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Abstract: Background: Mitral valve regurgitation (MR) is the most common valvular heart disease
and current variables associated with MR recurrence are still controversial. We aim to develop a
machine learning-based prognostic model to predict causes of mitral valve (MV) repair failure and
MR recurrence. Methods: 1000 patients who underwent MV repair at our institution between 2008
and 2018 were enrolled. Patients were followed longitudinally for up to three years. Clinical and
echocardiographic data were included in the analysis. Endpoints were MV repair surgical failure
with consequent MV replacement or moderate/severe MR (>2+) recurrence at one-month and mod-
erate/severe MR recurrence after three years. Results: 817 patients (DS1) had an echocardiographic
examination at one-month while 295 (DS2) also had one at three years. Data were randomly divided
into training (DS1: n = 654; DS2: n = 206) and validation (DS1: n = 164; DS2 n = 89) cohorts. For
intra-operative or early MV repair failure assessment, the best area under the curve (AUC) was 0.75
and the complexity of mitral valve prolapse was the main predictor. In predicting moderate/severe
recurrent MR at three years, the best AUC was 0.92 and residual MR at six months was the most
important predictor. Conclusions: Machine learning algorithms may improve prognosis after MV
repair procedure, thus improving indications for correct candidate selection for MV surgical repair.

Keywords: mitral valve prolapse; machine learning; mitral valve repair; primary mitral regurgitation;
prediction model; heart

1. Introduction

Mitral valve regurgitation (MR) is the most common valvular heart disorder [1] as
part of the degenerative changes in the aging process and is associated with increased
mortality [2]. Mitral valve prolapse (MVP) is a valvular heart disease disorder affecting
about 2–3% of the general population and is frequently associated with severe MR re-
quiring valve surgery [3,4]. This disorder is defined as an elongation or rupture of the
chordal apparatus, resulting in leaflet prolapsing in the atrial cavity during ventricular
contraction [5]. Although mitral valve (MV) repair represents the ideal procedure for
MVP, with recognized advantages over MV replacement [6,7], patient outcome depends
on multiple factors, such as pre-operative clinical and echocardiographic data, as well as
surgical experience.
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In this regard, recent guidelines state that in asymptomatic patients MV repair
can be considered when there is a high likelihood of durable result with very low risk
(<1% mortality) [8].

MV repair includes a combination of chordoplasty, leaflet resection, sliding valvulo-
plasty, commissuroplasty, Alfieri stitch repair, and/or annuloplasty with a complete or a
partial ring [9]. Surgical outcomes depend on pre-operative status, technique of repair, and
center experience. Although results have confirmed the high immediate operative success
of mitral valvuloplasty (>95%) [10–12], degenerative MV repair can be expected after
repair with consequent reoperation. The incidence of reoperation after initial MV surgical
repair is 4.5–7% at five years, with a linearized hazard rate of 0.5–1.5% per year [11,13,14].
Especially elderly patients, due to more fragile tissues and poor preoperative ventricular
function compared with younger patients, may not tolerate a failed repair [6]. The ability of
predicting surgical or post-surgical MV repair failure may translate into a better selection of
candidates and may result in better information to patients about their short- and long-term
prognosis. There are many potential predictors for repairability and recurrence of MR
relevant to clinical and surgical factors such as age, preoperative ventricular function, and
surgical procedure complexity [11–13,15–18]. However, echocardiographic and surgical
variables associated with MR recurrence are still controversial, suggesting that the underly-
ing causes for MR recurrence need to be better understood [14,19]. Accordingly, to improve
the outcome of initial MV repair it is important to analyze the causes and mechanisms of
MV repair failure, also with new approaches. Recently, machine learning (ML) algorithms,
as a subfield of artificial intelligence, were introduced to deal with the huge variability
in clinical data, have shown promising results in different medical fields [20,21]. ML are
excellent analytical methods for classification through identification of data patterns from
complex data. Several ML models have been shown to accurately identify patients at high
risk of mortality [22,23] with superiority as compared to statistical approaches for both
classification and prediction in general medical settings [24–26]. However, prior works
have not explored the potential of these methods to explain the causes of MV repair failure.
We hypothesized that these approaches could be applied in order to identify new poten-
tial predictors, concurrently with a regression analysis, to allow a better comprehensive
prediction of MV repair failure and MR recurrence.

