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1 Introduction 25 

Field inspections after earthquake events report how out-of-plane failure mechanisms are prone 26 

to occur in historical masonry structures. Undesired consequences include the collapse of 27 

buildings, human losses, and loss of societal identity (Stepinac et al., 2021; Vlachakis et al., 28 

2020). Preventive remedial interventions on the built heritage are complex to perform since a 29 

sound knowledge of the structural and material features is lacking for most of the cases. 30 

Scientifically based studies are less susceptible to inadequate actions and advocate for proper 31 

structural analysis tools. To this aim, the literature was, in the last decades, enriched with the 32 

development of analysis methods for masonry structures. A plethora of strategies can be found 33 

now but seems clear that research leans towards the so-called (i) analytical and (ii) numerical 34 

approaches (Ferreira et al., 2014; Ferreira et al., 2015; D’Altri et al., 2019). 35 

Analytical approaches are often based on the theorems of limit analysis and through a force- 36 

or displacement-based formulation (Cascini et al., 2018; Gianmarco de Felice et al., 2001). 37 

These are especially suitable for a rapid seismic fragility assessment, as require few input 38 

material parameters and provide good estimations on collapse load multiplier for defined 39 

failure mechanisms (Giuffré 1996; D'Ayala, and Speranza 2003); however, are unable to track 40 

displacement history and damage evolution. To what concerns numerical approaches, the Finite 41 

Element Method (FEM) (Fortunato et al., 2017; Aşıkoğlu et al., 2019) and the Discrete Element 42 

Method (DEM) (Savalle et al., 2020; Lemos, 2007; Lemos, 2019; Bui et al., 2017; Gonen et 43 

al., 2021) are largely used. DEM is now well suited for masonries with both dry- and mortared 44 

joints, but still requires a full representation of the blocks (masonry units) arrangement (Lemos, 45 

2007). FEM allows a more versatile application as masonry can be represented either through 46 

a continuous equivalent media (designated macro-modeling) or by a discrete representation of 47 

units and joints (designated micro-modeling). Linear and non-linear static and dynamic 48 

analyses are eligible. Nonetheless, additionally to the significant amount of data needed to 49 
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characterize the non-linear response of materials, the analysis can be both time-consuming and 50 

computationally expensive when estimating the ultimate ductility level of the structure. 51 

To cope with the prohibitive computational cost, especially when dealing with large-scale 52 

structures and within full material nonlinearity, multi-scale FE methods seem a promising 53 

alternative and are in between the micro- and macro- FE schemes. Classical FE2 approaches, 54 

i.e. the full continuum-FE methods, have clear advantages if linear elastic behavior is assumed, 55 

but obtaining a micro-scale solution at each load step of a non-linear process for each Gauss 56 

point may turn the problem prohibitive from a computational point of view; especially if 57 

nonlinearities are assumed (Otero et al., 2015; Lourenço et al., 2020). These strategies still have 58 

a higher computational cost than a FE macroscopic model. Hence full continuum-based FE2 59 

approaches are seldom used for dynamic purposes and complex structural analysis (Lourenço 60 

et al., 2020). The development of techniques that keep accuracy to acceptable levels and speed 61 

up the processing running times is critical. Several authors tried, therefore, to address 62 

simplifications on two-step frameworks. 63 

The use of discrete FE-based methods at a macro-level is a promising alternative. Two-step 64 

approaches based on a discrete FE-based at a macro-scale are very practical due to the decrease 65 

of the number of degrees of freedom (comparing to a continuous approach) and are especially 66 

useful to perform dynamic analysis. Several studies have shown the clear advantages of this 67 

process since it allows a good trade-off between consumed time and results’ accuracy and 68 

enables the study of real scale buildings. The latter is even more clear if simplifications are 69 

further assumed at both macro- or micro-scales, as observed in (Gabriele Milani et al., 2011; 70 

Bertolesi et al., 2019; Sharma et al., 2021; Casolo et al., 2013; Silva et al., 2017). 71 

The use of limit analysis can be also a promising alternative. Some authors used a kinematic 72 

theorem of limit analysis at a macro-level to obtain the homogenized failure surfaces with a 73 

very limited computational effort (Cecchi et al., 2008; G. Milani et al., 2006; de Buhan et al., 74 
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1997). Such methods give a lower or upper bound estimate on the failure collapse load that can 75 

be scarce in some cases. Nonetheless, limit analysis is also being used together with FE-based 76 

strategies. Recently, Betti and Galano (2012) and Cundari et al. (2017) proposed similar 77 

frameworks, in which the global structural analysis was achieved by non-linear static or 78 

dynamic analysis aiming at the detection of the most likely collapse mechanisms. Then, at a 79 

second step, an upper bound limit analysis method was applied in the identified mechanisms 80 

to compute the maximum horizontal acceleration that the structure can withstand. Additionally, 81 

Funari et al. (2020) developed a non-linear static analysis to identify the most prone failure 82 

mechanisms and then, in a second step, aimed to refine the geometry of the failure mechanism 83 

through an optimization based on limit analysis and genetic algorithm; hence exploring an 84 

extensive set kinematically compatible solutions. D’Altri, et al. (2021) used limit analysis as a 85 

first step towards the identification of cracked surfaces and, in the next step, a macroscopic FE 86 

model was used to perform non-linear quasi-static analysis, in which the cracking zones were 87 

simulated with a microscopic description. However, a full-nonlinear behavior for the whole 88 

structure (even for the non-cracked zone) was assumed, which blurs the computational 89 

efficiency of the procedure and especially highlights the interest over more sophisticated 90 

approaches. 91 

In this endeavor for a fast tool, yet able to give accurate descriptions of the structure’s capacity 92 

and damage evolution, one may stress the so-called concurrent multi-scale approaches. These 93 

have been already applied to simulate fracture propagation in composites (Talebi et al. 2015; 94 

Ghosh 2015), nanocomposite (Ren et al. 2016), but also in the study of masonry structures 95 

(Lorenzo Leonetti et al., 2018; Driesen et al., 2021; Lourenço et al., 2020). A concurrent 96 

multiscale approach contemplates two well-separated scales, i.e. refined and coarse domains, 97 

described by a non-conforming mesh discretization and solved simultaneously. The refined 98 

domain, which ensures the modeling of non-linearities in the material behavior, is adopted in 99 
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the regions that expect to fail, whereas, in the coarse domain, non-linearities are assumed 100 

negligible. 101 

Lloberas-Valls et al. (2012a) investigated several incompatible mesh connections in the 102 

framework of a strongly coupled multiscale model to describe the crack growth and 103 

coalescence phenomena. Their model integrated a sophisticated zoom-in procedure that 104 

enables, during the loading history and based on a proper mechanical criterion, to switch from 105 

a coarser to a finer discretization of the media. Similarly, Talebi et al. (2015) developed a 106 

concurrent coupling scheme suitable to simulate the crack and dislocations at an atomistic 107 

level. Rodrigues et al. (2018) focused on the definition of an adaptive concurrent multiscale 108 

approach for the crack propagation phenomena in concrete structures. Their main novelty lies 109 

in using a non-periodic RVE cell, in which the FE mesh between the refined and coarse 110 

domains are independent. 111 

A noteworthy study of a concurrent multiscale approach to investigate the in-plane failure of 112 

masonry structures was developed by Leonetti et al. (2018). A multiscale/multidomain-based 113 

computational scheme allowed to reduce the computational cost associated with a classical FE 114 

micro-modeling approach. Furthermore, a recent study on the subject has shown the potential 115 

of multiscale approaches applied to masonry in a bi-dimensional framework and pointed out, 116 

as a future research path, the interest of limit analysis envisioned as a preliminary step for this 117 

kind of procedure (Driesen et al., 2021). 118 

The literature shows the potential of two-step procedures. However, the development of such 119 

tools aiming at an optimal localization of non-linearities – to reduce the associated convergence 120 

issues and computational cost – is still needed. Although concurrent multiscale approaches are 121 

certainly a promising alternative to simulate the failure of an extensive range of materials, e.g. 122 

concrete, masonry, composites, among others, its use is still limited to bi-dimensional 123 

frameworks and for small-scale case studies. In this context, this paper presents an integrated 124 
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two-stepped procedure that was developed with the aim of enriching the literature on the field 125 

of FE concurrent model. The main contribution is the possibility of conducting a three-126 

dimensional analysis of masonry structures within a low computational cost. To this aim, at a 127 

first step, a limit analysis tool finds the most prone failure mechanisms. At a second step, a FE 128 

concurrent multiscale approach is used to study the in-plane and out-of-plane response of 129 

masonry structures. Both steps are coupled, meaning that the failure surfaces that are found 130 

with limit analysis are modeled within a microscopic approach. Furthermore, and to fully 131 

optimize running times, the domain that is beyond the cracking surfaces, from an a-priori given 132 

characteristic length, is modeled as an elastic and orthotropic media.  133 

The paper is organized into four main sections: section 2 describes the analysis framework 134 

focusing on both theoretical and numerical aspects; section 3 reports three validation examples, 135 

which differ in scale, and reports the benchmark given as a case study; and finally, final remarks 136 

are discussed in Section 4. 137 

2 Two-scale framework: general description 138 

A numerical framework is presented aiming an accurate description of the in- and out-of-plane 139 

mechanical behavior of unreinforced masonry (URM) structures. It was formulated to require 140 

a lower computational cost than full FE microscopic and macroscopic (non-linear) strategies 141 

