
Scalable approximate optimization of objective functions
represented by Random Forests

Marco Leonesio1 and Lorenzo Fagiano2

Abstract— The problem of global optimization of an objective
function represented by a Random Forest (RF) is considered. A
method to obtain an approximate solution at low computational
complexity is proposed, resorting to the inherent structure of
an RF, which is a non-parametric model that partitions the
feature space in convex polytopes according to the training
data. The approach selects the optimal solution inside the
polytopes corresponding to the best data points. It is shown
that the proposed approximate method is significantly more
efficient, thus applicable at large scale, than extensive global
search algorithms, such as gridding and Mixed Integer Linear
Programming (MILP), which in turn provide exact solutions.
The efficiency and sub-optimality of the approach are evaluated
on RFs trained on a dataset generated by sampling a bivariate,
discontinuous and non-convex benchmark function from the
literature.

I. INTRODUCTION

Data-driven optimization can be pursued following a
model-free approach [1], exploiting reinforcement learning
[2], or by identifying black-box or gray-box models as sur-
rogate objective functions in optimization programs [3]–[5].
Focusing on the latter case, in this study, we are interested in
finding an efficient approach to minimize objective functions
represented by Random Forests (RFs).

An RF is an example of an ensemble method that com-
bines predictions from several machine learning models. In
the case of RFs, these algorithms are Regression Trees (RTs)
(see Breiman’s seminal article [6] and the survey [7]). The
use of an RF in regression tasks offers numerous benefits.
RFs excel in capturing unknown non-linear, discontinu-
ous and intricate feature interactions with minimal feature
engineering. Besides, they are generally characterized by
robust predictive capabilities, even in the case of a relatively
small training set. In particular, an RF avoids over-fitting
problems, as it can be viewed as a non-parametric model that
behaves like an adaptive nearest-neighbor prediction method
[8]. These qualities have contributed to RFs popularity and
extensive utilization in machine learning [9].

A large amount of literature deals with RTs and RFs
training, seeking the smallest generalization error possible

1Marco Leonesio is a researcher at the Institute of Intelligent Industrial
Technologies and Systems for Advanced Manufacturing - National Research
Council of Italy (STIIMA - CNR), via Corti 12, 20133 Milano, Italy
marco.leonesio@stiima.cnr.it

2Lorenzo Fagiano is a professor at Dipartimento di Elettronica, Infor-
mazione e Bioingegneria, Politecnico di Milano Piazza Leonardo da Vinci
32, 20133 Milano, Italy lorenzo.fagiano@polimi.it

This research has been funded by Regione Lombardia and Tech Fast
Innovation program (CUP E79J22000010007) and by Fondazione Cariplo
under grant n. 2022-2005, project “NextWind - Advanced control solutions
for large scale Airborne Wind Energy Systems”.

(optimal estimation). For this purpose, many different algo-
rithms have been proposed, such as ID3 [10], C4.5 [11],
and CART [12]. Indeed, our analysis does not tackle the
issue of optimizing over a known function by a proper
surrogate RF, nor do we investigate if an RF is the best model
for fitting experimental data. We assume that a given RF
already represents a suitable cost function to be minimized,
and want an approach to do it efficiently, with a trade-
off between accuracy and computational cost. Namely, our
goal is focused on choosing the best ”input feature vector”
yielding the unconstrained global minimum of the RF within
a short time and with a limited sub-optimality.

Even though the goal above can be achieved by a stan-
dard general approach for global optimization [13]–[15], a
“dedicated” approximate method is herein proposed, with
higher efficiency. It exploits the unique structure of an RF,
whose RTs induce a countable partition of the input space.
Relying on the same observation, other authors demonstrated
that an RF minimization problem can be formulated as
a Mixed Integer Linear Program (MILP), whose solution
is the exact global optimum [16]. However, depending on
the size of the RF, the computational effort to solve the
MILP becomes quickly unaffordable in most applications.
The loophole proposed in [16] consists of optimizing a subset
of RF trees after demonstrating that the consequent sub-
optimality gap is usually limited and under control.

In the described framework, a new approximate approach
is proposed for unconstrained RF minimization, based on
the direct identification of the partition sets in the feature
space that may contain the global minimum. It is shown that
the complexity of the proposed algorithm is linear with the
training set cardinality and number of trees in the RF, while
in MILP it increases exponentially. On the other side, under
weak assumptions, the payback in terms of sub-optimality is
likely limited.

