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A B S T R A C T

Neglecting small fragments in space debris evolutionary models can lead to a significant underestimation of
the collision risk for operational satellites. However, when scaling down to the millimetre range, the debris
population grows to over a hundred million objects, making deterministic approaches too computationally
expensive. On the contrary, probabilistic models provide a more efficient alternative, which however typically
works under some simplifying assumptions on the dynamics, limiting their field of applicability. This work
proposes an extension of the density-based collision risk models to any orbital dynamics and impact geometry.
The impact rate with a target satellite is derived from a multi-dimensional phase space density function in
orbital elements, which discretely varies over both phase space and time. The assumption of a bin-wise constant
cloud density allows for the analytical transformation of the six-dimensional distribution in orbital elements
into the three-dimensional spatial density function, guaranteeing an efficient and accurate evaluation of the
fragments flux. The proposed method is applied to the assessment of the collision risk posed by occurred
fragmentation events in different orbital regions on a high-risk target object. The effect on the impact rate of
the modelling improvements, compared to previous probabilistic formulations, is discussed.
1. Introduction

The number of services provided by in-orbit satellites is massively
increasing and, together with that, our exploitation of the space envi-
ronment. As of today, more than thirty thousand objects are tracked by
the space surveillance network, of which only one-third are operational
satellites [1]. As motivated in [2], the trackability of space objects
strictly depends on the orbital altitude. Due to the current limitations in
the sensitivity of radars and telescopes, the lower size threshold for an
object to be detected is 1–10 cm in Low-Earth Orbit (LEO), and on the
order of 1 m in the Geostationary ring (GEO) [2]. However, excluding
smaller fragments when studying the effects of remediation measures
for the space debris problem, results in an underestimation of the
collision risk for the active satellites population [3]. Experimental data
proves that impacts from millimetre-sized particles may compromise
the functionality of certain equipment, while centimetre-size projectiles
can potentially destroy a satellite in case of a collision [4,5]. Therefore,
to have a representative picture of the health and future trend of the
space environment, the debris models must have the capability to esti-
mate the actual threat posed to space operations by such small objects.
However, when scaling down to the millimetre-size, the population of
objects grows to over 100 million [6], representing a barrier even to
the computational power of modern computers.

The assessment of the collision risk posed by a population of frag-
ments was historically performed through the Öpik’s theory [7]. It
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provides equations to derive the probability of collision between two
objects, based on their orbital elements, under the assumption of zero
eccentricity and inclination for one of the two. This assumption was
eliminated in a later extension by Wetherill [8]. Kessler extended the
model to compute the impact risk from the spatial density of a debris
population, assuming an equally probable distribution of the fragments
in longitude of the node, argument of periapsis, and mean anomaly,
and fixed semi-major axis, eccentricity and inclination [9,10]. Because
of the uniform distribution of the particles in longitude, the spatial
density was evaluated according to a two-dimensional discretisation of
the physical space in altitude and latitude. Such approximation does not
allow the applicability of the model to any orbital regime [11]. Indeed,
under some initial conditions, randomisation may take long to occur
and the fragments orbit shape and orientation may be considerably
distorted by orbital perturbations.

Semi-deterministic debris evolutionary models were developed to
answer this necessity. Firstly introduced by Rossi et al. [12,13], these
methods accomplished the propagation of debris populations under
any force model, by gathering the fragments in some representative
samples, whose orbit is propagated in time [14–16]. The relative
simplicity of the method makes it very flexible to include additional
complexities, as predictive launch models or active debris removal.
The CUBE algorithm was developed for the accurate evaluation of the
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collision hazard caused by the evolving fragments population [17]. The
model divides the physical space into sufficiently small volumes and
estimates the spatial density of objects through a uniform sampling of
the system in time. Whenever two objects share the same cube, the
collision probability is estimated according to their spatial density, their
relative velocity, the collision cross-sectional area, and the volume of
the cube.

The bottleneck of the semi-deterministic approaches remains the
computational cost. For this reason, efficient analytical and semi-
analytical probabilistic debris models were also developed. Through
an analogy with fluid dynamics, these methods treat the fragments
no longer as individual pieces but as a fluid, which continuously
deforms under the effect of external disturbances, such as the orbital
perturbations. The evolution of the cloud density is retrieved through
the time integration of the continuity equation [18–20]. In the work
by Letizia et al. [20], the collision probability was evaluated according
to the formulation by Kessler [9], but from a one-dimensional time-
varying spatial density function dependent on orbital radius. The
method assumes the debris cloud as uniformly distributed in a circular
band around the Earth and the target object moving on a circular orbit,
which constrains its applicability to LEO. Instead, the dependency on
the fragments distribution over longitude was included in a dedicated
GEO model proposed in [21].

The STARLING suite was developed at Politecnico di Milano with
the aim of extending the continuum approach to any orbital regime
[22]. The suite numerically integrates the continuity equation through
the Method Of Characteristics (MOC) in the phase space of Keplerian
elements and area-to-mass ratio, and retrieves the density distribution
by fitting a Gaussian Mixture Model (GMM) to the propagated bulk of
samples. However, when the third-body perturbation and solar radi-
ation pressure have a predominant effect on the cloud evolution, they
may induce bifurcations on a small subset of the phase space, branching
out part of the distribution from the main bulk of characteristics. When
such condition occurs, the interpolation through the GMM fails [22],
limiting the applicability of the model to simplified dynamical regimes.
In [23], Frey et al. derived an equation for the estimation of the impact
rate between a fragmentation cloud and a target satellite, directly
from the six-dimensional phase space density in Keplerian elements.
Nevertheless, due to the current limitations of the model, its use was
still limited to LEO, assuming fixed fragments inclination and cloud
randomisation over longitude of the node and argument of periapsis.

This work aims to extend the density-based collision probability
models to any orbital regime. It adopts the continuum propagation
method proposed in [24] for the estimation of the debris cloud evo-
lution in time, under the effect of any force model. The resulting
evolving density function discretely varies over the phase space of
orbital elements, and time. Under this condition, it is demonstrated how
the impact rate with a target satellite can be conveniently evaluated
through the piece-wise analytical integration of the fragments flux over
the target area. This guarantees an efficient and very accurate estima-
tion of the effect of a fragmentation event on the space environment,
applicable to any orbital region.

The paper is organised as follows:

- Section 2 gives an overview of the cloud propagator method
presented in [24], and adopted as input for the collision risk
model within this article.

- Section 3 is the core of this work. Firstly, the collision risk
model for LEO fragmentations proposed by Letizia et al. [20] is
explained and updated, to stress the similarity with the developed
approach. Secondly, the novel and more general collision risk
assessment method, valid under any orbital regime, is presented.

- Section 4 is devoted to the application of the theory to occurred
fragmentation events. The model is primarily validated against
the formulation proposed by Letizia et al. [20], updated as in Sec-
tion 3, and against the well-known collision risk method proposed
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by Kessler [10], still assuming randomisation in longitude of the
node and argument of periapsis. The additional features, which
the proposed method is able to characterise because of the mul-
tidimensional description of the cloud dynamics, are successively
included once at a time, to evaluate their effect on the estimated
collision probability.

- Section 5 recaps the main results and achievements of the work.

2. Fragments cloud modelling and propagation overview

This section provides an overview of the method for the modelling
and propagation of a potential cloud of fragments generated by either
an in-orbit collision or explosion, which was presented in a past work
by the authors [24]. The same model is here adopted as input for
the collision risk assessment method proposed in Section 3. The cloud
propagator is divided into two main parts, as shown in Fig. 1. Each of
them is explained in the following sections.

2.1. Probabilistic characterisation of objects breakup

The method adopts a probabilistic reformulation of the NASA Stan-
dard Breakup Model (SBM) [23,24]. From the Probability Density
Functions (PDFs) provided in [25], the Cumulative Density Functions
(CDFs) are retrieved through integration. The CDFs are used to firstly
bound the fragments cloud over the 2D phase space of ejection velocity
magnitude and area-to-mass ratio. Such boundaries are successively
converted into a domain in Keplerian elements and area-to-mass ratio.

The computed domain is discretised into equally-spaced bins,
through an automatised definition of the step-sizes according to the
average partial derivatives of the density with respect to the orbital
elements, over the Keplerian phase space. The average fragments
density value for each bin is obtained from the integral average of
the density over the bin volume [24]. Note that the density function
in Keplerian elements is computed from the original PDF in ejection
velocity and area-to-mass ratio through change of variables [23,26].

2.2. Fragments cloud density propagation

Following the same approach pursued by other authors [18,19,22,
27], the fragments density is propagated by applying the MOC [28]
to the continuity equation. For a first-order Partial Differential Equa-
tion (PDE), like the continuity equation, the MOC discovers curves in
the phase space, the characteristic curves, along which a PDE trans-
forms into a system of Ordinary Differential Equations (ODEs). For the
problem at hand, the system of ODEs reads as:

⎧

⎪

⎨

⎪

⎩

d𝒚
d𝑡 = 𝑭
d𝑛
d𝑡 = −𝑛∇𝒚 ⋅ 𝑭

(1)

where 𝒚 are the phase space variables, 𝑡 is time, 𝑭 the force model,
and 𝑛 the fragments density. The characteristics, which are uniformly
sampled from the phase space, are propagated semi-analytically, as
a consequence of the averaging of the dynamics equations over the
fast angular variable. To this purpose, the software PlanODyn [29]
is employed. It provides the trace of the Jacobian of the averaged
dynamics with respect to the mean elements for atmospheric drag,
J2 perturbation, solar radiation pressure and luni-solar perturbations,
which is needed in the density equation of Eq. (1). Note that, to
improve the computational efficiency, the software allows for a second
averaging procedure, over the disturbing body orbital period. Full
detail of the implemented dynamical model can be found in [30].

If propagated to the same epoch, the characteristics form a scattered
point cloud in the phase space. Therefore, they must be interpolated to
retrieve the density distribution in the whole domain. The interpolation
is carried out through binning in the phase space of orbital elements
and area-to-mass ratio, at specified time epochs, summing up the
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Fig. 1. Block diagram of the debris cloud characterisation and propagation method.
contribution of all the characteristics that share the same volume [24].
As a result, the computed density distribution is bin-wise constant
in space and evolves discretely in time. For the results presented
in this paper, which focuses on the prediction of the long-term risk
posed by breakup events, the fragments mean anomaly is assumed as
randomised. In other words, the fragments density 𝑛 varies as function
of the slow-varying orbital elements only, and area-to-mass ratio [24].