(Roca et al., 2013; Lourenço et al., 2020). The so-called concurrent approach (firstly presented 142 

by Fish (2006)) is adopted together with a limit analysis tool. In this regard, the framework has 143 

two sequential and coupled steps, in which a limit analysis is conducted first, and a concurrent 144 

FE analysis is employed next.  145 

The framework described in more detail next includes three main tasks, as given in Figure 1, 146 

needed to compute the mechanical response of URM structures. The first step consists of the 147 

geometric modeling of the structure via an explicit representation of both masonry units and 148 

joints (micro-modeling approach). In the second step, masonry units are merged, and its 149 

https://www.sciencedirect.com/science/article/pii/S2352710219329857#sec2
https://www.sciencedirect.com/science/article/pii/S2352710219329857#sec3
https://www.sciencedirect.com/science/article/pii/S2352710219329857#sec5


7 

topology is optimized to provide a macro representation of the media. Prone in-plane and/or 150 

out-of-plane failure mechanisms are a-priori assigned, and the location of the yielding surfaces 151 

is optimized by an upper bound limit analysis theorem coupled with a heuristic solver. At this 152 

stage, the third step is conducted, in which an ad-hoc script represents the sub-structure 153 

activated by the failure mechanism through a micro-scale representation. The outer domain, 154 

i.e. the rest of the structure that is not involved in the mechanism, keeps a macro and continuous 155 

representation. Finally, the concurrent FE multiscale model can be used to perform the 156 

structural assessment of the structure through linear/non-linear quasi-static/dynamic type of 157 

analysis and within a FE environment. Further details over each step are addressed in the next 158 

sections. 159 

 160 
Figure 1: Schematic representation of the proposed two-step numerical strategy. 161 

2.1 Parametric modelling of the structure 162 

The geometric modeling of the structure is the first step of the framework (node one in Figure 163 

1). To this aim, it requires the knowledge of the masonry arrangement since a micro-modeling 164 

approach is assumed. Although a full representation of masonry units and joints can be 165 

cumbersome and time-consuming, the framework integrates a digital tool that was recently 166 

proposed by Savalle, et al. (2021). This tool allows the pre-processing of the geometry via an 167 

automatic generation of the masonry arrangement, and it was implemented in the environment 168 

offered by Rhinoceros (+ Grasshopper) through C# programming language. It includes an 169 

initial discretization of the structure into elementary parts, i.e. walls arrangement, location of 170 
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corners, location of T-connection, among other substructures, which can be assembled without 171 

any restriction aiming to form complex three-dimensional structures. Then, by setting up the 172 

dimensions of units and joints – given as user input –, the masonry pattern is positioned to 173 

respect the latter structural features. Openings can be also included in the walls, and the user 174 

can specify its height, length, position, and the dimension of lintels. For the sake of brevity, the 175 

reader is referred to (Savalle et al., 2021) for further details. 176 

2.2 Upper-Bound Limit Analysis 177 

The geometric model defined in the first step serves as a basis to conduct the second step of 178 

the framework. In this sub-step of the framework, prone failure mechanisms are pre-defined 179 

and assessed through an optimization tool that integrates an Upper-Bound limit analysis 180 

theorem coupled with a heuristic solver (node two in Figure 1). Therefore, the geometry of the 181 

expected active failure mechanism is parametrized to find the optimal configuration. The 182 

optimization problem aims at the minimization of the horizontal load multiplier, which can be 183 

formulated through the principle of virtual work. Figure 2 describes an overturning mechanism 184 

of a masonry wall, in which the kinematic description required to formulate the problem is 185 

conditioned by one virtual rotation 𝛿𝜃 (Casapulla, et al. 2014; Funari, et al. 2020). The 186 

formulation of such a mechanism is addressed next, as it is the one assumed for the benchmarks 187 

reported in this study. It worth stressing that the formulation resorts on a representation of the 188 

media through a macro-approach – units forming the masonry prototype are merged –, in which 189 

the mechanism is represented by one virtual parameter only (Figure 2). Such assumption is 190 

convenient for an initial assessment of the most prone mechanism, and it is largely used in 191 

classic limit analysis approaches, see for instance (Sorrentino et al., 2017; D’Ayala et al., 192 

2002). 193 
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 194 

Figure 2: Kinematic description of the overturning failure mechanism. 195 

As presented in Figure 2, the external virtual work contains both the overturning as well as the 196 

stabilizing works performed by the inertial forces, whereas the internal work derives from the 197 

friction force at contact interfaces:  198 

n n

ext i O,i i S,i

i 1 i 1

n

int f , j S, j

j 1

W  W W

W  F

= =

=

 =   − 

 = 

 


     (1) 199 

in which 
iW  are the inertial forces arising from the self-weight of the i - th masonry wall and 200 

including as well the contribution of roof and floors; 
O,i  and 

S,i  are the virtual overturning 201 

or stabilizing displacements of the application point of the inertial forces (that coincides with 202 

the virtual centroid if self-weight is considered only); 
f , jF  are the frictional forces computed 203 

as a weighted value of the maximum friction force 
maxF  based on the inclination of the crack 204 

line, as given next (Casapulla et al., 2014): 205 

c
f max

b

F F 1
 

= − 
 

     (2) 206 
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Here, 
b and 

c are the maximum frictional and crack angle, respectively (Funari, Mehrotra, 207 

and Lourenço 2021). The value of the horizontal load multiplier 𝜆 is obtained by solving Eq. 208 

(1) and reads: 209 

n n

f , j S, j i S,i

j 1 i 1

n

i O,i

i 1

F W

 

W

= =

=

 + 

 =



 


     (3) 210 

It is worth noting that the value 𝜆 depends on the geometry of the failure mechanism, which is 211 

defined by the crack inclination 
c  and the height of the rotational hinge 

hH . Such variables 212 

define the set of possible 𝜆 values. At last, the optimization of the out-of-plane failure 213 

mechanism geometry is achieved by solving the following constraint minimization problem: 214 

min c b

h W

tan tan tan
min  :  

0 H H

      
  

   
     (4) 215 

The constrained optimization problem defined in Eq. (4)  was numerically implemented in a 216 

GHPython script, as depicted in Figure 3. Input data include: (i) the geometry defined in the 217 

first step (node one in Figure 1), (ii) the friction coefficient of the masonry, (iii) the rotational 218 

axis, and (iv) the geometric dimensions of masonry units. As shown in Figure 3, the variables 219 

of the optimization problem are grouped in the magenta box, i.e.: (i) the slope of the crack 220 

surfaces, and (ii) the height of the rotational axis. The solution is achieved using the GH 221 

component Galapagos (Rutten, 2013), in which a heuristic research method based on a genetic 222 

algorithm is implemented. The optimization problem finds the configuration for the critical 223 

failure mechanism and under a low processing time (few seconds). The kinematic problem 224 

used herein has theoretical background on the works of Turco, et al. (2020); Funari, et al. 225 

(2020).  226 
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 227 
Figure 3: Limit analysis tool implemented in Rhino+Grasshopper through GHPython scripting 228 

that finds the critical failure mechanism. 229 

2.3 Macro-Micro domains definition 230 

The definition of macro- and micro-domains is the third step of the framework (node three in 231 

Figure 1). It resumes being a fast procedure once the theoretical failure mechanism is found by 232 

limit analysis. The decomposition of both domains is directly defined over the failure 233 

mechanism. Although other re-meshing approaches would be plausible, the present study 234 

assumes two different scales. A finer scale, designated as micro-domain 
m that is attributed 235 

to the substructure defined by the active failure mechanism, in which masonry arrangement is 236 

explicitly represented. A coarser scale, designated as macro domain 
M is attributed to the rest 237 

of the structure, in which masonry is represented through a continuous and equivalent elastic 238 

media. 239 

A contentious issue is the finding of the frontier between domains. Cracking tends to spread 240 

from the main surfaces failures and have an important role in the non-linear behavior of 241 

masonry and in damage-induced orthotropy. To avoid inaccurate solutions retrieved from the 242 

disregard of this cracking, the damage in the vicinity of the main failure surfaces was 243 
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considered by adding the scalar parameter R as input. The parameter R is a length value that 244 

extends the part of the structure being characterized with a microdomain, as presented in Figure 245 

4. The choice of R affects both the accuracy and computational time of the solution since it 246 

increases or decreases the non-linear region of the model. Therefore, a proper choice of R-value 247 

is paramount and it is recommended that it includes: (i) the epistemic error in the prediction of 248 

the hinges through limit analysis, (ii) the existence of a potential curved failure surface, in 249 

converse to the straight-type yielded surfaces assumed by the limit analysis tool, and (iii) the 250 

more diffuse failure surfaces due to the zig-zag damage (especially in sliding and flexure 251 

mechanisms) in actual masonry specimens (Restrepo Vélez et al., 2014; Bui et al., 2017; 252 

Cascini et al., 2018). 253 

 254 
Figure 4: Schematic representation of the decomposition procedure into macro- and micro-255 

domains. 256 

In this regard, and as schematically described in Figure 4, the dimension of the Representative 257 