II. PROBLEM STATEMENT AND PRELIMINARIES

We consider the following optimization problem:

y∗ := min
x

R(x), x ∈ Ω (1)

where R : Ω→ R is a RF and x is a feature vector belonging
to the input space Ω ⊆ Rd. Next, we provide details on
RFs and solution methods from the literature, which are
instrumental to introduce our approach.

A. Random forest properties

An RF regressor is a set of Regression Trees (RTs) whose
outputs are averaged to compute the overall prediction. An

2024 32nd Mediterranean Conference on Control and Automation (MED)
June 11-14, 2024 | Chania, Crete, Greece

979-8-3503-9544-0/24/$31.00 ©2024 IEEE 494

20
24

 3
2n

d
M

ed
ite

rr
an

ea
n

Co
nf

er
en

ce
 o

n
Co

nt
ro

l a
nd

 A
ut

om
at

io
n

(M
ED

) |
 9

79
-8

-3
50

3-
95

44
-0

/2
4/

$3
1.

00
 ©

20
24

 IE
EE

 |
 D

O
I:

10
.1

10
9/

M
ED

61
35

1.
20

24
.1

05
66

22
2

Authorized licensed use limited to: CNR Biblioteca Centrale. Downloaded on June 29,2024 at 13:33:30 UTC from IEEE Xplore. Restrictions apply.

RT provides a regression model in the form of a tree
structure: the input (or feature) vector is routed along the tree
branches to the final leaf containing the output (or “target”)
result. In the training phase, a splitting procedure divides the
input feature vectors into partitions defined by subsequent
inequalities on any single feature. At the end of the procedure
(leaf level), each partition set contains a few feature vectors
(in our case, only one) belonging to the dataset, and the leaf
is mapped to the corresponding average target value.

Let D := {(xi, yi) ∈ Ω × R, i = 1, 2, ..., N} be a
training dataset of N samples, composed of pairs of features
xi ∈ Ω and targets yi ∈ R, where Ω ⊆ Rd is the input
space of dimension d. We denote with x

(j)
i the jth entry

of the feature vector xi. According to the CART algorithm
[12], the steps to construct an RF can be outlined as follows:

Repeat for j = 1, 2, ..., NT (number of trees):
1) Sample with equal-probability draws with-replacement

to obtain a new bootstrap training set Dj :=
{(xi, yi), i ∈ {1, 2, ..., N}} (sample repetions are
possible).

2) Create a RT (denoted by Tj) by recursively splitting
the set Dj as follows:

a) Start from the root node N ≡ Dj .
b) Draw a random subset S of p1 ≤ d features (p1 is

a model hyperparameter also known as features
try);

c) Split the node N in 2 sets, N1(j, h) and N2(j, h),
on the basis of a feature index ℓ ∈ S, and a
threshold h ∈ R as follows:

N1(ℓ, h) := {(xi, yi) ∈ N : x(ℓ) ≤ h}
N2(ℓ, h) := {(xi, yi) ∈ N : x(ℓ) > h}

where ℓ and h are chosen by minimizing the
sum of the output variances obtained on the two
corresponding partitions:

(ℓ, h) = arg min
ℓ̄∈S,h̄∈R

2∑
k=1

∑
i∈Nk(ℓ̄,h̄)

(yi− ȳk)
2 (2)

where ȳk is the average value of the targets in
the partition Nk.

d) For each new subnode Ñ with more than a given
number of samples denoted by p2 (a hyperparam-
eter called node size) and with some variation in
the associated target values (namely, the variance
must not be 0) and features (the xi must be
distinct), repeat the steps from 2b to 2d with Ñ
instead of N . Any subnode with no variation in
targets or feature vectors is not subject to a further
split procedure, and it is called leaf of the tree
Tj .

3) Create the set of trees R := {T1, ..., Tj , ..., TNT
}, that

constitutes the random forest. The number of trees NT

is the 3rd hyperparameter of the model.
The tree prediction ŷj := Tj(x) is produced by applying,
to the feature vector x, the splitting rules defined for Tj to

identify one leaf: then, ŷj is the average of the leaf target
values. If the node size equals 1, the leaf contains a unique
target value. In this paper, we assume p2 = 1, such that there
exists a bijective function that maps distinct training samples
to leaf nodes. Moving now to the RF, its prediction ŷ for the
same x is given by:

ŷ = R(x) =
1

NT

NT∑
j=1

ŷj =
1

NT

NT∑
j=1

Tj(x) (3)

Namely, the random forest averages the output of its regres-
sion trees.

