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Abstract. In this work, we present a PDE-aware deep learning model for the numerical solution
to the inverse problem of electrocardiography. The model both leverages data availability and exploits
the knowledge of a physically based mathematical model, expressed by means of partial differential
equations (PDEs), to carry out the task at hand. The goal is to estimate the epicardial potential
field from measurements of the electric potential at a discrete set of points on the body surface. The
employment of deep learning techniques in this context is made difficult by the low amount of clinical
data at disposal, as measuring cardiac potentials requires invasive procedures. Suitably exploiting
the underlying physically based mathematical model allowed circumventing the data availability
issue and led to the development of fast-training and low-complexity models. Physical awareness has
been pursued by means of two elements: the projection of the epicardial potential onto a space-time
reduced subspace, spanned by the numerical solutions of the governing PDEs, and the inclusion of a
tensorial reduced basis solver of the forward problem in the network architecture. Numerical tests
have been conducted only on synthetic data, obtained via a full order model approximation of the
problem at hand, and two variants of the model have been addressed. Both proved to be accurate, up
to an average \ell 1-norm relative error on epicardial activation maps of 3.5\%, and both could be trained
in \approx 15 min. Nevertheless, some improvements, mostly concerning data generation, are necessary in
order to bridge the gap with clinical applications.
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1. Introduction. Over the last 30 years, especially in the last decade, compu-
tational biomedical research has witnessed the development of electrocardiographic
imaging (ECGI) [9, 10, 11, 27, 34, 36, 41], a novel imaging modality for noninvasive
mapping of cardiac electrical activity, which makes use of body surface ECG signals and
of thoracic CT-scans. The success of ECGI can be recognized in its ability of providing
relevant diagnostic information on the electrical activity of the heart, visualizing it
directly at the heart level and easing in turn the readability and interpretability of
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the results. Additionally, ECGI has proved to achieve an accuracy that plain body
surface signals (as ECG or body surface potential maps) do not offer and that could
be instead obtained only by means of invasive measurement techniques [27]. Despite
being a recent field of research, the stunning advances made over the last decade have
already allowed validation of its performance in a number of clinical practices [10, 9]
and allowed it to be effectively employed in the clinical setting [35].

From a mathematical standpoint, the theoretical basis of ECGI is the so-called
inverse problem of electrocardiography; it consists in finding the epicardial potential
field which gives rise to body surface signals as close as possible to some target ones,
in the least-squares sense. Let us consider a geometry made by the torso domain \Omega T ,
with the body surface \Gamma B representing an external boundary and the epicardial one
\Gamma H representing an internal boundary. Additionally, let \Sigma \subset \Gamma B be the portion of the
body surface where electric potentials are recorded and call z such recordings. Now,
let v \in H

1
2 (\Gamma H) be the epicardial potential and define y(v) as the unique solution in

H1(\Omega T ) of the following stationary elliptic problem:

(1.1)

\left\{     
 - \bfnabla \cdot (DT\bfnabla y(v)) = 0 in \Omega T ,

y(v) = v on \Gamma H ,

\bfnabla y(v) \cdot \bfitn \bfitB = 0 on \Gamma B

where DT is the tensor expressing the electrical conductivity in the torso and \bfitn \bfitB is the
outward unit normal vector to \Gamma B . Also, we define the operatorA : H

1
2 (\Gamma H)  - \rightarrow H

1
2 (\Sigma )

such that

(1.2) Av = y(v)| \Sigma 
and the cost functional

(1.3) J(v) =
1

2

\int 
\Sigma 

| y(v) - z| 2 d\sigma =
1

2
| | Av  - z| | 2L2(\Sigma )

for z \in L2(\Sigma ). Then, the inverse problem of electrocardiography can be written as

(1.4) find uH \in H
1
2 (\Gamma H) : J(uH) = min

v\in H1/2(\Gamma H)
(J(v) +R(v)) ,

R(v) being a suitable regularization term. Without stabilization (i.e., setting R(v) = 0)
problem (1.4) is ill-posed in usual Sobolev spaces, which means that A admits an
unbounded inverse operator in the spaces Hs \forall s \in \BbbR (see [48, 37, 51]). This implies
that small perturbations (for instance, due to measurement errors) in the observed
surface potentials z may lead to much larger variations on the reconstructed epicardial
potential uH . To retrieve well-posedness, problem (1.4) must be therefore approximated
with a family of stable problems. The regularization term R(\cdot ) can be computed as

(1.5) R(v) =
\alpha 

2
| | v| | 2H1/2(\Gamma H) or R(v) =

\alpha 

2
| | y(v)| | 2H1(\Omega T )

where y(v) is the solution of system (1.1) with v as Dirichlet boundary datum on \Gamma H

and \alpha is a hyperparameter to be tuned. Two other well-established techniques are
Tikhonov regularization [49], which consists in computing R(\cdot ) as the L2(\Gamma H)-norm
either of the epicardial potential or of its derivatives, and total variation regularization,
which instead defines R(\cdot ) as the L1(\Gamma H)-norm of the normal derivative of the epicardial
potential. Notice that all these strategies are subject to the choice of at least one
hyperparameter; various techniques have been proposed to (sub-)optimize such a
choice [30].
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In the current work we have followed a different path, bypassing classical approaches
thanks to two strategies. The first one is the exploitation of machine learning (ML)
and, more specifically, of deep learning (DL), which has established itself as a pillar
of a new generation of scientific development, thanks to the abundance of available
data and to the progress in terms of computational power and resources. In particular,
we wish to overcome the ill-posedness of the inverse problem of electrocardiography
leveraging data availability, yet still somehow retaining knowledge of the physical laws
governing the problem at hand. Incidentally, if until a few years ago ECGI could
be regarded as almost free of ML-DL influence, recently a few works pursuing an
integration between the fields have started to appear. Other than neural network (NN)
models yielding heartbeats classification from body surface signals [58, 29], we ought
to mention the works by Giffard-Roisin et al. [20], Wang et al. [52], Bacoyannis et al.
[2], and Bujnarowski et al. [5]. In particular, [20] employs kernel ridge regression and
a 2-term exponential regression to perform a patient-specific estimation of the main
parameters of the chosen cardiac model. [52] builds an NN that provides (sub-)optimal
values for the regularization parameters involved in the alternating direction method
of multipliers iterative optimization algorithm. [2] proposes a novel method based on
conditional \beta variational autoencoders using deep convolutional generative NNs for
data-driven integration of spatio-temporal correlations and imaging information in
the ECGI problem. [5] proposes a convolutional deep autoencoder which yields an
imaging-free approximation of the mapping between recorded body surface potentials
and epicardial ones.

The second key element is based on the observation that all classical methods
to solve the inverse problem of electrocardiography involve the computation of the
transfer matrix \bfitA . Such a matrix depends on the geometry of the torso and of the
heart and on their electrical conductivities and it can thus be inferred only through
thoracic CT-scans and subsequent imaging postprocessing routines. Anyway, CT-
scans imply a certain level of radiation and they are not even an available option
for all patients. Developing, then, a CT-scan-free model, able to map body surface
potentials to epicardial ones in a reliable and physically consistent way, could be
of great help and ``could serve as a preliminary study of the patient's condition,
before a more thorough examination is performed"" [5]. This work was developed in
a fixed geometrical setting ; with this expression, we mean that we employed the same
geometry in all the numerical simulations and we kept it fixed over time, discarding
variations in the shape, dimension, position, and rotation of the heart or in the
dimension and shape of the torso. Furthermore, we approximated the latter as a
homogeneous and isotropic volume conductor, neglecting the presence of organs other
than the heart, characterized by different electric conductivities. Despite being quite
strong assumptions [42, 57, 12], they can all be justified considering this work as an
initial proof-of-concept on the integration between DL and ECGI. Our ultimate goal,
indeed, is to work in a dynamic and parametrized geometrical setting, designing a
model which does not just reconstruct the epicardial potential field, but that also
provides estimates of suitable parameters characterizing the geometry and the electric
conductivity.

Although [5] appears to have many points in common with this work, here a
further key element is present: physical awareness. Indeed, the model we propose
has been designed so that, albeit in the framework of a classical encoder-decoder
structure, some elements allow us to drive the predicted solutions to be consistent with
the problem physics, approximated by means of PDEs (from which the expression
``PDE-aware deep learning""). Broadening the scope, the proposed model is an instance
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of a physically informed DL model, i.e., a DL model which exploits the knowledge of
some physical laws governing the phenomenon of interest to ease its training and/or
to ameliorate its predictive power. Recent years have witnessed a flourishing of works
in this direction [24, 53, 40, 32, 15, 7]; among these a special mention is deserved by
Raissi, Perdikaris, and Karniadakis et al. [40], where the authors introduce physically
informed neural networks, i.e., NNs able to approximate solutions to a variety of PDEs
by minimizing, in the loss function, the mean squared error (MSE) on the residuals.
Another work we ought to refer to is [15] by Dal Santo, Deparis, and Pegolotti; there
the authors present DL models (called RB-DNNs) that, receiving in input samples of
solutions to parametrized PDEs and embedding a reduced basis (RB) solver [39] as a
deterministic layer inside the NN architecture, manage to reconstruct such solutions
in the whole computational domain and further provide estimates of the characteristic
parameters.

According to [40], physics-informed DL can perform well in the so-called small-
data regime, i.e., in frameworks where the amount of data at disposal is either
limited or partial or subject to a high degree of inaccuracy, because of the high
cost and/or complexity of data acquisition procedures. Indeed, in such a context,
classical DL methods feature severe problems in terms of robustness, generalization,
and convergence, due to the lack of data. However, if the phenomenon generating
such data happens to be characterized by the presence of some underlying physical
laws, expressible by means of PDEs/ODEs, then classical numerical methods can
be integrated with DL-based ones. In particular the knowledge of the physics of
the problem at hand can be made somehow available to the DL model, acting as a
physically informed regularization agent, that eases model training and improves its
performances. ECGI is clearly a context of such kind; indeed on the one side recordings
of the epicardial potential are nowadays possible only via intrusive techniques and
assembling a dataset made of a number of observations adequate for DL applications
is unfeasible. On the other side, instead, a good understanding of the most important
physical laws underlying cardiac electrophysiology is present [19, 47], so that exploiting
it in the framework of physically informed DL appears both doable and challenging.
The goal of this work is to show how the integration between DL techniques and
physically based regularization allows one to accurately solve the inverse problem of
electrocardiography, even in a small data regime. The impact of physical awareness
and of NN architecture on epicardial potentials reconstruction is investigated in various
numerical test cases.

Section 2 presents a physics-informed DL model, called the space-time reduced basis
deep neural network (ST-RB-DNN), that provides reliable and physically consistent
solutions to the inverse problem of electrocardiography. In particular, at the beginning
of the section an overview on the ST-RB-DNN model is given, highlighting its structure
and its main features. Subsection 2.1 reports a brief description of the modeling and
numerical approximation of cardiac electrophysiology and of the forward problem of
electrocardiography. Subsection 2.2 contains an overview on the model order reduction
techniques exploited in the ST-RB-DNN model. In subsection 2.3 a more extensive and
technical characterization of the proposed model is reported and two different versions
of it are sketched. Section 3 reports the results of the numerical tests conducted
with two different versions of the ST-RB-DNN model on the same test case; a brief
description of the computational setting used to generate the dataset is also given.
Section 4 focuses on the discussion of the obtained results. In particular, subsection
4.1 evaluates the overall performances of the model and investigates the differences (in
terms of accuracy and complexity) between its different versions, while subsection 4.2
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Fig. 1. Basic structure of the ST-RB-DNN model.

lists the main limitations and proposes some possible further developments. Section 5
provides a final summary.

