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Abstract

A numerical tool is implemented to address the design of reticulated shells through
funicular analysis. As discussed in the literature, the force density method can be
conveniently implemented to cope with the equilibrium of funicular networks, using
independent sets of branches in the case of grids having fixed plan projection. In this
contribution, optimal networks are sought not only in terms of an independent set
of force densities, but also in the vertical coordinates of the restrained nodes. Con-
straints are enforced on the coordinates of the nodes, to prescribe a feasible design
domain, and on the geometry of the members, to control their length and inclination
with respect to a given reference direction. Due to its peculiar form, the arising multi-
constrained problem can be efficiently solved through techniques of sequential convex
programming that were originally conceived to handle formulations of size optimiza-
tion for elastic structures. Networks that are fully feasible with respect to the enforced
local constraints are retrieved in a limited number of iterations, with no need to initial-
ize the procedure with a feasible starting guess. The same algorithm applies to general
networks with any type of geometry and restraints.
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1 Introduction

Reticulated shells take their strength from their double curvature, while consisting of
members that mainly undergo axial forces [1, 2]. Funicular analysis is extensively
adopted to deal with the design of arcuated structures, see e.g. [3, 4]. Following this
approach, spatial structures such as three-dimensional trusses and reticulated shells
can be modelled as statically indeterminate networks of vertices and edges of pre-
scribed topology. Boundary supports are given at the restrained nodes of the network,
where reactions may arise; unrestrained ones are in equilibrium with the applied ver-
tical and horizontal loads. The equations governing the equilibrium of the nodes can
be conveniently written in terms of the horizontal reaction, see in particular [5], or
in terms of the force densities, i.e. the ratio of force to length in each branch of the
network [6]. As investigated in the literature, independent sets of branches can be de-
tected for networks with fixed plan geometry, see in particular [7]. However, enforcing
a prescribed range of heights for the nodes is not a trivial task from a numerical point
of view. To this goal a numerical tool has been presented in [8], implementing a
multi-constrained minimization problem. Both the independent force densities and
the vertical coordinates of the restrained nodes were used as unknowns, whereas suit-
able norms of the horizontal thrusts, i.e. the horizontal components at the restrained
nodes, were adopted as objective function. Due to its peculiar form, this problem
can be efficiently solved through techniques of sequential convex programming that
were originally conceived to handle large scale multi-constrained formulations of size
optimization for elastic structures, see in particular [9]. In a stress-based minimum
weight problem of truss design, the area of the sections is sought such that the weight
is minimized, for given strength limits. In a statically determinate truss, the objec-
tive function is linear in the unknowns, whereas the stress depends on the inverse of
the unknowns. Dealing with the funicular polygon of a set of vertical loads, it may
be shown that: i) the thrust is linear in the only independent force density; ii) the
height of the unrestrained nodes is linear in the vertical coordinate of the restrained
ones, while depending on the the inverse of the independent force density. Methods of
sequential convex programming are available that implement approximations of the
objective functions and constraints in the direct or the reciprocal variable according
to the sign of the gradient [10]. These gradient-based methods can be conveniently
adopted to handle both minimization problems. Extensions of the approach in [8]
have been proposed in [11], considering multi-layer networks in the funicular analysis
of vaults, and in [12], addressing overhang constraints in form-finding of gridshells.
In both cases, the thrust was used as objective function.

In this contribution, the research of the optimal shape of reticulated shells is made
by adopting an alternative objective function, i.e. the Maxwell number, which is the
sum of the force-times-length products for all the branches in the spatial network.
According to Maxwell’s theorem [13], this number equals the sum of the load-times-
distance products for all the forces acting upon the network (the distance being mea-
sured from an arbitrary origin to the point of application of the load), see also discus-
sions and examples in [14, 15]. Constraints are of geometric type, being related to
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the maximum inclination and length of the members and to the allowed range for the
height of the nodes of the spatial networks. In the next sections, a short overview of the
force density method is given, as for the multi-constrained formulation. A numerical
examples is shown to demonstrate the method and draw preliminary conclusions.