Another way to consider a regression tree is to observe
that Tj defines a labeled partition over the input space Ω. In
fact, Tj associates each vector xi in the dataset to a convex
polytopic set Xji ⊆ Ω, defined by the intersection of all
the half spaces identified by the bounds created during the
splitting procedure. Using the described CART algorithm,
the derived partitions are d-orthotopes, because each split
represents a plane perpendicular to one coordinate direction
in Rd. Formally, for each j = 1, . . . , NT , the partition Pj

induced by the tree Tj , trained on Dj := {(xi, yi)}, can be
written in the form:

Pj := {Xji, yi}, i = 1, 2, ..., N (4)

such that

xi ∈ Xji ⊂ Ω ∀i and Xjk ∩Xjr = ∅ ∀k ̸= r (5)

Then, each RT can be seen as a function Tj : Ω → R
that returns the output estimate ŷj corresponding to a given
vector x as follows:

ŷj = Tj(x) = yk : x ∈ Xjk, (Xjk, yk) ∈ Pj (6)

This implies that Tj is a piecewise constant function, since
Tj(xi) = Tj(xℓ) = yk ∀xi,xℓ ∈ Xjk.

Note that the CART algorithm returns different trees
Tj , j = 1, . . . , NT (with the associated partitions Pj) from
the same D, since the training process is stochastic, because
of both the bootstrap sampling of the training sets Dj , and the
random selection of the features’ subset used in nodes split.
Therefore, in general, for each data point xi, i = 1, . . . , N ,
the sets Xji, j = 1, . . . , NT are different, depending on
the tree index j. For the sake of analyzing the RF, we are

interested in the intersection
NT⋂
j=1

Xji. The set Xji ∩Xki is

surely non-null when both Dj and Dk contain the data point
(xi, yi), while this is generally not true for trees that have
been trained without such a point. Compactly, we can state:

(xi, yi) ∈ (Dj ∩ Dk)⇒ Xji ∩Xki ̸= ∅ (7)

(xi, yi) /∈ (Dj ∩ Dk) ⇏ Xji ∩Xki = ∅ (8)

An example of RF partition for d = 2 (input space dimen-
sion) and NT = 2 (number of trees) is illustrated in Fig. 1.
Different possible cases can be observed: an intersection
containing a data point belonging to the training set of both
trees (case 1); an intersection of sets, related to different

495

Authorized licensed use limited to: CNR Biblioteca Centrale. Downloaded on June 29,2024 at 13:33:30 UTC from IEEE Xplore. Restrictions apply.

Fig. 1. Example of partitions induced by an RF in the input space. Each
tree induces its own partition sets containing the feature vector associated
with each training set sample.

samples, that contains both samples (case 2); an intersection
that contains only one of the two samples (case 3); finally
an intersection containing no samples (case 4). Note that the
RF output is piecewise constant over each intersection, being
it the average of the output values pertaining to the sets that
generated it (this is evident also in Fig.3 of the case study
section).

B. Mixed Integer reformulation

Consider now problem (1). Is it possible to conceive an
efficient minimization algorithm that exploits the structure of
the RF, described above? In [16], the authors demonstrated
that problem (1) can be formulated as a Mixed Integer Linear
Programming (MILP), whose solution can be computed
using the Bender cuts method or Interior Point method.
However, the size of the MILP grows very quickly with the
number of samples, input space dimension, and the number
of trees in the RF. In fact, it can be shown that the number
of real variables is d and that of integer (Boolean) auxiliary
variables is:

Nv =

NT∑
j

NnodesTj
(9)

where NnodesTj
is the number of nodes of the tree Tj in

the RF. In turn, NnodesTj
depends on the data set cardinality

N . If the node size p2 = 1 (see point 2-d in the CART
Algorithm in Section II-A), it can be shown that:

NnodesTj
= 2Nj − 1 (10)

with Nj being the number of distinct samples in the training
set Dj . Since the bootstrap procedure is done with equal-
probability draws, for a sufficiently large dataset it can be
shown that Nj ≈ 0.63N (see [17]). For instance, for an RF
of 100 RTs, trained with 1000 samples, and an input space
dimension of 2, the number of integer MILP variables is
about 133900.