2. PDE-aware deep learning models for cardiac electrophysiology. The
proposed PDE-aware DL model for the inverse problem of electrocardiography is
called the space-time reduced basis deep neural network, or ST-RB-DNN; its general
structure is reported in the scheme of Figure 1. Three main components can be
identified:
\bullet Input: The input is constructed from body surface signals, recorded by electrodes

placed on the patient's skin. The raw signals could possibly undergo a suitable pre-
processing (lowpass/bandpass filtering, magnitude normalization, discrete Fourier
transform (DFT), etc.). Additionally, all datapoints must have the same dimension,
i.e., they must contain the same number of signals and all signals must have the
same length.

\bullet Model: The model can be identified as an autoencoder (AE), similar to the one
presented in [5]. However, while the encoder consists of an NN trained with the
classical backpropagation algorithm [43], the decoder is deterministic, being an
embedded tensorial RB solver for problem (1.1):
-- Encoder: The encoder is a deep NN, which takes as input the body surface

signals (or some quantities derived from them after some preprocessing rou-
tine) and learns a latent reduced representation of the epicardial potential field,
responsible for the generation of the same signals given in input. To some ex-
tent, it can be stated that the encoder provides a data-driven approximation of
A - 1 : L2(\Sigma ) \rightarrow L2(\Gamma H), i.e., the inverse of the transfer operator A defined in
(1.2). Two aspects are worth considering. The first one is that the architecture
of the NN depends on the nature of the quantities that are provided in input
and, furthermore, it can be optimized via a grid search process, aimed at finding
a (sub-)optimal balance between accuracy and complexity. The second is that
the latent representation of the epicardial potential field is not uninterpretable
and inexplicable, as the one proposed in [5]. Indeed, what the encoder learns are
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the coefficients arising from the projection of the epicardial potential field onto a
spatio-temporal reduced subspace, generated from the same physical solutions
included as output in the training dataset. The way such a subspace is generated
is detailed in subsections 2.1 and 2.2. We remark that body surface signals can
be deterministically reconstructed from the estimated latent representation of
the epicardial potential field. Moreover, such a representation features optimal-
ity properties that seamlessly depend on the method employed to generate the
aforementioned reduced subspace. This entails that the epicardial potential field
is encoded in the lowest possible number of coefficients that guarantee a certain
accuracy level in a suitable norm.

-- Decoder: The decoder is responsible for the deterministic reconstruction of
the body surface potentials, given the latent representation of the epicardial
potential field estimated by the encoder. As such a latent representation is
actually a projection onto an optimal spatio-temporal reduced subspace, the
decoder can be constructed as a tensorial (to be compliant with the backprop-
agation training algorithm) reduced order model (ROM) solver of the forward
problem of electrocardiography (FPE) [3]. In particular, our model features a
decoder that employs the RB method to solve the FPE independently at all
the discrete time instants. Additionally, the obtained solutions are suitably
postprocessed in the full order spatial domain, so that signals matching the ones
provided in input can be computed. Such a choice presents a clear advantage
with respect to the usage of a trainable decoder as in [5]; indeed no additional
trainable parameters are added to the ones of the encoder and the overall model
complexity is potentially halved. However, designing the decoder as a ROM
solver of the FPE makes it more difficult to achieve independence from imaging
and CT-scans. In this paper, we have adopted a fixed geometrical setting, as
described in the introduction; a natural future development would be to param-
etrize such a setting and, consequently, to adapt and update the embedded RB
solver.

\bullet Output: The model output is made of two parts: the latent reduced representation
of the epicardial potential field and the body surface signals reconstructed by the
embedded RB solver of the FPE and matching the ones given in input. Consequently,
the loss functional is constructed as a weighted sum between the estimation error
on the reduced epicardial potential fields \scrL BC and the reconstruction error on the
body surface signals \scrL sig, so that

(2.1) \scrL (\Theta ) = \scrL BC(\Theta ) + \scrL sig(\Theta ) + \scrL reg(\Theta ).

Here \Theta is the vector of the NN trainable parameters and the additional term \scrL reg

represents a regularization term, which helps in preventing data overfitting. The
precise expression of the three terms will be given in subsection 2.3.1. We remark
that the ST-RB-DNN model can be trained as a pure AE, by suppressing the loss
term \scrL BC related to the latent representation of the epicardial potential fields. In
this way, the noninvasive collection of body surface potentials is sufficient for model
training and all the invasively recorded cardiac potentials can be employed just for
the sake of clinical validation. If we instead add the term \scrL BC to the loss function,
also cardiac potentials are needed during the training stage. This may constitute a
severe limitation when the model learns exclusively from clinical data. However, we
designed the ST-RB-DNN model to encode information obtained from the numerical
approximation of the FPE mathematical model. Therefore, we can include the
numerical approximations of cardiac potentials collected together with the body
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surface ones in the loss function, improving model performance. For these reasons,
we focus mainly on the case where a penalization of the epicardial potential fields is
included in the loss. Because of this, the RB solver of the FPE should be interpreted,
more than as a decoder, as a physically based regularization agent, which drives the
predicted epicardial potential fields to belong to a lower dimensional and physically
consistent manifold. Also, we remark that the knowledge of cardiac potentials is
never necessary at the testing stage, as the model input consists only of body surface
signals.
Ultimately, two elements contribute to that physical awareness that makes the

ST-RB-DNN model a PDE-aware DL model for ECGI:
1. The estimation of the epicardial potential field as projected onto a space-time

reduced subspace, generated from the same solutions to the cardiac electrophysiology
problem that represent the output part of the training dataset. In this way, indeed,
the estimated epicardial potential field is forced to belong to a lower-dimensional
manifold of physically consistent solutions. To meet this requirement the training
dataset should be made of realistic (if not real) data, suitable for capturing the
majority of the dynamics of the problem of interest.

2. The reconstruction and penalization of body surface signals equivalent to the
ones provided in input, which are computed via an embedded RB solver of the
FPE that acts as a deterministic decoder. Indeed, if the contribution of such a
reconstruction error in the loss is sufficiently high to be nonnegligible, it drives
the model to estimate epicardial potential fields which, at least in the considered
fixed geometrical setting, determine the onset of body surface signals close to the
observed ones. So, the space of admissible solutions for the inverse problem is further
shrinked, as additional physical constraints have been added, and it ultimately
reduces to a low-dimensional and physically consistent manifold.
As the datasets employed to train and test the proposed model have been gen-

erated in silico, subsection 2.1 provides an overview on the modeling and the nu-
merical approximation of cardiac electrophysiology and of the FPE. Subsection 2.2
describes the model order reduction techniques exploited in the ST-RB-DNN model,
in order to provide fast and accurate solutions to the FPE. Last, subsection 2.3
discusses in more detail the choices that have been made concerning the design and
optimization of the NNs.

2.1. Data generation. Due to the paucity of clinical data relative to measure-
ments of the electric potential at the epicardium, the datasets we employed for both
training and testing the ST-RB-DNN model have been generated in silico. In particu-
lar, this involved the modelization and the numerical approximation of both cardiac
electrophysiology and the FPE. As anticipated, all simulations have been carried out
in a fixed geometrical setting (see section 3) and the different datapoints have been
generated by randomly changing the values of the main parameters characterizing the
selected cardiac model.

Cardiac electrophysiology. Cardiac electrophysiology has been modeled via the
bidomain equations [50], coupled with the Aliev--Panfilov (AP) ionic model [1]. The
former are characterized by a partitioning of the heart domain \Omega H in an intracellular
domain \Omega i

H and an extracellular one \Omega e
H , which however coexist on the same space

upon a homogenization process [21]. This is reflected in the definition of an intracellular
potential ui and of an extracellular potential ue; also the transmembrane potential
can be defined as v := ui  - ue. Ultimately, the bidomain model is expressed via the
following system of time-dependent PDEs:
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(2.2)

\left\{       
Am

\Bigl( 
Cm

\partial v

\partial t
+ Iion(v, w;\bfitmu )

\Bigr) 
 - \bfnabla \cdot (\bfitD i(\bfitmu )\bfnabla v) - 

\bfnabla \cdot (\bfitD i(\bfitmu )\bfnabla ue) = AmIapp(\bfitmu )
in \Omega H \times [t0, T ],

 - \bfnabla \cdot (\bfitD i(\bfitmu )\bfnabla v) - \bfnabla \cdot ((\bfitD i(\bfitmu ) +\bfitD e(\bfitmu ))\bfnabla ue) = 0 in \Omega H \times [t0, T ].

Here Am represents the area of cell membrane per unit volume, Cm the membrane
capacitance per unit area, \bfitD i and \bfitD e the conductivity tensors in the intracellular and
extracellular domains, respectively (which may take into account the anisotropy of the
cardiac tissue), Iapp an externally applied current, typically responsible for the initial
activation of the heart tissue, and Iion the ionic current across the cell membrane. The
simulations are conducted over the time interval [t0;T ]. Finally, \bfitmu represents a vector
which stores all the scalar parameters that characterize the problem; notice that the
expressions of Iapp, Iion, and \bfitD i,e depend on \bfitmu , while the domain \Omega H is assumed to
be fixed. System (2.2) must be coupled with proper initial (on v only) and boundary
conditions. Concerning the latter, in particular, we have chosen to work under the
isolated heart assumption, thus keeping the cardiac potentials independent of the one in
the torso. This is achieved by imposing homogeneous Neumann boundary conditions at
the epicardial surface \Gamma H for both ue and v; the impact of this simplifying assumption
has been extensively analyzed and discussed, for instance, in [4]. The anisotropy of
the cardiac tissue, dictated by the presence of conducting fibers, has been taken into
account; specifically, different electrical conductivities have been set longitudinally and
transversally to the fibers' orientation, both in the intracellular and in the extracellular
domain [38]. For simplicity, we have supposed all cardiac conductivities to be constant
in \Omega H (homogeneous anisotropy assumption) and the two transversal conductivities,
coplanar and orthogonal to the fibers sheet, to be equal (axially isotropic case) [13].
Ultimately, the conductivity tensors could be written as

(2.3) \bfitD i,e(\bfitx ) = \sigma ti,e\bfitI +
\bigl( 
\sigma li,e  - \sigma ti,e

\bigr) 
\bfita l(\bfitx )\bfita 

T
l (\bfitx ), \bfitx \in \Omega H ,

\bfita l(\bfitx ) being a unit vector parallel to the fibers orientation at a point \bfitx \in \Omega H .
The AP model, instead, is a phenomenological ionic model that allows us to

approximate the current Iion induced by the movement of electrically charged ions
through the cell membrane. It configures as an extension of the FitzHugh--Nagumo
(FHN) model [28] and it proved to exceed its performance on cardiomyocites, leading
to a much better approximation of the action potential shape and duration and of the
cardiac tissue restitution curve. Iion takes the form of a cubic nonlinear function of v
and a single (dimensionless) gating variable w plays the role of a recovery function,
allowing one to model the refractoriness of cells disregarding any subcellular process.
From a mathematical standpoint, the AP model is expressed by the following equations:

(2.4)

\left\{   Iion(v, w;\bfitmu ) = Kv(v  - a)(v  - 1) + v in \Omega H \times [t0, T ],
\partial w

\partial t
= g(v, w;\bfitmu ) = C(w)( - w  - Kv(v  - b - 1)) in \Omega H \times [t0, T ],

where the parameters K, a, b, \epsilon 0, \mu 1, \mu 2 are all related to the cell. In particular, a acts
as an oscillation threshold, above which an action potential is fired, and the weighting
term

(2.5) C(w) = \epsilon 0 +
\mu 1w

v + \mu 2

has been specifically added (compared to the FHN model) to account for a finer tuning
of the myocardial restitution curve. Additionally, a suitable initial condition has to
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be imposed on w (typically w(t = t0) = 0) and, in order to get the desired scaling
properties, it is necessary to scale the time variable as t[ms] = 12.9 t[t.u.].