3. Fragments density-based collision risk assessment

This section is devoted to explaining the physical and mathematical
model developed for the estimation of the probability of collision
between a potential fragments cloud, which is described through a
phase space density function, and a selected target object.

Firstly, a simplified approach, where the fragments are described
through a spatial density function dependent on orbital radius only, is
introduced. This method, which was first presented in [20], lacks infor-
mation on the relative velocity between the target and the fragments,
and assumes the latter moving on circular orbits. On the contrary, the
cloud propagation model explained in Section 2 allows to estimate
the evolution in time of a 6D phase space density function in slow-
varying orbital elements and area-to-mass ratio, which ensures the
accurate evaluation of the relative velocity of collision. Nevertheless,
the simplified collision probability model is presented both to stress
the similarity between the two methods and for validation purposes, as
detailed in Section 4. Furthermore, some updates are introduced com-
pared to the theory proposed in [20], which allow a better estimate of
the impact velocity and the introduction of the non-linear dependency
of the spatial density function on latitude in the computation of the
collision rate.

The model is then extended to consider the 6D phase space density
function. The discrete nature of the density distribution in space and
time, resulting from the modelling of the debris cloud through the
continuum formulation proposed in Section 2, is exploited to derive
a piece-wise analytical expression of the fragments flux over the target
cross-sectional area, as a discrete function of time. The knowledge on
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the impact rate is eventually translated into the cumulative probability
of collision with the target, according to a Poisson distribution [31,32]:

𝑃𝑐 (𝑡) = 1 − exp (−𝜂(𝑡)) (2)

with 𝜂 cumulative number of collisions over time 𝑡. Eq. (2) comes from
the common analogy with the gas kinetic theory.

3.1. Impact rate from a 1D spatial density distribution in orbital radius

The average impact rate 𝜂̇ between a fragments cloud, described
through a 1D spatial density function 𝑛𝒓(𝑟), and a target moving on a
Keplerian orbit can be approximated as [20]:

𝜂̇ = 𝐴𝑐𝑛𝒓(𝑟)𝑣rel (3)

with 𝐴𝑐 cross-sectional area of the target, and 𝑣rel average impact
velocity. Letizia et al. [20] pointed out that, for a fragmentation in
LEO, the debris cloud forms a band around the Earth in a relatively
short period of time. As a result, if the objective is to evaluate the
long-term effect of such a cloud, it can be considered randomised over
right ascension of the ascending node 𝛺 and argument of periapsis 𝜔.
The relative velocity between two objects having a conjunction can be
written as function of the velocity moduli and the angle 𝛿 between the
velocity vectors, as follows.

𝑣rel =
√

𝑣2𝑇 + 𝑣2 − 2𝑣𝑇 𝑣 cos 𝛿 (4)

where 𝑣𝑇 and 𝑣 refer to the velocity moduli of the target and the
fragments, respectively. In the remainder of the paper, the subscript
(⋅)𝑇 is used to refer to quantities associated to the target object. The
angle 𝛿 depends on the target, 𝑖𝑇 , and fragments, 𝑖, inclination, and the
difference in right ascension of the ascending node 𝛥𝛺 between the two
orbits, according to the following relation:

cos 𝛿 = sin 𝑖𝑇 sin 𝑖 cos𝛥𝛺 + cos 𝑖𝑇 cos 𝑖 (5)

Eq. (5) derives from the application of the cosine rule to the green
spherical triangle depicted in Fig. 2.
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Fig. 2. Spherical triangle of the intersection between the target and fragments orbit.

In [20], the randomisation over right ascension of the ascending
node 𝛺 was misinterpreted as if each 𝛥𝛺 is equally probable. As a
result, the average impact velocity was computed as [20]:

𝑣rel =
1
2𝜋 ∫

2𝜋

0
𝑣rel (𝛥𝛺) d𝛥𝛺 (6)

However, it must be understood that the average impact velocity 𝑣rel
corresponds to the mean relative velocity between the fragments and
the target, as the latter moves on a fixed Keplerian orbit. Hence, the
averaging procedure must be carried out over the mean anomaly 𝑀𝑇
of the target, to consider every possible conjunction geometry. For each
target mean anomaly 𝑀𝑇 , there exist two possible intersecting circular
fragments orbits, shifted in right ascension of the ascending node with
respect to the target orbit of 𝛥𝛺, satisfying the cotangent law applied
to the green spherical triangle of Fig. 2, i.e.:

cos𝛥𝛺 cos 𝑖𝑇 = cot 𝑢𝑇 sin𝛥𝛺 + cot 𝑖 sin 𝑖𝑇 (7)

where 𝑢𝑇 = 𝜔𝑇 + 𝑓𝑇 is the argument of latitude of the target, 𝜔𝑇 and
𝑓𝑇 its argument of periapsis and true anomaly, respectively. Thus, the
average relative velocity between the target and the fragments can be
computed as:

𝑣rel =
1
2𝜋 ∫

2𝜋

0

1
2

2
∑

𝑗=1
𝑣rel

(

𝛥𝛺𝑗
) d𝑀𝑇

d𝑓𝑇
d𝑓𝑇 (8)

with:

d𝑀𝑇
d𝑓𝑇

=

(

1 − 𝑒2𝑇
)3∕2

(

1 + 𝑒𝑇 cos 𝑓𝑇
)2

(9)

where 𝑒𝑇 is the eccentricity of the target object. Note that 𝛥𝛺𝑗 of Eq. (8)
indicates one of the two possible solutions of Eq. (7). Fig. 3 shows the
average velocity of impact 𝑣rel, normalised by the velocity on a circular
orbit at the altitude of the target, as function of fragments, 𝑖, and target,
𝑖𝑇 , inclination, assuming they move on circular orbits.

As it can be observed, the surface of solutions is symmetric about
the point (𝑖, 𝑖𝑇 ) = (90, 90) deg. The impact velocity is larger when
the fragments move on a prograde orbit with the target object on a
retrograde one, or viceversa. In particular, when fragments and target
object lie on the equatorial plane, but are characterised by opposite
direction of rotation, the normalised average impact velocity is double
the orbital velocity 𝑣𝑇 . When, instead, they both have zero inclination,
under the assumption of circular orbits, the relative velocity nullifies.

Finally, it is worth stressing that Eq. (3) applies only if the target is
also moving on a circular orbit. Indeed, the spatial density 𝑛𝒓 is assumed
to be constant for each target position along its orbit. If, however,
the target orbit is elliptical, the orbital radius varies as function of
the target mean anomaly 𝑀𝑇 . As a result, the spatial density must be
included in the integration over 𝑀𝑇 , as follows.

𝜂̇ =
𝐴𝑐

2𝜋
𝑛𝒓

(

𝑟𝑇
)

𝑣∗ (𝛥𝛺) d𝑀𝑇 (10)
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2𝜋 ∫0 rel
Fig. 3. Impact velocity as function of fragments and target inclination.

where 𝑣∗rel indicates the mean between the two possible impact veloci-
ties, given the target mean anomaly 𝑀𝑇 .

A further limitation of the model proposed in [20] is that the spatial
density function is assumed to be randomised over both longitude 𝜆
and latitude 𝜙. However, as motivated in [9], even if the fragments
are assumed to share the same orbital inclination, and to be uniformly
distributed in a band around the Earth, the spatial density function has
a non-linear dependency on latitude 𝜙. Indeed, the spatial density in
a band with infinitesimal thickness in radial distance d𝑟 and angular
amplitude d𝜙, as function of orbital radius 𝑟 and latitude 𝜙, can be
computed as:

𝑛𝒓(𝑟, 𝜙) =
d𝑁(𝑟, 𝜙)
d𝐴(𝑟, 𝜙)d𝑟

(11)

where 𝑁 is the number of fragments and 𝐴 is the surface area of the
band around the Earth. The infinitesimal number of fragments can be
computed according to the following equation:

d𝑁(𝑟, 𝜙) = 𝑁(𝑟) d𝑀
𝜋

=
𝑁(𝑟)
𝜋

d𝑀
d𝑓

d𝑓
d𝜙

d𝜙 (12)

Assuming the fragments orbit as circular for simplicity, Eq. (12) sim-
plifies as follows.

𝑑𝑁(𝑟, 𝜙) =
𝑁(𝑟)
𝜋

d𝑓
d𝜙

d𝜙

=
𝑁(𝑟)
𝜋

cos𝜙
√

sin2 𝑖 − sin2 𝜙
d𝜙

(13)

Instead, the infinitesimal area d𝐴 takes the following form:

𝑑𝐴(𝑟, 𝜙) = 2𝜋𝑟2 cos𝜙 d𝜙 (14)

Therefore, the 2D spatial density function of Eq. (11) modifies as
follows.

𝑛𝒓(𝑟, 𝜙) =
𝑁(𝑟)
2𝜋𝑟2d𝑟

1

𝜋
√

sin2 𝑖 − sin2 𝜙

= 𝑛𝒓(𝑟)
2

𝜋
√

sin2 𝑖 − sin2 𝜙

= 𝑛𝒓(𝑟)𝛽(𝜙)

(15)

which coincides with the expression found by Kessler [9]. As it can
be noted, the non-linear dependency of the spatial density function
on latitude is introduced by both the true anomaly-latitude relation of
Eq. (13) and the dependency of the area of the circular band on latitude,
expressed by Eq. (14). In Fig. 4 the latitude-dependent parts of Eq. (13),
Eq. (14) and (15) are shown as function of the argument of latitude 𝑢,
for different values of inclination 𝑖. Note that latitude 𝜙 and argument
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Fig. 4. Dependency of the spatial density function on latitude.
of latitude 𝑢 are linked by the sine rule applied to the red spherical
triangle of Fig. 2, which provides the following expression:

sin𝜙 = sin 𝑢 sin 𝑖 (16)

Replacing the 1D spatial density function in Eq. (3) with the 2D
density function of Eq. (15), evaluated at the target orbital radius
𝑟𝑇 and latitude 𝜙𝑇 , allows a more accurate estimation of the impact
rate, which accounts for the fragments distribution over latitude. The
resulting expression is here reported for completeness:

𝜂̇ =
𝐴𝑐
2𝜋 ∫

2𝜋

0
𝑛𝒓

(

𝑟𝑇
)

𝛽
(

𝜙𝑇
)

𝑣∗rel (𝛥𝛺) d𝑀𝑇 (17)

3.2. Impact rate from a 6D density distribution in orbital elements

Defined as 𝛾 ∶= (𝑎, 𝑒, 𝑖, 𝛺, 𝜔) the slow-varying Keplerian elements,
with 𝑎 semi-major axis, 𝑒 eccentricity, 𝑖 inclination, 𝛺 right ascension
of the ascending node, and 𝜔 argument of periapsis, the average impact
rate 𝜂̇ with a target object with elements 𝜸𝑇 takes the general form:

𝜂̇ = 1
2𝜋 ∫

2𝜋

0
𝜂̇
(

𝜸𝑇 ,𝑀𝑇
)

d𝑀𝑇 (18)

If the fragments distribution is represented through a 6D density func-
tion in Cartesian coordinates (𝒓, 𝒗), 𝑛𝒓,𝒗, the impact rate associated to a
fixed value of mean anomaly 𝑀𝑇 can be approximated as [23]:

𝜂̇
(

𝜸𝑇 ,𝑀𝑇
)

= 𝐴𝑐 ∭R3
𝑛𝒓,𝒗(𝒓𝑇 , 𝒗)𝑣rel d𝒗 (19)

where 𝒓 and 𝒗 indicate the position and velocity vectors of the frag-
ments. The main assumption behind Eq. (19) is that the fragments
cross-sectional areas are assumed to be negligible if compared to the
target one. As demonstrated in [23], the 6D density function in Carte-
sian coordinates, evaluated at the target position 𝒓𝑇 , can be related to
the phase space density in Keplerian elements, 𝑛𝜶,𝜷 , with 𝜶 ∶= (𝑎, 𝑒, 𝑖)
and 𝜷 ∶= (𝛺,𝜔,𝑀), according to the following equation:

𝑛𝒓,𝒗(𝒓𝑇 , 𝒗) d𝒗 =
4
∑

𝑘=1

𝑛𝜶,𝜷
(

𝜶, 𝜷(𝑘))

|

|

|

det 𝑱 (𝑘)
𝒓→𝜷

|

|

|

d𝜶 (20)

where 𝑱 𝒓→𝜷 is the Jacobian of the transformation from position vector
𝒓 to the subset of the Keplerian elements (𝛺,𝜔,𝑀), i.e.:

𝑱 𝒓→𝜷 =

⎡

⎢

⎢

⎢

⎢

⎣

𝜕𝑟𝑥
𝜕𝛺

𝜕𝑟𝑥
𝜕𝜔

𝜕𝑟𝑥
𝜕𝑀

𝜕𝑟𝑦
𝜕𝛺

𝜕𝑟𝑦
𝜕𝜔

𝜕𝑟𝑦
𝜕𝑀

𝜕𝑟𝑧
𝜕𝛺

𝜕𝑟𝑧
𝜕𝜔

𝜕𝑟𝑧
𝜕𝑀

⎤

⎥

⎥

⎥

⎥

⎦

(21)

whose elements expression can be found in [33]. The absolute value of
the determinant of 𝑱 𝒓→𝜷 takes the form:

|

|det 𝑱 (𝑘) |

| =
𝑎3𝑒(1 − 𝑒2)3∕2||

|

cos
(

𝜔(𝑘) + 𝑓 (𝑘)) sin 𝑓 (𝑘)|
|

|

sin 𝑖
(22)
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|
𝒓→𝜷

| (1 + 𝑒 cos 𝑓 (𝑘))2
The summation in Eq. (20) represents the four possible intersections
between the target and fragments orbit, once the target position vector
𝒓𝑇 is fixed and the subset of the Keplerian elements 𝜶 is given. The
intersecting orbits are provided by the four combinations (𝜶, 𝜷(𝑘)). In
particular, the two solutions of the orbital radius equation:

𝑟𝑇 =
𝑎(1 − 𝑒2)
1 + 𝑒 cos 𝑓

(23)

provide the two angular positions 𝑓1 and 𝑓2. The cotangent rule applied
to the green spherical triangle of Fig. 2, which is given in Eq. (7),
allows the computation of the fragments orbital plane, through the
solutions in right ascension of the ascending node 𝛺1 and 𝛺2. Finally,
the application of the sine rule to the same spherical triangle, which
states:

sin 𝑢𝑇 sin 𝑖𝑇 = sin 𝑢 sin 𝑖 (24)

fixes the fragments orbit in-plane orientation, provided by the solutions
in argument of latitude 𝑢1 and 𝑢2. The resulting solutions 𝜷(𝑘) have the
following characteristics:

𝜷(1) = (𝛺1, 𝜔1,𝑀1)

𝜷(2) = (𝛺1, 𝜔2,𝑀2)

𝜷(3) = (𝛺2, 𝜔3,𝑀1)

𝜷(4) = (𝛺2, 𝜔4,𝑀2)

(25)

and satisfy:

𝜔1 + 𝑓1(𝑀1) = 𝜔2 + 𝑓2(𝑀2) = 𝑢1
𝜔3 + 𝑓1(𝑀1) = 𝜔4 + 𝑓2(𝑀2) = 𝑢2

𝑓1(𝑀1) = −𝑓2(𝑀2)

(26)

Plugging Eqs. (23) and (24) into Eq. (22), the determinant of the
Jacobian modifies as:

|

|

|

det 𝑱 (𝑘)
𝒓→𝜷

|

|

|

= 𝑟2𝑇
𝑎𝑒
√

1 − 𝑔2
√

1 − 𝑒2

√

1 − ℎ2 sin 𝑖

= 1
𝛹 (𝜶)

(27)

where the functions 𝑔 ∶= 𝑔(𝑎, 𝑒, 𝑟𝑇 ) and ℎ ∶= ℎ(𝑖, 𝑖𝑇 , 𝜔𝑇 , 𝑓𝑇 ) are the
cosine of the true anomaly 𝑓 and the sine of the argument of latitude
𝑢 = 𝜔 + 𝑓 , derived from Eqs. (23) and (24), and the function 𝛹 , which
stands for the absolute value of the inverse of the determinant of 𝑱 𝒓→𝜷 ,
is introduced to simplify the notation. As it can be noticed, the function
𝛹 is independent of the value of the dependent Keplerian elements
𝛺,𝜔,𝑀 ; thus, it can be taken outside of the summation of Eq. (20).

Plugging Eq. (20) into Eq. (19) allows retrieving the impact rate
directly from the phase space density in Keplerian elements, 𝑛𝜶,𝜷 . In
addition, the use of a binning approach for the computation of the
phase space density distribution, from the propagated bulk of char-
acteristics, implies that the fragments density varies discretely over
the phase space. As a result, the integration over the domain in the
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ℎ

independent Keplerian elements 𝜶 can be split into a summation of
integrals over the bins volume, over which the fragments density is
constant. Therefore, the impact rate is approximated as follows.

𝜂̇(𝜸𝑇 ,𝑀𝑇 ) = 𝐴𝑐

𝑁∗
𝑏

∑

𝑗=1

[

∭𝑉 (𝑗)
𝜶

𝛹 (𝜶)
4
∑

𝑘=1
𝑛(𝑗𝑘)𝜶,𝜷 𝑣

(𝑘)
rel (𝜶) d𝜶

]

(28)

where 𝑛(𝑗𝑘)𝜶,𝜷 is the phase space density in the bin with centre coordinates
𝜶(𝑗), 𝜷(𝑘)(𝜶(𝑗))

]

, 𝑣(𝑘)rel (𝜶) is the relative velocity between fragments and
arget for the 𝑘th solution of intersection, given 𝜶, and 𝑁∗

𝑏 is the num-
er of bins, whose subset of Keplerian elements (𝑎, 𝑒, 𝑖) satisfies Eq. (23),
q. (7) and (24) for some combinations of (𝛺,𝜔,𝑀). Therefore, by
dopting a binning approach, the estimation of the impact rate reduces
o the computation of the integral of Eq. (28), at bin level, and to the
ummation of the contribution of each bin ensuring intersection with
he target, and having a non-null density value.

The integral of Eq. (28) cannot be solved in closed form. Neverthe-
ess, if the discretisation in (𝑎, 𝑒, 𝑖) is sufficiently refined, the impact rate

can be reduced to:

𝜂̇(𝜸𝑇 ,𝑀𝑇 ) = 𝐴𝑐

𝑁∗
𝑏

∑

𝑗=1

[ 4
∑

𝑘=1

(

𝑛(𝑗𝑘)𝜶,𝜷 𝑣
(𝑗𝑘)
rel

)

∭𝑉 (𝑗)
𝜶

𝛹 (𝜶) d𝜶

]

(29)

ith:
(𝑗𝑘)
rel = ‖

‖

‖

𝒗
(

𝜶(𝑗), 𝜷(𝑘)(𝜶(𝑗))
)

− 𝒗𝑇
‖

‖

‖

(30)

hich consists in approximating the relative velocity between the
arget object and the fragments 𝑣(𝑘)rel (𝜶) as the relative velocity in
orrespondence of the bins centre 𝑣(𝑗𝑘)rel , over each bin volume. Note

that, the assumption of Eq. (29) means that the spatial density func-
tion in correspondence of the target, 𝑛𝒓(𝒓𝑇 ), is computed without any
approximation, net of the mathematical modelling of the phase space
density 𝑛𝜶,𝜷 , while the relative velocity is measured discretely, in
correspondence of the bins centre. Indeed, the spatial density 𝑛𝒓(𝒓𝑇 )
can be obtained from Eq. (20) through integration as follows.

𝑛𝒓(𝒓𝑇 ) = ∭R3
𝑛𝒓,𝒗(𝒓𝑇 , 𝒗) d𝒗

=
𝑁∗

𝑏
∑

𝑗=1

[ 4
∑

𝑘=1

(

𝑛(𝑗𝑘)𝜶,𝜷

)

∭𝑉 (𝑗)
𝜶

𝛹 (𝜶) d𝜶

] (31)

n the following sections the assumption of Eq. (29) is justified, esti-
ating the error introduced by approximating the relative velocity be-

ween fragments and target object as bin-wise constant. Two analytical
olutions of the integral of the function 𝛹 (𝜶) are then proposed.

