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Abstract

Purpose – The authors propose a rather elementary method to compute a family of integrals on the half line,
involving positive powers of sin x and negative powers of x, depending on the integer parameters n≥ q≥ 1.
Design/methodology/approach – Combinatorics, sine and cosine integral functions.
Findings – The authors prove an explicit formula to evaluate sinc-type integrals.
Originality/value – The proof is not present in the current literature, and it could be of interest for a large
audience.
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In this note, let n≥ q≥ 1be any two given integers. The symbol b:cwill stand, as usual, for the
integer part. We consider the family of integrals

In;q ¼
Z ∞

0

ðsin xÞn
xq

dx:

Theorem 1. The following formulae hold

(i) If nþ q is even, then

In;q ¼ ð−1Þq−n2 π
2nðq� 1Þ!

Xbn−12 c

k¼0

ð−1Þk
�
n

k

�
ðn� 2kÞq−1:

(ii) If nþ q is odd and q≥ 2, then

In;q ¼ ð−1Þq−nþ1
2

2n−1ðq� 1Þ!
Xbn−12 c

k¼0

ð−1Þk
�
n

k

�
ðn� 2kÞq−1 logðn� 2kÞ:

The formulae above are recorded in the Wolfram MathWorld web page titled Sinc Function
[1], which refers to the result as “amazing” and “spectacular”. However, the web page omits
the proof, citing a 20-year-old online paper that seems not to be available any longer. Nor the
proof is reported anywhere else, to the best of our knowledge. Nonetheless, particular
instances of In;q are discussed in several textbooks, typically by means of complex analysis
tools (see, e.g. Ref. [2]).
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The remaining of the paper is devoted to our proof of Theorem 1. To this end, form≥ 0, let

PmðxÞ ¼
Xm
k¼0

xk

k!

denote the Maclaurin polynomial of ex of order m. We agree to set P−1 ¼ 0. Let QðxÞ be the
Maclaurin polynomial of ðsin xÞn of order q− 2, withQ ¼ 0 if q ¼ 1. Since ðsin xÞn has a zero of
order n at x ¼ 0, it follows that QðxÞ≡ 0 for all n≥ q≥ 1. On the other hand, as

ðsin xÞn ¼ 1

ð2iÞn
Xn

k¼0

ð−1Þk
�
n

k

�
eiðn−2kÞx;

we immediately conclude that

QðxÞ ¼ 1

ð2iÞn
Xn

k¼0

ð−1Þk
�
n

k

�
Pq−2ðiðn� 2kÞxÞ ¼ 0: (1)

Subtracting the two sums, we obtain

In;q ¼ 1

ð2iÞn
Xbn−12 c

k¼0

ð−1Þk
�
n

k

�Z ∞

0

eiðn−2kÞx � Pq−2ðiðn� 2kÞxÞ
xq

dx

þ ð−1Þn
ð2iÞn

Xbn−12 c

k¼0

ð−1Þk
�
n

k

�Z ∞

0

e−iðn−2kÞx � Pq−2ð−iðn� 2kÞxÞ
xq

dx:

(2)

Remark 2. From (1), we also deduce that the equality

Xbn−12 c

k¼0

ð−1Þk
�
n

k

�
ðn� 2kÞq−1 ¼ 0; (3)

holds for every n > q≥ 2 , whenever nþ q is odd.
We now start from formula (2) but considering the integral on ðε; ∞Þand only at the endwe

will take the limit ε→ 0. This allowsus tomove the integral inside the sum. Inwhat followsωðεÞ
will denote a generic function of ε, vanishing at 0 as ε→ 0. Moreover, for α≠ 0, let us define

EεðαÞ ¼
Z ∞

ε

eiαx

x
dx:

Lemma 3. For every q≥ 1, every ε > 0 and every α≠ 0, we have

Z ∞

ε

eiαx � Pq−2ðiαxÞ
xq

dx ¼ cqαq−1 þ ðiαÞq−1
ðq� 1Þ! EεðαÞ þ ωðεÞ;

where cq ¼ iq−1

ðq− 1Þ!
P q−2

k¼0
1

kþ1
for q≥ 2 and c1 ¼ 0.

Proof: The proof goes by induction on q. If q ¼ 1, equality holds with ωðεÞ ¼ 0. Then, we
prove the formula for qþ 1, assuming it true for q≥ 1. Since P 0

q−1 ¼ Pq−2, an integration by
parts yields

AJMS
27,2

250



Z ∞

ε

eiαx � Pq−1ðiαxÞ
xqþ1

dx ¼ eiαε � Pq−1ðiαεÞ
qεq

þ iα
q

Z ∞

ε

eiαx � Pq−2ðiαxÞ
xq

dx:

By the inductive hypothesis,

iα
q

Z ∞

ε

eiαx � Pq−2ðiαxÞ
xq

dx ¼ icq

q
αq þ ðiαÞq

q!
EεðαÞ þ ωqðεÞ;

for some function ωq vanishing at 0. Noting that

ϖqðεÞ ¼ −
ðiαÞq
q! q

þ eiαε � Pq−1ðiαεÞ
qεq

→ 0 as ε→ 0;

we end up with the equality

Z ∞

ε

eiαx � Pq−1ðiαxÞ
xqþ1

dx ¼
�
iq

q!q
þ icq

q

�
αq þ ðiαÞq

q!
EεðαÞ þ ωqðεÞ þϖqðεÞ:

The final observation that iq

q!q
þ icq

q
¼ cqþ1 completes the proof. ,

Proof of Theorem 1 for the case nþ q even. Substituting the expression given by Lemma 3
into (2) and noting that

Eεðn� 2kÞ � Eεð−ðn� 2kÞÞ ¼ 2iSiððn� 2kÞεÞ;

where

SiðtÞ ¼
Z ∞

t

sin x

x
dx

is the SinIntegral function, we obtain

In;q ¼ ð−1Þq−n2
2n−1ðq� 1Þ!

Xbn−12 c

k¼0

ð−1Þk
�
n

k

�
ðn� 2kÞq−1Siððn� 2kÞεÞ þ ωðεÞ:

Since

Siððn� 2kÞεÞ→ Sið0Þ ¼ π
2

as ε→ 0;

the result follows. ,
Proof of Theorem 1 for the case nþ q odd. Again, we substitute the expression given by
Lemma 3 into (2). Using (3) and noting that

Eεðn� 2kÞ þ Eεð−ðn� 2kÞÞ ¼ 2Ciððn� 2kÞεÞ;

where

CiðtÞ ¼
Z∞

t

cos x

x
dx

A family of
integrals

251



is the CosIntegral function, we obtain

In;q ¼ ð−1Þq−n−12

2n−1ðq� 1Þ!
Xbn−12 c

k¼0

ð−1Þk
�
n

k

�
ðn� 2kÞq−1Ciððn� 2kÞεÞ þ ωðεÞ:

By a further use of (3), we can replace Ciððn− 2kÞεÞwith
Ciððn� 2kÞεÞ � CiðεÞ→ � logðn� 2kÞ as ε→ 0;

and a final limit ε→ 0 completes the argument. ,
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