Volume Element (RVE) defines the grid that enables the domain decomposition. This resorts 258 

to be an alike strategy followed by other studies, as (Vandoren et al., 2013; Lorenzo Leonetti 259 

et al., 2018; Alessandri et al., 2015; Almeida et al., 2020; Lloberas-Valls et al., 2012; Driesen 260 
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et al., 2021). A classical RVE adopted for a running-bond pattern (Trovalusci et al., 2015) was 261 

considered since the selected case studies follow such arrangement; needless to state that other 262 

configurations can be employed. The domain decomposition of every grid region, into a micro-263 

description of the RVE, is performed if intersect the failure surface (plus the characteristic 264 

length R); being the other grid elements kept as macro domain 
M  regions. 265 

2.4 Concurrent FE macro-micro model 266 

The limit analysis procedure performed over the structure allows identifying two subdomains 267 

that have different scales of computation, i.e. the macroscopic 
M  and the microscopic 

m268 

domains (Figure 1, node 3). Both are concurrent, meaning that together define simultaneously 269 

different volumes of the structure. Towards a low computational cost, material non-linearities 270 

are assigned only to the materials belonging to the micro-domain 
m . On the other hand, the 271 

media inside the 
M  domain is simulated with an equivalent linear elastic orthotropic material, 272 

whose elastic properties are computed with a proper homogenization strategy to guarantee the 273 

objectivity of the solution. Such hypotheses are particularly suitable for well-marked failures, 274 

as the ones experienced in unreinforced masonry structures: local failure mechanisms governed 275 

by out-of-plane loading due to poor connection between structural elements (Malena et al., 276 

2019; Restrepo Vélez et al., 2014). 277 

2.4.1 Variational Formulation 278 

The concurrent FE model requires a numerical solution for each scale and was implemented in 279 

the FE software Abaqus (2014). A set of weak form equations are solved in a coupled manner 280 

through a variational formulation for both the 
M  and the 

m  domains. Proper kinematic 281 

constraints are employed at the regions where both domains meet, designated as interfaces 282 

m,M . Specifically, an additional internal boundary condition is associated with
m,M  and 283 

seeks to enforce the continuity between total displacement (Lorenzo Leonetti et al., 2018; 284 

Driesen et al., 2021): 285 
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 (5) 286 

in which 
Mu  and 

mu  are the displacement fields belonging to the 
M  and 

m  subdomains, 287 

respectively. ϒ𝑚 represent the interfaces of the micro-domain and ϒ  represent the boundaries 288 

with applied external forces (surface tractions or nodal forces).
mB and 

MB are the vectors 289 

containing the body loads along with the three global cartesian directions, 
mp and 

Mp  are the 290 

vectors of the surfaces loads active on the boundary,   is the Lagrange load multiplier of the 291 

forces that control the residual interface gap across adjacent domains, 𝒕 is the traction force 292 

acting at the interfaces within the 
M  domain, and 

mu  is the displacement jump at the 
m293 

interfaces (Figure 5). 294 

 295 

 296 
Figure 5: Schematic representation of the variational formulation of the concurrent FE 297 

numerical approach. 298 

Equation (5) defines the concurrent FE multiscale approach that is solved within an explicit 299 

scheme available in ABAQUS (Abaqus, 2014). The static solution is obtained by dynamic 300 

relaxation, using scaled masses and artificial damping. To this aim, the energy balance is 301 

continuously evaluated and to guarantee that the kinetic energy of the deforming media is 302 

below a small fraction of the total internal energy (1–5%) (Abaqus, 2014). The latter condition 303 
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must hold to guarantee the objectivity of the results through an explicit procedure. In this 304 

context, smooth step amplitude curves and a small-time increment allow reaching appropriate 305 

results. 306 

2.4.2 Micro-domain numerical model 307 

Masonry units are assumed to be deformable discrete blocks following an isotropic and linear 308 

elastic constitutive law (
uE , 

u ). Joints are represented by zero-thickness interfaces, which 309 

include a non-associative plastic flow rule and a classical Mohr-Coulomb failure surface 310 

criterion. Normal and tangential contact behaviors (stress-displacement laws) assume an 311 

infinitesimal interpenetration between blocks. A linear relationship between the over-closure 312 

displacements and the applied stress is defined by the normal 
nk  and tangential 

sk  stiffness 313 

values. A friction coefficient ( f ) defines the plastic slipping criterion in shear within a penalty 314 

approach, in which a perfectly plastic response occurs after reaching the critical shear stress. 315 

For the present case study, only dry mortar type of masonry is studied and, therefore, cohesion 316 

has been neglected when representing joint interfaces (in tension and shear regimes). 317 

According to the distinct element method, a local damping factor is considered. The equations 318 

of motion are damped to reach a force equilibrium state as quickly as possible under the applied 319 

initial and boundary conditions. Damping is velocity-proportional (magnitude of the damping 320 

force is proportional to the velocity of the blocks) and it was assumed equal to 0.8 in the present 321 

study. The adopted FE software is Abaqus (2014) contains the latter mentioned contact 322 

interface model. The constitutive law is automatically assigned to all the interfaces of the 323 

micro-domain 
m  through the General Contact algorithm (Abaqus, 2014). 324 

2.4.3 Macro-domain numerical model 325 

The macro-domain 
M  represents masonry through an orthotropic linear elastic media. 326 

According to the theory of elasticity, the spatial stiffness matrix for an orthotropic material is 327 

defined by a 6 × 6 symmetric matrix, which is fully determined through nine engineering 328 
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constants, i.e. three elastic moduli 
XX YY ZZE , E , E , three Poisson's ratios 

XY XZ YZ
, ,    , 329 

and three shear moduli 
XY XZ YZG , G , G , associated with the principal directions (Figure 6). 330 

 331 

Figure 6: Representative Volume Element (RVE) for the homogenization procedure of the 332 

macro-domain 
M . 333 

A closed-form solution was found to define the material elasticity matrix of a running-bond 334 

dry-joint masonry. It was inspired in the works of Kouris et al. (2020) for a two-dimensional 335 

media, in which a set of equivalent springs represent the in-plane response of a mortared 336 

masonry RVE. Herein, the equivalent three-dimensional elastic response is defined by ad-hoc 337 

expressions formulated based on the representation of a set of springs to describe the masonry, 338 

as presented in Figure 7. Since contact interfaces are being used to characterize the numerical 339 

behavior of dry-mortar joints, the springs given in Figure 7 correspond to surfaces in the 340 

numerical model (unit of Pressure/Length). Parameters L, H, and B denote the unit length (X), 341 

height (Y), and width (Z), respectively; hence the RVE's height is given as 2H and length given 342 

by L (Figure 7). An assemblage of springs is conceived aiming at the representation of a system 343 

equivalent to a running-bond masonry RVE. Since a dry-joint masonry will be studied only, 344 

the compression range is the one that is analyzed here being the RVE subjected to compression 345 

stress 𝜎 for mode-I deformation modes. The computed elastic homogenized properties are 346 

described in terms of equivalent Young's moduli, Shear moduli, and Poisson’s coefficients. 347 
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Figure 7 presents the latter assumptions. More detail on the formulation is given in Appendix 348 

1. 349 

 350 
Figure 7: Strategy followed to compute the equivalent elastic properties of the masonry RVE: 351 

Young's moduli and shear moduli (details for the Poisson’s ratio are given in Appendix A). 352 

Table 1 summarizes the closed-form expression to compute the elastic properties of the 353 

equivalent linear elastic orthotropic material; the reader is referred to (Kouris et al., 2020) for 354 

further theoretical details within an alike procedure. The mechanic-based formulation adopted 355 

has clear simplifications, but brings advantages related to the ease of computational 356 

implementation. Nonetheless, among the more sophisticated models available in the literature, 357 

only a few deal with dry-joint masonries, and the majority are devoted to 2D frameworks (G. 358 

de Felice et al., 2010). 359 
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Table 1: Equivalent homogenized elastic properties for a running-bond masonry RVE 360 

(orthotropic material). 361 

Young's modulus Poisson's ratio Shear modulus 

Exx =
LknEu

Eb + Lkn

 νxz = νxy = −
εzz

εxx

= νu

Exx

Eu

 Gxy =
HLksGu

Gu(H + L) + 2HLks

 

Eyy =
HknEu

Eu + Hkn

 νzx = νzy = νu Gxz =
LksGu

Gu + 2Lks

 

Ezz = Eu νyx = νyz = νu

Ezz

Eu
 Gzy =

HksGu

Gu + 2Hks
 

 362 

2.4.4 Micro and macro interfaces 363 

The concurrent FE model included two domains – macro 
M and micro 

m – that embody 364 

the structure numerical model and represent the mechanical behavior of masonry. These 365 

domains are assigned to different volumes and meet in different regions by sharing a common 366 

surface interface 
m,M . Such interface 

m,M is characterized by two-adjoining boundaries with 367 

different scale representations for the masonry and FE mesh sizes ranging 
M m 10   , in 368 

which 
M  and 

m are the characteristic FE mesh size of the 
M  and 

m domains, 369 

respectively. 370 

Interfaces 
m,M must link adjoining non-conforming FE meshes. Contact points (or nodes) of 371 

each boundary are set into two families, defined as: 
iCP , which corresponds to the contact points 372 

located on the 
M domain only; and the 

dCP , which is the set of contact points that are paired 373 

between 
M and 

m domains. The continuity of the displacement between 
dCP is imposed 374 

through a Lagrange multiplier functional. For
iCP , the Lagrange multiplier can be achieved 375 

following several procedures, e.g. approximation through shape functions. Figure 8 represents 376 

this concept in the case of a two-dimensional problem for the sake of simplicity, but the 377 

interpolation occurs in two orthogonal directions because the proposed strategy is processed in 378 

the three-dimensional space. From a numerical standpoint, such kinematic conditions are 379 
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implemented by means of a tie constraint algorithm, which is available in Abaqus (2014). 380 