Upon a Galerkin finite element (FE) approximation, the discrete-in-space
continuous-in-time formulation of the bidomain equations coupled with any phe-
nomenological ionic model reads as follows.

Problem 1. Given \bfitmu \in \scrP \subset \BbbR p, find \bfitu eh = \bfitu eh(t;\bfitmu ), \bfitv h = \bfitv h(t;\bfitmu ), and
\bfitw h = \bfitw h(t;\bfitmu ) such that

(2.6)

\left\{                       

AmCm\bfitM 
\partial \bfitv h

\partial t
+ \bfitA in(\bfitmu )\bfitv h + \bfitA in(\bfitmu )\bfitu eh

+ Am\bfitI ion(\bfitv h,\bfitw h;\bfitmu ) = Am\bfitI app(t;\bfitmu ),
t \in [t0, T ],

\bfitA in(\bfitmu )\bfitv h +
\bigl( 
\bfitA in(\bfitmu ) +\bfitA ex(\bfitmu )

\bigr) 
\bfitu eh = 0, t \in [t0, T ],

\partial \bfitw h

\partial t
= g(\bfitv h,\bfitw h;\bfitmu ), t \in [t0, T ],

\bfitv h(t0;\bfitmu ) = \bfitv 0(\bfitmu ); \bfitw h(t0;\bfitmu ) = \bfitw 0(\bfitmu ),

where \bfitM is the mass matrix and \bfitA in, \bfitA ex are the intracellular and extracellular
stiffness matrices, respectively.

The forward problem of electrocardiography. In modeling the FPE, we can approx-
imate the human torso as an isotropic and inhomogeneous volume conductor; indeed,
as reported in [47], the torso is not made of excitable cells, as the heart, and thus there
is no need for a model able to simulate the behavior of the transmembrane potential.
The inhomogeneity derives from the presence of different organs (bones, lungs, blood
vessels, etc.), which are characterized by different electric conductivities.

Under the isolated heart assumption, at any t \in [t0;T ] the torso potential uT can
be computed by solving a generalized Laplace equation of the form

(2.7)  - \bfnabla \cdot (\bfitD T\bfnabla uT ) = 0 in \Omega T

coupled with a homogeneous Neumann boundary condition at the body surface \Gamma B and
with an inhomogeneous Dirichlet one at the epicardium \Gamma H , where the extracellular
potential ue acts as boundary datum. In (2.7) \Omega T is the reference torso domain and
\bfitD T represents the torso conductivity tensor.

As discussed in [4], working under the isolated heart assumption provides the
advantage of getting a one-way coupling between the heart and torso problems, easing
and speeding up the computations. It also prevents imposing the continuity of the
electric potential fluxes at the heart-torso interface; in terms of body surface potentials,
this results in signals that often show the correct shape but that feature abnormal
magnitudes.

Upon a Galerkin FE approximation, the problem reads as follows.

Problem 2. Given \bfitmu \in \scrP \subset \BbbR p, find \bfitu th = \bfitu th(t;\bfitmu ) such that

(2.8) \bfitA (\bfitmu )\bfitu th(t) =  - \bfitA \Gamma H
(\bfitmu )\bfitu \Gamma H

eh
(t), t \in [t0, T ],

where \bfitA \Gamma H
(\bfitmu ) =: \bfitA (\bfitmu )[\cdot , \{ jDir\} ], where \bfitA is the torso stiffness matrix and \{ jDir\} the

set of degrees of freedom (DOFs) at which the Dirichlet boundary condition is imposed.
Furthermore \bfitu \Gamma H

eh
(t) represents the FE discretization of the trace of the extracellular

potential ue on the epicardial surface \Gamma H at the time instant t.

D
ow

nl
oa

de
d 

08
/2

9/
24

 to
 1

31
.1

75
.1

48
.4

7 
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

C
C

B
Y

 li
ce

ns
e 



© 2022 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license

B614 R. TENDERINI, S. PAGANI, A. QUARTERONI, S. DEPARIS

2.2. Model order reduction. In the ST-RB-DNN model, ROM techniques have
been used both to estimate physically meaningful and reduced latent representations of
the epicardial potential fields and to efficiently solve the generalized Laplace equation in
the torso, in order to reconstruct signals matching the ones given in input. Considering
that Problem 2 is stationary, the latter task can be carried out by resorting to the
classical RB method [39], i.e., by deriving a basis for a reduced subspace in space
(via proper orthogonal decomposition (POD) of the snapshots' tensor), performing
a projection along the spatial dimension, and solving the resulting reduced problem
independently at all the discrete time instants. The former task, instead, can be much
better accomplished by resorting to spatio-temporal ROM techniques that allow one to
encode the information coming from time-dependent fields into a very low number of
coefficients, (almost) independent of the level of refinement of the grid along both the
spatial and the temporal dimension. In particular, the space-time-reduced subspace
where the epicardial potential fields have been projected has been generated using
the tailored temporal subspaces via the ST-HOSVD approach proposed in [8]. This
strategy is based on the computation of a tailored temporal basis for each element
of the spatial one, allowing for a dramatic reduction of the dimensionality of the
resulting spatio-temporal subspace. We notice that estimating a full order model
(FOM) approximation of the epicardial potential field is not a viable option in the
framework of the ST-RB-DNN model as that would significantly increase the overall
complexity, severely hindering the training process. Reference [31] features a detailed
theoretical analysis on this aspect, which can be also adapted to the present case.

In the following, we employ the aforementioned ROM techniques in the ST-RB-
DNN model, in order to efficiently solve the FPE inside an embedded tensorial solver.
Consider the third-order tensor \scrX \in \BbbR Nh\times Nt\times N\bfitmu storing the solutions to (2.8) at all
the space-time NhNt DOFs and for N\bfitmu different parameter values. The basis in space,
encoded by the matrix \bfitV s \in \BbbR Nh\times nh , is computed by applying a truncated POD to
the mode-1 unfolding of \scrX . Once such a basis is derived, by projecting all quantities
onto the reduced subspace it spans, we get

(2.9) \~\bfitA (\bfitmu )\~\bfitu 
(l)
th

= \~\bfitu \Gamma H
(l)

eh
(\bfitmu ), l \in \{ 0, . . . , Nt\} ,

where, with \bfitA (\bfitmu ), \bfitA \Gamma H
(\bfitmu ), and \bfitu \Gamma H

eh
(\bfitmu ) defined as in Problem 2,

\~\bfitA (\bfitmu ) =: \bfitV T
s \bfitA (\bfitmu )\bfitV s \in \BbbR nh\times nh ,(2.10a)

\~\bfitu 
(l)
th

=: \bfitV T
s \bfitu 

(l)
th

\in \BbbR nh , l \in \{ 0, . . . , Nt\} ,(2.10b)

\~\bfitu \Gamma H
(l)

eh
(\bfitmu ) =:  - \bfitV T

s \bfitA \Gamma H
(\bfitmu )\bfitu \Gamma H

(l)

eh
(\bfitmu ) \in \BbbR nh , l \in \{ 0, . . . , Nt\} .(2.10c)

Based on (2.8), we can perform a dimensionality reduction step also on the
epicardial extracellular potential. So, let \scrX e \in \BbbR Ne

h\times Nt\times N\bfitmu be the third-order tensor
storing the values of the epicardial extracellular potential \bfitu \Gamma H

eh
at all the Ne

hNt space-
time DOFs of the epicardial surface and for N\bfitmu different parameter values. Then
an RB in space, stored by the matrix \bfitV e

s \in \BbbR Ne
h\times ne

h , can be computed by applying
a truncated POD to the mode-1 unfolding of \scrX e. Equation (2.8) can be written in
reduced form as

(2.11) \~\bfitA (\bfitmu )\~\bfitu 
(l)
th

= \~\bfitA 
e
(\bfitmu )\~\bfitu \Gamma H

(l)

eh
(\bfitmu ), l \in \{ 0, . . . , Nt\} ,
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where \~\bfitA (\bfitmu ) and \~\bfitu 
(l)
th

are defined as in (2.10a) and (2.10b), respectively, while

\~\bfitA 
e
(\bfitmu ) =: \bfitV T

s \bfitA \Gamma H
(\bfitmu )\bfitV e

s \in \BbbR nh\times ne
h ,(2.12a)

\~\bfitu \Gamma H
(l)

eh
(\bfitmu ) =:  - \bfitV eT

s \bfitu \Gamma H
(l)

eh
(\bfitmu ) \in \BbbR ne

h , l \in \{ 0, . . . , Nt\} .(2.12b)

As discussed before, in the framework of the ST-RB-DNN model the epicardial
potential field is projected also along the temporal dimension, as it is extremely
convenient to encode its dynamics in a low and grid-refinement-independent number
of coefficients. Following the tailored temporal subspaces via the ST-HOSVD approach,
ne
h different truncated POD are applied to the projections of the snapshots' tensor \scrX e

onto the spaces spanned by the different spatial basis elements, i.e.,

(2.13) \scrX e(\bfitV e
si) \in \BbbR Nt\times N\bfitmu s.t.

\bigl( 
\scrX e(\bfitV e

si)
\bigr) 
jk

=

Ne
h\sum 

l=1

\scrX e
ljk\bfitV 

e
sil
, i \in \{ 1, . . . , ne

h\} .

These POD allow us to compute the temporal bases \bfitV e
ti \in \BbbR Nt\times ni

t \forall i \in \{ 1, . . . , ne
h\} .

The overall space-time RB for the epicardial potential is then made of nst =:
\sum ne

h
i=1 n

i
t

elements of dimension Ne
h\times Nt, each one being defined as the outer product between an

element of the RB in space \bfitV e
s and an element of the associated RB in time \{ \bfitV e

ti\} 
ne
h

i=1.
The embedded reduced solver acting as decoder in the ST-RB-DNN model com-

putes the ROM-in-space FOM-in-time solution to the generalized Laplace equation in
the torso (see (2.11)) receiving as input the space-time projection of the epicardial
potential field. Leveraging orthonormality due to the POD, such a projection can be
expressed in terms of the FOM approximation as

(2.14)
\bigl( 
\^\bfitu \Gamma H
eh

(\bfitmu )
\bigr) 
k
=

Ne
h\sum 

i=0

Nt\sum 
j=0

\bfitpi k
ij

\bigl( 
\bfitu \Gamma H
eh

(\bfitmu )
\bigr) 
ij
, k \in \BbbN (nst),

where \bfitpi k
ij denotes the element in position (i, j) of the kth space-time basis function.