At the same time, solving globally a MILP is NP-hard: it
generally requires exponential time by branch and bound. As
a matter of fact, an exact solution to the original problem be-
comes intractable for common RFs. The loophole proposed
in [16] consists in performing the optimization on a subset
of RF trees, after demonstrating that the consequent sub-
optimality gap is usually limited and under control.

To obtain a scalable solution approach, differently from
[16], we propose here to compute an approximate solution
by considering directly the partitions Xji associated with the
best targets yi, as described next.

III. PROPOSED METHOD

For a given random tree Tj , let us consider an uncon-
strained optimization program aimed at finding the set of
input vectors that minimize its prediction:

X∗
j = argmin

x
Tj(x). (11)

Recalling that p2 = 1 (one sample for each leaf), the solution
is:

X∗
j = Xji : (Xji, yi) ∈ Pj ∧ yi = min

(xℓ,yℓ)∈Dj

yℓ (12)

i.e. the feature set(s) associated to the best data point(s) in
the bootstrapped dataset of Dj .

When considering the whole RF, the situation becomes
more complex, because the RF output associated with each
set of the overall partition is generally different from the
output value of any single data point, as described in
Section II-A and visualized in Fig. 1. To solve problem
(1), one would have to compute all intersections of all sets
Xji, j = 1, 2 . . . , NT , i = 1, 2 . . . , Nj , compute the corre-
sponding piecewise constant outputs, and take the best one,
resulting again in exponential computational complexity. The
approach we propose consists instead in focusing on a small
number of promising data points (xi, yi), and intersecting
the corresponding sets Xji for all trees that contain such
points in their leaves.

At first, the best set X∗
j for each Tj is identified as in

(12). Let us denote with x∗
k, k = 1, . . . , N∗, the distinct

data points contained in at least one set X∗
j , j = 1 . . . , NT ,

and y∗i the corresponding output values. Clearly, it holds
N∗ ≤ NT , but we will show that in practice N∗ ≪ NT (see
Theorem 3.1). Now, we can group the indices j = 1, . . . , NT

as follows

Ik = {j : x∗
k ∈ X∗

j }, k = 1, . . . , N∗ (13)

Then, we compute the intersection of sets sharing the same
best data point:

X̂∗
k =

⋂
j∈Ik

X∗
j (14)

By construction, X̂∗
k ̸= ∅, because all the feature sets

associated with a target y∗k contain at least the feature vector
x∗
k (see Fig.1). To trade off optimality and computational

complexity, one can consider the first M ≤ N∗ sets X̂∗
k ,

ordered by the goodness of the corresponding targets y∗k.

496

Authorized licensed use limited to: CNR Biblioteca Centrale. Downloaded on June 29,2024 at 13:33:30 UTC from IEEE Xplore. Restrictions apply.

Finally, the proposed approach computes candidate min-
imizers for the RF by taking the central points of sets
X̂∗

k , k = 1, . . . ,M . This corresponds to considering the
expected value assuming a uniform probability distribution
of the target over each set. Let us denote with xc

k such central
points. The final approximate solution is found by computing
R(xc

k), k = 1, . . . ,M and taking the one that yields the
minimum prediction:

x̂∗ = arg min
k=1,...,M

R(xc
k), (15)

ŷ∗ = min
k=1,...,M

R(xc
k) (16)

The rationale of the proposed method derives from con-
sidering that the optimal solution of each random tree is
provided by the optimal sample of its training set. As the
RF just averages the prediction of all the trees, the optimal
feature vector of the whole RF is likely to be close to the
optimal samples appearing in the training sets of the trees,
Dj . The next result quantifies the number of trees that share
the same best point, and provides a theoretical foundation to
taking a rather small number M of candidates with respect
to the total number of trees.

Theorem 3.1: Consider a finite set of distinct target values
Y := {yi}, i = 1, 2, ..., N, yi ∈ R and other NT finite sets
Yj := {yi}, i ∈ {1, 2, ..., N}, obtained by sampling element
yi from Y with equal-probability draws with-replacement
(bootstrap sampling), so that Yj can contain repeated samples
(namely, index i can be repeated); let yi be ordered, such that
y1 < y2, ..., < yi <, ..., yN ; finally, let Tk, k = 1, . . . , N∗ be
the collection of sets Yj such that minyi∈Yj

yi = yk. Then,
the expected cardinality of Tk is given by:

E(|Tk|) =

{
qpk−1NT for k = 1, 2, ..., N∗ − 1

pk−1NT for k = N∗ (17)

where p := (1− 1/N)N and q := 1− p.
Note that, for large N , we have:

p ≃ e−1 ≃ 0.37; q ≃ 0.63 (18)

Therefore, as a consequence of Theorem 3.1, the best optimal
sample, which coincides with the absolute minimum of the
original dataset D, appears on average in ≈ 63% of the
random trees; when this absolute minimum is not present,
the “2nd best” point appears in ≈ 23% of trees on average,
then the “3rd best” for trees that don’t have the first two
in their training sets (≈ 8%), and so on. One can see that,
in expectation, the number M of data points that must be
considered to deplete all the candidates offered by the various
trees is a small fraction of the number of trees NT .

Remark 1: It is also possible to associate the expected
value of (17) with a confidence interval. To do that, we
exploit the Central Limit Theorem. Defining for simplicity
µi := E(|Ti|) and letting µ̄i be the corresponding sample
average coming from a particular realization of bootstrapped
sets Dj , it yields:

µ̄i ∼ N (µi,
σi√
NT

) (19)

where σi is the variance of µ̄i distribution. By definition, the
variance σi is given by:

σi = E
(
(E (|Ti|)− |Ti|)2

)
= µi (µi − 1)

2 (20)

The overall approach is summarized in the pseudo-code of
Algorithm 1. Tasks at lines 2, 3, 9 and 10 are the most
time-consuming. However, their complexity is linear with
the product N ×NT , namely, linear with the overall number
of nodes characterizing the RF.

Algorithm 1 Compute ŷ∗ and x̂∗

Require: R := {T1, ..., Tj , ..., TNT
},

D,Dj ∀j = 1, 2, ..., NT

M ← User input (M ∈ N)
Ensure: ŷ∗ = R(x̂∗) ≈ min

x∈Ω
R(x)

1: for j = 1 to NT do
2: identify labeled partitions Pj := {Xji, yi}
3: compute X∗

j and y∗j by Eq. (12)
4: end for
5: Y∗ ← all the N∗ distinct values of y∗j
6: Order y∗k ∈ Y∗ such that y∗k < y∗k+1

7: M ← min(M,N∗)
8: for k = 1 to M do
9: Ik ← {j : x∗

k ∈ X∗
j }

10: X̂∗
k ←

⋂
j∈Ik

X∗
j

11: xc
k ← central point of X̂∗

k

12: ŷ∗k ← R(xc
k)

13: end for
14: k∗ ← argmin

k
ŷ∗k

15: ŷ∗ ← ŷ∗k∗

16: x̂∗ ← xc
k∗

IV. CASE STUDY: TRIPOD FUNCTION

The proposed approach is demonstrated by resorting to
a Montecarlo analysis, which consists of minimizing a set
of 100 RFs trained on a dataset generated by sampling a
bivariate benchmark function and, then, comparing the ap-
proximation sub-optimality with the exact solution provided
by fine a gridding. In fact, each RF will result in a different
structure due to the inherent stochasticity of the generation
algorithm (see Section II), thus enabling statistical evalua-
tions. The advantage of focusing on a simple 2-dimensional
feature space is two-fold: it allows the computation of the
exact solution with MILP in a reasonable amount of time
(for the same reason, we decided to limit the number of trees
for each RF) and enables an expressive visualization of the
objective function, highlighting its peculiar characteristics.

The selected benchmark, used to test evolutionary opti-
mization algorithms, is the so-called Tripod function [18]. It
is defined as f : R2 → R+:

f(x) = p (x2) (1 + p (x1))+

| (x1 + 50p (x2) (1− 2p (x1))) |+
| (x2 + 50 (1− 2p (x2))) | (21)

497

Authorized licensed use limited to: CNR Biblioteca Centrale. Downloaded on June 29,2024 at 13:33:30 UTC from IEEE Xplore. Restrictions apply.

Fig. 2. Tripod function plot (browsable html: http://tinyurl.com/49zsw28a)

with x := [x1, x2] and p(x) =

{
1 for x ≥ 0

0 otherwise
.

It can be verified that min f = f(x∗) = 0, with x∗ =
[0,−50]. The Tripod function exhibits some properties that
make its minimization challenging: it is discontinuous, non-
separable (a decomposition in the form f(x) = f1(x1)f2(x2)
is not possible), non-scalable (it is defined only for x ∈ R2),
multimodal (with multiple local minima). A 3D plot of the
function is provided in Fig. 2.

