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Abstract 1 

Equipment of renewable energy systems are being supported by Prognostics & Health Management (PHM) 2 

capabilities to estimate their current health state and predict their Remaining Useful Life (RUL). The PHM health 3 

state estimates and RUL predictions can be used for the optimization of the systems Operation and Maintenance 4 

(O&M). This is an ambitious and challenging task, which requires to consider many factors, including the 5 

availability of maintenance crews, the variability of energy demand and production, the influence of the operating 6 

conditions on equipment performance and degradation and the long time horizons of renewable energy systems 7 

usage. In this work, we develop a novel formulation of the O&M optimization of renewable energy systems 8 

equipped with PHM capabilities as a sequential decision problem and we resort to Deep Reinforcement Learning 9 

(DRL) to solve it. The proposed solution approach combines Proximal Policy Optimization (PPO), as DRL 10 

algorithm, Imitation Learning (IL), for pre-training the learning agent, and a model of the environment which 11 

describes the renewable energy system behavior. The solution approach is tested by its application to a wind farm 12 

O&M problem. The optimal solution found is shown to outperform those provided by other DRL algorithms. Also, 13 

the approach does not require to select a-priori a maintenance strategy, such as corrective, scheduled, condition-14 

based or predictive but, rather, it discovers the best performing policy by itself. 15 

 16 

Keywords: Renewable Energy Systems, Wind farm, Operation and Maintenance, Prognostics and Health 17 

Management, Optimization, Deep Reinforcement Learning. 18 

Acronyms and symbols 19 

ACER  Actor-Critic with Experience Replay 20 

AHP  Analytic Hierarchy Process 21 

AI   Artificial Intelligence 22 

CM  Corrective Maintenance 23 

CPS  Cyber-Physical System 24 

DNN  Deep Neural Network 25 

DQN  Deep Q-Network 26 

DRL  Deep Reinforcement Learning 27 

ELECTRE  Elimination Et Choice Translating 28 

Reality 29 

GA  Genetic Algorithm 30 

IL  Imitation Learning 31 

IoT  Internet of Things 32 

IT  Information Technology 33 

LCC  Life Cycle Cost 34 

MCDM   Multiple Criteria Decision Making 35 

O&M  Operation & Maintenance 36 

PdM  Predictive Maintenance 37 

PHM   Prognostics and Health Management 38 

PM  Preventive Maintenance 39 

PPO   Proximal Policy Optimization 40 

RUL  Remaining Useful Life 41 

RL  Reinforcement Learning 42 

SDP  Sequential Decision Process 43 

TOPSIS  Technique for Order Preference by 44 

Similarity to Ideal Solution 45 

TPE  Tree-structured Parzen Estimator 46 

TRPO  Trust Region Policy Optimization 47 
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WT  Wind Turbine 48 