In this work, we sought to develop a ML-based prognostic model, in synergy with a
statistical regression model, for MV repair failure considering three different time windows:
during surgery, at one-month (1M), and at three years (3Y) follow-up (FU). Accordingly,
our contributions can be summarized as follows:

(1) Developing a feature selection technique using features importance ranking of non-
linear methods to detect the most relevant predictors from input data.

(2) Evaluating different resampling techniques in order to balance the class distribution,
which reflects the real world distribution of MVP.

(3) Performing an experimental analysis testing many well-known ML classification
algorithms.

(4) Assessing an additive feature attribution method to improve interpretability of the
ML outcomes and to provide a better understanding of data.

2. Materials and Methods
2.1. Study Population

Between 2008 and 2018, 1000 patients (age ≥ 18 years) with severe MR due to MVP
underwent early MV surgery for MV repair at Centro Cardiologico Monzino IRCCS
(Milan, Italy). Inclusion criteria for retrospective selection were a pre-operatory 2- and 3-D
transthoracic echocardiography (TTE), as well as a 1M-FU 2DTTE. As a result, a dataset
(DS1) of 817 patients was considered, with 13 patients excluded for poor 3DTTE quality,
and 170 because 1M-FU 2DTTE was not available.
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Within the surgical intervention, MV repair was considered successful by intraopera-
tive TEE (Group 1: MR ≤ 2). If suboptimal (Group 2: MR > 2+), all patients underwent a
second repair attempt or MV replacement.

Additionally, to investigate long term FU, a subgroup of 295 patients (DS2) was
extracted from DS1 considering a successful MV repair and availability of results of 2DTTE
examinations at six months (6M) and at 3Y-FU. Based on the results of MR at 3Y-FU, DS2
patients were further assigned to Group 3 (residual MR ≤ 2) or Group 4 (residual MR > 2).

The following clinical endpoints were considered: for DS1, MV repair surgical failure
with consequent MV replacement, or moderate/severe MR (>2+) recurrence at 1M-FU; for
DS2, moderate/severe MR recurrence after 3Y-FU.

The study was approved by the local ethical committee (R1168/20-CCM 1230), and all
patients provided written informed consent.

2.2. Echocardiographic Measures

2DTTE and 3DTTE were performed using two ultrasound platforms (iE33 or EPIQ
7C). From 2DTTE, left ventricular (LV) end-diastolic and end-systolic volumes indexed
for body surface area (BSA), LV ejection fraction, LV stroke volume (SV), left atrial area,
and volume indexed for BSA (LAVI) were derived using the biplane Simpson’s method.
Grading of tricuspid regurgitation (mild = 1, moderate = 2, severe = 3) was obtained
according to guidelines [27]. Systolic pulmonary arterial pressure (PAPS) was calculated
using the Doppler echocardiographic method [28]. The Carpentier nomenclature was
applied to the MV leaflets [28]. MVP was defined as simple or complex: simple anatomical
lesions included isolated P2 prolapse or P2 associated with P1 or P3. According to the
literature [29,30], cases including lesions involving >2 posterior leaflet scallops, anterior
or both leaflets, commissures or with severe annular or leaflet calcifications were defined
as complex. The main phenotypes of MVP were also distinguished: Barlow disease
(mixomatous leaflet degeneration, elongated and thickened chordae, dilated annulus) and
fibroelastic deficiency (normal/thinner leaflets, frequent single segment prolapse with
chordal rupture) [16,29]. To assess reproducibility of MVP evaluation (prolapsing scallop
identification), intra-observer variability was performed by the same reader after ≥1 month,
while inter-observer variability was performed by a second experienced reader blinded
to the previous results. To determine the MVP gold standard interpretation, in case of
discrepant evaluation between the two observers, consensus was reached also including a
third observer in the evaluation. Echocardiographic MVP evaluation was compared with
MV anatomical inspection performed by the operating surgeon. Protocols and reports
of surgical techniques were annotated in detail. According to literature data [31,32] and
surgical institutional experience, surgical procedures were divided into simple vs. complex
techniques. A score of 1 (mild), 2 (mild-to-moderate), 3 (moderate-to-severe), or 4 (severe)
was assigned to MR integrating both qualitative and quantitative parameters [27].

2.3. Study Design

In this study, six well-known and regularly used supervised ML classification algo-
rithms were applied and compared: decision tree (DT), random forest (RF), support vector
machine (SVM), naive Bayes (NB), eXtreme gradient boosted trees (XGboost), and multi-
layer perceptron (MLP). In addition, data were also analyzed using a statistical logistic
regression (LR) model. Figure 1 shows the analysis workflow schematically.