.2.1. Effect of the modelling assumptions on accuracy
To justify the assumption of constant relative velocity over the

ins volume, the Taylor expansion of 𝑣rel around the bin centre is
onsidered:
(𝑘)
rel (𝜶) = 𝑣(𝑗𝑘)rel + 𝑱 (𝑗𝑘)

𝑣rel
𝜟𝜶 + 1

2
𝜟𝜶𝑇𝑯 (𝑗𝑘)

𝑣rel
𝜟𝜶 +… (32)

𝜟𝜶 = 𝜶 − 𝜶(𝑗)

where 𝑱 (𝑗𝑘)
𝑣rel

and 𝑯 (𝑗𝑘)
𝑣rel

are the Jacobian and the Hessian of the impact
elocity function 𝑣(𝑘)rel (𝜶), evaluated in the bins centre. From now on the
pexes, indicating the 𝑗th bin and the kth solution of intersection, are
mitted for the sake of simplicity. The Jacobian 𝑱 𝑣rel and Hessian 𝑯𝑣rel
ake the following form:

𝑣rel =
𝒗𝑇rel
𝑣rel

𝑱 𝒗 (33)

𝑯𝑣rel =
𝑱 𝑇
𝒗 𝑱 𝒗

𝑣rel
−

𝑱 𝑇
𝒗 𝒗rel𝒗

𝑇
rel𝑱 𝒗

𝑣3rel
+

𝒗𝑇rel
𝑣rel

𝑯𝒗 (34)

here 𝑱 𝒗 and 𝑯𝒗 are Jacobian and Hessian of the fragments velocity
ector function 𝒗(𝜶). Assuming that the step-sizes with which the den-
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ity distribution is discretised are small enough, the velocity difference
etween the bin centre and any point in the bin, 𝜟𝒗(𝜶), can be written
rom the second order expansion of 𝒗(𝜶) around the bin centre 𝜶(𝑗), as
ollows.

(𝜶) − 𝒗 = 𝜟𝒗(𝜶) ≈ 𝑱 𝒗𝜟𝜶 + 1
2
𝜟𝜶𝑇𝑯𝒗𝜟𝜶 (35)

Introducing Eqs. (33) and (34) into Eq. (32), it is possible to write:

𝑣rel(𝜶) ≈ 𝑣rel +
𝒗𝑇rel
𝑣rel

(

𝑱 𝒗𝜟𝜶 + 1
2
𝜟𝜶𝑇𝑯𝒗𝜟𝜶

)

+ 1
2
𝜟𝜶𝑇

(

𝑱 𝑇
𝒗 𝑱 𝒗

𝑣rel
−

𝑱 𝑇
𝒗 𝒗rel𝒗

𝑇
rel𝑱 𝒗

𝑣3rel

)

𝜟𝜶
(36)

The first bracket is identified as 𝜟𝒗 = 𝜟𝒗(𝜶) from Eq. (35). For the last
term, because it is already quadratic in 𝜟𝜶, the expansion in 𝒗(𝜶) is
runcated at the first order, i.e., the linear relation 𝜟𝒗 = 𝑱 𝒗𝜟𝜶 is used

to reach:

𝑣rel(𝜶) ≈ 𝑣rel +
𝒗𝑇rel𝜟𝒗
𝑣rel

+ 1
2
𝜟𝒗𝑇𝜟𝒗
𝑣rel

− 1
2
𝜟𝒗𝑇 𝒗rel𝒗𝑇rel𝜟𝒗

𝑣3rel
(37)

Identified as 𝜌 = 𝜌(𝜶) the angle between the vectors 𝒗rel and 𝜟𝒗(𝜶),
Eq. (37) can be rewritten as:

𝑣rel(𝜶) ≈ 𝑣rel + 𝛥𝑣 cos 𝜌 + 1
2
𝛥𝑣2

𝑣rel
sin2 𝜌 (38)

hus, the normalised error introduced by the approximation of Eq. (29)
an be expressed as follows.

rr.(𝜶) =
𝑣rel(𝜶) − 𝑣rel

𝑣rel

≈ 𝜉 cos 𝜌 + 1
2
𝜉2 sin2 𝜌

(39)

with:

𝜉(𝜶) = 𝛥𝑣(𝜶)
𝑣rel

(40)

ince the step-sizes are taken sufficiently small, the impact velocity 𝑣rel
s either greater or comparable to the difference in velocity between
he bin centre and any point belonging to the bin 𝛥𝑣(𝜶), for every bin
n the domain, or, equivalently:

(𝜶) ≲ 1 (41)

owever, it is worth recalling that the function 𝜉(𝜶) may approach
nity only in those bins (if any) where the relative velocity between
he target and the fragments is close to zero, i.e., when they move on
ery similar orbits in both shape and orientation. On the contrary, for
ny fragmentation scenario there exist many bins for which 𝜉(𝜶) ≪ 1,
s the fragments spread out in a considerably vast domain. Therefore,
onsidering that the impact rate is proportional to the impact velocity,
he error expressed in Eq. (39) is high only for those bins which provide
negligible contribution to the overall estimated impact rate. Finally,

ote that if 𝜉(𝜶) is smaller than unity, the following inequality for the
rror applies:

rr.(𝜶) < 𝜉(𝜶) (42)

his implies that the assumption of Eq. (29) only slightly affects the
ccuracy of the method.

.2.2. Semi-analytical computation of the impact rate
The function 𝛹 (𝜶), reported in Eq. (27), can be written as the

roduct among a constant, 𝑟3𝑇 , a function of semi-major axis and ec-
entricity, 𝑔̃(𝑎, 𝑒), and a function of inclination, ℎ̃(𝑖), whose expressions
re:

̃(𝑎, 𝑒) = 1

𝑎
√

2𝑎𝑟𝑇 − 𝑎2(1 − 𝑒2) − 𝑟2𝑇

̃ (𝑖) = 1
√

2 2

(43)
sin 𝑖 − sin 𝜙𝑇
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where 𝜙𝑇 is the target latitude. As a result, the integrals in semi-
major axis and eccentricity, 𝑎∕𝑒, and inclination, 𝑖, can be computed
separately. The integration in inclination is firstly addressed.

The primitive (𝑖) of the function ℎ̃(𝑖) reads as:

(𝑖) = ∫ ℎ̃(𝑖) d𝑖 =
1𝑗

sin𝜙𝑇
𝐹 (𝑖, 𝑚) (44)

= 1
sin2 𝜙𝑇

here 1𝑗 is the imaginary unit, and 𝐹 (𝑖, 𝑚) is the incomplete elliptic
integral of the first kind with modulus 𝑚 ≥ 1 ∀𝜙𝑇 , whose value is in
general complex, unless 𝑚 is unity. By applying the reciprocal modulus
transformation by Byrd and Friedman [34], the elliptic integral 𝐹 (𝑖, 𝑚)
can be written as sum of two elliptic integrals for which the solution is
always real, as follows.

𝐹 (𝑖, 𝑚) = sin𝜙𝑇

[

𝐾
( 1
𝑚

)

− 1𝑗 𝐹
(

𝜁 (𝑖), 1 − 1
𝑚

)

]

(45)

ith:

(𝑖) = arcsin

(√

𝑚 sin2 𝑖 − 1

sin 𝑖
√

𝑚 − 1

)

(46)

where 𝐾
(

1
𝑚

)

is the complete elliptic integral of the first kind. The eval-
uation the primitive (𝑖) between the two extremes of integration, 𝑖1
nd 𝑖2, provides the following expression for the integral in inclination
𝑖:

𝑖 = 𝐹
[

𝜁 (𝑖2), 1 − sin2 𝜙𝑇
]

− 𝐹
[

𝜁 (𝑖1), 1 − sin2 𝜙𝑇
]

(47)

As it can be observed, the imaginary part cancels out, as it multiplies
the complete elliptic integral 𝐾

(

1
𝑚

)

, which does not depend on incli-
ation by definition. Note also that the primitive (𝑖) has a singularity

when the following inequality applies:

sin 𝑖 < | sin𝜙𝑇 | (48)

his condition is a physical singularity, as when Eq. (48) is satisfied, the
ragments orbit cannot intersect the target one, for any combination
f (𝛺,𝜔,𝑀). Indeed, the maximum latitude magnitude reachable by
he fragments coincides with their orbital inclination. In general, the
wo extremes of integration in inclination, 𝑖1 and 𝑖2, can be obtained as
ollows.

𝑖1 = arcsin
[

max(sin 𝑖−, | sin𝜙𝑇 |)
]

𝑖2 = 𝜋 − arcsin
[

max(sin 𝑖+, | sin𝜙𝑇 |)
] (49)

here 𝑖− and 𝑖+ indicate the lower and upper inclination boundaries
or the considered bin.

The integral in semi-major axis and eccentricity 𝑎∕𝑒 is now consid-
red. The primitive (𝑎, 𝑒) of the function 𝑔̃(𝑎, 𝑒) reads as:

(𝑎, 𝑒) = ∬ 𝑔̃ d𝑎 d𝑒

= 1
𝑟𝑇

[

𝑒 arctan
(

𝑎(𝑎 − 𝑟𝑇 )𝑔̃(𝑎, 𝑒)
)

+
𝑎 − 𝑟𝑇

𝑎
ln
(

𝑎𝑒 + 1
𝑎𝑔̃(𝑎, 𝑒)

)

]

(50)

The integral in 𝑎∕𝑒 is obtained evaluating the primitive (𝑎, 𝑒) at the
wo extremes of integration in semi-major, 𝑎1 and 𝑎2, and eccentricity,
𝑒1 and 𝑒2, as follows.

𝑎∕𝑒 = (𝑎1, 𝑒1) − (𝑎1, 𝑒2) − (𝑎2, 𝑒1) + (𝑎2, 𝑒2) (51)

Again, singular cases follow combinations of semi-major axis and ec-
centricity which cannot provide intersection with the target orbit. This
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condition verifies when either the fragments orbit perigee is larger
than the target orbital radius 𝑟𝑇 or the apogee is smaller than it.
The fragments orbits leading to the singularity satisfy the following
inequality:

𝑒 <
|𝑎 − 𝑟𝑇 |

𝑎
(52)

Unfortunately, contrary to the case of inclination, the constraint of
intersection in semi-major axis and eccentricity divides all the bins
crossed by the function of Eq. (52) into two non-rectangular shaped
volumes. As a result, the primitive (𝑎, 𝑒) cannot be found analytically.
To address this problem, two alternatives were identified:

- Analytical integration in semi-major axis and eccentricity, 𝑎∕𝑒,
for the bins not crossed by the function of Eq. (52), and numerical
integration through sampling otherwise.

- Analytical integration through change of variables to perigee 𝑟𝑝
and apogee 𝑟𝑎 radii, 𝑟𝑝∕𝑟𝑎 , over the entire domain.

Note that the integration through sampling is computationally heavy
and less accurate. Therefore, since in principle the change of variable
does not add complexity to the model, the first option must be chosen
only if the primitive (𝑟𝑝, 𝑟𝑎) cannot be found. As demonstrated in the
ollowing, the primitive (𝑟𝑝, 𝑟𝑎) exists, even though it involves the
valuation of complex functions. This is the reason why the second
ption is preferred.

