

𝝏𝜶 (𝐹 (𝐺 (𝑥, ¤𝑥))) = ¤𝐹 (𝐺 (𝑥, ¤𝑥)) · 𝝏𝜶 (𝐺 (𝑥, ¤𝑥)) (9)
Proof is given by the list of equalities in Equation 10.

𝝏𝜶 (𝐹 (𝐺 (𝑥, ¤𝑥))) =

=

(
𝜕

𝜕𝑥
+ 𝛼

𝜕

𝜕 ¤𝑥

)
(𝐹 (𝐺 (𝑥, ¤𝑥)))

=
𝜕𝐹 (𝐺 (𝑥, ¤𝑥))

𝜕𝑥
+ 𝛼

𝜕𝐹 (𝐺 (𝑥, ¤𝑥))
𝜕 ¤𝑥

= ¤𝐹 (𝐺 (𝑥, ¤𝑥)) · 𝜕𝐺 (𝑥, ¤𝑥)
𝜕𝑥

+ 𝛼 ¤𝐹 (𝐺 (𝑥, ¤𝑥)) · 𝜕𝐺 (𝑥, ¤𝑥)
𝜕 ¤𝑥

= ¤𝐹 (𝐺 (𝑥, ¤𝑥)) ·
(
𝜕𝐺 (𝑥, ¤𝑥)

𝜕𝑥
+ 𝛼

𝜕𝐺 (𝑥, ¤𝑥)
𝜕 ¤𝑥

)

= ¤𝐹 (𝐺 (𝑥, ¤𝑥)) ·
(
𝜕

𝜕𝑥
+ 𝛼

𝜕

𝜕 ¤𝑥

)
(𝐺 (𝑥, ¤𝑥))

= ¤𝐹 (𝐺 (𝑥, ¤𝑥)) · 𝝏𝜶 (𝐺 (𝑥, ¤𝑥))

(10)

In the context of AD, this can be performed at runtime as a single
step rather than two by setting to 1 the seed of the state variable 𝑥
and to 𝛼 the seed of its derivative ¤𝑥 .
4 EXPERIMENTAL EVALUATION
To measure the effectiveness of our approach, we use a Modelica
model describing a cube-shaped chip of silicon, where a constant
power is continuously applied on half of its bottom surface. The
temperature across the volume of the chip is discretized into a
parametrized three-dimensional matrix.

The results are obtained by using an in-house prototype compiler
based on the LLVM infrastructure. Compilation time, executable
size and simulation time are evaluated with respect to five possi-
ble configurations: Raw DAE no optimization; Reduced system
opt reduced system computation only; Zero der opt possibly non-
zero partial derivatives computation only; Alpha opt AD seeds
optimization only; Clever DAE all optimizations.

All the tests are performed on a machine with the following
specifications: OS: Ubuntu 20.04, CPU: 10-core Intel Xeon E5-2650
v3 2.30GHz, RAM: 72 GB DDR3 2133 MHz, LLVM 16.0.0.

Compilation Time. Figure 4 shows the times required to apply
the transformation pass generating the residual functions, the par-
tial derivatives and the initialization code for the external solver.
Although applying the presented optimizations increases the time
required to perform this step of the compilation, this increase is
compensated by the reduced simulation time and executable code
size.
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Figure 4: Compiler time required for the generation of the
external solver handling code in the simulation
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Figure 5: Binary size

The AD seeds optimization on the other hand does not impact
compilation time in a noticeable way. Indeed, the only difference is
that the compiler generates a single call instruction to a common de-
rivative function, rather than two. Therefore, with the tested model,
the compile-time complexity of the optimization is not significant.

Binary Size. Figure 5 shows the size of the generated simulation
executable. The simulations generated with the Clever DAEmethod
are ∼ 20 times smaller with respect to the ones generated with the
Raw DAE method. For what regards the individual optimizations,
the situation resembles the one seen for compilation times: the
main improvement is again given by the reduction of the externally
processed set of equations, but the computation of always-zero
partial derivatives also leads to a considerable ∼ 70% reduction of
the executable file size when considered on its own.
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Figure 6: Simulation time

Simulation Time. Figure 6 shows the time taken by the simula-
tion to complete its execution. Considering the Clever and Raw
DAE methods, the former outperforms the latter as the number of
equations grows. With ∼ 300 equations there is already an improve-
ment of ∼ 60 times, which increases to ∼ 9800 with roughly 10000
equations.

This improvement originates from the pre-computation of the
always zero-valued partial derivatives, which allows to overcome
the quadratic nature of the Jacobian matrix by just setting the few
seeds – whose quantity is constant – needed for each row of the
Jacobian matrix. On the other hand, the AD seeds optimization
is negligible. This is caused by the specific features of the model
considered for this benchmark, whose partial derivatives do not
lead to common sub-expressions whose value can be reduced to a
single runtime computation.

Time To Solution. In the context of modeling and simulation, it
is common for models to be compiled and simulated only once.
Figure 7 shows the time required to obtain the simulation data
starting with the source code describing the system of equations.

As can be seen, the situation mimics the one seen for simulation
times, with the Raw DAE method diverging from the Clever DAE.

5 CONCLUSIONS
This work represents an important step towards the adoption of
large-scale DAE-based digital twins. More in detail, we have pre-
sented three possible optimizations to improve the simulation of
DAE systems solved by using the IDA solver.

The first one consists in the determination of the minimal set of
equations – and variables – that the solver needs to handle in order
to produce a correct result.

The second and third ones enable an efficient computation of the
Jacobian matrix, which is required by the BDF method used by the
aforementioned solver. The former consists in the pre-computation
of the always zero-valued partial derivatives, while the latter makes
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Figure 7: Time required to compile the model and run the
simulation

use of mathematical properties to allow the reduction of compu-
tations in case of sub-expressions that are common to both the
derivatives with respect to the state and derivative variables.

The usefulness of these transformations has been evaluated
through an highly scalable Modelica model, processed with a pro-
totype compiler based on the LLVM infrastructure.

Even though compilation times increase slightly, our tests have
shown significant simulation performance gains. In particular, sim-
ulation times are reduced throughout the whole tests in a linear
way, obtaining an improvement up to ∼ 9800 times at ∼ 10000 equa-
tions. Binary sizes have also been reduced in a constant manner,
obtaining a ∼ 70% improvement. To also improve compilation times,
the proposed techniques could be combined with exploiting array
structures by avoiding scalar expansion during the code generation
process [1]. Although this is postponed to future works, combining
these techniques has the potential to enable simulation of truly
large scale systems.
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