Therefore, the assumption of total displacement continuity between the two domains is 381 

guaranteed, even though the FE mesh are non-concordant.  382 

 383 
Figure 8: Concurrent FE model and localization of the interface 

m,M  that link the macro- and 384 

micro-domains with the corresponding contact points. 385 

3 Two-scale framework: numerical application 386 

The numerical application of the proposed two-step framework is conducted over three case 387 

studies, which include small to large-scale structures. Aiming to validate the strategy, the 388 

results found are compared against a microscopic model, hereafter named as RMM (reference 389 

microscopic model). The RMM is one the most accurate (and computationally expensive) 390 

numerical strategies at disposal in the literature and serves, therefore, as a reference method for 391 

validation purposes. 392 

The first case study is a dry-joint masonry wall with an opening and subjected to an in-plane 393 

shear load. The second case study addresses three connected dry-stone masonry walls within a 394 

U-shape plan arrangement (Smoljanović et al., 2018). It aims to explore the potential of the 395 

proposed approach when the structures are affected by coupled in-plane and out-plane 396 

mechanisms. Finally, the third case study is a large-scale monumental building, whose 397 

geometry is inspired by the Church of San Nicolò Capodimonte  located in Camogli (Genova, 398 

Italy) (Funari, Mehrotra, and Lourenço 2021). 399 
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3.1 Small-scale structure: URM shear wall 400 

The first case study concerns a dry-joint masonry shear wall. The wall is fixed at the base and 401 

its geometry is given in Figure 9. Two load cases are applied in a sequent manner: the self-402 

weight is applied first, and a lateral body force (mass proportional) is applied next through an 403 

incremental load factor 𝜆, as presented in Figure 9 (node 1). Material properties required to 404 

complete the proposed procedure are given in  405 

Table 2, specifically the material density (𝜌) and friction coefficient (𝑓) for the limit analysis 406 

procedure; the Young’s modulus and the Poisson’s coefficient of the masonry units to define 407 

the overall elastic orthotropic matrix of the 
M  domain according to the closed-form solutions 408 

of section 2.4.3; and the normal and tangential stiffness values for the micro-macro interfaces. 409 

The dimensions of units are 30.80 0.35 0.40m  (L H B)    . 410 

Table 2: Mechanical properties adopted in the RMM and proposed CMM for the URM shear 411 

wall study. 412 

3 [kg m ]−  f  uE  [Pa]  
u  1

nk  [Pa m ] −  1

sk  [Pa m ] −  

2000 0.7 10x109 0.2 1x109 1x109 

 413 

 414 
Figure 9: Proposed two-step framework applied to the URM shear wall case study. 415 

The proposed strategy is employed – as addressed in section 2 –, in which the modeling of the 416 

wall was achieved by a semi-automatic parametric micro-modeling, and a limit analysis tool 417 

applied next aiming the detection of the most prone failure mechanism geometry for the given 418 

loading conditions. The limit analysis uses a heuristic procedure embedded in the Galapagos 419 
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solver (Rutten, 2013) and converged to a load multiplier value equal to    0.219 =  (meaning 420 

an equivalent shear base force of 0.219.g, in which g is the gravitational acceleration). The 421 

obtained failure mechanism, linked with the third sub-step of the proposed algorithm as 422 

remarked in Figure 1, follows a re-meshing procedure to define the two non-overlapping 423 

domains, i.e. the micro 
m and the macro 

M domains. The characteristic length R was 424 

assumed to be R 2L=  (L is the length of the masonry unit that, for the dry-joint masonry of 425 

this case study, matches the length of the RVE). Note that the failure defined by limit analysis 426 

can have a jagged profile that may be caused, for instance, by the presence of openings. 427 

The transfer between the first processing step, i.e. the limit analysis, with the second processing 428 

step of the framework, i.e. the structural analysis by a concurrent FE model, is performed 429 

through a Python script (The Python Language Reference — Python 3.9.5 Documentation, 430 

2021). It allows the automatic creation of the numerical FE model within Abaqus CAE 431 

environment (Abaqus, 2014), in which both domains are properly represented. Masonry units 432 

that belong to the 
m domain are discretized by eight-node linear hexahedral finite elements 433 

(C3D8R in Abaqus (2014)); thus leading to a 
m / 1/ 2  = , in which min  (L,B,H) = . In 434 

the 
M  domain, a coarser mesh (structured FE mesh with squared elements) was adopted with 435 

a 
M. / L 1 = , meaning that the FE size is 0.80m to match the length of masonry units. 436 

Results of the proposed CMM and RMM are presented in Figure 10, both in terms of lateral 437 

load-displacement capacity (node with maximum displacement as control node) and total 438 

displacement map at collapse (    0.220 = ). The comparison of the results allows 439 

demonstrating that the proposed approach ensures a good solution accuracy. Furthermore, it is 440 

noteworthy to highlight that the CMM allows saving 58% of the computational time cost 441 

required by the RMM. 442 
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(a) 

 

(b) 

 

Figure 10: Results obtained for the in-plane loaded masonry wall: (a) lateral load-displacement 443 

relationship; and (b) displacement map for the RMM and proposed CMM. 444 

3.2 Small-to-medium scale structure: U-shaped URM walls 445 

The second case study concerns a URM structure composed of three walls within a U-shaped 446 

plan arrangement. It is based on the Smoljanović, et al. (2018) works and brings more 447 

complexity than the former case study since both in- and out-of-plane co-exist. Walls are fixed 448 

at the base and the geometry of the structure is given in Figure 11. Two load cases are applied 449 

in a sequent manner: the self-weight is applied first, and a lateral body force (mass proportional) 450 

is applied next through an incremental load factor 𝜆, as presented in Figure 11 (node 1). The 451 

lateral force is orthogonal to the façade wall and then following its out-of-plane direction. 452 

 453 
Figure 11: Proposed two-step framework applied to the U-shaped URM case study. 454 
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Material properties required to complete the proposed procedure are given in Table 3: the 455 

material density (𝜌) and friction coefficient (𝜐) for the limit analysis procedure; the Young’s 456 

modulus and Poisson’s coefficient of masonry units to define the overall elastic orthotropic 457 

matrix of the M domain according to the closed-form solutions of section 2.4.3; and the 458 

normal and tangential stiffness values for the micro-macro interfaces. The dimensions of units 459 

are 30.60 0.30 0.30m  (L H B)    . 460 

Table 3: Mechanical properties adopted in the RMM and proposed CMM for the U-shaped 461 

URM structure studied by Smoljanović, et al. (2018). 462 

3 [kg m ]−  uE  [Pa]  
u  1

nk  [Pa m ] −  1

sk  [Pa m ] −  f  

2000 10x109 0.2 1x109 1x109 0.7 

 463 

The proposed strategy is employed and the obtained failure mechanism through limit analysis 464 

is given in Figure 11 (node 2), in which the out-of-plane mechanism of the main façade governs 465 

the collapse mode. The numerical FE concurrent model (CMM) is then developed at Abaqus 466 

CAE environment (Abaqus, 2014) by a re-meshing procedure that retrieves two non-467 

overlapping domains, i.e. the micro 
m and the macro 

M domains. A characteristic length R 468 

was assumed to be R 2L=  (L is the length of the masonry unit that, for the dry-joint masonry 469 

of this case study, matches the length of the RVE). Masonry units that belong to the 
m domain 470 

are discretized by eight-node linear hexahedral finite elements (C3D8R in Abaqus (2014)); 471 

thus leading to a 
m / 1/ 2  = , in which min  (L,B,H) = . In the 

M  domain, three mesh 472 

refinements (structured FE mesh with squared elements) were evaluated to assess the trade-off 473 

between accuracy-computational achieved. To this aim, the following FE mesh ratios were 474 

adopted: (i) CMM-M1, with a finer FE mesh and size given by
M / 1/ 2  = ; (ii) CMM-M2, 475 

an in-between mesh refinement with a size given by 
M / L 1/ 2 = ; and (iii) CMM-M3, with 476 

a coarser FE mesh and size given by 
M / L 1 = . 477 
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Furthermore, the influence of the parameter R was investigated. Note that R is a parameter 478 

(units of length) that directly affect the volumes of both micro- and macro-domains (see section 479 

2.4.2). Therefore, an additional model designated as CMM-M3-R was also considered: it has a 480 

FE mesh size for the 
M  domain given by 

M / L 1 = and an R=L (half-value of the other 481 

CMM models). 482 

Results from the proposed CMM and RMM are presented in Figure 12. Lateral load-483 

displacement capacity curves (node with maximum displacement as control node) in Figure 484 