The change of variables 𝜏(𝑎, 𝑒), from semi-major axis 𝑎 and eccen-
ricity 𝑒 to perigee 𝑟𝑝 and apogee 𝑟𝑎 radii, reads as:

(𝑎, 𝑒) ∶=

{

𝑟𝑝 = 𝑎(1 − 𝑒)
𝑟𝑎 = 𝑎(1 + 𝑒)

(53)

To integrate in 𝑟𝑝 and 𝑟𝑎, the propagated characteristics need to be
interpolated in a grid defined in the new variables, to preserve the rect-
angular shape of the bins when crossed by the function of Eq. (52). Note
that the change of variables does not modify the integrand; indeed,
one should consider that the density transformation from Cartesian
to Keplerian elements of Eq. (20) applies when 𝜶 refers to both the
subset (𝑎, 𝑒, 𝑖) and (𝑟𝑝, 𝑟𝑎, 𝑖). This is the reason why the determinant of
the Jacobian of the transformation 𝜏(𝑎, 𝑒) must not be added to the
integration. The new integrand is simply obtained applying the change
of variables of Eq. (53) to the function 𝑔̃, which modifies as follows.

̃
(

𝜏−1(𝑟𝑝, 𝑟𝑎)
)

= 2

(𝑟𝑝 + 𝑟𝑎)
√

(𝑟𝑝 + 𝑟𝑎)𝑟𝑇 − 𝑟𝑝𝑟𝑎 − 𝑟2𝑇

(54)

The analytical integration of Eq. (54) is not straightforward. Fur-
thermore, the integral becomes improper when either the upper limit
of 𝑟𝑝 or the lower limit of 𝑟𝑎 coincide with 𝑟𝑇 , complicating even
its numerical integration. Both issues can be addressed with an ad-
ditional change of variables, reducing the integrand to the inverse
of a hyperbolic paraboloid. Different sets of integration variables can
be proposed, corresponding to different geometrical representations
of the paraboloid; while some preserve the shape of the integration
domain, others provide simpler expressions for the integrand. The
domain-preserving case is considered first, with the change of variables:

𝜏−1𝑋 (𝑟𝑝, 𝑟𝑎) ∶=

{

𝑟𝑝 = 𝑟𝑇 − 2𝑟𝑇𝑋2
𝑝

𝑟𝑎 = 𝑟𝑇 + 2𝑟𝑇𝑋2
𝑎

(55)

Each one of the new variables (𝑋𝑝, 𝑋𝑎) depends only on one of the
original variables (𝑟𝑝, 𝑟𝑎), preserving the rectangular shape of the inte-
gration domain and the independence of the integration limits. From
the physical bounds 𝑟𝑝 ∈ ]0, 𝑟𝑇 ] and 𝑟𝑎 ∈ [𝑟𝑇 ,∞[, it follows that
𝑋𝑝 ∈ [𝑋𝑝(𝑟𝑝2 ), 𝑋𝑝(𝑟𝑝1 )] ∈ [0, 1∕

√

2[ and 𝑋𝑎 ∈ [𝑋𝑎(𝑟𝑎1 ), 𝑋𝑎(𝑟𝑎2 )] ∈
0,∞[. Introducing this change of variables and the Jacobian of the
ransformation into Eq. (54), integrand 𝑔̃ takes the form:

̃
(

𝑋𝑝, 𝑋𝑎
)

= −8
2 2

(56)

1 +𝑋𝑎 −𝑋𝑝
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𝑔

The integrable singularity for 𝑟𝑝, 𝑟𝑎 = 𝑟𝑇 has vanished. There is still a
singularity for 1 +𝑋2

𝑎 −𝑋2
𝑝 = 0, but it falls out of the physical domain

of the problem. After some manipulations, an analytical primitive for
𝑔̃
(

𝑋𝑝, 𝑋𝑎
)

is obtained:

(𝑋𝑝, 𝑋𝑎) = 4
[

Li2
(

𝑋𝑐
)

+ Li2
(

𝑋𝑐

)

− Li2
(

−𝑋𝑐
)

− Li2
(

−𝑋𝑐

)]

= 8ℜ
[

Li2
(

𝑋𝑐
)

− Li2
(

−𝑋𝑐
)]

(57)

𝑋𝑐 = −
(

𝑋𝑎 −
√

1 +𝑋2
𝑎

)

(

𝑋𝑝 + 1𝑗
√

1 −𝑋2
𝑝

)

where 𝑧 denotes the complex conjugate of 𝑧, ℜ[𝑧] is the real part of 𝑧,
and Li2 (𝑧) is the dilogarithm, or Spence’s function [35]:

Li2 (𝑧) = −∫

𝑧

0

ln (1 − 𝑢)
𝑢

d𝑢 =
∞
∑

𝑘=1

𝑧𝑘

𝑘2
(58)

for complex 𝑧, where the series is convergent only for |𝑧| < 1. Note that
the number of dilogarithm evaluations in the last expression of Eq. (57)
has been halved using the relation Li2

(

𝑧
)

= Li2 (𝑧). The integral 𝑟𝑝∕𝑟𝑎
is finally obtained evaluating the primitive at the two extremes of
integration in (𝑋𝑝, 𝑋𝑎), function of the ones in (𝑟𝑝, 𝑟𝑎):

𝑟𝑝∕𝑟𝑎 = (𝑋𝑝1 , 𝑋𝑎1 ) − (𝑋𝑝1 , 𝑋𝑎2 ) − (𝑋𝑝2 , 𝑋𝑎1 ) + (𝑋𝑝2 , 𝑋𝑎2 ) (59)

which involves the computation of 8 dilogarithms of complex argu-
ment.

The presence of complex arguments in Eq. (57) is related to the
negative Gaussian curvature of the hyperbolic paraboloid, and cannot
be avoided. However, the numerical evaluation of dilogarithms is sig-
nificantly more costly for complex arguments than for real ones, so it is
convenient to reduce their presence. This is achieved with a new change
of variables that leverages the fact that the hyperbolic paraboloid in
Eq. (56) is a rectangular one:

𝜏−1𝑌 (𝑋𝑝, 𝑋𝑎) ∶=

{

𝑋𝑝 = 𝑌𝑦 − 𝑌𝑥
𝑋𝑎 = 𝑌𝑦 + 𝑌𝑥

(60)

leading to a simpler integrand:

̃
(

𝑌𝑥, 𝑌𝑦
)

= 16
1 + 4𝑌𝑥𝑌𝑦

(61)

This change of variables introduces a functional dependency between
the original variables, so the integration limits are no longer indepen-
dent. The new integration domain  is a parallelogram, bounded by
the lines for constant 𝑟𝑝, 𝑌

𝑝1,2
𝑦 , and the lines for constant 𝑟𝑎, 𝑌

𝑎1,2
𝑦 :

𝑌 𝑝1,2
𝑦 = 𝑋𝑝1,2 + 𝑌𝑥

𝑌 𝑎1,2
𝑦 = 𝑋𝑎1,2 − 𝑌𝑥

(62)

Fig. 5 shows a schematic of the domain. While the particular values of
𝑟𝑝1,2 and 𝑟𝑎1,2 will change for each bin, the relative position of the lines
is preserved. Moreover,  is always contained in the semi-infinite plane
𝑌𝑦 > |𝑌𝑥|.

Green’s Theorem is used to reduce the area integral over  to a line
integral along its boundary 𝜕:

𝑟𝑝∕𝑟𝑎 = ∬

16
1 + 4𝑌𝑥𝑌𝑦

d𝑌𝑥 d𝑌𝑦

= −4∮𝜕

ln(1 + 4𝑌𝑥𝑌𝑦)
𝑌𝑥

d𝑌𝑥

(63)

The line integral has to be evaluated over the 4 boundary segments in
counter-clockwise direction, substituting 𝑌𝑦 with the corresponding one
from Eq. (62). This reduces Eq. (63) to the integral of the logarithm of
a second degree polynomial of 𝑌𝑥, divided by 𝑌𝑥. Integration by parts
allows to reduce it again to dilogarithms, involving the roots of the
polynomial. For the constant 𝑟𝑝 boundaries, the polynomial roots are
complex conjugates and the primitive given as function of (𝑋𝑝, 𝑋𝑎) is:

𝑝(𝑋 ,𝑋 ) = 8ℜ
[

Li
((

𝑋 −𝑋
)(

𝑋 + 1𝑗
√

1 −𝑋2
))]

(64)
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𝑝1,2 𝑎 2 𝑝1,2 𝑎 𝑝1,2 𝑝1,2
Fig. 5. Integration domain in variables (𝑌𝑥 , 𝑌𝑦).

Table 1
SL-16 R/B slow-varying Keplerian elements on 13th October 2010.
𝑎 [km] 𝑒 [–] 𝑖 [deg] 𝛺 [deg] 𝜔 [deg]

7186 0.00090 98.31 315.59 256.72

while for the constant 𝑟𝑎 boundaries the polynomial roots are real and
the primitive is:

𝑎(𝑋𝑝, 𝑋𝑎1,2 ) = 4
[

Li2
((

𝑋𝑝 −𝑋𝑎1,2

)(

𝑋𝑎1,2 +
√

1 +𝑋2
𝑎1,2

))

+ Li2
((

𝑋𝑝 −𝑋𝑎1,2

)(

𝑋𝑎1,2 −
√

1 +𝑋2
𝑎1,2

)) ] (65)

Consequently, the new change of variables allows to limit the dilog-
arithms of complex arguments to half of the primitive evaluations.
The integral 𝑟𝑝∕𝑟𝑎 is obtained evaluating over 𝜕 in counter-clockwise
direction:

𝑟𝑝∕𝑟𝑎 =
[

𝑝(𝑋𝑝2 , 𝑋𝑎2 ) − 𝑝(𝑋𝑝2 , 𝑋𝑎1 )
]

+
[

𝑎(𝑋𝑝1 , 𝑋𝑎2 ) − 𝑎(𝑋𝑝2 , 𝑋𝑎2 )
]

+
[

𝑝(𝑋𝑝1 , 𝑋𝑎1 ) − 𝑝(𝑋𝑝1 , 𝑋𝑎2 )
]

+
[

𝑎(𝑋𝑝2 , 𝑋𝑎1 ) − 𝑎(𝑋𝑝1 , 𝑋𝑎1 )
]

(66)

involving 4 dilogarithms of complex argument and 8 of real argument,
compared to the 8 dilogarithms of complex argument for Eq. (59).