Therefore, the ROM-in-space FOM-in-time epicardial potential \~\bfitu \Gamma H
eh

(\bfitmu ) can be derived

by expanding in time \^\bfitu \Gamma H
eh

(\bfitmu ) as

(2.15)
\Bigl( 
\~\bfitu \Gamma H

(l)

(\bfitmu )
\Bigr) 
i
=

ni
t\sum 

j=0

\bigl( 
\bfitV e

ti

\bigr) 
jl
\^\bfitu \Gamma H

\scrF (i,j)(\bfitmu ), i \in \{ 1, . . . , ne
h\} l \in \{ 0, . . . , Nt\} ,

where

(2.16) \scrF :
\bigl( 
i \in \BbbN (ne

h), j \in \BbbN (ni
t)
\bigr) 
\rightarrow 

i - 1\sum 
k=1

nk
t + j \in \BbbN (nst)

is the mapping from the space and time bases indexes to the space-time basis index.
Remark. If the torso is approximated as an inhomogeneous volume conductor,

featuring the presence of organs with different electric conductivities, then it is possible
to take advantage of an affine parametrization to efficiently assemble the stiffness
matrix during the online stage. For instance, if we suppose the torso to be partitioned

into Np parts with conductivities \bfitmu =: \{ \sigma p\} Np

p=1, then the stiffness matrix can be
written as

(2.17) \bfitA (\bfitmu ) =

Np\sum 
p=1

\sigma p\bfitA p,
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where \bfitA p is the stiffness matrix associated to the DOFs belonging to the part p of
the torso and computed assuming a default conductivity of 1. Readily, an equivalent
affine decomposition applies also to the reduced torso stiffness matrix \~\bfitA (\bfitmu ).

2.3. Neural networks architectures. This subsection is devoted to a more
detailed presentation of the ST-RB-DNN model architecture. In particular, the first
part provides a description of the generic model structure (i.e., the general structure of
the ST-RB-DNN model, independently of the nature of the signals given in input). The
second and the third part, instead, focus on the two models that have been actually
implemented and tested in this work, analyzing their specific features with respect to
the general case.

2.3.1. The generic ST-RB-DNN model. The architecture of the generic
ST-RB-DNN model is reported in Figure 2. The model input (in red) consists of body
surface signals or of quantities that can be directly derived from the latter. The initial
processing is done by a trainable NN (in blue) whose actual architecture depends on
the nature of the quantities given in input and which acts as an encoder. Such NN is
responsible for the estimation of two type of quantities:
1. A latent representation of the epicardial potential field (in orange): The main

element which is estimated by the encoder is a latent representation of the epicardial
potential field, which is obtained by means of a projection onto a space-time reduced
subspace generated from physical solutions to the heart electrophysiology problem
(see (2.14)). Notice that the latent representation estimated by the encoder, called
\=\bfitu a,\bfitmu 
eh

, is not the actual projection to be lately provided in input to the embedded
RB solver of the FPE (in cyan), called \^\bfitu a,\bfitmu 

eh
. Indeed, the former is processed by a

deterministic rescaler layer (in yellow) to obtain the latter; the rescaling is affine
and it has the following form:

(2.18) \^\bfitu a,\bfitmu 
eh

= \^\bfitu shift
eh

+ \^\bfitu scale
eh

\=\bfitu a,\bfitmu 
eh

with \^\bfitu shift
eh

and \^\bfitu scale
eh

representing the additive and the multiplicative terms of
the affine transformation. In simpler terms, the NN estimates how far (in terms
of the epicardial potential) the current datapoint is from a target value, referred
to as the ``shift,"" with a scaling factor given by what is referred to as the ``scale.""
Several choices can be made for the values of these two quantities; we decided to
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Fig. 2. Scheme of the generic architecture of the ST-RB-DNN model.
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set \^\bfitu shift
eh

to 0 (so, corresponding to a totally inactivated heart) and to compute

\^\bfitu scale
eh

as the standard deviation of the epicardial potentials in the training dataset,
assuming them to have 0 mean. The rescaling is motivated by the fact that the
values of the coefficients arising from the projection onto the space-time-reduced
subspace happen to span over a broad range of orders of magnitude and this
severely hinders the training process. Exploiting (2.18) significantly improves the
performance.

2. Torso conductivities (in green): Other than the epicardial potential field, the
encoder may also learn the values of the electric conductivities of the different
organs considered in the torso geometry, in case an inhomogeneous approximation
of the latter is performed. To be precise, following the suggestions given in [15],
such parameters are estimated as normalized in the interval [0; 1] by employing a
sigmoid as an activation function. Additionally, working under the isolated heart
assumption, what matters are the relative values of the conductivities and not their
absolute ones; thus, one conductivity must always be normalized to 1 by default
and so no parameters' estimation is needed if a homogeneous torso approximation
is employed.
Finally, the quantities estimated by the encoder are fed to an embedded tensorial

RB solver of the FPE (in cyan), which acts as an efficient and deterministic decoder:
1. At each forward pass during the training phase, the decoder takes as input the

normalized values of the torso conductivities and the estimated rescaled space-time-
reduced epicardial potential \^\bfitu a,\bfitmu 

eh
\in \BbbR bs\times nst\times 1. Here bs denotes the batch size used

by the stochastic gradient descent algorithm.
2. The decoder assembles the left-hand side and right-hand side stiffness matrices

appearing in (2.11), eventually exploiting affine parametrization (see (2.17)).
3. The decoder expands the space-time-reduced epicardial potentials \^\bfitu a,\bfitmu 

eh
\in \BbbR bs\times nst\times 1

along the temporal dimension, thus computing \~\bfitu a,\bfitmu 
eh

.
4. The decoder solves the ROM FPE (2.11) so that the ROM-in-space FOM-in-time

torso potential \~\bfitu a,\bfitmu 
th

\in \BbbR bs\times nh\times Nt is computed.
5. Finally, the decoder computes signals that are analogous to the ones provided in

input to the model. The way this task is carried out depends on the nature of the
input signals.
As reported in (2.1), the loss functional is constructed as the sum of three

contributions: the error on the reduced epicardial potential field, the error on the
reconstruction of body surface signals, and a ridge regularization term, which helps in
preventing overfitting. In more detail, the loss functional is defined as follows:

\scrL (\Theta ) = \scrL BC(\Theta ) + \scrL sig(\Theta ) + \scrL reg(\Theta )(2.19)

= wBC MAE\bfitsigma 

\bigl( 
\^\bfitu r
eh
, \^\bfitu a

eh
(\Theta )

\bigr) 
+

nsig\sum 
i=1

MSE
\bigl( 
\bfitS r

\#i,\bfitS 
a
\#i(\Theta )

\bigr) 
+ \lambda r| | \Theta | | 22 .

The quantities with apex r denote target values, the quantities with apex a denote
approximated values, \bfitS \#i encodes the ith input signal, from a total of nsig signals,
and wBC \in \BbbR represents the weight of the space-time-reduced epicardial potential
field error. The choice of using the Mean Absolute Error (MAE) instead of the Mean
Squared Error (MSE) for the loss term \scrL BC aims at forcing to 0 the least relevant
coefficients, as characteristic of \ell 1-norm penalization. Additionally, the MAE appearing
in \scrL BC is weighted not only by the nonnegative scalar wBC , but also by the singular
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values that, during the POD construction of the two RBs, have been associated to the
different coefficients. So,

(2.20) MAE\bfitsigma 

\bigl( 
\^\bfitu r
eh
, \^\bfitu a

eh

\bigr) 
=:

1

bsnst

bs\sum 
i=1

ne
h\sum 

j=1

nj
t\sum 

k=1

\sqrt{}    \sigma e,s
j \sigma e,t,j

k

\sigma e,s
1 \sigma e,t,1

1

\bigm| \bigm| \bigm| \bigl( \^\bfitu r
eh

 - \^\bfitu a
eh

\bigr) 
\scrF (j,k)

\bigm| \bigm| \bigm| ,
where \{ \sigma e,s

j \} n
e
h

j=1 are the singular values arising from the (spatial) POD applied to

the mode-1 unfolding of the epicardial potentials tensor, \{ \sigma e,t,j
k \} n

j
t

k=1 are the singular
values deriving from the (temporal) POD applied to the projection of the epicardial
potentials tensor onto the one-dimensional (1D) subspace spanned by the jth spatial
basis element, bs is the training batch size, and \scrF (\cdot , \cdot ) is the mapping from the space
and time bases indexes to the space-time basis index, as defined in (2.16). In this way,
the weight of the error on a space-time-reduced epicardial potential coefficient in the
loss gets lower and lower as its relevance decreases; this allows us to obtain better
estimates of the most relevant coefficients, easing the training process and improving
model performances.

Three remarks follow. First, by resorting to ROM techniques, we managed to
mitigate the effects of the ill-posedness of the inverse problem, as the dimensionality
of the solution space is dramatically reduced. However, instabilities might arise when
the number of considered spatio-temporal basis functions (i.e., as the POD tolerances
decrease). Due to the small dimension of our dataset, we did not experience any
problem in this sense; nevertheless, adding supplementary regularization terms---as
the ones of (1.5)---to the loss functional ensures well-posedness. Second, when training
the ST-RB-DNN model as a pure AE, we indeed considered a loss regularization term
\scrL AE
reg of the form

(2.21) \scrL AE
reg = \lambda r| | \Theta | | 22 + \lambda t| | \bfitu r

th
| | 2H1(\Omega T ) + \lambda e| | \bfitu r

eh
| | 2L2(\Gamma H).

The values of the hyperparameters \lambda t and \lambda e have been chosen according to the results
of a grid search process. Third, the estimation error on the torso conductivities is not
involved in the expression of the loss functional; as in [15], such values are obtained as
a by-product.

2.3.2. The time-series-based ST-RB-DNN model. The architecture of the
time-series-based ST-RB-DNN model is shown in Figure 3. Its main feature, with
respect to the generic model, is that it takes as input body surface signals organized
in the form of time series. The following aspects deserve to be discussed:
\bullet As suggested in [58, 29], at the preprocessing stage it is useful to remove noise
components from body surface signals, since it eases the training process and
it increases the representative power of the models. Many works regarding the
denoising of real body surface potentials are available, such as [44, 45]. In this project
we considered only numerically generated signals with superimposed white Gaussian
noise, proportional to the signals themselves at each discrete time instant and at an
average signal-to-noise ratio (SNR) of 26 dB; thus, we employed a standard low-pass
Butterworth filter of order n = 3 [6]. Additionally, all signals have been normalized
in the interval [ - 1; 1] to ensure they are all within the same scale, as in [5].

\bullet Since the input signals are provided as time series, we chose to employ a convolutional
neural network (CNN) design for the encoder. In particular, the structure of the
CNN can be divided in to three parts:
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ū
a,µ
eh

Θ

ECGr,µ
II

ECGr,µ
aV L

ECGr,µ
V2

µ̃a

µa µa
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Fig. 3. Scheme of the architecture of the time-series-based ST-RB-DNN model. Notice that as
the input body surface signals are in the form of time series, the trainable NN acting as decoder is a
CNN, with 1D convolutional layers acting along the temporal dimension only.

-- Preconvolutional fully connected layers: As the first step, the input signals are
processed by some fully connected layers; their aim is to extract features on top of
which convolutional operations may exhibit better performance. It is relevant to
notice that these layers only combine quantities related to the same time instant,
using the same set of weights at all time instants. In other terms, the original
input signals are nonlinearly combined together, so that other signals, featuring a
better information encoding, can be derived. The activation function is rectified
linear unit (ReLU) for all neurons.

-- 1D convolutional + Max-Pooling layers: After the initial ``preprocessing"" stage,
the resulting data are passed by to 1D convolutional layers that convolve them
along the temporal dimension. The number of layers, the dimensionality of
the convolutional kernel, and the number of convolutional filters are three key
hyperparameters of the model. Each 1D-convolutional layer is followed by a
Max-Pooling layer, with pooling window of dimension 2\times 3 and with 2\times 2 stride.
As a result, with proper padding choices, the size of the input is halved along both
dimensions at each step, reducing in turn the number of trainable parameters of
the model.