Data were divided into a training cohort (80% for DS1 and 70% for DS2), used to
develop and train the ML algorithms and LR model, and a validation cohort (20% and 30%,
respectively for DS1 and DS2) to ensure generalization of the model and prevent overfitting.
Considering the relatively limited number of minority class patients available in the testing
set, a stratified 20-fold Monte Carlo cross-validation (MCCV) [33] (Outer loop) was used
for robust performance evaluation and to estimate model generalization. Cross validation
is a common procedure to split data into a training set and a test set. MCCV represents an
effective way to reduce the subsampling bias in the holdout procedure and the estimation
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variability in the test set [34,35]. The LR model was derived using a stepwise feature
selection with backward elimination in a multivariate analysis for the identification of
independent variables. Hyperparameters were determined by using a grid search analysis
with stratified five-fold cross-validation on the training cohort (Inner loop) to optimize
each ML model and determine the best value that led to the best performance in terms of
F1 score:

F1 score = 2

(
TP

TP+FP ∗ TP
TP+FN

)
(

TP
TP+FP + TP

TP+FN

) (1)

where TP is the number of true positives and FP and FN are the number of false positives
and false negatives, respectively. Further details on the model’s hyperparameters are
presented in Table S1 in the Supplementary Materials. Model performance was assessed
according to a range of learning metrics (positive and negative predictive values (PPV,
NPV), mean area under the receiver operating characteristic curve (AUC)).

All analysis was performed by custom software using Python (Python Software
Foundation, version 3.7) and scikit-learn package.

Figure 1. Overview of the proposed classification method for the mitral valve repair failure. A nested
cross-validation is used to train a model in which hyperparameters also need to be optimized.

2.4. Pre-Processing

Nominal/ordinal variables were one-hot encoded, thus producing one binary feature
for each category. To deal with the class imbalance distribution issue, several methods
have been proposed in the literature, among which data level solutions are the most used
techniques. An imbalance class creates a bias where the ML model tends to benefit the most
frequent classes. The purpose of these techniques is to re-balance the class distribution
by resampling the data to minimize the effect of the class imbalances on the training
set. The resampling methods can be divided into two categories: oversampling and
undersampling. Both are adopted to adjust the ratio between the different classes in the
dataset. An oversampling approach, in order to balance the classes’ distribution, duplicated
or synthesized some data from the minority class, while in an undersampling method
some data of the majority class are removed. Table 1 shows a summary of classic binary
resampling algorithms, reporting the strategy used, i.e., oversampling, undersampling or
a combination of the two approaches (hybrid), and a description of the method. In order
to balance the class distribution in the two datasets, all the reported methods in Table 1
were tested.
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Table 1. Summary of classic binary resampling algorithms.

Resampling Algorithms

Name Strategy Briefly Description

SMOTE [36] Oversampling
Creates synthetic elements for the minority class, based

on those that already exist, using a k-nearest
neighbour algorithm.

SVMSMOTE [37] Oversampling
Variant of SMOTE algorithm which uses an SVM

algorithm to detect sample to use for generating new
synthetic samples

BorderlineSMOTE 1
and 2 [38] Oversampling Creates synthetic samples from the minority class

along the decision boundary between the two classes.

ADASYN [39] Oversampling Creates synthetic elements according to the
data density.

ENN [40] Undersampling Remove samples close to the decision boundary using
the edited nearest neighbour algorithm.

TomekLinks [40] Undersampling Removes overlap between classes.
SMOTEENN [41] Hybrid Combines SMOTE and ENN algorithms.

SMOTETomek [41] Hybrid Apply SMOTE and TomekLinks algorithms.

To deal with the potentially high number of noisy, redundant, and irrelevant variables
that can slow down learning algorithms, leading to difficulties in interpretability of the
models and even degenerating the performance of the learning task, different feature
selection strategies were used, including dropping 0-variance features and highly correlated
variables. ML involved automated feature selection by Gini importance ranking [42] as
an indicator of feature relevance. Feature selection was performed using two ensemble
tree-based ML algorithms, i.e., RF and XGboost and selecting the top ten features based
on the rank of mean Gini importance over 100 iterations on all samples. The resulting
selected features were subsequently used in the ML training phase, with recursive feature
elimination for the identification of the most relevant features.

