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Abstract
The paper investigates the path-planning problem applied to an innovative UAV–helicopter cooperation system
that aims at increasing safety during HEMS operations. The drone, that could be optionally launched by the
helicopter, will have the mission to explore the area of operation to detect meteorological and physical obstacles.
The combination of Rapidly-exploring Random Tree∗ as global planner and of Bidirectional Rapidly-exploring
Random Tree as local planner is proved to provide a nearly-optimal global path and a rapid re-planning in case
of new obstacles detection. The adoption of Savitzky–Golay filter enables trajectory smoothing, improving its
practicability. The feasibility of the identified trajectory for a three-dimensional helicopter is assessed through
computation of attitude and forces, the latter carried out by means of a multibody analysis software.

1. INTRODUCTION

In modern society, Helicopter Emergency Medical Ser-
vice (HEMS) mission are part of the trauma man-
agement systems and health care [1]. The usage in
sparsely populated and rural areas may be essential
to allow a fast transport of patients that are in danger
of life and the rapid availability of a competent medical
crew. HEMS and Search and Rescue (SAR) missions
are typically Low Altitude Operations that must be per-
formed according to Visual Flight Rules (VFR), which
in turn need appropriate Visual Meteorological Condi-
tions (VMC). However, such conditions are not always
available, and sometimes, the sudden deterioration of
weather is not uncommon and it may lead to flight into
Unintended Instrumental Meteorological Conditions
(UIMC). In 2018, the Federal Aviation Administration
(FAA) reported that UIMC and Low Altitude Operations
represented two of the three main causes of helicopter
accidents [2].
However, to achieve the level of reliability that is ex-
pected for HEMS and SAR operations, there is a need
for the rotorcraft involved to fly Anywhere, Anytime, in
All-weather conditions (AAA). To get closer to reach-
ing this goal, Politecnico di Milano has started a col-
laboration with industry to develop and test innovative
solutions based on cooperation of the helicopter with a
drone. The drone in this case is used as a system that

through a series of sensors can detect the presence
of not-mapped obstacles, dangerous weather condi-
tions, or other elements that can contribute to increase
of the mission risks. More details on this project can
be found in [3].

Within this project it is planned to have a control sta-
tion that is used to plan the route to be followed by the
helicopter involved in the HEMS operation. Such route
can be flown by the helicopter if VMC conditions are
guaranteed. However, in case the possibility to fly into
UIMC condition is foreseen, the crew may deploy the
drone through the hoist and put it into service. The
drone can follow the planned route sensing GNSS sig-
nal level, turbulence and cloud ceiling, and detecting
physical obstacles. The data collected by the drone
can then be sent to helicopter control station to update
the maps, allowing the crew to increase the situational
awareness during the mission. Using an automatic
path planner, with a predefined frequency, the refer-
ence route validity is checked. In light of the possible
newly detected weather conditions or obstacles, the
route could be re-planned, possibly until the drone has
explored the entire mission space and a successful
and safe path has been found. This strategy is shown
in Figure 1:
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Figure 1: Scheme of HEMS mission. A scout drone is re-
leased from the helicopter by hoist and flies the reference
route, detecting obstacles.

Path planning for vehicle that fly in low altitude en-
vironments is an active research field. For instance
Advance Air Mobility systems that are envisioned to
fly, autonomously, in the urban environment, have to
develop path planning strategies that can avoid ob-
stacles and obstructions and also manage conflicts in
high-density operational environment [4].

The objective of this work is to better describe and
motivate the strategy identified to perform the Path
Planning, and to illustrate a methodology to assess
quality and feasibility of the computed trajectory. Sec-
tion 2 contains a review of Path Planning algorithms
and describes criteria of algorithm selection and meth-
ods to assess trajectory feasibility. Section 3 features
a description of the adopted testing procedure and dis-
cusses tests results.

2. METHODS AND ALGORITHMS

The most advanced and reliable path planning algo-
rithms are categorized and compared in Section 2.1,
in which a family of planners is selected.
Path planning algorithms provide a sequence of way-
points, which are connected by means of Dubins
curves to obtain a smooth trajectory. In alternative, the
trajectory can be smoothed via filtering, as explained
in Section 2.2.
Once trajectory is defined in terms of time and posi-
tions, simulations are performed to test whether it is
feasible or not. This evaluation is based on two indi-
cators: helicopter attitude and rotor thrust required to
follow the planned path. Section 2.3 addresses the
definition of a methodology to carry out this analysis.