12a show slight differences in the elastic range, yet negligible from a structural engineering 485 

standpoint as are within a 5% bound. CMM model is slightly stiffer than the RMM, especially 486 

in the linear range, and it may be explained due to the loss of accuracy that macro-modeling 487 

offers when compared with a micro-modeling approach. Nonetheless, differences are 488 

unnoticeable when plastic deformations govern the response; is noteworthy to highlight that 489 

the CMM micro-domain is responsible for such deformation. Collapse occurs for a load-factor 490 

around    0.295 =  for all the studied numerical models. It is important to point out that the 491 

collapse instant is defined when the kinematic energy is higher than 5% of the total energy 492 

because an explicit formulation was adopted. In such a context, the results allow demonstrating 493 

that the proposed approach ensures a promising solution accuracy. Furthermore, it is 494 

noteworthy to highlight that the CMM allows saving 58% of the computational time cost 495 

required by the RMM. 496 
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    (a) 

 

             (b) 

 

 
(c) 

 

Figure 12: Results obtained for the U-shaped URM structure: (a) lateral load-displacement 497 

relationship; (b) computational time (CPU) and number of degrees-of-freedom (DOFs) for each 498 

numerical simulation; and (c) displacement map for the RMM and proposed CMM-M3 and 499 

CMM-M3-R. 500 

Figure 12b reports a comparison including the required computational time (CPU) and the 501 

number of degrees-of-freedom (DOFs) for each numerical model. Despite CMM-M1, CMM-502 

M2 and CMM-M3 have clear differences in the number of DOF, differences in the required 503 

CPU time are minimal and allow saving around 60% of the time in comparison with the RMM. 504 

In this regard, the approach seems to not suffer from a substantial mesh bias at the 
M  domain; 505 

this holds at least for FE mesh sizes with a dimension lower than the RVE size. On the other 506 

hand, Figure 12b allows doing an important finding, i.e. the parameter R has a significant 507 
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impact since it allows decreasing 10% of the required CPU time when compared to the CMM-508 

M3. Therefore, this parameter must be assessed with care. It allows improving the 509 

computational time, but decreasing its value may also compromise the accuracy level. The 510 

authors suggest a value bounded by R L=  to R 2L= . 511 

The failure mechanisms obtained with the RMM, CMM-M3, and CMM-M3-R are summarized 512 

in Figure 12c through total displacement maps. The proposed FE concurrent models (for both 513 

R values) capture well the expected failure mechanism. At last, it is noteworthy to highlight 514 

that the proposed multi-scale framework returns promising results, in terms of load capacity 515 

curve and expected failure mechanism, while saving 65% of the computational time if 516 

compared to an accurate micro-modeling strategy (RMM).  517 

3.3 Large-scale structure: URM church 518 

The last case study – and the most complex one – concerns a URM church and aims to evaluate 519 

the promptness and accuracy of the two-step framework when applied for a large-scale 520 

structure. The URM church is characterized by a plan consisting of a Latin Cross (Funari, 521 

Mehrotra, and Lourenço 2021). The geometry of the church is given in Figure 13 and some 522 

important features can be addressed: the main façade wall has a total height of 14.0m and a 523 

base ranging 7.50m; the single bell tower is the tallest structural element, with a height of 524 

17.0m; and the total length of the church is around 19.60m. Fixed boundary conditions are set 525 

at the base of the church walls. For the structural analysis, two load cases were considered and 526 

applied in a sequent manner: the self-weight is applied first, and a lateral body force (mass 527 

proportional) is applied next through an incremental load factor 𝜆, as presented in Figure 11 528 

(node 1). Such lateral force, which intends to be representative of a seismic excitation, was 529 

applied along the longitudinal direction of the church, as this is typically the weakest direction. 530 

Material properties required to complete the proposed procedure are given in Table 4: the 531 

material density (𝜌) and friction coefficient (𝜐) for the limit analysis procedure; the Young’s 532 
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modulus and Poisson’s coefficient of the masonry units to define the overall elastic orthotropic 533 

matrix of the 
M domain according to the closed-form solutions of section 2.4.3; and the 534 

normal and tangential stiffness values for the micro-macro interfaces. The dimensions of units 535 

are 30.57 0.275 0.90m  (L H B)     . 536 

Table 4: Mechanical properties adopted in the RMM and proposed CMM for the URM 537 

church study. 538 

3 [kg m ]−  f  bE  [Pa]  
b  1

nk  [Pa m ] −  1

sk  [Pa m ] −  

2000 0.6 20x109 0.2 1x1011 1x1011 

 539 

 540 
Figure 13: Proposed two-step framework applied to the URM church case study. 541 

The proposed strategy is employed and the obtained failure mechanism through limit analysis 542 

is given in Figure 13 (node 2). The overturning mechanism of the gable wall of the church 543 

governs the collapse mode. Figure 13 (node 3) presents the corresponding numerical FE 544 

concurrent model (CMM) developed at Abaqus CAE environment (Abaqus, 2014) by a re-545 

meshing procedure that retrieves the two non-overlapping domains, i.e. the micro 
m and the 546 

macro
M . A characteristic length R 2L=  was assumed. Masonry units that belong to the 547 

M domain are discretized by eight-node linear hexahedral finite elements (C3D8R in Abaqus 548 

(2014)); thus leading to a 
m / 1/ 2  = , in which min  (L,B,H) = . In the 

M  domain, a 549 

FE mesh refinement (structured FE mesh with squared elements) was considered with a size 550 

given by 
M / L 1 = . 551 
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Figure 14 summarizes the lateral load-displacement (pushover) curve found with the proposed 552 

CMM, together with the load multiplier value (𝜆 = 0.213) of the limit analysis processed in 553 

the second sub-step (Figure 13) and with the numerical model from Malena, et al. (2019). The 554 

latter numerical model developed by Malena, et al. (2019) is based on a homogeneous 555 

macroscopic model with an elasto-plastic constitutive relation for the masonry. 556 

 557 
Figure 14: Results obtained for the URM church: lateral load-displacement (pushover) curve 558 

and displacement map for the proposed CMM and macroscopic model from Malena, et al. 559 

(2019). 560 

The comparison of the results allows demonstrating that the proposed approach ensures a good 561 

solution accuracy, especially to what concerns the structure’s load capacity. Some deviations 562 

still pose within the elastic range. The limit analysis allows predictions on the collapse load are 563 

within 8% difference. Figure 14 also gives the comparison in terms of failure mechanism. The 564 

proposed model offers a clear identification of the failure surfaces, as damage localization is 565 

directly lumped on FE interfaces. In converse, general insight over the failure mechanism is 566 

difficult to conduct with the macroscopic model used for comparison purposes; this is, 567 

however, a general disadvantage of macroscopic models that preclude a cracking-localization 568 
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algorithm (Clemente et al., 2006). At last, it bears noticing that the proposed CMM has, within 569 

the micro-domain m , a total of 800 masonry stone units that leads to a total CPU time of 570 

75min. A comparison with a RMM was disregarded in this case study since the number of 571 

masonry units would increase up to more than 5000; meaning that a prohibitive CPU time 572 

would be required. No indication of CPU time required for the macroscopic model is reported 573 

in Malena, et al. (2019) and, therefore, a quantitative comparison on this matter is omitted. 574 

4 Final remarks 575 

A two-step procedure was proposed aiming at the in- and out-of-plane mechanical study of 576 

dry-joint masonry structures. At a first step, a semi-automatic digital tool allows the parametric 577 

modeling of the structure that, together with an upper bound limit analysis tool and a heuristic 578 

optimization solver, enables tracking the most prone failure mechanism. The time required to 579 

process the first step is limited to a matter of seconds. At a second step, a coupled three-580 

dimensional concurrent FE model with micro- and macro-scales is assumed. A micro-modeling 581 

description of the masonry is allocated to regions activated by the failure mechanism found in 582 

the former step. The other regions of the domain are modeled via a macro-approach, whose 583 

constitutive response is elastic and orthotropic and based on closed-form homogenized-based 584 

solutions. The time required to complete the second step is conditioned by the scale of the 585 

structure and type of structural analysis performed, as the modeling of the concurrent FE model 586 

is automatic and takes a matter of seconds. 587 

The application of the framework was achieved through non-linear quasi-static analysis on 588 

three benchmarks: (i) an in-plane loaded URM shear wall; (ii) a U-shaped URM structure; and 589 

(iii) a URM church. Results demonstrate the potential and advantages of the proposed 590 

approach. It was able to predict, with a marginal difference (lower than 1%), the collapse load 591 

value. Failure collapse modes resemble to be alike with the ones found with a microscopic FE 592 

model (first two case studies) and with a literature macroscopic FE model (for the third and 593 
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last case study). Furthermore, the tool demonstrated that is quite attractive from a 594 

computational standpoint. It allows reducing the CPU time up to 60% in a small-to-medium 595 

scale structure (first and second case studies) when compared to a full microscopic FE model. 596 