-- Postconvolutional fully connected layers: After 1D convolutions, the data are
finally processed by a second set of fully connected layers. Their aim is to extract
relevant features to ultimately perform a good estimation of both the torso
conductivities and the space-time-reduced epicardial potential. All neurons of
all layers are ReLU-activated, except from the ones of the last layer, i.e., the
one providing the final estimates. These indeed feature two different activation
functions: sigmoid for the neurons storing the normalized values of the torso
conductivities and SELU (i.e., an optimally scaled version of the exponential
linear unit) for the ones storing the space-time-reduced epicardial potential. This
last choice allows one to circumvent the so-called dying ReLU problem [33], which
has been experienced in some preliminary tests employing ReLU as an activation
function.

Additionally, dropout layers with p = 0.20 are added to the model to reduce the
risk of overfitting.

2.3.3. The DFT-based ST-RB-DNN model. The architecture of the DFT-
based ST-RB-DNN model can be visualized in Figure 4. The name stems from the
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Fig. 4. Scheme of the architecture of the DFT-based ST-RB-DNN model. Notice that as the
body surface signals are given in input by means of their lowest-frequency DFT coefficients, the
trainable NN acting as decoder is an MLP, since temporal dynamics have already been handled by
the DFT itself at the preprocessing stage.

usage of low-frequency DFT coefficients of the body surface signals to assemble the
model input. The 1D DFT is the discrete counterpart of the univariate Fourier
transform and it turns a sequence of N complex numbers \{ xn\} N - 1

n=0 , which belongs to
the temporal domain, into another sequence of N complex numbers \{ Xk\} N - 1

k=0 , which
belongs instead to the frequency domain. In particular,

(2.22) Xk =

N - 1\sum 
n=0

xn e - 
2\pi i
N kn =

N - 1\sum 
n=0

xn

\biggl[ 
cos

\biggl( 
2\pi 

N
kn

\biggr) 
 - i sin

\biggl( 
2\pi 

N
kn

\biggr) \biggr] 
.

As (2.22) is hermitian on real inputs, the dimensionality of the DFT applied to body
surface signals is \=M =: \lfloor Nt/2\rfloor +1, where Nt is the signal length. The dimensionality of
the model inputs is then M \leq \=M , upon having excluded a certain portion of coefficients,
related to the highest-frequency modes; the choice of M is a model hyperparameter.
The DFT of body surface signals have been efficiently computed using the fast Fourier
transform (FFT) algorithm [14]. Additionally, a bisymmetric logarithmic transform of
the form

(2.23) \^x = sign(x) log10

\Bigl( 
1 +

\bigm| \bigm| \bigm| x
C

\bigm| \bigm| \bigm| \Bigr) 
with C = 1/ ln(10) [54] has been applied to both the real and the imaginary parts of
the selected DFT coefficients to narrow the width of their orders of magnitude. We
underline the following aspects:
\bullet A drawback of the time-series-based ST-RB-DNN model is that it can work only
at a fixed acquisition frequency; in our test cases, for instance, we sampled body
surface signals at 500 Hz. Thus, if the signals to be processed have been sampled at
a lower frequency, they have to be interpolated in time before being provided to the
model. Conversely, the lowest-frequency DFT coefficients feature a low sensitivity
with respect to the acquisition frequency; thus, using them as input allows us to
avoid any interpolation at the preprocessing stage. Notice, as a caveat, that the
low sensitivity occurs only with respect to the lowest-frequency DFT coefficients;
however highest-frequency ones are typically not very informative, so that model
accuracy should not be too much affected by their removal.

\bullet Since the application of a DFT at the preprocessing stage already allows us to
capture temporal dynamics, a convolution inside the encoder is no longer needed.
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Thus, the latter simply consists of a multiple layer perceptron (MLP), with several
flanked fully connected layers. Also, the encoder is equipped with dropout layers
with p = 0.80 (i.e., 20\% of the neurons are dropped at each update of the training
phase) to reduce the risk of overfitting [46] and all its layers are ReLU-activated,
except the last one. Its neurons, indeed, feature either sigmoid or SELU as the
activation function, depending on the nature of the quantity they are estimating.

3. Results. In this section, we present the numerical results got with the ST-RB-
DNN model on a benchmark test case. The data used to train and test the developed
models have been generated numerically. In particular, heart electrophysiology has been
approximated by solving the bidomain equations coupled with the phenomenological
AP ionic model, on a reference biventricular geometry (taken from [26]---see Figure 5).
The FPE required instead to solve a generalized Laplace equation in the human torso.
Again, we considered a fixed geometry (taken from [18]---see Figure 6); moreover,
we modeled the torso as a homogeneous and isotropic volume conductor, discarding
the presence of different organs (as bones, lungs, or blood vessels) with different
electric conductivities. Working under the isolated heart assumption, the two problems
could be fully decoupled and solved sequentially, one after the other. All numerical
simulations have been carried out employing the classical FE method, with elements

Fig. 5. Geometry of the biventricle employed in the FOM simulations, taken from [26]. The
colored spheres denote the sites of potential occurrence of epicardial breakthroughs in a healthy patient,
according to [56]; the colors of the spheres are associated to the probability of epicardial breakthrough
occurrence (refer to the colormap on the left side). Left: anterior view. Center-left: posterior view.
Center-right: left lateral view. Right: inferior view.

Fig. 6. Geometry of the human torso employed in the FOM simulations, taken from [18]. The
black spheres denote the positions of the 3 peripheral electrodes used in the standard 12-lead ECG
system. The colored spheres denote the positions of the 6 precordial electrodes; their colors have been
set according to the American Heart Association color-coding system. The lilac squares, together
with the colored spheres, denote the positions of the electrodes on the ``simulated"" vest. Left: anterior
view. Right: posterior view.
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Fig. 7. Snapshots of one FOM solution to the FPE at t = 20, 40, 60 ms. Left: V3 ECG precordial
lead. Center: epicardial extracellular potential field, anterior view. Right: body surface potential field,
anterior view.

of degree p = 1. Simulation duration has been set to 160 ms, so that only ventricular
depolarization was captured. The computational mesh built on top of the biventricular
geometry was made of 221,088 tetrahedral elements, resulting in 49,674 vertices;
the mesh constructed on top of the torso geometry, instead, was made of 498,992
tetrahedral cells, which resulted in 94,976 vertices. Concerning temporal discretization,
a value of \Delta t = 0.5 ms has been chosen. Three snapshots of a FOM solution to the
problem are shown in Figure 7.

A crucial step in order to generate a dataset suitable to train DL models is to add
sufficient variability. Indeed, on the one side the training datapoints must differ one
from the other, so that the model can learn from them the widest possible amount of
dynamics and conditions; on the other side, also the testing datapoints should show
differences both within each other and with respect to the training ones, so that a
proper assessment of model performances can be made. We are aware of the fact
that the simplifying modeling assumptions we adopted prevent us from employing
our model with success on real data. However, we tried to enrich the data generation
process with several sources of randomness, in order to construct a sufficiently variable
dataset, able to challenge the capabilities of the ST-RB-DNN model.
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Table 1
Values of the cardiac electric conductivities employed to numerically approximate heart elec-

trophysiology via the bidomain equations. \scrU (a, b) denotes a uniform distribution over the interval
[a; b].

\sigma \bfl \bfi [S cm - 1] \sigma \bft \bfi [S cm - 1] \sigma \bfl \bfe [S cm - 1] \sigma \bft \bfe [S cm - 1]

\scrU (1.77, 2.92) \cdot 10 - 4 \scrU (0.66, 1.08) \cdot 10 - 4 \scrU (1.65, 2.73) \cdot 10 - 3 \scrU (0.96, 1.32) \cdot 10 - 3

Since the FPE consists only of a generalized Laplace equation to be solved in a
homogeneous and isotropic volume conductor, no variability has been inserted explicitly
at such stage. Regarding heart electrophysiology, instead, variability has been added
in two ways. First, all cardiac conductivities (longitudinal and transversal to the
fibers' direction, intracellular, and extracellular) have been sampled from a uniform
distribution (see Table 1); indeed they have been proved to strongly influence the
depolarization process and, in turn, the shape of body surface potentials [4].

Second, different initial activation patterns have been considered; all such patterns
are consistent with the findings of Wyndham et al. on epicardial breakthroughs (EBTs)
localization in both healthy [56] and LBBB-affected [55] patients. In particular, a thin
endocardial and subendocardial layer is activated, for a duration of 5 ms, in 10 possible
different regions; this implies that EBTs could occur in 10 possible different locations
that mimic the effect of Purkinje fibers (see Figure 5). For healthy patients, all these
regions could possibly activate, with the constraint that no more than 5 EBTs should
appear. Instead, for patients affected by LBBB (RBBB), only the regions located on
the right (left) ventricle can be involved in the stimulation protocol and no more than
3 EBTs should be observed. 50\% of the patients in the dataset are healthy, 25\% are
LBBB-affected, and 25\% are RBBB-affected. The position of the point around which
the initial stimulation is applied can vary within a sphere of 2 mm radius, obeying a
3D uniform distribution, and the initial activation times are sampled from a uniform
distribution, with ranges having been defined according to [56, 55].

Ultimately, the dataset we employed is made of N\bfitmu = 400 datapoints. Train
and test datasets have been obtained from a 90\% - 10\% splitting of such dataset; the
validation dataset has been assembled by picking the 10\% of the training datapoints.
Furthermore, training and validation datasets have been subject to data augmentation
on-the-fly, by superimposing white Gaussian noise proportional to the signals so that an
average SNR of 26 dB is achieved. Additionally, starting from the same FOM solutions,
two different datasets have been assembled: the first one contains 12-lead ECG signals
as body surface signals, while the second one features 158 signals computed from
measurements of the body surface potential in 155 different locations (see Figure 6).
Both datasets have been suitably modified when the DFT-based model has been
considered.

In order to reduce the computational burden of the offline stage of the method,
the training and validation datasets have been used also to generate all the RBs. All
POD have been performed with respect to the standard \ell 2-norm and the randomized
SVD algorithm [23] has been employed:
\bullet The RB in space for the torso potential has been computed by means of a POD
applied to the mode-1 unfolding of the corresponding tensor. A tolerance \epsilon t,sPOD =
10 - 3 has been chosen and 314 basis functions have been derived.