4. Evaluation of the effects of occurred breakup events

This section is devoted to the application of the model presented
in Section 2 and Section 3 to the evaluation of the hazard caused by
two occurred fragmentation events. The first is the breakup of the US
payload (P/L) NOAA-16 in Sun-Synchronous Orbit (SSO), happened at
09:50 GMT on 25th November 2015. The second is the fragmentation
of the Russian rocket body (R/B) AMC 14 BRIZ-M on a highly elliptical
orbit, which took place at 05:53 GMT on 13th October 2010. The effect
of the fragmentation clouds is monitored in terms of impact rate and
collision probability with the rocket body SL-16 in SSO, which appears
in the list of 50 statistically-most-concerning derelict objects in LEO
proposed by McKnight et al. [36]. For the analyses related to the first
fragmentation event, the target object is assumed to follow a Keplerian
motion, i.e., its orbit is considered fixed in time. Concerning the second
breakup, the effect of the associated cloud of fragments on the target
orbit is studied both for the cases of Keplerian or naturally evolving
target orbit. The considered target slow-varying Keplerian elements are
reported in Table 1. They are related to the osculating orbit of the SL-16
R/B at the epoch of the AMC 14 BRIZ-M breakup. The cross-sectional
area of the target object is set to 45 m2.

For both the fragmentation events, the density distribution at
breakup epoch is firstly depicted and commented. The evolution of the
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Table 2
NOAA-16 P/L Keplerian elements at fragmentation epoch.
𝑎 [km] 𝑒 [–] 𝑖 [deg] 𝛺 [deg] 𝜔 [deg] 𝑓 [deg]

7226 0.00113 98.93 35.00 133.56 24.88

fragments cloud is analysed, showing the distributions at some time
epochs, and the main effects of the orbital perturbations are discussed.
For an easier interpretation of the dynamical evolution of the clouds,
the fragments’ density is depicted as function of the Keplerian elements.
For the evaluation of the impact rate, the interpolation in perigee and
apogee radii of the set of propagated characteristics is considered,
according to the theoretical derivation presented in Section 3.2.2. The
collision probability with the target object is computed under different
assumptions on the cloud and target dynamics, eventually considering
the complete description of the cloud in the phase space of slow-varying
orbital elements and the target orbit evolution.

4.1. Effects of the NOAA-16 fragmentation in sun-synchronous orbit

This event was the second known breakup of a NOAA-series space-
craft. The payload was launched on 21st September 2000, as part of
the Polar Operational Environmental Satellite series of U.S. weather
satellites, and operated until 2005. The fragmentation was most likely
caused by a battery explosion [37]. The spacecraft breakup generated
a considerable number of fragments, 458 of which were sufficiently
large to be tracked and catalogued by the Joint Space Operations
Center [38]. The satellite had a mass of 1475 kg and was orbiting in a
Sun-synchronous orbit. The fragmentation coordinates are reported in
Table 2.

4.1.1. NOAA-16 fragments cloud evolution
The simulation here proposed considers fragments in the range 1 cm

- 1 m. The number of generated fragments predicted by the NASA SBM,
in case of an explosion, depends on the parameter 𝑆, as defined in [39].
Its value is set according to the expression reported in [40], where the
parameter 𝑆 is related to the object mass 𝑀𝑃 as follows.

𝑆 =

{

𝑘 𝑀𝑃 [kg]
10000 [kg] if 𝑘𝑀𝑃 < 10000 kg

1 if 𝑘𝑀𝑃 ≥ 10000 kg
(67)

with 𝑘 = 1 for payloads and 𝑘 = 9 for rocket bodies. Thus, for NOAA-
16 P/L, the parameter 𝑆 is set to 0.1475, which results in 1401 ejected
fragments larger than 1 cm. Note that the simulated debris population
is considerably larger than the tracked one as it also accounts for
fragments with sizes that are unlikely to be observed from the ground
with current technology.

Fig. 6 shows the initial density distribution in the subset of Kep-
lerian elements (𝑎, 𝑒, 𝑖, 𝛺) and area-to-mass ratio 𝐴∕𝑀 . Randomisation
of the cloud over argument of periapsis 𝜔 and mean anomaly 𝑀 is
assumed. The randomisation over 𝜔 is considered because of the small
eccentricity of the parent orbit, which causes the fragments to spread
almost uniformly over a range of 360 degrees in 𝜔. On the other hand,
the fast angular variable 𝑀 is not accounted as interpolation variable,
as the objective of this analysis is the estimation of the long-term
behaviour of the debris cloud. Indeed, the difference in the fragments
orbital period induces the formation of a toroid around the Earth after
few orbital revolutions [31]. In Fig. 6, as well as in all the density
distribution maps presented in the remainder of the paper, 𝑁 represents
the number of fragments in a bin with the specified coordinates.

As it can be observed, the cloud assumes the typical V-shape dis-
tribution of a LEO fragmentation in the semi-major axis-eccentricity
domain. This peculiar shape is caused by the small eccentricity of the
parent orbit, which bounds the fragments distribution above the curve:

𝑒 =
|𝑎 − 𝑟𝑃 | (68)
793

𝑎

Fig. 6. NOAA-16 P/L fragmentation - Density distribution in (𝑎, 𝑒, 𝑖, 𝛺,𝐴∕𝑀) at
fragmentation epoch.

with 𝑟𝑃 orbital radius of the parent object. The curve of Eq. (68)
constrains the fragments perigee and apogee to be smaller and larger
than 𝑟𝑃 , respectively. The ejected fragments distribute over a range
of approximately 6 degrees in inclination and 2.5 degrees in right
ascension of the ascending node. The amplitude of the cloud in 𝑖
and 𝛺, for the case of a circular parent orbit, only depends on the
latitude of the fragmentation point, with the two elements behaving
in opposite ways. In particular, the closer the fragmentation occurs
to the equatorial plane, the more widely the fragments spread over
inclination and the narrower is the cloud domain in right ascension of
the ascending node. The opposite effect results from a fragmentation
near the poles. Note that in the limit cases of a fragmentation on the
equatorial plane and over the poles, all the ejected fragments would
share the same right ascension of the ascending node and inclination,
respectively.

The debris density is propagated along 20 000 characteristics curves,
whose initial conditions are uniformly extracted from the initial distri-
bution of Fig. 6. The considered force model accounts for atmospheric
drag, J2 perturbation, solar radiation pressure and luni-solar perturba-
tion. The 5D density distributions are retrieved according to a 1-month
time discretisation, allowing to monitor both the short- and long-term
dynamical behaviour of the cloud. In Fig. 7 the fragments distribution
2 months, 1 year, 5 and 15 years after fragmentation is depicted.

By looking at Fig. 7 the following considerations can be done:

- The fragments residing in the left leg of the V-shape distribution
quickly re-enter the atmosphere, under the effect of a higher
atmospheric density.

- As expected, the high area-to-mass ratio fragments are the most
affected by atmospheric drag. As a result, the upper part of the
distribution in 𝐴∕𝑀 vanishes after 15 years.

- A complete randomisation over right ascension of the ascending
node is not achieved even after 15 years of propagation, as some
high-density regions stand out over the distribution in 𝛺. It is
worth further noticing that after 1 year the fragments with the
highest rate of change in 𝛺 have not yet reached the slowest ones.
This proves the need of characterising the fragments density in
right ascension of the ascending node.

- The inclination of the fragments is barely affected by solar radi-
ation pressure and luni-solar perturbation, because of the limited
force exerted by the two disturbances below 1000 km altitude,
where most of the fragments are found.

4.1.2. Collision risk from a 1D fragments cloud in orbital radius
The impact rate is computed averaging the fragments flux against

the target cross-sectional area, over the target mean anomaly, according
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Fig. 7. NOAA-16 P/L fragmentation - Density distribution in (𝑎, 𝑒, 𝑖, 𝛺, 𝐴∕𝑀) over time.
to Eq. (17). The 1D spatial density function 𝑛𝒓 is retrieved from the 4D
distribution in Keplerian elements through the Keplerian to Cartesian
coordinates transformation, and it varies discretely with orbital radius
𝑟, as a result of a 1D interpolation through binning with step-size
𝛿𝑟 = 50 km. Following the approach proposed in [20], to compute the
average impact velocity of Eq. (8), the fragments orbits are assumed to
have the same inclination as the parent one. As a result, the average
impact velocity 𝑣rel, as well as its product with the latitude-dependent
function 𝛽, remain constant over time, as they do not depend on the
evolution of the fragments distribution. Therefore, the average impact
velocity is only responsible for the impact rate magnitude, while its
trend over time 𝑡 is only dependent on the evolution of the spatial
density function, evaluated at the target orbital radius 𝑟𝑇 , 𝑛𝒓(𝑡, 𝑟𝑇 ).
Fig. 8(a) shows the impact velocity as function of the target argument
of latitude 𝑢𝑇 . Figs. 8(b) and 8(c) depict the associated values of
difference in right ascension of the ascending node 𝛥𝛺 and angle
between fragments and target velocity vectors 𝛿, computed through
Eq. (5) and (7), respectively. The subscripts (⋅)1 and (⋅)2 identify the
two possible solutions of intersection. Note that the incorrect solutions,
which result from considering 𝛥𝛺 and 𝑀𝑇 as linearly related [20],
corresponding to Eq. (6), are also displayed with the red dashed line.

As it can be inferred, the different approach between the model
in [20] and the newly proposed method dramatically changes the
resulting profile of the impact velocity. It is worth noticing that, for
a narrow range of values of the target argument of latitude 𝑢𝑇 , no
solution is found. Indeed, since the target covers a wider range in
latitude, because of its lower inclination with respect to the parent
orbit, there exist values of 𝑢 for which the target latitude is greater
794

𝑇

than the fragments one, for any value of the fragments argument of
latitude 𝑢. As a result, no intersection is geometrically possible. Fig. 9
depicts the evolution of the spatial density function over time, as
function of altitude ℎ and latitude 𝜙.

Combining the results of Figs. 9 and 8(a), the profile of the impact
rate can be obtained and, as a consequence, the estimated collision
probability, according to the Poisson distribution of Eq. (2). The two
profiles as function of time are shown in Fig. 10.

As it can be noted, the decrease of the impact rate over time comes
as a consequence of the lowering of the spatial density function at
𝑟 = 𝑟𝑇 , caused by the effect of atmospheric drag.

4.1.3. Collision risk from a 3D fragments cloud in 𝑟𝑝, 𝑟𝑎, i
The propagated characteristics are here interpolated in the 3D phase

space (𝑟𝑝, 𝑟𝑎, 𝑖), according to the following step-sizes: 𝛿𝑟𝑝 = 𝛿𝑟𝑎 = 50
km, 𝛿𝑖 = 0.25 deg. Hence, the density distribution is randomised
over right ascension of the ascending node. As a result, the associated
spatial density function is constant over longitude 𝜆. Nevertheless, two
main improvements are added with respect to the solution proposed in
Section 4.1.2, namely:

- The characterisation of the fragments in inclination allows the
accurate estimation of the spatial distribution over latitude 𝜙.