Eventually, it may be the only alternative to macroscopic FE models when assessing large-597 

scale structures, as micro-modeling proved to be a challenge. 598 

At last, a comment on future research streams is of value. The two-step procedure is 599 

computational quite attractive, robust, and allows higher levels of accuracy. This is so because 600 

it is based on a sequential process in which a continuous transfer of information between scales 601 

is precluded during the analysis; as required in classical multi-domain strategies that need 602 

activation rules to process the macro-to-micro decomposition (L. Leonetti et al., 2018; Reccia 603 

et al., 2018; Driesen et al., 2021). Nonetheless, further studies need to be carried out to validate 604 

the approach in other contexts, for instance when assessing mortared masonry structures. In 605 

such a context, the authors believe that future works may include: (i) the definition of a more 606 

sophisticated limit analysis tool, e.g. (G. Milani, 2015; Chiozzi et al., 2017); and (ii) the 607 

implementation of an interfacial contact model at the micro-domain and within the FE 608 

concurrent model that can represent better the behavior of mortared joints (Lourenço et al., 609 

2020). 610 

5 Appendix 611 

This appendix details the derivation of the formulas presented in Table 1, which have been 612 

formulated considering a spring’s representation analogy (see Figure 7) and based on the 613 

infinitesimal strain theory. 614 

The Young’s modulus 𝐸𝑥𝑥, 𝐸𝑦𝑦 and 𝐸𝑧𝑧 can be obtained following the same procedure. For the 615 

save of brevity, only  𝐸𝑥𝑥 component is addressed here. According to Hooke’s law, the axial 616 

deformation and displacement read as: 617 

 𝐸𝑥𝑥 =
𝜎𝑥𝑥

𝜀𝑥𝑥
;  𝜀𝑥𝑥 =

𝛥𝑢

𝐿
;  𝛥𝑢 = 𝑑𝑢𝑢 + 𝑑𝑢𝑗  (A.1) 618 
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In which 𝜎𝑥𝑥 is the axial load, 𝜀𝑥𝑥 is the axial deformation, 𝛥𝑢 is the total displacement of the 619 

RVE, 𝑑𝑢𝑢 is the displacement component related to the unit, and 𝑑𝑢𝑗 is displacement 620 

component related to the joints, i.e. its normal displacement (interpenetration). Both contact 621 

interfaces have the same applied uni-axial stress and, therefore, Equations A.1 reads as: 622 

 𝑑𝑢𝑢 =
𝜎𝑥𝑥𝐿

𝐸𝑢
;  𝑑𝑢𝑗 =

𝜎𝑥𝑥

𝑘𝑛
;     

𝜎𝑥𝑥

𝐿
(

𝐿

𝐸𝑢
+

1

𝑘𝑛
) = 𝜎𝑥𝑥 (

𝑘𝑛𝐿+𝐸𝑢

𝐸𝑢𝑘𝑛𝐿
) (A.2) 623 

Which corresponds to the following uni-axial Young’s modulus 𝐸𝑥𝑥: 624 

 𝐸𝑥𝑥 =
𝐸𝑢𝑘𝑛𝐿

𝑘𝑛𝐿+𝐸𝑢
 (A.3) 625 

For the in-plane shear moduli, one assumes the symmetry of the shearing stress components. 626 

Therefore, the in-plane shear moduli are defined as the ratio between the corresponding shear 627 

stress component and relative deformation. Accordingly: 628 

 𝐺𝑥𝑦 = 𝐺𝑦𝑥 =
𝜏𝑥𝑦

𝛾𝑥𝑦
;   with 𝛾𝑥𝑦 =

𝑑𝑢𝑥

𝑑𝑦
+

𝑑𝑢𝑦

𝑑𝑥
 (A.4) 629 

The shearing deformation 𝛾𝑥𝑦 (= 𝛾𝑦𝑥) should be computed when subjecting the RVE to a pure 630 

shear mechanism (Figure 7). Recalling that 𝑑𝑢𝑢 is the shear displacement component related 631 

with the block deformation and 𝑑𝑢𝑗 the shear displacement component related with the joint, 632 

the individual shearing deformation components are defined as: 633 

 

𝑑𝑢𝑥

𝑑𝑦
=

𝑑𝑢𝑢+𝑑𝑢𝑗

2𝐻
=

𝜏𝑦𝑥(
2

𝑘𝑠
+

2𝐻

𝐺𝑢
)

2𝐻
= 𝜏𝑦𝑥

𝐺𝑢+𝑘𝑠𝐻

𝐺𝑢𝑘𝑠𝐻

𝑑𝑢𝑦

𝑑𝑥
=

𝑑𝑢𝑢+𝑑𝑢𝑗

𝐿
=

𝜏𝑥𝑦(
1

𝑘𝑠
+

𝐿

𝐺𝑢
)

𝐿
= 𝜏𝑥𝑦

𝐺𝑢+𝑘𝑠𝐿

𝐺𝑢𝑘𝑠𝐿

 (A.5) 634 

By combining Eq. A.5 with Eq. A.4, one writes that the in-plane shear modulus is computed 635 

as: 636 

 𝐺𝑦𝑥 = 𝐺𝑥𝑦 =
1

1

2
(

𝐺𝑢+𝑘𝑠𝐻

𝐺𝑢𝑘𝑠𝐻
+

𝐺𝑢+𝑘𝑠𝐿

𝐺𝑢𝑘𝑠𝐿
)

=
𝐺𝑢𝑘𝑠𝐻𝐿

𝐺𝑢(𝐻+𝐿)+2𝑘𝑠𝐻𝐿
 (A.6) 637 

Lastly, the equivalent in-plane Poisson’s ratio 𝜈𝑥𝑦 = 𝜈𝑦𝑥 is demonstrated. To this aim, it bears 638 

highlighting that the lateral deformation in the joints was assumed to be zero since the study 639 



32 

deals with dry-mortar masonries. Therefore, the subscript u is related to the unit only and the 640 

Poisson’s ratio is given as: 641 

 𝜀𝑥𝑥,𝑢 =
𝜎𝑥𝑥

𝐸𝑢
=𝜀𝑥𝑥

𝐸𝑥𝑥

𝐸𝑢
;  𝜀𝑦𝑦 = 𝜀𝑦𝑦,𝑢 = −𝜈𝑢 × 𝜀𝑥𝑥,𝑢= − 𝜈𝑢𝜀𝑥𝑥

𝐸𝑥𝑥

𝐸𝑢
 (A.7) 642 

 𝜈𝑦𝑥 = 𝜈𝑥𝑦 = −
𝜀𝑦𝑦

𝜀𝑥𝑥
= 𝜈𝑢

𝐸𝑥𝑥

𝐸𝑢
 (A.8) 643 

6 References 644 

Abaqus, V., 6.14 Documentation, Dassault Systemes Simulia Corporation, vol. 651, no. 6.2, 645 

2014. 646 

Alessandri, C., Garutti, M., Mallardo, V. and Milani, G., Crack Patterns Induced by Foundation 647 

Settlements: Integrated Analysis on a Renaissance Masonry Palace in Italy, International 648 

Journal of Architectural Heritage, vol. 9, no. 2, pp. 111–29, 2015. DOI: 649 

10.1080/15583058.2014.951795 650 

Almeida, F. P. A. and Lourenço, P. B., Three-Dimensional Elastic Properties of Masonry by 651 

Mechanics of Structure Gene, International Journal of Solids and Structures, vol. 191–652 

192, no. May, pp. 202–11, 2020. DOI: 10.1016/j.ijsolstr.2019.12.009 653 

Aşıkoğlu, A., Avşar, Ö., Lourenço, P. B. and Silva, L. C., Effectiveness of Seismic Retrofitting 654 

of a Historical Masonry Structure: Kütahya Kurşunlu Mosque, Turkey, Bulletin of 655 

Earthquake Engineering, vol. 17, no. 6, pp. 3365–95, from 656 

https://doi.org/10.1007/s10518-019-00603-6, 2019. DOI: 10.1007/s10518-019-00603-6 657 

Bertolesi, E., Silva, L. C. and Milani, G., Validation of a Two-Step Simplified Compatible 658 

Homogenisation Approach Extended to out-Plane Loaded Masonries, International 659 

Journal of Masonry Research and Innovation, vol. 4, p. 265, January 1, 2019. DOI: 660 

10.1504/IJMRI.2019.10019407 661 

Betti, M. and Galano, L., Seismic Analysis of Historic Masonry Buildings: The Vicarious 662 

Palace in Pescia (Italy), Buildings, vol. 2, no. 2, pp. 63–82, April 2012. DOI: 663 

10.3390/buildings2020063 664 



33 

Buhan, P. de and Felice, G. de, A Homogenisation Approach to the Ultimate Strength of Brick 665 

Masonry, Journal of the Mechanics and Physics of Solids, vol. 45, no. 7, pp. 1085–1104, 666 

July 1997. DOI: 10.1016/S0022-5096(97)00002-1 667 

Bui, T. T., Limam, A., Sarhosis, V. and Hjiaj, M., Discrete Element Modelling of the In-Plane 668 

and out-of-Plane Behaviour of Dry-Joint Masonry Wall Constructions, Engineering 669 

Structures, vol. 136, no. October, pp. 277–94, 2017. DOI: 670 

10.1016/j.engstruct.2017.01.020 671 

Casapulla, C., Cascini, L., Portioli, F. and Landolfo, R., 3D Macro and Micro-Block Models 672 

for Limit Analysis of out-of-Plane Loaded Masonry Walls with Non-Associative 673 

Coulomb Friction, Meccanica, vol. 49, no. 7, pp. 1653–78, from 674 

https://doi.org/10.1007/s11012-014-9943-8, 2014. DOI: 10.1007/s11012-014-9943-8 675 