\bullet The RB in space for the epicardial potential has been computed by means of a
POD applied to the mode-1 unfolding of the corresponding tensor. A tolerance
\epsilon e,sPOD = 10 - 1 has been chosen and 101 basis functions have been derived.
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\bullet The dimensionality reduction along the temporal dimension for the epicardial
potential has been realized according to the tailored temporal subspaces via ST-
HOSVD approach proposed in [8], thus computing for each element of the spatial
RB a tailored temporal one. The tolerances for the POD \~\epsilon e,tPOD have been set to
drop from 5 \cdot 10 - 2 to 5 \cdot 10 - 1, depending on the singular values associated to the
corresponding spatial RB element. Ultimately, the computed space-time RB was
made of 766 elements.
A grid search has been conducted both on the time-series-based ST-RB-DNN

model and on the DFT-based one, in order to identify optimal values for those
hyperparameters having the largest impact on model performance. In particular, all
hyperparameters related to the architecture of the trainable encoder have been involved
in the grid search and the dataset featuring 12-lead ECG signals was employed. The
\ell 1-norm relative error on the reconstructed epicardial activation maps has been chosen
as an evaluation metric. Such maps have been computed by assigning to each vertex of
the computational mesh the time instant at which the time derivative of the epicardial
extracellular potential was maximal. Results of the grid searches are shown in Table 2
for the time-series-based model and in Table 3 for the DFT-based one. Additionally,
Table 4 reports the complexities and the training/testing times for some of the trained
models. Concerning other relevant hyperparameters, the learning rate has been set to
\nu = 10 - 3 (with a reduction of factor 4 if no improvement of the validation loss could
be observed for 20 consecutive epochs); the Nadam optimizer (i.e., an improved version
of the Adam optimizer incorporating Nesterov momentum) [16] was chosen; ridge
regularization has been employed, with parameters \lambda FC

r = 10 - 7 in fully connected
layers and \lambda Conv

r = 10 - 4 in convolutional ones. Also, we set wBC = 103 for the
time-series-based model and wBC = 102 for the DFT-based one; this allowed us to
get a loss split of approximately 95\% - 5\% between the error on epicardial potentials
and the one on body surface signals. Figures 8 and 9 show the results of the two best
models on test datapoint \#1 in terms of epicardial activation maps and 12-lead ECG
signals, respectively. Figures 10 and 11 show the results of the two best models on
test datapoint \#3 in terms of epicardial activation maps and 12-lead ECG signals,
respectively; these results are relevant, as this datapoint identifies the worst-case
scenario for the majority of the trained models. Additionally, Figures 12 and 13 report
the results of the two best models on test datapoint \#3 in case they are trained on the
dataset featuring 158 body surface signals. Table 5 provides a summary of the errors
made by the two best models, comparing the performances in case either 12 or 158 body
surface signals are provided in input. Figure 14 compares the epicardial activation
maps predicted by the best time-series-based and DFT-based models with the ones
resulting from the same models trained as pure AEs; in both cases we provided 158
body surface signals in input. For the AEs, no changes in the architecture with respect
to the best models have been made, while the additional regularization parameters
in (2.21) have been selected upon a grid search process. Their values are \lambda t = 10 - 6,
\lambda e = 0 for the time-series-based AE model and \lambda t = 0, \lambda e = 0 for the DFT-based
one. Finally, Table 6 reports the errors made by the best models, trained either in a
standard way or as pure AEs.

The training and testing of all models as well as all postprocessing routines have
been carried out on a Lenovo ThinkPad T490s mounting Ubuntu 20.04.1 LTS, with 16
GB RAM and an Intel i7-8565U processor with 4 cores at 1.80 GHz. The numerical
simulations needed to construct the dataset were instead performed on the iHEART
cluster (Lenovo SR950 8x24-Core Intel Xeon Platinum 8160, 2.10 GHz and 1.7 TB
RAM) at MOX, Dipartimento di Matematica, Politecnico di Milano.
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Table 2
Average relative errors in \ell 1-norm on the epicardial activation maps of the test dataset with

the time-series-based ST-RB-DNN model. The green cell displays the best model; the red cell
displays the worst model. Rows labels are in the form ``prelayers - postlayers,"" where the first entry
defines the layers of the preconvolutional fully connected block and the second one the layers of the
postconvolutional fully connected block. Column labels are of the form ``NF - Kdim,"" where NF is
the number of convolutional filters and Kdim the dimension of the 1D convolutional kernel.

Dense
1D Conv

(5) - 15 (5) - 25 (10) - 15 (10) - 25 (15) - 15 (15) - 25

(32) - (128,64,32,16,8,4) 6.43e-2 6.02e-2 6.52e-2 6.34e-2 6.71e-2 6.06e-2
(64) - (128,64,32,16,8,4) 5.78e-2 6.44e-2 6.95e-2 5.91e-2 8.28e-2 6.15e-2
(32) - (128,64,32,16,8) 5.15e-2 5.44e-2 4.94e-2 5.56e-2 5.40e-2 4.81e-2
(64) - (128,64,32,16,8) 4.51e-2 4.88e-2 5.10e-2 3.96e-2 4.65e-2 5.28e-2
(32) - (128,64,32,16) 5.20e-2 4.09e-2 4.76e-2 4.65e-2 4.32e-2 4.37e-2
(64) - (128,64,32,16) 4.57e-2 4.32e-2 4.23e-2 4.33e-2 4.35e-2 4.43e-2

Table 3
Average relative errors in \ell 1-norm on the epicardial activation maps of the test dataset with the

DFT-based ST-RB-DNN model. The green cell displays the best model; the red cell displays the worst
model; the yellow cells identify two DFT-based models that will be considered in Table 4. Rows labels
are of the form ``prelayers - postlayers,"" the entries corresponding to the number of neurons in the
layers preceding and following a Flatten layer. Column labels report the number of DFT coefficients
given as input to the model.

Dense
DFT modes

9 17 25 33

(64,64) - (256,256,128,64) 5.64e-2 5.57e-2 5.29e-2 5.46e-2
(128,128) - (256,256,128,64) 5.46e-2 5.58e-2 5.40e-2 4.06e-2
(256,256) - (256,256,128,64) 5.07e-2 5.08e-2 5.20e-2 4.61e-2
(64,64) - (256,256,128) 4.78e-2 4.54e-2 4.14e-2 5.08e-2
(128,128) - (256,256,128) 4.37e-2 4.28e-2 4.26e-2 4.05e-2
(256,256) - (256,256,128) 3.78e-2 3.81e-2 3.67e-2 3.79e-2
(64,64) - (256,256) 4.19e-2 3.91e-2 3.83e-2 4.85e-2
(128,128) - (256,256) 3.90e-2 3.83e-2 4.12e-2 3.90e-2
(256,256) - (256,256) 3.90e-2 3.70e-2 3.77e-2 3.86e-2
(64,64) - (256,512) 3.77e-2 3.79e-2 3.65e-2 5.07e-2
(128,128) - (256,512) 3.60e-2 3.49e-2 3.69e-2 3.75e-2
(256,256) - (256,512) 3.50e-2 3.51e-2 3.55e-2 3.70e-2

Table 4
Average activation maps \ell 1-norm relative error, number of trainable parameters, and training

and testing times (in s) for four different ST-RB-DNN models. ``Best T-series"" and ``Best DFT""
identify the best time-series-based and DFT-based models, respectively; ``DFT Model 1"" is a DFT-
based model whose complexity is the closest to the one of ``Best T-series"" among the tested models;
``DFT Model 2"" is a DFT-based model whose average \ell 1-norm relative error on activation maps is the
closest to the one of ``Best T-series"" model among the tested models. The architectures of the models
can be derived from Tables 2 and 3, following the color-coded notation and the reported activation
map errors. Ttrain is the full training time; Tepoch is the average time per epoch; Tpredict is the time
required by a single forward pass in the model; Ttest is the full testing time on a single datapoint,
including all postprocessing routines.

AM error \# Params \bfitT \bfitt \bfitr \bfita \bfiti \bfitn \bfitT \bfite \bfitp \bfito \bfitc \bfith \bfitT \bfitp \bfitr \bfite \bfitd \bfiti \bfitc \bfitt \bfitT \bfitt \bfite \bfits \bfitt 

Best T-series 3.96e-2 213\prime 264 603.52 s 11.3871 s 0.0288 s 4.3385 s
Best DFT 3.49e-2 622\prime 590 586.93 s 10.2970 s 0.0329 s 4.6384 s

DFT Model 1 4.78e-2 239\prime 998 446.73 s 9.1180 s 0.0253 s 4.5188 s
DFT Model 2 3.90e-2 358\prime 654 451.92 s 9.2228 s 0.0306 s 4.5453 s
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Fig. 8. Epicardial activation maps for the test datapoint \#1 (healthy), computed from three
different potential fields: the one reconstructed from the exact ST-ROM approximation (top), the one
estimated by the best time-series-based ST-RB-DNN model (center), and the one estimated by the
best DFT-based ST-RB-DNN model (bottom). Estimation errors (relative, \ell 1-norm) are 1.60\% and
1.78\%, respectively. Both models receive 12-lead ECG signals in input. We show four different views
of the activation maps.

Fig. 9. 12-lead ECG signals for test datapoint \#1 (healthy) computed by solving the forward
problem with the RB method. Three epicardial potential fields have been employed as Dirichlet
boundary datum: the one reconstructed from the exact ST-ROM approximation, the one estimated
by the best time-series-based ST-RB-DNN model, and the one estimated by the best DFT-based
ST-RB-DNN model. Estimation errors (absolute, \ell 1-norm, in mV ) are 5.63 \cdot 10 - 2 and 7.89 \cdot 10 - 2,
respectively. Both models receive 12-lead ECG signals in input.
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Fig. 10. Epicardial activation maps for the test datapoint \#3 (RBBB), computed from three
different potential fields: the one reconstructed from the exact ST-ROM approximation (top), the one
estimated by the best time-series-based ST-RB-DNN model (center), and the one estimated by the
best DFT-based ST-RB-DNN model (bottom). Estimation errors (relative, \ell 1-norm) are 6.36\% and
9.14\%, respectively. Both models receive 12-lead ECG signals in input. We show four different views
of the activation maps.

Fig. 11. 12-lead ECG signals for test datapoint \#3 (RBBB) computed by solving the forward
problem with the RB method. Three epicardial potential fields have been employed as Dirichlet
boundary datum: the one reconstructed from the exact ST-ROM approximation, the one estimated
by the best time-series-based ST-RB-DNN, model and the one estimated by the best DFT-based
ST-RB-DNN model. Estimation errors (absolute, \ell 1-norm, in mV ) are 11.51 \cdot 10 - 2 and 8.23 \cdot 10 - 2,
respectively. Both models receive 12-lead ECG signals in input.
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Fig. 12. Epicardial activation maps for the test datapoint \#3 (RBBB), computed from three
different potential fields: the one reconstructed from the exact ST-ROM approximation (top), the one
estimated by the best time-series-based ST-RB-DNN model (center), and the one estimated by the
best DFT-based ST-RB-DNN model (bottom). Estimation errors (relative, \ell 1-norm) are 9.26\% and
4.65\%, respectively. Both models receive 158 body surface signals in input. We show four different
views of the activation maps.

Fig. 13. 12-lead ECG signals for test datapoint \#3 (RBBB) computed by solving the forward
problem with the RB method. Three epicardial potential fields have been employed as Dirichlet
boundary datum: the one reconstructed from the exact ST-ROM approximation, the one estimated
by the best time-series-based ST-RB-DNN model, and the one estimated by the best DFT-based
ST-RB-DNN model. Estimation errors (absolute, \ell 1-norm, in mV ) are 11.71 \cdot 10 - 2 and 8.19 \cdot 10 - 2,
respectively. Both models receive 158 body surface signals in input.
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Table 5
Reconstruction errors on the epicardial activation maps (left) and on 12-lead ECG signals

(right) made by the best model, depending on the nature and on the dimensionality of the input. We
measure activation maps' errors and ECG signals' errors with relative \ell 1-norm and absolute (in
mV) \ell 1-norm, respectively.

Size
Type

TS DFT

12 3.96e-2 3.49e-2
158 3.98e-2 3.29e-2

Size
Type

TS DFT

12 6.52e-2 mV 6.82e-2 mV
158 7.55e-2 mV 6.82e-2 mV

Fig. 14. Epicardial activation maps for the test datapoint \#1 (healthy), computed from five
different potential fields: (i) the one reconstructed from the exact ST-ROM approximation (top),
(ii) the one estimated by the best time-series-based ST-RB-DNN model (center-left), (iii) the one
estimated by the best DFT-based ST-RB-DNN model (center-right), (iv) the one estimated by the
best time-series-based ST-RB-DNN AE model (bottom-left), and (v) the one estimated by the best
DFT-based ST-RB-DNN AE model (bottom-right). Estimation errors (relative, \ell 1-norm) are 1.60\%
and 1.78\% for the non-AE models and 11.88\% and 5.82\% for the AE models. All models receive 158
body surface signals in input. We show two different views of the activation maps.