2.5. Clinical Assessment and Statistical Analysis

For model interpretability, evaluating how the computed features tend to influence the
model prediction, an additive feature attribution method (Shapley Additive Explanations)
was adopted [43], which defines a weighted linear regression by using data and predictions
of the analyzed model. In addition, for decision-tree based models, to elucidate the
level of importance for a specific feature, the average Gini index [42] was calculated.
Continuous variables are presented as mean ± standard deviation, whereas categorical
variables as absolute frequencies (%). Continuous variables were compared using the
unpaired Student’s t-test, while categorical variables with the χ2 test or Fisher’s exact test,
as appropriate. Models’ results were compared using Wilcoxon signed rank test or the
DeLong test. Mean values in TTE parameters at baseline and at 6M-FU in each group of
patients were compared with paired Student’s t-test. Inter- and intra-observer correlations
were performed using Pearson’s coefficient. Statistical analyses were conducted with IBM
SPSS 26 (SPSS Inc, Chicago, IL, USA), with p-values < 0.05 being considered significant.

3. Results
3.1. Cohort Characteristics

Table 2 describes the main clinical characteristics and TTE findings (baseline and/or
6M-FU) for DS1 and DS2. MV repair was performed in 767 pts (95.1%), while only 40 (4.9%)
underwent MV replacement. Out of these 767 patients, 20 had MR>2 at 1M-FU.

Accordingly, the DS1 population was divided into 2 groups: Group 1 (757 cases:
MR ≤ 2 at 1M-FU) and Group 2 (60 cases: MV replacement or MR > 2+ at 1M-FU). Patients
in Group 2 were more likely to be older, with lower BSA and LV SV, higher PAPS, more
complex MVP, more MV calcifications, and less MV chordae rupture, larger tricuspid
annulus and tricuspid regurgitation. Inter- (r = 0.88, p < 0.001) and intra-observer (r = 0.96
p < 0.001) variability in echocardiographic MVP assessment resulted in a good agreement.



Bioengineering 2021, 8, 117 6 of 14

The training (80%) and validation (20%) cohorts consisted of 654 patients (group 1: 605 and
group 2: 49) and 164 patients (group 1: 152 and group 2: 12), respectively.

Table 2. Clinical, procedural, and echocardiographic characteristics of the study population.

Characteristics Dataset 1 Dataset 2

Group 1 Group 2 p-Value Group 3 Group 4 p-Value

(n = 757) (n = 60) (n = 268) (n = 27)

Age, years 61.1 ± 12.2 67.7 ± 11.6 <0.001 59.8 ± 12.5 63.3 ± 15.3 0.183
Female, n(%) 89(11.8%) 12(20%) 0.062 88(32.8%) 10(37.0%) 0.668

Body surface area, m2 1.84 ± 0.19 1.72 ± 0.18 <0.001 1.82 ± 0.19 1.81 ± 0.22 0.805
MVP etiology 0.206 0.154

FED 219(28.9%) 22(36.7%) 68(25.4%) 3(11.1%)
Barlow 538(71.1%) 38(63.3%) 200(74.6%) 24(88.9%)

Atrial fibrillation 89(11.8%) 12(20.0%) 0.062 21(7.8%) 3(11.1%) 0.472
Complex MV prolapse 392(51.8%) 45(75%) 0.001 130(48.5%) 17(63.0%) 0.157

Complex surgical procedure 286(37.8%) 25(41.7%) 0.620 83(31.0%) 16(59.3%) 0.003
Antero-posterior mitral annulus diameter

(mm) 36.65 ± 5.20 36.10 ± 5.20 0.429 37.05 ± 5.26 36.15 ± 5.09 0.394

Medio-lateral mitral annulus diameter
(mm) 39.78 ± 5.00 38.83 ± 4.98 0.155 39.77 ± 4.91 38.56 ± 4.36 0.217

Prolapse
P1 84(11.1%) 6(10.0%) 0.794 20(7.5%) 3(11.1%) 0.455
P2 652(86.1%) 41(68.3%) <0.001 237(88.4%) 18(66.7%) 0.001
P3 174(23.0%) 18(30.0%) 0.217 60(22.4%) 6(22.2%) 0.976
A1 44(5.8%) 10(16.7%) 0.001 16(6.0%) 2(7.4%) 0.675
A2 204(26.9%) 29(48.3%) <0.001 74(27.6%) 9(33.3%) 0.537
A3 154(20.3%) 16(26.7%) 0.315 52(19.4%) 6(22.2%) 0.733