- From the distribution of the fragments in the independent orbital
elements (𝑟𝑝, 𝑟𝑎, 𝑖), the impact velocity can be computed as a
discrete function of both phase space and time. As demonstrated
in Section 3.2.1, if the grid is fine enough, the accuracy of the
model is guaranteed.
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Fig. 8. NOAA-16 P/L fragmentation - Impact velocity 𝑣rel, difference in right ascension of the ascending node 𝛥𝛺, and angle between fragments and target velocity vectors 𝛿 as
function of the target argument of latitude.
Fig. 9. NOAA-16 P/L fragmentation - Spatial density as function of altitude, latitude, and time.
Fig. 10. NOAA-16 P/L fragmentation - Impact rate and collision probability with SL-16
R/B over time from the 1D spatial density function.

The validity of this second point for the considered discretisation is
here verified. As derived in Section 3.2.1, the accuracy degradation
introduced by the assumption of bin-wise constant impact velocity
795
is proportional to the ratio 𝜉 = 𝛥𝑣∕𝑣rel, with 𝛥𝑣 velocity difference
between the bin centre and a generic point in the bin, and 𝑣rel relative
velocity with the target object measured at the bin centre. Fig. 11 shows
the maximum percentage value of 𝜉, 𝜉max

% , within rectangular-shaped
volumes with dimensions equal to the step-sizes 𝛿𝑟𝑝, 𝛿𝑟𝑎 and 𝛿𝑖, as
function of their location in the (𝑟𝑝, 𝑟𝑎) domain occupied by the evolving
fragments cloud that guarantees intersection with the target object. The
inclination is set equal to the one of the parent orbit, 𝑖𝑃 , as its value
has minimal effect on the results. Note that, for every point, only the
three independent orbital elements 𝜶 ∶= (𝑟𝑝, 𝑟𝑎, 𝑖) are specified, while
the remaining three elements 𝜷 ∶= (𝛺,𝜔, 𝑓 ) are retrieved by imposing
intersection with the target object. This procedure is possible if a fixed
target object position, 𝒓𝑇 , is considered. For the results of Fig. 11, the
target object is assumed to be located at the ascending node. As it
can be inferred, the error introduced by the considered assumption is
negligible.

Fig. 12 shows the effect of the improvements with respect to the 1D
formulation. In particular, Fig. 12(a) displays the normalised cumula-
tive distribution of fragments at fragmentation epoch as function of the
latitude 𝜙, CDF𝜙, resulting from the different modelling of the debris
cloud. It is computed as follows.

CDF𝜙 = 1 𝜙 2𝜋 ∞
𝑛𝒓 d𝑟 d𝜆 d𝜙 (69)
𝑁 ∫−𝜋∕2 ∫0 ∫𝑅𝐸
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Fig. 11. NOAA-16 P/L fragmentation - Maximum percentage ratio 𝜉 as function of the
bin coordinates in the perigee radius-apogee radius domain. In the figure, 𝑅𝐸 is the
Earth mean radius.

with 𝑁 total number of fragments and 𝑅𝐸 Earth mean radius. Note that
the dashed red line is the percentage error of the 1D formulation with
respect to the 3D model, computed according to the following relation:

Err
CDF𝜙
% = 100 ⋅ (CDF3D𝜙 − CDF1D𝜙 ) (70)

As it can be observed, the 1D formulation underestimates the num-
ber of fragments at high latitudes; this result is expected, as all the
fragments are assumed to share the same inclination as the parent one,
which constrains them to distribute over the following range in latitude:

{

𝛥𝜙 = [−𝑖, 𝑖] if 𝑖 ≤ 𝜋
2

𝛥𝜙 = [𝑖 − 𝜋, 𝜋 − 𝑖] if 𝑖 > 𝜋
2

(71)

On the contrary, as part of the fragments are actually injected on orbits
with lower inclination with respect to the parent one (Fig. 6), the 3D
distribution covers a wider range in latitude. As a result, since the total
integral of the density is preserved between the two formulations, the
1D model overestimates the number of fragments at low latitudes.

Instead, Fig. 12(b) shows a comparison in terms of estimated aver-
age impact velocity as function of the target argument of latitude 𝑢𝑇 . As
it can be noted, the characterisation of the fragments over inclination
allows the debris cloud to potentially impact the target, for any value
of 𝑢𝑇 . It is also worth observing that the 3D model estimates an average
impact velocity higher than the 1D model, for any target position along
its orbit. The error on the relative velocity, represented by the red
dashed line on the plot, is monitored through the following relation:

Err𝑣rel% = 100 ⋅
𝑣3Drel − 𝑣1Drel

max𝑢𝑇
(

𝑣3Drel
)

(72)

The impact rate is here computed directly from the density in
orbital elements, according to Eq. (29). Note that, as the distribution is
randomised over the angles (𝛺,𝜔,𝑀), the density value is dependent on
the subset of orbital elements 𝜶 only; hence, the phase space density
𝑛𝜶,𝜷 can be taken outside of the inner summation. Fig. 13 shows the
impact rate and the probability of collision as function of time.

As it can be observed, the cumulative collision probability after
15 years is lower than the one predicted by the 1D model reported
in Fig. 10. Again, the result was expected; indeed, the 3D formulation
estimates a higher number of fragments at high latitudes, where the
average impact velocity is low (the minima of the impact velocity 𝑣rel
are monitored at 𝑢𝑇 equal to either 90 deg or 270 deg). On the contrary,
the high impact velocity region is occupied by a lower concentration
of fragments with respect to the 1D model. As the impact rate comes
as a combined effect of impact velocity and debris density, an overall
lower probability of collision is estimated.
796
To further validate the model, the impact rate and collision proba-
bility profiles of Fig. 13 are computed through the well-known impact
estimation method proposed by Kessler [10]. According to this theory,
the impact rate 𝜂̇𝑗 between a spacecraft with orbital radius 𝑟𝑇 , longitude
𝜆𝑇 , and latitude 𝜙𝑇 at a given time 𝑡 and an orbiting object with fixed
semi-major axis 𝑎, eccentricity 𝑒 and inclination 𝑖, and equally probable
longitude of the node and argument of periapsis, is found as [10]:

𝜂̇𝑗 = 𝑣rel𝜎 𝑛𝒓(𝑟𝑇 , 𝜆𝑇 , 𝜙𝑇 )

=
𝑣rel𝜎

4𝜋3𝑟𝑇 𝑎2
√

𝑒2 −
(

𝑟𝑇
𝑎 − 1

)2√

sin2 𝑖 − sin2 𝜙𝑇

(73)

where 𝑣rel is the average velocity of the four solutions of intersection
of Eq. (25), and 𝜎 is the collision cross-sectional area, which is here
assumed to coincide with the target object one, 𝐴𝑐 . To estimate the
collision risk posed by the debris cloud, the 3D fragments distribution
is sampled and the overall impact rate is computed by summing up the
contribution of each fragment according to Eq. (73), i.e.:

𝜂̇ =
∑

𝑗
𝜂̇𝑗 (74)

Finally note that Eq. (73) provides an estimate of the impact rate for
a fixed position of the target object. Therefore, the average impact
rate with the object over a complete revolution around the Earth is
computed through Eq. (18). Fig. 14 shows a comparison of both impact
rate and collision probability profiles obtained from the 1D distribution
in orbital radius 𝑟, 3D distribution in (𝑟𝑝, 𝑟𝑎, 𝑖) and samples-based Kessler
formulation. For this latter case, a population of 100000 samples is
extracted from the 3D distribution. It can be inferred how the results
obtained with the Kessler formulation show a similar trend to the 3D
density-based model.

4.1.4. Collision risk from a 4D fragments cloud in orbital elements 𝑟𝑝, 𝑟𝑎,
i, 𝛺

The collision probability is finally computed accounting for the de-
bris distribution over right ascension of the ascending node 𝛺, further
discretising the fragments density of Section 4.1.3 in 𝛺 according to
a step-size 𝛿𝛺 = 15 deg. This means that, for a given subset of orbital
elements 𝜶 and fixed target position 𝒓𝑇 , there exist two possible density
values 𝑛𝜶,𝜷 associated to the orbits with right ascension 𝛺1, 𝛺2 of
Eq. (25), guaranteeing intersection. As a result, the cloud evolution
in 𝛺 is expected to massively impact on the profile of the impact
rate. Note that the characterisation of the debris cloud over right
ascension of the ascending node implies that the fragments are no
longer uniformly spread in longitude 𝜆. Fig. 15 depicts the impact rate
and the probability of collision with rocket body SL-16 as function of
time.

As it can be observed, the profile of the impact rate has dramatically
changed. It is now characterised by an oscillatory behaviour over
time with a characteristic period of roughly 1 year, whose amplitude
decreases over time. The reason for these oscillations can be under-
stood by looking at the evolution of the spatial density as function
of longitude 𝜆 and latitude 𝜙 over time, relative to the fixed target
orbit, reported in Fig. 16. Note that the distributions refer to the epochs
𝑡0,… , 𝑡5 highlighted in Fig. 15.

The randomisation process over right ascension of the ascending
node is clearly observable. Note that at epoch 𝑡2 a unique high-
density region still stands out from the fragments distribution. After
the 15 years propagation, even though the distribution is more uniform
over longitude, some high-density orbits can be still distinguished. The
maxima in the impact rate profile (epochs 𝑡2 and 𝑡3) verify when the
most crowded orbits have a shift of 180 deg in right ascension of the
ascending node 𝛺 with respect to the target. Instead, when they share
the same 𝛺 as the target (epochs 𝑡1 and 𝑡4) a minimum is found in
the impact rate evolution. Note that the maxima (and minima) occur
every 1 year because, since the fragments move on a quasi-SSO orbit,
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Fig. 12. NOAA-16 P/L fragmentation - Comparison between 1D and 3D formulations.
Fig. 13. NOAA-16 P/L fragmentation - Impact rate and collision probability with SL-16
R/B over time from the 3D phase space density function.

Fig. 14. NOAA-16 P/L fragmentation - Impact rate and collision probability with SL-16
R/B over time from the 1D spatial density function, 3D phase space density function
and samples-based Kessler formulation.
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Fig. 15. NOAA-16 P/L fragmentation - Impact rate and collision probability with SL-16
R/B over time from the 4D phase space density function.