2.1. Review of algorithms and planner selection

Before choosing a path planning algorithm, it is funda-
mental to analyse the problem and bring to the table all
possible options. Devoting effort to a wide algorithms
review raises the chances to choose an algorithm that
successfully meets mission requirements.
First of all, it is useful to define some basic terminol-
ogy:
Global path planning: in global path planning, path
searching is carried out in a known environment. The
reference path is computed offline, with focus on
safety and length optimality.
Local path planning: in local path planning, path
searching is carried out in a completely or partially un-
known environment. The reference path is computed
real-time, updating environment information with sen-
sors data and re-planning the path in case of collision
detection. The focus is on path generation time.
Real-time reactivity: a local planner is real-time reac-
tive when it has very fast collision avoidance capability,
with reaction time < 200 ms.

It is now advantageous to formulate the problem ac-
cording to path planning terminology: after receiving
an emergency call, the helicopter computer runs a
Global planner to generate a reference path basing
on known environment maps. At the end of this op-
eration, the scout drone explores the planned route
looking for undetected physical or meteorological ob-
stacles in the area, and sends the information to the
helicopter computer, which continuously updates the
Occupancy Map (digital map containing environment
data) and checks trajectory validity. If the trajectory is
discovered to intersect with one obstacle, a new path
is planned with a Local planner. Real-time reactiv-
ity is not strictly essential in this application, seeing
as for safety reasons the scout drone has a sufficient
head start with respect to the helicopter, nevertheless
a shorter computation time is preferred, given the ur-
gency of HEMS missions.
The computed path should be constrained to the he-
licopter performance: a maximum range of attitude
should be prescribed in order to enforce passengers
comfort.

2.1.1. Algorithms review

An overview of the existing path planning algorithms is
presented in the next paragraphs.
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Sampling-based These algorithms are structured
in two phases: during the learning phase, they build
a road map by randomly generating a finite number
of nodes in the free space and connecting them by
means of collision-free segments; during the query
phase, the algorithm finds the path from a start node
to a goal node inside the road map.
These methods are mature, simply structured and
easy to implement, suitable both for global and local
planning.
Some algorithms belonging to this family are: Visibility
Graph (VG), Voronoi Diagrams, Probabilistic RoadMap
(PRM), Rapidly-exploring Random Tree (RRT).

Graph-based Graph-based algorithms search the
least-cost path through the available grid points in a
graph previously built from given start to goal nodes.
Well mature algorithms, easy to implement and often
combined with other methods to achieve global opti-
mal solutions, their application can be both real-time
and offline.
Some algorithms of this class are: Dijkstra, A∗, D∗, θ∗.

Numerical optimization These methods mathe-
matically model the environment as well as the body,
considering kinematic, dynamic, environmental, mis-
sion constraints and binding a cost function to all con-
straint equations to achieve an optimal solution.
They are computationally expensive, in particular
when constraints grow in number and complexity, and
therefore implemented especially in global planning,
when focus is on optimality. Examples of this class
of algorithms are Mixed-Integer Linear Programming
(MILP) and Non-Linear Programming (NLP).

Bio-inspired These algorithms optimize path by
mimicking biological behaviour. Up to date these
methods, which are still research object, are com-
plex and their long iteration time make them suitable
only for global planning. Some examples are: Genetic
Algorithms (GA), Particle Swarm Optimization (PSO),
Artificial Bee Colony (ABC), Ant Colony Optimization
(ACO), Bat Algorithm (BA), Artificial Neural Network
(ANN) and Deep Reinforcement Learning (DRL).

The above-mentioned families of algorithms have
been better investigated by analyzing recent studies
reported in scientific papers. Table 1 contains a clas-
sification of algorithms according to the information

acquired from this investigation. The sorted character-
istics are: paper reference, year of publication of the
work, offline or real-time application, re-planning op-
tions, reactivity, inclusion of performance constraints in
path planning, post-processing for trajectory smooth-
ing, validation tests performed by simulation or real
experiments, static and/or dynamic obstacles man-
agement.