 49 

𝑇𝑀  Time horizon 50 

𝑡  Generic decision time 51 

𝑁𝑇𝑀
  Number of times a decision is taken 52 

𝐿  Number of units 53 

𝑙  Generic unit 54 

Λ  Set of units 55 

𝑇𝑙   Ground-truth failure time of unit 𝑙 56 

𝑇𝑙
∗   Failure time of unit 𝑙 in nominal 57 

conditions 58 

𝑓𝑇𝑙
∗  Probability density function of 𝑇𝑙

∗ 59 

𝜆𝑓   Unit failure rate 60 

𝜈𝜏  Degradation factor in non-nominal 61 

conditions 62 

𝑅𝑙
∗  RUL of unit 𝑙 in nominal conditions 63 

�̂�𝑙
∗  Estimate of the RUL of unit 𝑙 in 64 

nominal conditions 65 

�̂�𝑡
∗  Vector containing the RUL estimates 66 

of the 𝐿 units at time 𝑡 67 

𝜖𝑅  Error of the RUL estimate 68 

𝜎𝑅  Standard deviation of 𝜖𝑅 69 

𝐴𝑔𝑙  Age of unit 𝑙 70 

𝑨𝒈𝑡  Vector containing the ages of the 𝐿 71 

units at time 𝑡 72 

𝑃𝑙   Ground-truth power production of unit 73 

 𝑙 74 

�̂�𝑙  Estimate of the power production 75 

�̂�𝑡  Vector containing the power 76 

production estimates of the 𝐿 units at 77 

time 𝑡 78 

𝜖𝑃  Error of the power production estimate 79 

𝜎𝑃  Standard deviation of 𝜖𝑃 80 

𝐽  Number of days for which the 81 

prediction of 𝑃 is available 82 

𝑗  Generic prediction day 83 

𝐺𝑡  Revenues at time 𝑡 84 

𝐾  Maximum revenue per unit 85 

𝐻  Maintenance crew depot 86 

Π𝐶𝑀  Corrective maintenance downtime 87 

Π𝑃𝑀  Preventive maintenance downtime 88 

𝜇𝐶𝑀  Corrective maintenance repair rate 89 

𝜇𝑃𝑀  Preventive maintenance repair rate 90 

𝑈𝐶𝑀  Corrective maintenance cost 91 

𝑈𝑃𝑀  Preventive maintenance cost 92 

𝑀𝑇𝑙   Time needed to complete the 93 

maintenance intervention of unit 𝑙 94 

𝑴𝑻𝑡  Vector containing the times to 95 

complete the maintenance interventions 96 

of the 𝐿 units at time 𝑡 97 

𝑋𝑡  Costs at time 𝑡 98 

𝒮  State space 99 

𝑠  Generic state 100 

𝒔𝑡  State vector at time 𝑡 101 

𝒜  Action Space 102 

𝑨  Vector of possible actions 103 

𝑎  Generic action 104 

𝑎𝑡 Scalar representing the action of the 105 

maintenance crew at time 𝑡 106 

𝒫  Transition probability 107 

ℛ  Reward function 108 

𝑟𝑡  Reward at time 𝑡 109 

𝛾  Discount factor 110 

𝜋  Generic policy 111 

𝜋∗  Optimal policy 112 

𝑉𝜋(𝑠)  Value function 113 

𝑄𝜋(𝑠, 𝑎)  Action-value function 114 

�̂�𝜋(𝑠, 𝑎)  Advantage function estimate 115 

𝐹  Objective function 116 

𝜖  PPO clipping hyperparameter 117 

𝑣𝑐𝑢𝑡−𝑖𝑛  Cut-in wind speed 118 

𝑣𝑟𝑎𝑡𝑒𝑑   Rated wind speed 119 

𝑣𝑐𝑢𝑡−𝑜𝑢𝑡  Cut-out wind speed 120 

𝐿′  Number of units with inaccurate RUL 121 

predictions 122 

𝑙′  Generic unit with inaccurate RUL 123 

predictions 124 

Λ′  Set of units with inaccurate RUL 125 

predictions 126 

𝑞𝑃𝑀  Restoration factor127 

1. Introduction 128 

In the last years, the interest of the energy industry on renewable sources of energy has grown significantly due to 129 

social, economic and environmental perspectives (Sanz-Bobi, 2014). A renewable energy plant requires, like any 130 

other energy production plant, an Operation and Maintenance (O&M) strategy, for ensuring the proper functioning 131 

of the plant’s components, reducing the risk of failure, and increasing the production availability of the overall 132 

system.  133 
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The recent developments of Information Technology (IT) have enabled the possibility of equipment monitoring 134 

and direct communications between machines within a Cyber-Physical System (CPS) (Ustundag and Cevikcan, 135 

2018). The implementation of this paradigm in the production and operation environments is often termed as 136 

Industry 4.0 (Tjahjono et al., 2017), and exploits the combination of big data, Internet of Things (IoT), Cyber-137 

Physical Systems and Artificial Intelligence (AI) to obtain environments where smart machines communicate with 138 

one another to enable the automation of production lines and the, monitoring, detection, elaboration of data and 139 

information for preventing equipment failures (Barreto, Amaral and Pereira, 2017). The final goal is not just to 140 

improve production management but also to effectively manage equipment and reduce downtime (Terrissa et al., 141 

2016). 142 

In this context, Prognostics and Health Management (PHM) plays a leading role, using condition monitoring data 143 

for estimating the equipment health state and predicting its Remaining Useful Life (RUL), i.e., the remaining 144 

amount of time that a component can be operated before it loses its functional capabilities (Okoh et al., 2014). 145 