2 Force density method

The “force density method” [6] is used to cope with the equilibrium of spatial net-
works. A funicular network consists of ns = n + nf nodes and m branches, which
undergo axial forces only. The axes of the Cartesian reference system with origin O
are denoted by x, y, and z. Hence, xs, ys, zs are vectors gathering the coordinates
of the ns nodes: x, y, z refer to the n unrestrained nodes, i.e. the nodes subject to
external forces; xf , yf , zf collect the nf restrained nodes, i.e. those where reactions
arise. The connectivity matrix that fully describes the shape of the grid is Cs, having
subset C for the unrestrained nodes and Cf for the restrained ones. The vectors that
collect the coordinate difference of the nodes along the axis x, y, z are denoted by u,
v, w, respectively:

u = Csxs, v = Csys, w = Cszs. (1)

The force densities, i.e. the ratios force to length for each branch of the network, are
stored in q = L−1s, being s the vector that collects the forces in the m branches.
The length of the branches li =

√
u2
i + v2i + w2

i is gathered in the square matrix
L = diag(l). Only gravity loads are considered in this study. Vertical point forces are
prescribed at the unrestrained nodes through vector pz. Due to the introduction of the
vector q, the equilibrium of the unrestrained nodes is given by a set of linear equa-
tions that are uncoupled in the three axes. As discussed in [7, 11, 14], the horizontal
equilibrium of the loaded nodes in networks with fixed plan projection reads:[

CTdiag(Csxs0)
CTdiag(Csys0)

]
q =

[
0
0

]
, (2)

where the vector xs0 and ys0 gather the fixed x and y coordinate of the nodes, respec-
tively. Eqn. (2) implies that m − r independent force densities q can be retrieved,
being r the rank of the coefficient matrix. The r dependent force densities q̃ may be
written as:

q̃ = Bq+ d, (3)

where B and d are found by applying Gauss-Jordan elimination to Eqn. (2), see [14].
The equilibrium along the z axis reads:

CTQCz+CTQCfzf = pz, (4)

being Q = diag(q).
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3 Optimization problem

A multi-constrained minimization is stated in terms of any reduced set of independent
force densities q and of the vertical coordinates of the restrained nodes zf . It reads:

min
q, zf

f

s.t. q̃ = Bq+ d,

CTQCz+CTQCfzf = pz,(
tanαi

tanαmax

)2

≤ 1 for i = 1...m,(
li

lmax

)2

≤ 1 for i = 1...m,

zj(q, zf ) ≥ zmin
j for j = 1...n,

zj(q, zf ) ≤ zmax
j for j = 1...n,

q̃k ≤ 0 for k = 1...r,

qi ≤ 0 for i = 1...m− r,

zmin
f h ≤ zf h ≤ zmax

f h for h = 1...nf .

(5a)

(5b)

(5c)

(5d)

(5e)

(5f)
(5g)
(5h)
(5i)
(5j)

In the above statement, the objective function accounts for the sum of the force-
times-length products computed in each branch of the network [13]. Since anti-
funicular networks are dealt with, see Eqns. (5h–5i), one has:

f = −sT l = −qTL2. (6)

Eqn. (5b) allows recovering the set of dependent force densities q̃ from the vector of
the independent ones q. Eqn. (5c) states the equilibrium of the unrestrained nodes in
the vertical direction, to compute z from q and zf .

Denoting by tanαi the tangent of the angle between the direction of the i-th bar
and a reference direction, one has:

tanαi x =

√
v2i + w2

i

u2
i

, or tanαi y =

√
u2
i + w2

i

v2i
, or tanαi z =

√
u2
i + v2i
w2

i

, (7)

in case the reference direction to compute the inclination is aligned with the x, y, or
z axis, respectively. Hence, Eqn. (5d) is used to prescribe the maximum value of
the deviation of the inclination of each branch of the network from the reference one
(αmax). Eqn. (5e) enforces the maximum length of the branches of the network (lmax).
The coordinate difference of the connected points given in Eqn. (1) are used to enforce
these geometric constraints in a straightforward way.

Eqns. (5f–5g) are two sets of inequalities that prescribe lower and upper limits for
z. The design domain is such that each one of the n coordinates zj must be bounded
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from below by zmin
j and from above by zmax

j . Similarly, Eqn. (5j) deals with side
constraints for the minimization unknowns zf h, enforcing lower and upper limits for
the restrained nodes.