2.1.2. Algorithm selection: RRT

Given the safety requirements of HEMS tasks, a ma-
ture and consolidated algorithm, with proved applica-
tions in real contexts, should be selected. Moreover,
the scout drone-helicopter problem requests both of-
fline and real-time capability, re-planning option, and
inclusion of performance constraints.
In light of this and of the information presented in Table
1, the sampling-based Rapidly-exploring Random Tree
algorithm has been chosen, along with two improved
versions: RRT∗ and BiRRT (bidirectional RRT).

RRT This algorithm files the environment as an oc-
cupancy grid map, where information of the type occu-
pied/free is stored in every grid point.
Tree nodes are identified by states: a state is defined
by its 3D position and heading q = [x,y,z,ψ]. The
starting node is the tree root qinit .
A random state qrand in the state-space is selected
during sampling phase, and the nearest node qnear in
the existing tree is pinpointed in the nearest node se-
lection phase. At this point the node expansion takes
place: a maximum connection distance δ that the new
state qnew can be away from qnear is specified; if qrand
is closer than δ, then qnew = qrand . If an obstacle is
present between qnear and qnew, the latter is simply not
added to the tree. Node expansion is shown in Figure
2.
This growing process continues until path gets to
within a threshold of the goal.

Figure 2: RRT approach
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Table 1: Path planning algorithms classification
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Sampling based

Visibility
graph

[5] 2019 x x x - - S S
[6] 2020 x x x x S S/D
[7] 2018 x x x S S
[8] 2017 x x S S

Voronoi [9] 2017 x x x x S S/D
PRM [10] 2013 x x x S/E S

RRT

[11] 2021 x x x x x S S/D
[12] 2014 x x x x x S/E S/D
[13] 2017 x S S
[14] 2019 x x x x S S/D

Graph based

Dijkstra [15] 2016 x x S S/D

A∗ [16] 2020 x x x S S/D
[17] 2011 x x S S

D∗ [18] 1993
θ∗ [19] 2010

Numerical
optimization

MILP [20] 2017 x x S S/D
NLP [21] 2009 x x S S

Bio-inspired

GA [22] 2020 x x S S
ANN [23] 2014 x x S S
PSO [24] 2018 x S S/D
ABC [25] 2007
ACO [26] 2013 x S S
BA [27] 2019 x x S

DRL [28] 2020 x x x x x S/E S/D

Fusion

PSO + D∗ [29] 2018 x x S S/D
A∗ + GA [30] 2020 x x x x x S S

MPC + PSO
+ RRT

[31] 2021 x x x S S/D

PF + A∗ [32] 2011 x S S
PRM + ABC [33] 2021 x x x S S/D
MILP + A∗ [34] 2020 x x S S
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Figure 3: Comparison between RRT and RRT∗

RRT∗ It is the probabilistically optimal extension of
RRT: as number of nodes in the tree increases to in-
finity, probability of finding optimal path converges to
1. The cost is an increased path generation time. The
difference between RRT and RRT∗, shown in Figure
3, lies in the nearest node selection (it is not necessar-
ily the nearest node to be connected with qnew, other
nodes in a given search radius are checked) and in
the stop criteria (process does not stop when goal is
reached, but continues refining the path until max iter-
ations are achieved).

BiRRT Bidirectional RRT creates one tree with the
root node at the specified start state, and another tree
with the root node at the specified goal state, alternat-
ing the extension progress until they connect. It can
be very fast, however sacrificing asymptotical optimal-
ity of RRT∗.

2.2. Implementation

Implementation of simulation environment and of path
planning problem has been carried out in MATLAB
2021b, with the inclusion of Matlab Navigation Tool-
box, which features tools for Occupancy Maps gener-
ation and several built-in or customizable algorithms
for motion planning.

Map It has been built in the shape of an Occupancy
Map, which consists in n vectors containing [x y z] po-
sitions of Digital Terrain Elevation Data (DTED) points
obtained from USGS EROS Archive - Shuttle Radar
Topography Mission with resolution of 1 arc-second

[35]. The map used for simulations is shown in Fig-
ure 4 and described in Section 3.2.

Figure 4: Occupancy Map of La Maddalena

The Occupancy Map can be inflated in order to
guarantee a safety distance from obstacles.