Cascini, L., Gagliardo, R. and Portioli, F., LiABlock_3D: A Software Tool for Collapse 676 

Mechanism Analysis of Historic Masonry Structures, International Journal of 677 

Architectural Heritage, pp. 1–20, from https://doi.org/10.1080/15583058.2018.1509155, 678 

September 5, 2018. DOI: 10.1080/15583058.2018.1509155 679 

Casolo, S. and Milani, G., Simplified Out-of-Plane Modelling of Three-Leaf Masonry Walls 680 

Accounting for the Material Texture, Construction and Building Materials, vol. 40, pp. 681 

330–51, March 2013. DOI: 10.1016/j.conbuildmat.2012.09.090 682 

Cecchi, A. and Milani, G., A Kinematic FE Limit Analysis Model for Thick English Bond 683 

Masonry Walls, International Journal of Solids and Structures, vol. 45, no. 5, pp. 1302–684 

31, 2008. DOI: 10.1016/j.ijsolstr.2007.09.019 685 

Chiozzi, A., Milani, G. and Tralli, A., A Genetic Algorithm NURBS-Based New Approach for 686 

Fast Kinematic Limit Analysis of Masonry Vaults, Computers & Structures, vol. 182, pp. 687 

187–204, 2017. DOI: 10.1016/j.compstruc.2016.11.003 688 

Clemente, R., Roca, P., and Cervera, M., Damage Model with Crack Localization–Application 689 



34 

to Historical Buildings, Structural Analysis of Historical Constructions, New Delhi, India, 690 

pp. 1125–34, 2006. 691 

Cundari, G. A., Milani, G. and Failla, G., Seismic Vulnerability Evaluation of Historical 692 

Masonry Churches: Proposal for a General and Comprehensive Numerical Approach to 693 

Cross-Check Results, Engineering Failure Analysis, vol. 82, pp. 208–28, from 694 

http://www.sciencedirect.com/science/article/pii/S1350630717303187, 2017. DOI: 695 

https://doi.org/10.1016/j.engfailanal.2017.08.013 696 

D’Altri, A. M., Sarhosis, V., Milani, G., Rots, J., Cattari, S., Lagomarsino, S., Sacco, E., Tralli, 697 

A., Castellazzi, G. and Miranda, S. de, Modeling Strategies for the Computational 698 

Analysis of Unreinforced Masonry Structures: Review and Classification, Archives of 699 

Computational Methods in Engineering, 2019. DOI: 10.1007/s11831-019-09351-x 700 

D’Ayala, D. and Speranza, E., Definition of Collapse Mechanisms and Seismic Vulnerability 701 

of Historic Masonry Buildings, Earthquake Spectra, vol. 19, no. 3, pp. 479–509, August 702 

31, 2003. DOI: 10.1193/1.1599896 703 

D’Ayala, D., and Speranza, E., An Integrated Procedure for the Assessment of Seismic 704 

Vulnerability of Historic Buildings, 12th European Conference on Earthquake 705 

Engineering, October 16, 2002. 706 

Driesen, C., Degée, H. and Vandoren, B., Efficient Modeling of Masonry Failure Using a 707 

Multiscale Domain Activation Approach, Computers and Structures, vol. 251, p. 106543, 708 

July 2021. DOI: 10.1016/j.compstruc.2021.106543 709 

Felice, G. de, Amorosi, A. and Malena, M., Elasto-Plastic Analysis of Block Structures through 710 

a Homogenization Method, International Journal for Numerical and Analytical Methods 711 

in Geomechanics, vol. 34, no. 3, pp. 221–47, February 2010. DOI: 10.1002/nag.799 712 

Felice, Gianmarco de and Giannini, R., Out-of-Plane Seismic Resistance of Masonry Walls, 713 

Journal of Earthquake Engineering, vol. 5, no. 2, pp. 253–71, accessed May 22, 2018, 714 



35 

from https://doi.org/10.1080/13632460109350394, 2001. DOI: 715 

10.1080/13632460109350394 716 

Ferreira, T. M., Costa, A. A. and Costa, A., Analysis of the Out-Of-Plane Seismic Behavior of 717 

Unreinforced Masonry: A Literature Review, International Journal of Architectural 718 

Heritage, vol. 9, no. 8, pp. 949–72, November 10, 2014. DOI: 719 

10.1080/15583058.2014.885996 720 

Ferreira, T. M., Costa, A. A., Vicente, R. and Varum, H., A Simplified Four-Branch Model for 721 

the Analytical Study of the out-of-Plane Performance of Regular Stone URM Walls, 722 

Engineering Structures, vol. 83, pp. 140–53, January 2015. DOI: 723 

10.1016/j.engstruct.2014.10.048 724 

Fish, J., Bridging the Scales in Nano Engineering and Science, Journal of Nanoparticle 725 

Research, vol. 8, no. 5, pp. 577–94, 2006. 726 

Fortunato, G., Funari, M. F. and Lonetti, P., Survey and Seismic Vulnerability Assessment of 727 

the Baptistery of San Giovanni in Tumba (Italy), Journal of Cultural Heritage, 2017. DOI: 728 

10.1016/j.culher.2017.01.010 729 

Funari, M. F, Spadea, S., Ciantia, M., Lonetti, P., and Greco, F., Visual Programming for the 730 

Structural Assessment of Historic Masonry Structures, REHABEND, 2020. 731 

Funari, Marco F, Mehrotra, A. and Lourenço, P. B., A Tool for the Rapid Seismic Assessment 732 

of Historic Masonry Structures Based on Limit Analysis Optimisation and Rocking 733 

Dynamics, Applied Sciences (Switzerland), vol. 11, no. 3, pp. 1–22, February 2021. DOI: 734 

10.3390/app11030942 735 

Funari, Marco F, Spadea, S., Lonetti, P., Fabbrocino, F. and Luciano, R., Visual Programming 736 

for Structural Assessment of Out-of-Plane Mechanisms in Historic Masonry Structures, 737 

Journal of Building Engineering, vol. 31, September 2020. DOI: 738 

10.1016/j.jobe.2020.101425 739 



36 

Ghosh, S., Adaptive Hierarchical-Concurrent Multiscale Modeling of Ductile Failure in 740 

Heterogeneous Metallic Materials, JOM, vol. 67, no. 1, pp. 129–42, January 2015. DOI: 741 

10.1007/s11837-014-1193-7 742 

Giuffré, A., A Mechanical Model for Statics and Dynamics of Historical Masonry Buildings, 743 

in Protection of the Architectural Heritage Against Earthquakes, Springer Vienna, pp. 744 

71–152, 1996. 745 

Gonen, S., Pulatsu, B., Erdogmus, E., Karaesmen, E. and Karaesmen, E., Quasi-Static 746 

Nonlinear Seismic Assessment of a Fourth Century A.D. Roman Aqueduct in Istanbul, 747 

Turkey, Heritage, vol. 4, no. 1, pp. 401–21, 2021. DOI: 10.3390/heritage4010025 748 

Kouris, L. A. S., Bournas, D. A., Akintayo, O. T., Konstantinidis, A. A. and Aifantis, E. C., A 749 

Gradient Elastic Homogenisation Model for Brick Masonry, Engineering Structures, vol. 750 

208, p. 110311, April 2020. DOI: 10.1016/j.engstruct.2020.110311 751 

Lemos, J. V., Discrete Element Modeling of Masonry Structures, International Journal of 752 

Architectural Heritage, vol. 1, no. 2, pp. 190–213, May 31, 2007. DOI: 753 

10.1080/15583050601176868 754 

Lemos, J. V., Discrete Element Modeling of the Seismic Behavior of Masonry Construction, 755 

Buildings, vol. 9, no. 2, 2019. DOI: 10.3390/buildings9020043 756 

Leonetti, L., Trovalusci, P. and Cechi, A., A Multiscale/Multidomain Model for the Failure 757 

Analysis of Masonry Walls: A Validation with a Combined FEM/DEM Approach, 758 

International Journal for Multiscale Computational Engineering, vol. 16, no. 4, pp. 325–759 

43, 2018. DOI: 10.1615/IntJMultCompEng.2018026988 760 

Leonetti, Lorenzo, Greco, F., Trovalusci, P., Luciano, R. and Masiani, R., A Multiscale 761 

Damage Analysis of Periodic Composites Using a Couple-Stress/Cauchy Multidomain 762 

Model: Application to Masonry Structures, Composites Part B: Engineering, vol. 141, pp. 763 

50–59, May 2018. DOI: 10.1016/j.compositesb.2017.12.025 764 



37 

Lloberas-Valls, O., Rixen, D. J., Simone, A. and Sluys, L. J., On Micro-to-Macro Connections 765 

in Domain Decomposition Multiscale Methods, Computer Methods in Applied Mechanics 766 

and Engineering, vol. 225–228, pp. 177–96, accessed August 31, 2017, from 767 

http://linkinghub.elsevier.com/retrieve/pii/S0045782512000989, June 2012. DOI: 768 

10.1016/j.cma.2012.03.022 769 

Lourenço, P. B. and Silva, L. C., Computational Applications in Masonry Structures: From the 770 