Table 6
Reconstruction errors on the epicardial activation maps (left) and on 12-lead ECG signals

(right) made by the best model, depending on the nature of the input (TS or DFT) and on the type of
training (not-AE or AE). We measure activation maps' errors and ECG signals' errors with relative
\ell 1-norm and absolute (in mV) \ell 1-norm, respectively.

Train
Type

TS DFT

not-AE 3.98e-2 3.29e-2
AE 14.49e-2 8.81e-2

Train
Type

TS DFT

not-AE 7.55e-2 mV 6.82e-2 mV
AE 6.33e-2 mV 4.15e-2 mV
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4. Discussion. Our study focused on the development of a DL model (called
ST-RB-DNN) that allows to estimate physically consistent solutions to the inverse
problem of electrophysiology both leveraging data availability and exploiting the
awareness of the physical laws governing the phenomenon of interest, expressed by
means of suitable PDEs.

4.1. Main findings. In light of the obtained numerical results, the main findings
are listed in the following.

The model provides reliable estimations of epicardial activation maps. The time-
series-based ST-RB-DNN model trained with 12-lead ECG signals in input presents
good performance in terms of accuracy. Table 2 shows the results of the grid search
process on architecture-related hyperparameters (in terms of the average \ell 1-norm
relative error on the test set); the table is organized so that model complexity increases
both rowwise (top to bottom) and columnwise (left to right). Remarkably, none of the
considered models features an error higher than 10\% and the best one, with an error
of 3.96\%, presents an intermediate level of complexity (213,264 trainable parameters;
see Table 4), proving that no overfitting did occur. Again referring to Table 4, we can
notice that the training time equals \approx 604 s (11.4 s per epoch on average); testing on
one fresh data sample, instead, takes 4.34 s, of which just 0.029 s are due to the forward
pass in the model, while the others are related to the postprocessing routines that
allows to reconstruct the FOM solution and to compute the epicardial activation map.
Activation maps are qualitatively well reconstructed by the ``best model"" with a good
identification of both EBT and latest epicardial activation (LEA) areas (see Figures 8
and 10, second row). The level of accuracy we attain allows then to capture a vast
part of the variability of the phenomenon at hand, comprising both physiological and
pathological (in our case, limited to LBBB and RBBB conduction defects) conditions.
Additionally, body surface signals are well approximated in the autoencoding portion
of the output (see Figures 9 and 11, red solid line), with an average \ell 1-norm absolute
error on the test dataset of just 6.52 \cdot 10 - 2 mV ; the presence of an embedded RB
solver of the FPE as deterministic decoder happens to play a key role on this aspect.

Signals preprocessing via DFT improves model performances. If the ST-RB-DNN
model is adapted so that it can take as input the lowest-frequency coefficients arising
from the application of a DFT to 12-lead ECG signals, its performance improves.
Table 3 reports the results of the grid search process on architecture-related hyperpa-
rameters and on the number of DFT coefficients; the table is organized so that model
complexity increases both rowwise and columnwise. Also in this case, all average
\ell 1-norm relative errors are below the threshold of 10\%; moreover, almost all models
feature an error that is lower than 5\% and that equals 3.49\% for the best model
( - 0.47\% with respect to the best time-series-based model). In this case, the time
required by testing on a fresh data sample equals 4.64 s, of which only 0.033 s are
related to the forward pass in the model (see Table 4). About computational complex-
ity, on the one side lower errors are achieved if a limited number of DFT coefficients
is given in input. Indeed providing information on high-frequency modes happens
to be not only useless, but even counterproductive, as ultimately a spatio-temporal
reduced representation of the epicardial potential is estimated. On the other side,
the best model has 622,590 trainable parameters and, fixing the input dimensionality,
it is the second most complex among the considered ones. By proceeding rowwise
along each column of Table 3, it can be noticed that errors seem to reach a plateau, so
that no significant improvements should be expected by further increasing the number
of hyperparameters; no additional tests have been made on this point. Noticeably,
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despite featuring a much higher complexity with respect to the best time-series-based
model, the best DFT-based one could be trained in a slightly lower amount of time
(see Table 4); this is due to the fact that the trainable encoder of such a model is no
longer a 1D CNN but a simple MLP, hence the backpropagation algorithm can be
performed much faster. Also, from Table 4 it can be noticed that a DFT-based model
as complex as the best time-series-based one features a much higher error (4.78\%
versus 3.96\%), while a DFT-based model whose performance is comparable with that
of the best time-series-based model exhibits a higher complexity (358,654 parameters
versus 213,264 parameters), but it could be trained in a much lower amount of time
(\approx 452 s versus \approx 604 s). As expected, the epicardial activation maps estimated by
the best DFT-based model are qualitatively close to the target ones (see Figures 8
and 10, third row), showing a good identification of both EBT and LEA locations.
Actually, in the worst-case scenario presented in Figure 10, the DFT-based model
happens to estimate a nonphysical EBT in the infero-lateral basal portion of the left
ventricle; such misidentifications have been encountered only in a minority of the 40
testing datapoints (for both models) and they were always associated to low-occurrence
EBTs. For this reason, we expect the problem to be avoided by either just increasing
the dimensionality of the training dataset or upsampling the critical EBTs at the
data generation stage. Finally, body surface signals have been well reconstructed at
all leads in both reported test datapoints (see Figures 9 and 11, green solid line),
with an average \ell 1-norm absolute error on the test dataset equaling 6.82 \cdot 10 - 2 mV
(+0.30 \cdot 10 - 2 mV with respect to the best time-series-based model).

Considering more body surface signals does not severely impact on model perfor-
mance. The best model architectures, trained either with 158 body surface signals
or with 12-lead ECG ones, exhibited comparable performance. In particular, the
time-series-based model featured an average \ell 1-norm relative error of 3.98\% (+0.02\%),
while that drops to 3.29\% for the DFT-based one ( - 0.20\%). The reduced dimension-
ality and heterogeneity of the training dataset is thought to exert a big impact on
this aspect, as 12 body surface signals may be enough to encode the variability of
the considered data. Thus, the effective usefulness of providing more body surface
signals---common in ECGI clinical applications---should be assessed when dealing with
bigger datasets. This consideration is enhanced by looking at Figure 12, which reports
the epicardial activation maps estimated by the best models taking 158 signals in
input: indeed it can be noticed that the DFT-based model no longer estimates the
nonphysical EBT on the infero-lateral basal portion of the left ventricle, which was
instead detected by the corresponding model taking 12-lead ECG signals in input (see
Figure 10).

Training the model as a pure AE worsens its performance. When the best model
architectures (with 158 body surface signals in input) are trained as pure AEs, the
prediction accuracy on epicardial activations maps worsens (see Table 6). In particular,
for the time-series-based model the average \ell 1-norm relative error increases from
3.98\% to 14.49\%, while for the DFT-based one it rises from 3.29\% to 8.81\%. We can
also qualitatively visualize the decay of the model performance in Figure 14. Indeed
the epicardial activation maps reconstructed from the solutions predicted by the AE
models appear less accurate than the ones resulting from the non-AE models. This is
particularly evident for the time-series-based model. In the DFT-based one, instead,
all epicardial EBT locations are well identified, but the EBT timings prediction is
less accurate. These results show that signal preprocessing via DFT dramatically
improves model performance when we train it as a pure AE. However we remark that
no grid search on architectural hyperparameters has been conducted on such models;
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therefore, the much higher complexity of the DFT-based model with respect to the
time-series-based one (712,190 versus 222,190 trainable parameters) may also explain
the larger performance gap. We also notice that the average \ell 1-norm absolute errors
on 12-lead ECG signals diminish if the models are trained as pure AEs, dropping
from 7.55 \cdot 10 - 2 mV to 6.33 \cdot 10 - 2 mV for the time-series-based model and from
6.82 \cdot 10 - 2 mV to 4.15 \cdot 10 - 2 mV for the DFT-based one. This result is expected
since the error on body surface signals becomes the only term in the loss (aside
of regularizations) if the models are trained as pure AEs. Finally, the additional
regularization terms (see (2.21)) do not impact model performance. In particular
the L2-norm regularization on epicardial potentials does not help in reducing errors
(indeed \lambda e = 0 for both models), while the penalization of the H1-norm of the torso
potential allows us to slightly ameliorate the predictions only in the time-series-based
case (\lambda t = 10 - 6).

Exploiting physical awareness allows constructing low-complexity and fast-training
models in a small data regime. As reported in Table 4, all the implemented ST-RB-DNN
models, despite the small amount of synthetic data at our disposal, managed to provide
good estimations of the epicardial potential field during ventricular depolarization and
could be trained on a simple laptop in \approx 15 min. The two elements that allowed us to
get physical awareness play a key role in this:
\bullet The projection of the epicardial potential onto a space-time reduced subspace,
generated from the same physical FOM solutions that have been employed to
construct the training dataset, dramatically reduces the number of coefficients to be
estimated by the trainable encoder, other than allowing us to achieve independence
from the space-time mesh refinement and to constrain the solution to a lower-
dimensional and physically consistent manifold. In this way, the training process of
the model, via a backpropagation algorithm, becomes feasible, while it would have
been extremely difficult, as well as very expensive, if FOM approximations of the
epicardial potential field had had to be predicted (see [31] for additional details). In
addition, the reduced dimensionality of the dataset allowed us to train the models
on a simple laptop. If much more data were at our disposal (as would be necessary
for effective clinical validation), we would need more computational resources and
a more optimized training pipeline. However, the trainability of the models is not
expected to change in any way.

\bullet The insertion of an embedded RB solver for the FPE as a deterministic decoder
and its employment as a physically informed regularization agent in the expression
of the loss functional (see (2.19)) allowed us to design a physics-based NN, similar
to the ones presented in [15]. As stated in [40], building ML models able to exploit
knowledge of the most relevant physical laws governing the phenomenon of interest
proved to be effective in the small data regime, i.e., when the amount of data at
disposal is limited due to the high cost/complexity of the acquisition procedures.
In fact, just starting from a small dataset generated in silico, we managed to train
low-complexity models, showing a remarkable representation power.

4.2. Limitations. The current work represents a first methodological attempt of
tackling the inverse problem of electrocardiography by combining knowledge of the main
physical laws governing the problem at hand, expressed via suitable PDEs/ODEs, with
DL techniques for the exploitation of data availability. Configuring as a preliminary
analysis, some simplifying assumptions have been made and they should be addressed
in order to bridge the gap with clinical applications. The most relevant limitations are
the following.
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Simplified dataset. The ST-RB-DNN model training necessitates many epicardial
activation maps. Unfortunately, acquiring such maps from clinical measurements
requires invasive procedures. To circumvent this shortcoming, we trained and tested
our models with in silico data, obtained by numerically approximating the solutions
to heart electrophysiology and to the FPE. Due to the high computational costs
required by detailed FOM simulations, we made some simplifying assumptions as the
employment of not highly refined computational meshes and the approximation of the
torso as a homogeneous and isotropic volume conductor. Furthermore, we imposed
a one-way coupling between the two aforementioned problems via the isolated heart
assumption, discarding the continuity of the currents at the epicardial surface. Despite
appearing relevant from the physical point of view, this last assumption is not expected
to seriously impact on our results. Indeed, exposing the heart to insulating air has
been proven, both numerically [4] and experimentally [22], to determine an increase in
the epicardial potential magnitudes, but without affecting in most cases the activation
pattern.