Planner The developed code provides the possibil-
ity to choose among RRT, RRT∗ and BiRRT both for
global and local planning. The planner object has two
input: State Space and State Validator. State Space,
better described in next paragraph, represents all pos-
sible positions the helicopter can occupy according to
performance and other constraints; State Validator is
an object containing information about whether a state
is occupied or not. Planner properties (such as Maxi-
mum connection distance or Maximum iterations) are
set in a dedicated section.
The function plan is adopted to plan a path between
two states with the selected planner, as shown in the
following instructions:
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State Space A State Space is defined as all feasi-
ble [x,y,z,ψ] of a vehicle during path planning (where
the first three coordinates are position and ψ is head-
ing) and, in Matlab, is represented by a State Space
object constructed by nav.StateSpace class. To im-
pose the respect of performance constraints, a cus-
tomized State Space bounded by such constraints has
been created using the function createPlanningTem-
plate. The adopted performance constraints are: max-
imum roll angle, maximum flight path angle and air-
speed. 3D Dubins curves have been used in node
connection, being the shortest segments that connect
two points with constraints on the turning radius and
prescribed initial and final headings [12]. A segment
of path planned with and without Dubins curves is il-
lustrated in Figure 5.

Figure 5: Node connection with Dubins curves

Re-planning/reconnecting After the scout drone
detects an obstacle, the Occupancy Map is updated
with the new information and validity of the global path
is checked by means of the Matlab functions isState-
Valid and isMotionValid : if at least one state on the
path is invalid, re-planning or reconnecting is neces-
sary.
Re-plan strategy deletes the path states after the ac-
tual position and re-plans a path from it to the goal
state.
Reconnect strategy truncates path states from actual
position to a user-defined number of states after the

obstacle. The local planner reconnects actual position
to the truncated branch attached to goal state.
Generally, re-plan strategy gives a faster computa-
tional time, while reconnect strategy gives a shorter
path length.

Smoothing Although Dubins curves enforce the re-
spect of performance constraints, they are only C1-
continuous, meaning they are continuous and differ-
entiable, and their first derivative is continuous. This
implies that the second derivative, and therefore cur-
vature, is not necessarily continuous, resulting in an
uncomfortable and possibly unfeasible trajectory.
For this reason, a further smoothing phase has been
involved, the smoothing filter being of the Savitzky-
Golay type, described in [36]. This filter is usually ap-
plied to smooth digital signals and has been chosen
because of its simple implementation (Matlab features
the designated function sgolayfilt). More specific path
smoothing techniques are presented in [37].
For a given signal measured at N points and a filter
of Window width w, Savitzky-Golay filter computes a
polynomial fit of order o in each filter window as the
filter is moved across the signal. The filter estimate at
the center of each window is given by the polynomial
fit at the center point, as shown by the yellow cross
in the subplot in the top right of Figure 6. The lower
the Polynomial order and higher the Window width, the
smoother the path, at the price of precision loss.

Figure 6: Savitzky-Golay filter with Window width = 7 and
Polynomial order = 2
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2.3. Assessment of trajectory feasibility

2.3.1. Calculation of Euler angles

Euler angles pitch θ, roll φ and yaw ψ are computed
for each path waypoint in order to fully characterize
helicopter motion. These angles represent the three
consecutive rotations ψ, θ, φ to turn North-East-Down
(NED) reference frame into Body reference frame:
they describe helicopter orientation.
The following assumptions have been made for Euler
angles computation:

• velocity vector is contained in the helicopter
symmetry plane;

• when trajectory is straight and uniform, θ and φ

are null;

• during maneuvers producing inertia forces, the
Tip Path Plane is supposed perpendicular to the
yaw axis, and fixed to the helicopter.

Yaw angle Thanks to the first assumption it is possi-
ble to infer that the yaw angle ψ coincides with head-
ing. Therefore, being x the coordinate towards East
and y towards North, the first Euler angle is:

(1) ψ(i) = arctan
(

x(i+1)− x(i)
y(i+1)− y(i)

)

Pitch angle Pitch angle has been computed start-
ing from curvature kv of the trajectory projected on
vertical plane. Indeed, curvature of a trajectory in a
point is the reciprocal of the osculating circle radius
Rv in that point, therefore the trajectory projected on
vertical plane can be approximated in every point to a
curvilinear maneuver which radius is 1

kv
.