Meso-Scale to the Super-Large/Super-Complex, International Journal for Multiscale 771 

Computational Engineering, vol. 18, no. 1, pp. 1–30, 2020. DOI: 772 

10.1615/IntJMultCompEng.2020030889 773 

Malena, M., Portioli, F., Gagliardo, R., Tomaselli, G., Cascini, L. and Felice, G. de, Collapse 774 

Mechanism Analysis of Historic Masonry Structures Subjected to Lateral Loads: A 775 

Comparison between Continuous and Discrete Models, Computers and Structures, vol. 776 

220, pp. 14–31, 2019. DOI: 10.1016/j.compstruc.2019.04.005 777 

Maria D’Altri, A., Presti, N. Lo, Grillanda, N., Castellazzi, G., Miranda, S. de and Milani, G., 778 

A Two-Step Automated Procedure Based on Adaptive Limit and Pushover Analyses for 779 

the Seismic Assessment of Masonry Structures, Computers and Structures, vol. 252, p. 780 

106561, August 2021. DOI: 10.1016/j.compstruc.2021.106561 781 

Milani, G., Upper Bound Sequential Linear Programming Mesh Adaptation Scheme for 782 

Collapse Analysis of Masonry Vaults, Advances in Engineering Software, vol. 79, pp. 91–783 

110, January 2015. DOI: 10.1016/J.ADVENGSOFT.2014.09.004 784 

Milani, G., Lourenço, P. B. and Tralli, A., Homogenised Limit Analysis of Masonry Walls, 785 

Part II: Structural Examples, Computers & Structures, vol. 84, no. 3–4, pp. 181–95, 786 

January 2006. DOI: 10.1016/j.compstruc.2005.09.004 787 

Milani, Gabriele and Venturini, G., Automatic Fragility Curve Evaluation of Masonry 788 

Churches Accounting for Partial Collapses by Means of 3D FE Homogenized Limit 789 



38 

Analysis, Computers & Structures, vol. 89, no. 17–18, pp. 1628–48, September 2011. 790 

DOI: 10.1016/j.compstruc.2011.04.014 791 

Otero, F., Oller, S., Martinez, X. and Salomón, O., Numerical Homogenization for Composite 792 

Materials Analysis. Comparison with Other Micro Mechanical Formulations, Composite 793 

Structures, vol. 122, pp. 405–16, accessed August 28, 2017, from 794 

http://linkinghub.elsevier.com/retrieve/pii/S0263822314006102, April 2015. DOI: 795 

10.1016/j.compstruct.2014.11.041 796 

Reccia, E., Leonetti, L., Trovalusci, P. and Cecchi, A., A Multiscale/Multidomain Model for 797 

the Failure Analysis of Masonry Walls: A Validation with a Combined FEM/DEM 798 

Approach, International Journal for Multiscale Computational Engineering, vol. 16, no. 799 

4, pp. 325–43, 2018. DOI: 10.1615/IntJMultCompEng.2018026988 800 

Ren, X., Chaurasia, A. K. and Seidel, G. D., Concurrent Multiscale Modeling of Coupling 801 

between Continuum Damage and Piezoresistivity in CNT-Polymer Nanocomposites, 802 

International Journal of Solids and Structures, vol. 96, pp. 340–54, October 2016. DOI: 803 

10.1016/j.ijsolstr.2016.05.018 804 

Restrepo Vélez, L. F., Magenes, G. and Griffith, M. C., Dry Stone Masonry Walls in Bending-805 

Part I: Static Tests, International Journal of Architectural Heritage, vol. 8, no. 1, pp. 1–806 

28, 2014. DOI: 10.1080/15583058.2012.663059 807 

Roca, P., Cervera, M., Pelà, L., Clemente, R. and Chiumenti, M., Continuum FE Models for 808 

the Analysis of Mallorca Cathedral, Engineering Structures, vol. 46, pp. 653–70, January 809 

2013. DOI: 10.1016/j.engstruct.2012.08.005 810 

Rodrigues, E. A., Manzoli, O. L., Bitencourt, L. A. G., Bittencourt, T. N. and Sánchez, M., An 811 

Adaptive Concurrent Multiscale Model for Concrete Based on Coupling Finite Elements, 812 

Computer Methods in Applied Mechanics and Engineering, vol. 328, pp. 26–46, January 813 

2018. DOI: 10.1016/j.cma.2017.08.048 814 



39 

Rutten, D., Galapagos: On the Logic and Limitations of Generic Solvers, Architectural Design, 815 

vol. 83, no. 2, pp. 132–35, March 2013. DOI: 10.1002/ad.1568 816 

Savalle, N., Mousavian, E., Colombo, C., and Lourenço, P. B., FAST GENERATIVE TOOL 817 

FOR MASONRY STRUCTURES GEOMETRIES, 14th Canadian Masonry Simposium, 818 

Montréal, Canada, pp. 1–11, 2021. 819 

Savalle, N., Vincens, É. and Hans, S., Experimental and Numerical Studies on Scaled-down 820 

Dry-Joint Retaining Walls: Pseudo-Static Approach to Quantify the Resistance of a Dry-821 

Joint Brick Retaining Wall, Bulletin of Earthquake Engineering, vol. 18, no. 2, pp. 581–822 

606, January 2020. DOI: 10.1007/s10518-019-00670-9 823 

Sharma, S., Silva, L. C., Graziotti, F., Magenes, G. and Milani, G., Modelling the Experimental 824 

Seismic Out-of-Plane Two-Way Bending Response of Unreinforced Periodic Masonry 825 

Panels Using a Non-Linear Discrete Homogenized Strategy, Engineering Structures, vol. 826 

242, no. December 2020, from https://doi.org/10.1016/j.engstruct.2021.112524, 2021. 827 

DOI: 10.1016/j.engstruct.2021.112524 828 

Silva, L. C., Lourenço, P. B. and Milani, G., Nonlinear Discrete Homogenized Model for Out-829 

of-Plane Loaded Masonry Walls, Journal of Structural Engineering, vol. 143, no. 9, p. 830 

4017099, from https://doi.org/10.1061/(ASCE)ST.1943-541X.0001831, September 1, 831 

2017. DOI: 10.1061/(ASCE)ST.1943-541X.0001831 832 

Smoljanović, H., Živaljić, N., Nikolić, Ž. and Munjiza, A., Numerical Analysis of 3D Dry-833 

Stone Masonry Structures by Combined Finite-Discrete Element Method, International 834 

Journal of Solids and Structures, vol. 136–137, pp. 150–67, April 2018. DOI: 835 

10.1016/j.ijsolstr.2017.12.012 836 

Sorrentino, L., D’Ayala, D., Felice, G. de, Griffith, M. C., Lagomarsino, S. and Magenes, G., 837 

Review of Out-of-Plane Seismic Assessment Techniques Applied To Existing Masonry 838 

Buildings, International Journal of Architectural Heritage, vol. 11, no. 1, pp. 2–21, from 839 



40 

https://doi.org/10.1080/15583058.2016.1237586, January 2, 2017. DOI: 840 

10.1080/15583058.2016.1237586 841 

Stepinac, M., Lourenço, P. B., Atalić, J., Kišiček, T., Uroš, M., Baniček, M. and Šavor Novak, 842 

M., Damage Classification of Residential Buildings in Historical Downtown after the 843 

ML5.5 Earthquake in Zagreb, Croatia in 2020, International Journal of Disaster Risk 844 

Reduction, vol. 56, p. 102140, April 2021. DOI: 10.1016/j.ijdrr.2021.102140 845 

Talebi, H., Silani, M. and Rabczuk, T., Concurrent Multiscale Modeling of Three Dimensional 846 

Crack and Dislocation Propagation, Advances in Engineering Software, vol. 80, no. C, pp. 847 

82–92, February 2015. DOI: 10.1016/j.advengsoft.2014.09.016 848 

The Python Language Reference — Python 3.9.5 Documentation, n.d. 849 

Trovalusci, P., Ostoja-Starzewski, M., Bellis, M. L. De and Murrali, A., Scale-Dependent 850 

Homogenization of Random Composites as Micropolar Continua, European Journal of 851 

Mechanics - A/Solids, vol. 49, pp. 396–407, 2015. DOI: 852 

https://doi.org/10.1016/j.euromechsol.2014.08.010 853 

Turco, C., Funari, M. F., Spadea, S., Ciantia, M., and Lourenço, P. B., A Digital Tool Based 854 

on Genetic Algorithms and Limit Analysis for the Seismic Assessment of Historic 855 

Masonry Buildings, Procedia Structural Integrity, vol. 28, 2020. 856 

Vandoren, B., Proft, K. De, Simone, A. and Sluys, L. J., Mesoscopic Modelling of Masonry 857 

Using Weak and Strong Discontinuities, Computer Methods in Applied Mechanics and 858 

Engineering, vol. 255, pp. 167–82, March 2013. DOI: 10.1016/j.cma.2012.11.005 859 

Vlachakis, G., Vlachaki, E. and Lourenço, P. B., Learning from Failure: Damage and Failure 860 

of Masonry Structures, after the 2017 Lesvos Earthquake (Greece), Engineering Failure 861 

Analysis, vol. 117, p. 104803, November 2020. DOI: 10.1016/j.engfailanal.2020.104803 862 

 863 