Bi-leaflet prolapse 178(23.5%) 20(33.3%) 0.088 67(25.0%) 6(22.2%) 0.742
Commissure
Anterolateral 13(1.7%) 1(1.7%) 1.000 2(0.7%) 1(3.7%) 0.252
Posteromedial 105(13.9%) 12(20.0%) 0.192 34(12.7%) 5(18.5%) 0.377
Calcification 152(20.1%) 19(31.7%) 0.034 52(19.4%) 7(25.9%) 0.425

Cleft 75(9.9%) 6(10.0%) 0.982 27(10.1%) 4(14.8%) 0.506
Ruptured chordae 567(74.9%) 34(56.7%) 0.002 201(75.0%) 24(88.9%) 0.152

LVEDV index (mL/m2) 77.2 ± 18.9 73.0 ± 16.5 0.090 77.0 ± 19.1 80.7 ± 20.9 0.342
LVESV index (mL/m2) 27.5 ± 9.1 26.6 ± 7.5 0.477 26.8 ± 9.4 29.1 ± 10.7 0.239
LVSV index (mL/m2) 49.8 ± 12.7 46.4 ± 11.8 0.048 50.2 ± 12.8 51.6 ± 12.9 0.582

LVEF (%) 64.5 ± 6.7 63.4 ± 6.4 0.219 65.3 ± 6.8 64.6 ± 7.1 0.606
LA area (cm2) 29.6 ± 7.4 30.3 ± 7.8 0.510 29.9 ± 7.4 32.3 ± 7.6 0.115

LA volume index (mL/m2) 57.6 ± 22.1 59.4 ± 22.1 0.540 64.3 ± 24.4 66.7 ± 27.2 0.628
PAPS (mmHg) 36 ± 10 40 ± 13 0.002 35 ± 10 46 ± 18 0.006

Tricuspid valve diameter index (mm/m2) 19.5 ± 2.7 20.6 ± 3.4 0.004 19.6 ± 2.8 20.9 ± 4.9 0.187
Tricuspid regurgitation > 2 40(5.3%) 9(15.0%) 0.002 18(6.7%) 4(14.8%) 0.130

Mitral regurgitation > 3 709(93.7%) 51(85.0%) 0.011 249(92.9%) 24(88.9%) 0.424
Tricuspid valvuloplasty 103(13.6%) 11(18.3%) 0.309 44(16.4%) 8(29.6%) 0.088

Aortic valve 0.653 0.531
Repair 16(2.1%) 2(3.3%) 6(2.3%) 0(0%)

Replacement 6(0.8%) 0(0%) 6(2.3%) 0(0%)
Ascending aorta 6(0.8%) 0(0%) 1.000 3(1.1%) 0(0%) 1.000

CABG 45(5.9%) 1(1.7%) 0.244 28(10.4%) 3(11.1%) 1.000
PFO closure 7(0.9%) 1(1.7%) 0.458 6(2.3%) 1(3.7%) 0.494

Left atrial appendage closure 20(2.6%) 1(1.7%) 1.000 16(6.0%) 1(3.7%) 1.000
Atrial fibrillation ablation 27(3.6%) 0(0%) 0.253 21(7.8%) 2(7.4%) 1.000

LVEDV index 6M (mL/m2) 57.0 ± 14.8 * 61.6 ± 16.5 * 0.124
LVESV index 6M (mL/m2) 24.4 ± 10.7 * 26.4 ± 10.6 * 0.360
LVSV index 6M (mL/m2) 32.5 ± 7.6 * 35.2 ± 9.4 * 0.087

LVEF 6M (%) 58.0 ± 7.9 * 57.9 ± 9.6 0.953
LA area 6M (cm2) 22.6 ± 5.6 * 25.9 ± 5.3 * 0.003

LA volume index 6M (mL/m2) 44.3 ± 17.5 * 53.4 ± 18.5 * 0.011
PAPS 6M (mmHg) 28 ± 6 * 31 ± 8 0.025

Mitral regurgitation 6M ≥ 2 10(3.7%) 19(70.4%) <0.001

Values are mean ± SD or n (%). CABG, coronary artery bypass graft; EDV, end diastolic volume; EF, ejection fraction; ESV, end systolic
volume; FED, fibroelastic deficiency; LA, left atrial; LV, left ventricular; MV, mitral valve; PAPS, systolic pulmonary artery pressure; PFO,
patent foramen ovale; SV, stroke volume; 6M, six months. *: p < 0.05, Baseline vs. six months (paired t-test).
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For the DS2, 268 patients (group 3, 90.8%) had no or mild MR (MR ≤ 2), while 27
(group 4, 9.2%) had MR > 2+ at 3Y-FU. Additionally, group 4 had higher PAPS (baseline
and 6M-FU), LAVI (6M-FU), MR ≥ 2 (6M-FU), and more frequently underwent complex
MV procedures. DS2 was split into 70% (group 3: 187 and group 4: 19) for the training
cohort and 30% (group 3: 81, group 4: 8) for the validation cohort.