The samples’ mesh, used to generate the dataset D for
RFs training, is a regular grid of 20x20 points in Ω :=
[−100, 100] × [−100, 100], extremes included. It can be
observed that, due to the particular sampling, the minimum
target sample in D is {x∗

D, y
∗
D} := {[−47.3, 47.3], 6.26},

which is different from the global minimum of the underlying
Tripod function, although close to another local minimum.

Then, 100 RFs with 25 trees each (NT = 25) have been
trained on D, according to the procedure outlined in Section
II, with hyperparameters p1 = 2 and p2 = 1. Regarding p1
choice, due to the limited number of features, we decided that
all of them had to be ranked to search for the best splitting
by Eq. (2). Fig. 3 illustrates one of the resulting RF. The
piecewise nature of the RF can be appreciated: the output
values are constant for feature vectors that belong to the
same polytope in the overall partition.

An implementation of Algorithm 1 in Python 3.10.11 has
been developed1. has been developed and applied to each RF
in the Montecarlo set. The identification of the first M = 4
best targets in the bagged dataset Dj has been carried out for
each RT of the RFs, together with the corresponding partition
sets. Fig. 4 shows the result of best targets identification for
RF #1.

The best candidate, i.e., the sample with the minimum
target in D, appears in 14 out of 25 training sets Dj . It
can be noted that the 2nd, 3rd and 4th best candidates appear
with a frequency that is compatible with Theorem 3.1. In
case of RF #1, 4 candidates are enough to deplete all the
distinct minimum samples in the Dj sets, i.e. in this case

1https://github.com/MarLeonesio/RF Optimization

Fig. 3. Example of RF trained on samples of the Tripod function (browsable
html: http://tinyurl.com/4w95ecy8)

Fig. 4. Analysis of the best targets (frequency and values) for the RF #1.

M = N∗ = 4 (see line 7 of Algorithm 1). Interestingly,
the RF prediction for the input vector associated with the 1st

best candidate is not the 1st best prediction, which is instead
associated with the 3rd one. This is because the best targets
have similar values, which are comparable to the variance
introduced by the inherent stochasticity in RTs identification.

The exact absolute minimum of each RF, needed to
evaluate the approximation error, has been computed by an
equally spaced fine gridding, i.e., evaluating them over a
1000× 1000 grid in Ω.

The overall Montecarlo performance analysis is illustrated
in Fig. 5, which reports the empirical distribution of the
relative and absolute error between the exact global minimum
and the approximate solution for the 100 RFs. In 14 cases,
the approximate approach yields the exact solution; the
overall average relative error is about 5.5% (with a standard
deviation of 4.4%), and the average absolute error is 0.47
(with a standard deviation of 0.35). In some cases, the
deviations can be explained by the fact that the approx-
imate solution refers to a different local minimum. This
circumstance is highlighted in Fig. 6, which shows the exact
and approximate minimizers, represented at their position
in the input space by circles, whose radius is proportional
to the corresponding frequency in the Montecarlo solutions
set. When the Euclidean distance is small (lower than 20),
the exact and approximate x∗ refers to the same minimum

498

Authorized licensed use limited to: CNR Biblioteca Centrale. Downloaded on June 29,2024 at 13:33:30 UTC from IEEE Xplore. Restrictions apply.

Fig. 5. Comparison between the exact and approximate function minimum
for 100 instances of RF training: relative and absolute error

Fig. 6. Comparison between minimizers position in the input space. The
circle radius is proportional to the frequency of that minimizer among the
solutions of the 100 RFs optimization problems.

(approximation nearly exact, depicted in green); otherwise,
they pertain to different minima: this happens in 22 cases out
of 100 (approximation largely different, depicted in yellow).
Even when the exact minimum output coincides with the
approximate one, the corresponding arguments may differ
slightly. This is because the best point returned by the
gridding approach does not generally coincide with any of
the central points xc

k. Finally, it can be noticed that most
of the solutions are close to the best sample in dataset D
(indicated by a black cross), both for exact and approximate
cases. Sometimes, the RF seems to correct the sampling bias
by placing its global minimum close to the global minimum
of the underlying Tripod function (i.e., [0,−50]). Such a
varied behavior, comprising the mismatch between exact
and approximate solutions, can be ascribed to the trickiness
of the Tripod function, which presents three local minima
that are very close in the output space: f([0,−50]) = 0,
f([−50, 50]) = 1 and f([50, 50]) = 2.