Table 3
AMC 14 BRIZ-M R/B Keplerian elements at fragmentation epoch.
𝑎 [km] 𝑒 [–] 𝑖 [deg] 𝛺 [deg] 𝜔 [deg] 𝑓 [deg]

19981 0.64859 48.94 195.24 287.15 31.97

the rate of change 𝛺̇ is roughly 360 deg/year. The decrease in the
amplitude of oscillation is a consequence of the randomisation over
right ascension of the ascending node, which causes the target to move
over an increasingly evenly distributed debris cloud in longitude.

4.2. Effects of the AMC 14 BRIZ-m fragmentation in highly elliptical orbit

The fragmentation event occurred 31 months after launch, when
the rocket body was orbiting on a highly elliptical orbit [38]. The
cause was identified in a malfunction of the propulsion system. The
Space Surveillance Network (SSN) catalogued 116 large fragments,
even though they were supposed to be many more [38]. Indeed, the
parent orbit perigee was located in the southern hemisphere, out of
the SSN coverage, which made the tracking of the ejected fragments
difficult. The Keplerian elements of the rocket body at fragmentation
epoch are reported in Table 3. The object had a mass of 2510 kg [38].
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Fig. 16. NOAA-16 P/L fragmentation - Spatial density as function of longitude 𝜆 and latitude 𝜙 over time.
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Fig. 17. AMC 14 BRIZ-M R/B fragmentation - Density distribution in (𝑎, 𝑒, 𝑖, 𝛺, 𝜔,𝐴∕𝑀)
at fragmentation epoch.

4.2.1. AMC 14 BRIZ-M fragments cloud evolution
As for the previous fragmentation scenario, fragments in the range

1 cm - 1 m are considered. According to the object mass and type,
the explosion results in 9503 ejected fragments [39]. Fig. 17 shows
the initial density distribution in the phase space of slow-varying
Keplerian elements (𝑎, 𝑒, 𝑖, 𝛺, 𝜔) and area-to-mass ratio 𝐴∕𝑀 . As always,
the debris cloud is assumed to be randomised over mean anomaly.

As it can be observed, the cloud covers a much wider range in semi-
major axis and eccentricity; indeed, the higher is the parent specific
orbital energy, the easier it is to modify the orbit shape. Instead,
the fragments occupy a tiny domain over both right ascension of
the ascending node and argument of periapsis. Fig. 18 depicts the
fragments distribution 2 months, 1 year, 5 and 15 years after frag-
mentation, resulting from the propagation of the debris density along
20 000 characteristic lines. The same force model as in Section 4.1.1 is
considered.

It is worth underlining the following differences with respect to the
fragmentation scenario described in Section 4.1:

- The debris cloud is far from being randomised over right ascen-
sion of the ascending node 𝛺 and argument of periapsis 𝜔, even
after 15 years of propagation. On the contrary, in the (𝛺,𝜔) phase
space, the fragments distribute over a diagonal line, which gets
thicker and thicker as time passes. As demonstrated in [24], the
angular coefficient of this line-like distribution can be approxi-
mated as the ratio between the long-term rate of change 𝛺̇ and
𝜔̇, caused by the 𝐽2 perturbation.

- Third-body perturbation and solar radiation pressure notably af-
fect the cloud evolution in eccentricity and inclination.

- Despite the low-altitude of the parent orbit perigee, only a small
fraction of the debris cloud is considerably affected by atmo-
spheric drag. As a result, only the fragments with the highest
area-to-mass ratio re-enter the atmosphere over the 15 years
propagation time.

4.2.2. Collision risk from a 5D fragments cloud in orbital elements 𝑟𝑝, 𝑟𝑎,
i, 𝛺, 𝜔

The collision probability is here computed considering the debris
distribution over the slow-varying orbital elements (𝑟𝑝, 𝑟𝑎, 𝑖, 𝛺, 𝜔), dis-
cretised according to the following step-sizes: 𝛿𝑟𝑝 = 50 km, 𝛿𝑟𝑎 = 500
km, 𝛿𝑖 = 0.25 deg, 𝛿𝛺 = 𝛿𝜔 = 5 deg. As a result, the summation of
Eq. (29) is carried out over the four possible intersecting orbits, accord-
ing to the two values of right ascension of the ascending node 𝛺1 and
𝛺2, and to the four values of argument of periapsis 𝜔1,… , 𝜔4. Following
the same approach of Section 4.1.3, the validity of the assumption of
bin-wise constant impact velocity is verified also in this second analysis.
799
Fig. 19 depicts the behaviour of the maximum percentage value of the
ratio 𝜉, 𝜉max

% , as function of perigee and apogee radii, over the domain
occupied by the fragmentation cloud generated from the explosion of
AMC 14 BRIZ-M R/B and providing intersection with the target object.
As it can be observed, despite a slightly higher inaccuracy, confined in
two narrow areas, due to the coarser discretisation in apogee radius 𝑟𝑎,
𝛿𝑟𝑎, the validity of the considered approximation is confirmed.

The profiles of the impact rate and collision probability over time
are reported in Fig. 20. Again, for a better comprehension of the results,
the spatial density function at the epochs highlighted in Fig. 20 is also
shown in Fig. 21.

As it can be noticed, the impact rate, after a narrow peak within
the first year of cloud evolution, is almost null for a period of approxi-
mately 4 years. Indeed, note that the fragments inclination guarantees
a considerably smaller coverage over latitude compared to the case
of NOAA-16 P/L breakup. Thus, the intersection with the target is
possible for a limited range of longitude values 𝜆 ∈ 𝜆. In addition, the
fragments move on highly eccentric orbits and the cloud is randomised
neither in longitude of the nodes nor in argument of periapsis, which
means that only a small part of the distribution is in the altitude range
covered by the target. In order for the fragments to possibly impact the
target, the following condition must verify:

∃𝜆 ∈ 𝜆 ∶ 𝑛𝒓(𝑟𝑇 , 𝜆) ≠ 0 (75)

At time 𝑡2, the debris cloud is at the target altitude for 𝜆 ∈ [30, 110] deg.
However, for such values of longitude, the target latitude is outside the
range covered by the cloud. As a result, no intersection is geometrically
possible. In other words, the zero-impact rate period of Fig. 20 coin-
cides with the time needed for the main bulk of fragments to reacquire
an orbital plane and orientation capable of providing intersection with
the target orbit. Note that, as time passes, even though the high-
density orbits can be still distinguished in the spatial distribution over
altitude ℎ and longitude 𝜆, the cloud covers a wider and wider range
of longitude values, at the target altitude, eventually spreading over
the entire domain of 360 deg. When this condition verifies, a non-null
impact rate is always obtained. Note that, because of the very slow ran-
domisation process, if the propagation time were increased, the profile
of the impact rate would be characterised by notable oscillations, which
would be attenuated in a much longer period of time compared to the
case of Fig. 15.

4.2.3. Collision risk with a naturally evolving target
As a last analysis, the natural evolution of the target orbit is also

taken into account in the assessment of the collision risk with the debris
cloud. Note that this additional feature is of crucial importance; indeed,
one should consider that the objects causing the highest hazard for the
proliferation of space debris are uncontrolled derelicts as rocket bodies
or mission related objects [36], which naturally evolve under the effect
of orbital perturbations.

The Keplerian elements of the target object SL-16 R/B are propa-
gated under the same dynamical model adopted for the debris cloud.
The average impact rates and collision probabilities, computed every 1
month, are evaluated considering the target Keplerian elements prop-
agated at the same time epoch. Fig. 22 shows the resulting profiles of
impact rate and collision probability with SL-16 R/B.

Even though the profile of the impact rate is now the result of the
relative evolution of debris cloud and target orbit, it can be immedi-
ately inferred that the precession of the target orbit node is driving
the profile; indeed, the peaks in the impact rate are found with an
approximately 6-months repetition, which coincides with half revolu-
tion of the node for a Sun-synchronous orbit. Note that the profile is
characterised by several zero-impact rate periods, which are found until
the cloud covers the 360 deg range in longitude, at the target altitude,
as explained in Section 4.2.2. As the fragments get more spread over
right ascension of the ascending node and argument of periapsis, the
oscillations reduce in amplitude.
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Fig. 18. AMC 14 BRIZ-M R/B fragmentation - Density distribution in (𝑎, 𝑒, 𝑖, 𝛺, 𝜔,𝐴∕𝑀) over time.
Fig. 19. AMC 14 BRIZ-M R/B fragmentation - Maximum percentage ratio 𝜉 as function
of the bin coordinates in the perigee radius-apogee radius domain.

5. Conclusions

The evaluation of the collision risk posed by fragmentation clouds,
evolving under any complex dynamics, is a delicate task. Historically,
this objective was achieved via semi-deterministic approaches, which
suffer of a high computational cost when centimetre- or millimetre-
sized particles are modelled. On the other hand, the more efficient
probabilistic methods demanded the introduction of simplifying as-
sumptions on the orbital dynamics and impact geometry between frag-
ments and target satellite. This paper proposed a new density-based
800
Fig. 20. AMC 14 BRIZ-M R/B fragmentation - Impact rate and collision probability
with SL-16 R/B over time from the 5D phase space density function.

formulation for an efficient and accurate estimation of the collision
hazard caused by a debris cloud, described through a multi-dimensional
phase space density function in orbital elements. The probabilistic
debris cloud propagation model, derived in a previous work by the
authors, was adopted to compute the evolution of the fragments density
over time. The resulting phase space density function, which discretely
varies over both space and time, was provided as input to the collision
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Fig. 21. AMC 14 BRIZ-M R/B fragmentation - Spatial density as function of altitude ℎ, longitude 𝜆 and latitude 𝜙 over time.
risk model. This part was the core of the paper. A novel approach for
the estimation of the impact rate with a target satellite was presented
here. It analytically transforms the six-dimensional phase space density
function into the three-dimensional spatial density function, needed
for the evaluation of the flux of fragments over the target area. The
impact velocity was approximated as bin-wise constant, as it was
801
mathematically demonstrated to only slightly affect the accuracy of the
method. The resulting analytical formulation guarantees flexibility to
the modelling of any impact geometry in any arbitrarily complex orbital
regime, as well as greater efficiency with respect to semi-deterministic
approaches. The model was applied to the evaluation of the collision
risk posed by occurred fragmentation events on an uncontrolled rocket
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Fig. 22. AMC 14 BRIZ-M R/B fragmentation - Impact rate and collision probability
with SL-16 R/B over time from the 5D phase space density function. Target orbit
evolution included.

body. The additional dynamical features, which the model is able to
characterise with respect to previous probabilistic formulations, were
consecutively included and discussed.
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