Reference geometry. All the training and testing datapoints have been generated
on the same reference geometry, preventing us from taking into account geometrical
variability. The position and the rotation of the heart inside the torso can vary
considerably, both from patient to patient and, for the same patient, from heartbeat
to heartbeat, having a nonnegligible impact on body surface signals. These effects
could be taken into account by using methods that allow tracking the position of the
heart from body surface potentials, as the one presented in [12].

White noise. Another key aspect that differentiates clinically measured body
surface potentials from numerically approximated ones is the presence of noise. We
have taken this element into consideration by superimposing white Gaussian noise to the
simulated signals; the noise has been chosen as proportional to the signals themselves
at each discrete time instant and an average SNR of \approx 26 dB has been obtained.
However, real body surface potentials feature the presence of different sources of noise,
linked to various aspects (muscular contraction/relaxation, breathing, measurement
instruments and procedures, etc.) and whose distribution is not necessarily white and
Gaussian (see [44, 45]). Thus, an interesting development toward clinical application
would be to superimpose to the numerically generated signals more realistic noise
components, as done, for instance, in [17].

Limited design research. In terms of NN design, only a few architectures have
been tested for the encoder. Actually, during the first stages of development, we also
considered other architectures such as long-short term memory networks [25], residual
networks [29], or convolutional recurrent neural networks [58]; however, as no significant
improvements with respect to CNN and MLP were observed, no further investigations
have been made in this direction. Different choices in terms of architectural design
and optimization algorithms may allow us to ease the constraints on the input/output
datasets and eventually lead to better model performance.

5. Conclusion. The present study concerned the development of a physics-
informed deep learning model, named ST-RB-DNN, able to provide physically consis-
tent and data-driven solutions to the inverse problem of electrocardiography. In the
numerical test cases that have been conducted, all variants of the model (distinguished
based on the dimensionality and nature of the provided body surface signals) proved
to be accurate, up to an average error of \approx 3.5\% in relative \ell 1-norm, considering the
epicardial activation maps of the test dataset. Additionally, despite working under
several simplifying assumptions and employing a small amount of in silico data for
both training and testing, our models proved anyway to be highly efficient; their
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trainings could all be performed in \approx 15 min on a simple laptop and a single forward
pass only required \approx 0.03 s. To conclude, the obtained results indicate that our method
has potential to be used in clinical practice, notwithstanding some improvements,
mostly concerning the data generation stage.

Appendix A. Abbreviations and notation.

A.1. List of abbreviations.
AE: Autoencoder
AP: Aliev--Panfilov
BSPM: Body surface potential maps
CNN: Convolutional neural network
CT: Computed tomography
CRNN: Convolutional recurrent neural network
CVA: Conditional variational autoencoder
DFT: Discrete Fourier transform
DL: Deep learning
DNN: Deep neural network
DOF: Degree of freedom
EBT: Epicardial breakthrough
ECG: Electrocardiography
ECGI: Electrocardiographic Imaging
ELU: Exponential linear unit
FE: Finite element
FFT: Fast Fourier transform
FHN: FitzHugh--Nagumo
FOM: Full order model
FPE: Forward problem of electrocardiography
HOSVD: High order singular value decomposition
LBBB: Left bundle branch block
LEA: Latest epicardial activation
LSTM: Long-short term memory
MAE: Mean absolute error
ML: Machine learning
MLP: Multiple layer perceptron
MSE: Mean squared error
NN: Neural network
ODE: Ordinary differential equation
PDE: Partial differential equation
PINN: Physically informed neural network
POD: Proper orthogonal decomposition
RB: Reduced basis
RBBB: Right bundle branch block
ReLU: Rectified linear unit
ResNet: Residual network
ROM: Reduced order model
SELU: Scaled exponential linear unit
SNR: Signal-to-noise ratio
ST: Space-time (or spatio-temporal)
SVD: Singular value decomposition
TS: Time series

D
ow

nl
oa

de
d 

08
/2

9/
24

 to
 1

31
.1

75
.1

48
.4

7 
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

C
C

B
Y

 li
ce

ns
e 



© 2022 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license

PDE-AWARE DEEP LEARNING IN HEART ELECTROPHYSIOLOGY B635

A.2. Summary of notation.
1. Functional spaces (assuming \Omega \subset \BbbR n is a Lipschitz domain)

\bullet L2(\Omega ) =
\bigl\{ 
u : \Omega \rightarrow \BbbR s.t.

\int 
\Omega 
| u| 2 dx < \infty 

\bigr\} 
\bullet H1(\Omega ) = \{ u \in L2(\Omega ) s.t. \partial u

\partial xi
\in L2(\Omega ) \forall i \in \{ 1, . . . , n\} \} 

\bullet H
1
2 (\partial \Omega ) =

\bigl\{ 
u \in L2(\partial \Omega ) s.t \exists \~u \in H1(\Omega ) : Tr(\~u) = u

\bigr\} 
where Tr : H1(\Omega ) \rightarrow 

L2(\partial \Omega ) the trace operator.
2. Norms (assuming \Omega \subset \BbbR n is a Lipschitz domain)

\bullet | | u| | L2(\Omega ) =
\bigl( \int 

\Omega 
| u| 2 dx

\bigr) 1
2

\bullet | u| H1(\Omega ) = | | \nabla u| | [L2(\Omega )]n =
\bigl( \int 

\Omega 
| \nabla u| 2 dx

\bigr) 1
2

\bullet | | u| | H1(\Omega ) = (| | u| | 2L2(\Omega ) + | u| 2H1(\Omega ))
1
2

3. Geometry and time
\bullet \Omega H : heart domain
\bullet \Omega T : torso domain
\bullet \Gamma B : body surface boundary
\bullet \Gamma H : epicardial surface boundary
\bullet t0: initial time
\bullet T : final time

4. Physical models of cardiac electrophysiology and FPE
\bullet ui: intracellular potential
\bullet ue: extracellular potential
\bullet v =: ui  - ue: transmembrane potential
\bullet w: gating variable of the AP ionic model
\bullet uT : torso potential
\bullet \bfitD i: intracellular conductivity tensor
\bullet \bfitD e: extracellular conductivity tensor
\bullet \bfitD T : torso conductivity tensor
\bullet Am: cell membrane area per unit volume
\bullet Cm: membrane capacitance per unit area
\bullet Iapp: externally applied current
\bullet Iion: ionic current
\bullet \sigma li,e : longitudinal electrical conductivity in the intracellular/extracellular
domain

\bullet \sigma ti,e : transversal electrical conductivity in the intracellular/extracellular
domain

5. FOMs for cardiac electrophysiology and FPE
\bullet Ne

h: dimension of the FE space for the extracellular and transmembrane
potentials

\bullet Nh: dimension of the FE space for the torso potential
\bullet Nt: number of time steps
\bullet \bfitu eh : discretized extracellular potential
\bullet \bfitv h: discretized transmembrane potential
\bullet \bfitw h: discretized gating variable
\bullet \bfitu th discretized torso potential
\bullet \bfitu \Gamma H

eh
: discretized trace of the extracellular potential on the epicardial

surface \Gamma H

\bullet \bfitA in: stiffness matrix for the intracellular domain
\bullet \bfitA ex: stiffness matrix for the extracellular domain
\bullet \bfitM : mass matrix for the biventricular domain
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\bullet \bfitA : stiffness matrix for the torso domain
\bullet \bfitA \Gamma H

: stiffness matrix for the torso domain, restricted to the epicardial
surface

6. Model order reduction of the FPE
\bullet N\bfitmu : number of snapshots (i.e., parameter values) for the offline phase
\bullet \scrX : tensor of the snapshots for the torso potential
\bullet \scrX e: tensor of the snapshots for the epicardial potential
\bullet \bfitV s: matrix encoding the reduced basis in space for the torso potential
\bullet \bfitV e

s: matrix encoding the reduced basis in space for the epicardial poten-
tial

\bullet nh: number of spatial basis functions for the torso potential
\bullet ne

h: number of spatial basis functions for the epicardial potential
\bullet \~\bfitu th : space-reduced torso potential
\bullet \~\bfitu \Gamma H

eh
: space-reduced trace of the extracellular potential on the epicardial

surface \Gamma H

\bullet \~\bfitA \bfitmu : reduced stiffness matrix for the torso domain

\bullet \~\bfitA 
e
: reduced stiffness matrix for the torso domain, restricted to the

epicardial surface
\bullet \bfitV e

ti : matrix encoding the temporal basis functions for the epicardial
potential, tailored to the ith spatial basis function

\bullet ni
t: number of temporal basis functions for the epicardial potential,

tailored to the ith spatial basis function
\bullet nst: number of spatio-temporal basis functions for the epicardial potential
\bullet \^\bfitu \Gamma H

eh
: space-time-reduced trace of the extracellular potential on the

epicardial surface \Gamma H

\bullet \scrF : mapping from the space and time reduced basis indices to the space-
time reduced basis index for the epicardial potential

7. ST-RB-DNN model
\bullet \Theta : vector of the model hyperparameters
\bullet bs: batch size employed during model training
\bullet nsig: number of input/output body surface signals
\bullet \=\bfitu a,\bfitmu 

eh
: estimated latent representation of epicardial potential for the

parameter value \bfitmu , prior to the application of the affine transformation
\bullet \^\bfitu a,\bfitmu 

eh
: estimated space-time-reduced epicardial potential for the parameter

value \bfitmu 
\bullet \^\bfitu r,\bfitmu 

eh
: target space-time-reduced epicardial potential for the parameter

value \bfitmu 
\bullet \~\bfitu a,\bfitmu 

eh
: estimated space-reduced epicardial potential for the parameter

value \bfitmu 
\bullet \~\bfitu a,\bfitmu 

th
: estimated space-reduced torso potential for the parameter value \bfitmu 

\bullet \bfitS r,\bfitmu 
\#i : target ith body surface signal for the parameter value \bfitmu 

\bullet \bfitS a,\bfitmu 
\#i : estimated ith body surface signal for the parameter value \bfitmu 

\bullet \^\bfitu shift
eh

: additive term in the affine transformation of space-time-reduced
epicardial potentials

\bullet \^\bfitu scale
eh

: scaling term in the affine transformation of space-time-reduced
epicardial potentials

\bullet \scrL (\Theta ): loss function
\bullet \scrL BC(\Theta ): loss function contribution due to the epicardial potentials
\bullet \scrL sig(\Theta ): loss function contribution due to the body surface signals
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\bullet \scrL reg(\Theta ): loss function contribution due to the regularization
\bullet \scrL AE

reg(\Theta ): loss function contribution due to the regularization in ST-RB-
DNN AEs

\bullet wBC : weight of the error on space-time-reduced epicardial potentials in
the loss

\bullet \lambda r: weight of the ridge regularization term in the loss
\bullet \lambda t: weight of the torso potential regularization term in the loss for
ST-RB-DNN AEs

\bullet \lambda r: weight of the epicardial potential regularization term in the loss for
ST-RB-DNN AEs

\bullet \sigma e,s
j : jth singular value arising from the spatial POD applied to the

epicardial potential tensor \scrX e

\bullet \sigma e,t,j
k : kth singular value arising from the temporal POD applied to the

projection of the epicardial potential tensor \scrX e onto the 1D subspace
spanned by the jth spatial reduced basis function
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