The whole statement is solved by means of the Methods of Moving Asymptotes
[13], see the discussion in Section 1. Being MMA a first order method, the sensitivity
of the objective functions and constraints are needed, see e.g. in [8].

4 Numerical example

A rectangular bay with overall size dx = 5.50m × dy = 3.62m is addressed. In
the (given) projection onto the horizontal plane, branches have length lxy = 0.15m,
with a reciprocal angle of 60◦ or 120◦. Fully restrained nodes are assumed along the
perimeter, as well as reference nodal forces equal to 1N acting along the z axis, i.e.
the vertical one, all over the network.

Exploiting symmetry, only one forth of the bay is considered in this preliminary
investigation. By applying Gauss-Jordan elimination to the system governing the hor-
izontal equilibrium, see Eqn. (2), it is found that r = 370 dependent force densities
exist, out of m = 391 branches, meaning that only m − r = 21 independent force
densities exist. Indeed, the optimization problem of Eqn. (5) is set up in terms of
43 minimization unknowns, i.e. 21 force densities and 22 vertical coordinates of the
nodes that are restrained along the z axis. The lower bound and the upper bound of
the height of the nodes is set to 2.5m and 3.5m, respectively.

At first, a problem that disregards the geometric constraints of Eqns. (5d) and (5e)
is investigated. The optimal reticulated shell, along with a map of the forces acting in
the branches, is represented in Figure 1(a). In all the pictures that follow, the symbols
+ and ◦ stand for points where the nodes of the network touch the upper bound and
the lower bound of the prescribed design region, respectively.

In some approaches of additive manufacturing, see in particular the discussion in
[12], it is quite frequent to fabricate a few parts separately and, then, assembling the
components into a final complex structure. A possible way to produce the designed
quarter of a reticulated grid consists in orienting the part, during the fabrication pro-
cess, such that the y axis is aligned to the vertical direction. In Figure 1(b), the op-
timal design found accounting for overhang constraints enforcing αmax = 45◦, see
Eqn. (5d), is given. Finally, in Figure 1(c), the optimal design retrieved enforcing
both αmax = 45◦ and a maximum length for the branches equal to lmax = 0.165m,
see Eqn. (5e), is provided.

All the simulations are characterized by full feasibility of the enforced sets of con-
straints. Convergence has been found in less than a few tens of iterations, indepen-
dently on the adopted starting guess.

Comparing the achieved optimal shapes and the stress regime in the branches, it
may be pointed out that geometric constraints are responsible for major modification
with respect to solutions found when dropping such kind of manufacturing limitations.
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(a)

(b)

(c)

Figure 1: A rectangular bay. Optimal network and element forces, in N, for minimum
magnitude of the Maxwell number: without geometric constraints (a), in-
cluding overhang constraints (b), with both overhang and length constraints.
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5 Concluding remarks

In this contribution, a numerical tool has been implemented to address the design of
reticulated shells through funicular analysis. As investigated in the recent literature,
the force density method can be conveniently implemented to cope with the equilib-
rium of spatial networks of trusses, using independent sets of branches in the case of
grids having fixed plan projection. In this contribution, optimal networks are sought
formulating a problem of structural optimization both in terms of any independent set
of force densities, and in the vertical coordinates of the restrained nodes. The Maxwell
number, which is the sum of the force-times-length products for all the branches in the
spatial network, is used as objective function. Constraints are enforced on the coor-
dinates of the nodes, to prescribe a feasible design domain, and on the geometry of
the members, to control their length and inclination with respect to a prescribed di-
rection. The arising multi-constrained problem is efficiently handled by techniques of
sequential convex programming.

A numerical example has been shown retrieving networks that are fully feasible
with respect to the enforced local constraints. It is found that the shape of the retrieved
reticulated shell is remarkably sensitive to the considered constraints. Further research
includes extended tests of the procedure, investigating grids with different plan layout
and accounting for probabilist loading, see [16].
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optimization. Int J Numer Methods Eng. 1987;24(2):359-73.
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