Figure 7: Pitch computation: equilibrium of forces during
pull-up

As can be observed in Figure 7, a static equilib-
rium of forces including weight and centrifugal force is
performed at each time step, and it is found that:

(2) γ−θ = α = arctan

(
mgsinγ

mV 2

Rv
+mgcosγ

)
where θ = γ−α. Signs of Eq. 2 depend on the direc-
tion of binormal vector and on the direction of vertical
motion.
The formula for curvature of a curve parameterized by
a generic parameter, in this case time, was used to
compute kv:

(3) k (t) =
|α′

(t)×α
′′
(t) |

|α′
(t) |3

For a 3D trajectory, α(t) = [x(t) ,y(t) ,z(t)], where
t is the vector of times. In this particular instance,
a change of variables was operated in order to ob-
tain the curvature of the vertically projected trajectory:
kv was computed using αv (t) = [v(t) ,z(t) ,0], where
v(t) =

√
x2 + y2.

Roll angle The procedure to obtain bank angle Φ is
very similar to the computation of pitch angle, applied
to horizontal plane: the turn radius RΦ is obtained from
horizontal curvature kh, and thanks to the equilibrium
of forces bank angle is computed:

(4) Φ = atan
(

V 2

gRΦ

)
Roll angle is computed in dependency of bank and
pitch angles:

(5) sin(φ) = sin(Φ)cos(θ)
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2.3.2. Thrust computation

The thrust needed to follow the planned route is an-
other good indicator of trajectory feasibility: if the heli-
copter model is known, the needed thrust can be com-
pared to its typical range of thrust.
Thrust computation problem has been solved by
means of MBDyn, which is a free multibody dynamics
analysis software [38] developed at DAER (Politecnico
di Milano), capable of solving both initial value and in-
verse dynamics problems. The latter concerns the is-
sue of computing forces given motion.
Motion was provided as a set of times, positions and
orientation vectors, times being the ones correspond-
ing to each path waypoint. Times have been calcu-
lated by hypothesizing a constant airspeed during the
whole trajectory.

3. TESTS AND RESULTS

3.1. Testing procedure

Tests were performed only via simulation.
The testing procedure to assess the path planning al-
gorithm is designated as follows: given a start point
and a goal point, the algorithm shall compute a global
route that connects them without colliding with envi-
ronmental obstacles. If waypoints imposed by author-
ities are present, the algorithm runs iteratively and
computes multiple consecutive routes from each pre-
scribed waypoint to the next one.
As it will happen in real flights involving the scout
drone, in which the latter will send to helicopter infor-
mation about meteorological or physical barriers, an
obstacle modifying the Occupancy Map is introduced
at a certain point of the simulation. The algorithm
shall update the Occupancy Map and quickly re-plan a
path by means of a local planner, choosing a strategy
between re-planning and reconnecting. As explained
above, re-planning strategy is computationally faster
than reconnecting, therefore it has been selected as
permanent choice.

3.2. Tests environment

The environment chosen for tests is La Maddalena
(SS), a small island in Northern Sardinia; the related
Occupancy Map is represented in Figure 4. The fol-
lowing start, goal and waypoints were selected:

• start point (chosen randomly): latitude
41◦13′45′′, longitude 9◦22′56′′, altitude 107 m;

• goal point: latitude 41◦13′15′′, longitude
9◦24′37′′, altitude 107 m. It corresponds to a
football field from which the patient could be
safely transported to the island hospital by road,
having the hospital no heliport;

• trajectory must pass through waypoint (cho-
sen randomly): latitude 41◦14′23′′, longitude
9◦23′53′′, altitude 150 m.

For the sake of convenience, all angular coordinates
have been converted into distances during computa-
tions.

3.3. Tests description

Among all the performed tests, three are discussed
here, each one exploring different planner options as
shown in Table 2:

Test
Global
planner

Local
planner

Max
Connection

Distance
Smoothing

1 RRT∗ BiRRT 20 m no
2 RRT∗ BiRRT 200 m no
3 RRT∗ BiRRT 200 m yes

Table 2: Tests options

Tests undergo the simplifying assumption that air-
speed is constant along path. Performance constraints
and filter options are displayed in Table 3.