3.2. Selected Features

For DS1 the top predictors for MV repair failure and MR recurrence at 1M-FU shared
across models were BSA, age, tricuspid valve diameter index, LAVI, and PAPS. For DS2,
MR ≥ 2 (6M-FU), PAPS, and left atrial area had high importance in all models (further
details in Table S2 in Supplement). From multivariate LR analysis (see Table 3), only the
following predictors remained in the final model: for DS1, age, BSA, A2 prolapse and left
atrial area; for DS2, P2 prolapse, PAPS, and MR ≥ 2 at 6M-FU.

Table 3. Multivariate logistic regression analysis.

Dataset 1

Multivariate

OR (95% CI) p-value

Age, years 1.051 (1.023–1.080) <0.001
Body surface area 0.080 (0.018–0.361) 0.001

A2 prolapse 2.757 (1.582–4.805) <0.001
Left atrial area 1.033 (1.021–1.067) 0.047

Dataset 2

Multivariate

OR (95% CI) p-value

P2 prolapse 0.190 (0.055–0.654) <0.001
Systolic pulmonary artery pressure 1.053 (1.010–1.099) 0.001

Mitral regurgitation 6M ≥2 53.761 (16.666–173.421) <0.001

3.3. Model Performance

Due to the large number of experimental results (>200 for both DS1 and DS2), we
have decided to present only the best result for DS1 and DS2 (Table 4).

Table 4. Classifiers’ predictive performance in the validation cohort for the two datasets.

Dataset 1

Algorithm PPV NPV AUC Resampling Feature selection

DT 0.16 0.95 0.61 BorderlineSMOTE 1 Random Forest
RF 0.24 0.95 0.69 BorderlineSMOTE 1 Random Forest

SVM 0.18 0.95 0.64 SVMSMOTE eXtreme Gradient boosted
NB 0.16 0.96 0.71 SMOTEENN eXtreme Gradient boosted

XGboost 0.29 0.96 0.75 SVMSMOTE eXtreme Gradient boosted
MLP 0.19 0.96 0.65 BorderlineSMOTE 1 eXtreme Gradient boosted
LR 0.29 0.95 0.73 / Multivariate logistic regression

Dataset 2

Algorithm PPV NPV AUC Resampling Feature selection

DT 0.41 0.96 0.78 BorderlineSMOTE 1 Random Forest
RF 0.64 0.97 0.88 BorderlineSMOTE 1 Random Forest

SVM 0.45 0.96 0.80 SVMSMOTE eXtreme Gradient boosted
NB 0.65 0.97 0.89 SVMSMOTE eXtreme Gradient boosted

XGboost 0.77 0.97 0.92 BorderlineSMOTE 1 eXtreme Gradient boosted
MLP 0.64 0.96 0.83 BorderlineSMOTE 1 eXtreme Gradient boosted
LR 0.70 0.97 0.88 / Multivariate logistic regression

AUC, area under the receiver operating characteristic curve; DT, decision tree; LR, logistic regression; MLP,
multilayer perceptron; NB, naive Bayes; NPV, negative predictive value; PPV, positive predictive value; RF,
random forest; SVM, support vector machine; XGboost, eXtreme gradient boosted trees.
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Among the six ML algorithms studied, the XGboost classifier presented the best results
in all the prediction schemas, as well as for feature selection. These results were achieved
using DS1 as the SVMSMOTE resampling algorithm and DS2 as the BorderlineSMOTE 1
algorithm. For DS1, after resampling, the initial distribution of the training set represented
by 654 patients (group 1: 605 and group 2: 49) was transformed to 1210 patients (group 1:
605 and group 2: 605), whereas for DS2, the final training cohort was 374 patients (group 3:
187 and group 4: 187). Codes used for XGboost development are made publicly available
in the Supplementary Materials.