V. DISCUSSION AND CONLCUSIONS

A novel approach has been proposed to perform the
global minimization of an objective function represented by

an RF. It has been shown that its efficiency outperforms
other approaches providing an exact solution, in particu-
lar, those based on MILP formulation, which entails using
auxiliary optimization variables and algorithms characterized
by exponential complexity growth with the number of data.
Conversely, the complexity of the proposed approximation
is linear w.r.t. the number of data, while its sub-optimality
(evaluated by a Monetcarlo approach on a hard-to-optimize
problem) appears to be acceptable (5.5% of relative error and
0.47 of absolute error in a function with image set ranging
from 0 to 100). It can be noticed that in approximately
20% of cases, the approximation fails in providing the exact
solution: the mismatch is fundamentally due to the presence
of other 2 local minima in the RF with very close function
values.

Future developments will concern the extension of the
approach to constrained problems. Further investigations will
be aimed at predicting the approximation sub-optimality.
Finally, a prediction interval approach will be investigated
to allow the computation of a confidence interval around the
approximate solution.

REFERENCES

[1] Sabug, L., Ruiz, F., & Fagiano, L. (2021). SMGO: A set membership
approach to data-driven global optimization. Automatica 133 109890.

[2] Mattera, G., Caggiano, A. & Nele, L. (2024). Reinforcement learning
as data-driven optimization technique for GMAW process. Weld World
68, 805–817.

[3] Koziel, S., & Leifsson, L. (Eds.). (2013). Surrogate-Based Modeling
and Optimization: Applications in Engineering. Springer.

[4] Alexander I. J. Forrester, András Sóbester, Andy J. Keane (2008).
Engineering Design via Surrogate Modelling: A Practical Guide. John
Wiley & Sons.

[5] Nestor V. Queipo, Raphael T. Haftka, Wei Shyy, Tushar Goel, Rajku-
mar Vaidyanathan, P. Kevin Tucker. (2005). Surrogate-based analysis
and optimization. Progress in Aerospace Sciences 41(1) 1-28.

[6] Breiman, Leo. (2001). Random forests. Machine learning 45(1) 5-32.
[7] Gilles Louppe (2014). Understanding Random Forests - from theory

to practice. PhD Dissertation, University of Liège - Faculty of Applied
Sciences, arXiv:1407.7502v3.

[8] Lin, Y., and Jeon, Y. (2006). Random Forests and Adaptive Nearest
Neighbors. J of the American Statistical Association 101 578–590.

[9] Biau, Gerard, Erwan Scornet. (2016). A random forest guided tour.
Test 25(2) 197-227.

[10] Quinlan, J. Ross. (1986). Induction of decision trees. Machine learning
1(1) 81-106.

[11] Salzberg, Steven L. (1994). Programs for Machine Learning by J. Ross
Quinlan. Morgan Kaufmann Publishers, Inc., 1993. Machine Learning
16(3) 235-240.

[12] Breiman, Leo. (1996). Bagging predictors. Machine learning 24(2)
123-140.

[13] Marco Locatelli, Fabio Schoen, (2021). (Global) Optimization: Histor-
ical notes and recent developments, EURO Journal on Computational
Optimization 9 100012.

[14] Horst, R., & Pardalos, P. M. (Eds.). (1995). Handbook of Global
Optimization. Springer.

[15] Floudas, C. A., & Pardalos, P. M. (1999). Introduction to Global
Optimization. Springer.

[16] Biggs, M., Hariss, R., and Perakis, G. (2023). Constrained optimiza-
tion of objective functions determined from random forests. Production
and Operations Management 32(2) 397–415.

[17] Haozhe Zhang, Joshua Zimmerman, Dan Nettleton & Daniel J.
Nordman. (2020). Random Forest Prediction Intervals. The American
Statistician. 74(4) 392-406.

[18] Shahryar Rahnamayan, Hamid R. Tizhoosh, Magdy M.A. Salama.
(2007). A novel population initialization method for accelerating
evolutionary algorithms. Computers & Mathematics with Applications
53(10) 1605-1614.

499

Authorized licensed use limited to: CNR Biblioteca Centrale. Downloaded on June 29,2024 at 13:33:30 UTC from IEEE Xplore. Restrictions apply.