Performance
constraints

Filter options

Max Roll Angle 60◦
Window Width 9

Airspeed 30 m
s

Polynomial Order 3
Flight Path Angle 25◦

Table 3: Performance constraints and filter options

3.4. Tests results

3.4.1. Effect of Maximum connection distance

The comparison between Test 1 and Test 2 shows the
impact of planner Maximum connection distance δ on
computed path: both strategies succeed in finding a
new path after the insertion of a parallelepipedal ob-
stacle, with the difference that the second trajectory is
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slightly longer but requires considerably less comput-
ing time both for global and local planning, as reported
in Table 4. A greater Maximum connection distance is
overall more advantageous, sacrificing a slight amount
of length optimality to obtain an important gain in reac-
tivity.

Test
Path

length
Global

comp. time
Local

comp. time
1 5630 m 30.12 s 3.06 s
2 6130 m 1.52 s 0.13 s

Table 4: Path length and computation time of tests 1 and 2

3.4.2. Effect of path smoothing

Test 2 vs. Test 3 point out the effect of trajectory
smoothing: Figure 9 illustrates the trajectory before
and after Savitzky-Golay filtering. Filtering improves
smoothness and length-optimality, as shown in Table
5.

Test Path length Smoothing time
2 6130 m -
3 5701 m 0.37 s

Table 5: Path length before and after smoothing, and com-
putational time for smoothing

However, smoothing alters the trajectory final po-
sition, which does not reach goal point, but a nearby
point. With a Window width of 9 and a Polynomial or-
der of 3, the distance from goal point is 221 m. If Win-
dow width was reduced to 7, the distance would result
57 m but there would be a loss in trajectory smoothing
and comfort. In future works, a criterion to select an
acceptable goal threshold should be identified to tune
Window width and Polynomial order accordingly.
In Figure 9 it is also possible to observe how re-
planning works: the light blue path is global path, com-
puted at the mission beginning, before the detection of
an obstacle on the path. After the detection, the algo-
rithm checks each path state validity by means of the
State Validator object: since the global path is found
to be invalid, it is truncated a user-defined number of
waypoints before the first invalid state, and re-planned
until goal state (green path).

3.4.3. Attitude and thrust analysis

Figure 8: Main rotor mast torque data from recorded flight

Attitude and expected thrust during trajectory execu-
tion of Test 3 are represented in Figure 10. The maxi-
mum acceptable bank angle of 60◦ prescribed by per-
formance constraints is reached in a point of the trajec-
tory, at around 107s, but attention should be brought
to the fact that airspeed was supposed constant dur-
ing the simulation. Plausibly, during a narrow turn air-
speed would be temporarily dropped by the pilot re-
ducing bank angle according to Eq. 4.
To analyze thrust, a numerical model inspired to a
real helicopter (here not specified) was implemented
in MBDyn. Figure 10 illustrates the output of MBDyn
analyses: static thrust is 3200 kg, which is indeed the
weight of the helicopter, while during high curvature
maneuvers thrust reaches an increase of 12%.
To evaluate if the magnitude of these peaks is rea-
sonable and realistic, mast torque data from a real
recorded flight of the modelled helicopter have been
analyzed. A piece of record is shown in Figure 8, in-
volving a maneuver that increases the torque by 12%.
Torque-thrust relation can be supposed locally linear,
therefore an increase of thrust by 12% is deemed rea-
sonable and not hazardous.

4. CONCLUSION AND FUTURE WORK

A Path Planning strategy for HEMS missions featur-
ing the innovative helicopter-scout drone cooperation
has been proposed. It is based on two improved
versions of the well-known Rapidly-exploring Random
Tree: RRT∗ and BiRRT. The planner is capable of find-
ing a path between an initial point and a goal point
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Figure 9: Test 2 vs. Test 3

Figure 10: Test 3 angles and thrust
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through intermediate assigned waypoints assuring a
safety distance from terrain.
When the scout drone detects a new obstacle, the
planner successfully computes a new safe path in
short time.
Smoothing the trajectory is proved to allow the de-
crease of path length and the effective practicability
of the route by a human-operated vehicle. This as-
pect will be further explored in future work, that will
involve tests performed by expert pilots at a Virtual
Reality flight simulator to assess the feasibility of the
trajectory in terms of applied forces and load factor.
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