Figure 2 shows the list of predictors included in the best performing ML-model, ranked
for Gini importance. For DS1, morphological parameters had the greatest importance,
while for DS2, the MR ≥ 2 6M-FU was the highest ranked predictor.

Figure 2. Feature importance plot for DS1 and DS2. Feature importance was measured as the Gini index. MVP, mitral valve
prolapse; BSA, body surface area; TR, tricuspid regurgitation > 2; PAPS, systolic pulmonary artery pressure; MR, mitral
valve regurgitation; 6M, six months.

XGboost model obtained a better discrimination for MV repair failure than the LR,
both in DS1 (AUC: XGboost 0.75 vs. LR 0.73) and DS2 (AUC: XGboost 0.92 vs. LR 0.88),
as shown in Figure 3. For early MV repair failure identification, there was not a clear
predominance among models in terms of PPV (PPV: XGboost 0.29 vs. LR 0.29). As regards
the long-term follow-up for MR recurrence prediction, the best PPV was reached with the
XGboost model (PPV: XGboost: 0.77 vs. LR: 0.70, p < 0.05). All the models had NPV of 0.95
or higher, and no improvement was observed in LR after resampling. RF and NB classifiers
also consistently performed well, while other models were less robust to generalization.
In Figure 4, for a global understating of the ML model, the effect of each feature on the
learning-model prediction in terms of odd-ratio is shown.

Figure 3. Receiver operating characteristic curves of the eXtreme gradient boosted trees and logistic
regression for predicting causes of mitral valve repair failure and mitral valve regurgitation at
one-month (a) and three years (b).
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Figure 4. Shapley additive explanations value plot for DS1 and DS2. The horizontal axis shows
whether the effect of the feature is associated with a higher or lower prediction, while the color indi-
cates whether the value of the feature is high (red) or low (blue) for a given observation. MVP, mitral
valve prolapse; BSA, body surface area; TR, tricuspid regurgitation > 2; PAPS, systolic pulmonary
artery pressure; MR, mitral valve regurgitation; 6M, six months.

4. Discussion

In this study, we developed and tested a ML-based prognostic model to predict
the risk of MV repair failure and MR recurrence based on pre-operative clinical and
echocardiographic data. We found that the XGboost presented the best discriminative
abilities for the prediction of MV repair failure and/or MR recurrence at 1M-FU (AUC: 0.75)
and at 3Y-FU (AUC: 0.92).

These findings suggest that in the future ML could have an important clinical role in
evaluating prognostic risk in MVP patients undergoing MV repair. The ability to correctly
identify MV repair failure and the time course of significant recurrent MR on the basis of
preoperative clinical and echocardiographic parameters is challenging. Our results support
the possibility of expanding indications and selection of cases undergoing MV repair.

XGboost and LR had similar discrimination on both datasets, emphasizing the pos-
sibility of combining the two approaches in order to further improve the prediction of
outcomes. Although both ML and LR models had good PPV (which is potentially more
clinically relevant than AUC) in predicting 3Y moderate/severe recurrent MR, they are less
effective for an intra-operative or early MV repair failure assessment. Indeed, with DS1 the
use of clinical TTE and MV morphology parameters was associated with a substantially
lower PPV and AUC than with DS2.

ML classifiers, in contrast to regression-based classifiers, account for unexpected pre-
dictor variables and associations between features and outcomes, facilitating recognition
of predictors not yet described in the literature [44]. However, ML models are more data
dependent than conventional statistical techniques, requiring a larger sample size for a
modelling technique to generate a classifier with a good discriminatory ability. Therefore,
ML models need far more events per variable to achieve stable validated AUC than tradi-
tional LR models, which may be useful in relatively small datasets. Since in medicine, large,
multidimensional, and balanced datasets are difficult to collect, resampling techniques are
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likely to become an essential tool for learning-applications in clinical practice, helping to
train a better classifier in terms of performance and generalization.

Our study represents, to our knowledge, the first investigation comparing ML classi-
fiers, including a regression-based model, to predict short- and long-term MV repair failure
in a large MVP population. An accurate assessment of MV morphology was obtained by
integrating the 3DTTE with the standard 2DTTE, which has been previously demonstrated
to be feasible and accurate in the evaluation of MV anatomy in MVP patients [12]. The 3D
transthoracic technique allows us to discriminate between simple and complex lesions and
it showed superior accuracy in the identification of MV pathology compared to 2DTTE [45].
The majority of patients undergoing MV repair had a successful procedure (95,1%) in
accordance with guidelines that suggest early repair only in an experienced center with
high volume procedures, low mortality (<1%), and a repair rate of >95%.

As regards durability, MR recurrence increases long-term mortality and significantly
worsens quality of life [46]. Guidelines define clinical and echocardiographic criteria
for MV surgery in severe MR, but also state that in asymptomatic patients MV repair
can be considered when there is a high likelihood of durable MV repair at low risk [47].
Javadikasgari et al. [30] demonstrated that MV repair was associated with less durability
in complex disease. Repair of an anterior leaflet is more challenging than posterior leaflet,
and it was associated with reduced durability [47]. Tamborini et al. [12] found that MVP
anatomy and PAPS were predictors of residual MR. Advanced myxomatous changes
with prolapse of both leaflets was recognized to influence failure of valve repair [48,49].
Moreover, recurrent MR after MV repair is associated with adverse LV remodeling [13].
A recent study showed that repair failure may occur in the aggressive resection of the
posterior mitral leaflet [50]. Chordal shortening, implantation of artificial chordae, and no
use of ring annuloplasty partially explain the recurrence of MR [51]. Our data showed that
patients with complex degenerative MR, specifically with A2 prolapse, more frequently
had MV replacement or MV repair early failure. Multivariate analysis also confirmed A2
prolapse as a potential predictor of intra- or post-operatory MV repair failure. Moreover,
cases with more complex MVP and suboptimal results refer generally to elderly patients
and had other pre-operative characteristics, such as a higher grade of tricuspid regurgitation
and higher PAPS. In addition, according to regression analysis, left atrial size is a predictor
of suboptimal outcome after surgery.

For heart chamber volumes, all cases without significant MR had favorable remodeling
of LAVI and LV volume at 6M-FU, while in patients with residual MR > 2+ at 3Y-FU heart
chamber volumes were not reduced and showed less favorable hemodynamics.

In our study, residual MR severity at 6M-FU represents the most important predictor
of the durability at 3Y-FU of successful MV reconstruction. An increasing PAPS, along
with a complex surgical procedure, is associated with a higher risk of suboptimal results
at 3Y-FU. Interestingly, in younger patients there is a high likelihood of MR recurrence or
MV replacement after MV repair. This is in accordance with previous studies and may be
related to Barlow’s disease being associated with more complex MV apparatus anomalies
affecting disease long term evolution (Figure 5).

Accurate identification of patients at high risk of short- and long-term MV repair
failure is important for correct surgical planning. Our findings demonstrated that a ML
approach based on an XGboost algorithm can predict MV repair failure at 3Y with good
discrimination and significant higher PPV than LR, whereas predicting early surgical
outcomes of MV repair procedures is more challenging and further research is needed.
Indeed, while MVP is the most common valvular pathology requiring surgery, little is
known about the genetic mechanism responsible for the pathogenesis and progression
of the valvular disease. Previous publications have identified statistically significant
predictors of repairability and recurrence of MR but, to our knowledge, without testing the
model’s performance [11–13,15–18]. We have extended earlier studies in this domain by
comparing a variety of models and variable pools. ML algorithms, in combination with the
traditional regression approach, may offer a valid tool for expanding clinical knowledge
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and improving indications for correct candidate selection for MV surgical repair. These
improvements may be furthered by the continuous gathering of patient data and the
relatively easily way to retrain the model to account for new predictors. Consequently, it is
expected that ML techniques will become increasingly important in the future to improve
prognostics approaches. The method developed in this study can be extended even to
other clinical challenges.

Figure 5. Shapley dependence plots. The horizontal axis shows the age. The color indicates whether the value of the second
feature, which may have an interaction effect with the age, is high (red) or low (blue) for a given observation.

There are some limitations to the current study. First of all, the feasibility and perfor-
mance of the ML approach were validated in a specific single-center population, which
limits generalizability; the developed model will require prospective validation on a
multicenter dataset. In addition, only variables that already existed in the dataset were
considered in the modelling.

5. Conclusions

This study demonstrated that ML methods were able to predict MV repair success
in MVP patients (intra-operative or early MV repair failure with AUC 0.75 and three
years moderate/severe recurrent MR with AUC 0.92), thus representing an attractive tool,
holding promises for integration into clinical workflow and forming a solid basis for further
technical investigation and clinical studies.
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