Several algorithms for RUL prediction have been developed (Simões, Gomes and Yasin, 2011) and several 146 

successful applications to industrial components have been reported in literature (Kwon et al., 2016; Al-Dulaimi 147 

et al., 2019; Cai et al., 2020). In particular, Predictive Maintenance (PdM) exploits PHM outcomes to set efficient, 148 

maintenance interventions, which aim at providing the right part to the right place at the right time, giving, 149 

therefore, the opportunity of maximizing system availability and minimizing the Life Cycle Cost (LCC) of the 150 

system and the losses (Compare, Baraldi and Zio, 2020). 151 

Although the advantages of PdM are intuitive, the application of PdM to renewable energy systems should consider 152 

the fact that the prediction of the RUL of an equipment must consider its future dynamic usage and management, 153 

and the effects on its degradation. For example, the RUL of the gearbox of a wind turbine is influenced by the 154 

future loading conditions, which, in turn, depend on the wind conditions and on the O&M decisions that are taken 155 

for optimal equipment usage and for responding to power demand. In many prognostic systems, future conditions 156 

of equipment usage are generally assumed constant or behaving according to some known stochastic process, i.e., 157 

without considering the intertwined relation of RUL with O&M decisions (Ding et al., 2018). Since this does not 158 

reflect reality, the RUL predictions that guide the O&M decisions are deemed to be incorrect and can lead to sub-159 

optimal decisions (Bellani et al., 2019). Also, O&M optimization of renewable energy systems should consider 160 

the availability of maintenance teams, the variability of demand and production, the long time horizons that 161 

characterize renewable energy usage and the uncertainty related to all the pieces of information. 162 

In this context, the objective of the present work is to optimize O&M of renewable energy systems equipped with 163 

PHM capabilities. In order to deal with the issues presented above, the O&M management problem is formalized 164 

as a Sequential Decision Problem (SDP) over a long-time horizon. A SDP is characterized by the fact that the 165 

goodness of the selected action does not depend exclusively on the single decision, i.e. the goodness of the state 166 

entered as consequence of the selected action, but rather on the whole sequence of future decisions. 167 

To solve the SDP, we adopt Deep Reinforcement Learning (DRL) (Sutton and Barto, 2018). Reinforcement 168 

Learning (RL) is a machine learning framework in which a learning agent optimizes its behavior by means of 169 

consecutive trial and error interactions with a white-box model of the system, i.e., a transparent and easily 170 

interpretable environment for the simulation of the system evolution, to find the optimal policy (Grondman et al., 171 

2012), i.e. the function linking each system state to the action that maximizes a reward. RL has been shown able 172 

to solve complex decision-making problems in many fields (Li, 2017), including energy-related ones (Rocchetta 173 

et al., 2019). 174 

Although, in principle, tabular RL algorithms allow finding the exact solution of SDPs, in most practical cases 175 

their computational cost is not compatible with applications to complex systems (Sutton and Barto, 2018; Tavares 176 

and Chaimowicz, 2018). For this reason, we resort to DRL, which uses Deep Neural Networks (DNNs) to find an 177 
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approximate solution of the optimization problem. In particular, we adopt the Proximal Policy Optimization (PPO) 178 

algorithm (Schulman et al., 2017), which is one of the state-of-the-art approaches for DRL implementation. 179 

The proposed framework is applied to a case study concerning the optimization of the O&M strategy of a wind 180 

farm. The application is meaningful since wind energy has become one of the most important alternatives for 181 

electricity production, with a growth rate larger than 10% in the last years according to the World Wind Energy 182 

Association (World Wind Energy Association, 2017). Furthermore, wind farms are characterized by O&M costs 183 

that can represent up to 20-25% of the entire life-cycle cost (Leite, Araújo and Rosas, 2018). For this reason, it is 184 

of utmost importance to develop methodologies to optimize O&M, to avoid unexpected outages due to failures 185 

and unnecessary maintenance interventions. The problem of maintenance optimization in wind farms has been 186 

reviewed in (Barberá et al., 2013; Ding, Tian and Jin, 2013; Shafiee and Sørensen, 2019).  187 

The main novelties of the proposed approach with respect to those already developed for O&M in wind farms are: 188 

• the use of RUL predictions for O&M optimization; 189 

• the fact of establishing the maintenance policy without any a-priori assumption on the type of maintenance 190 

strategy, e.g., corrective, scheduled, condition-based, predictive. This allows defining a completely 191 

assumptions-free approach for O&M optimization. Notice the improvement with respect to state-of-the-art 192 

works, which are limited to optimizing the parameters, e.g., maintenance period or degradation threshold, of 193 

an a-priori established maintenance strategy; 194 

• the possibility of accounting for the influence of the dynamic environment and the effects of the O&M actions 195 

performed, on the future evolution of the system. 196 

The effectiveness of the proposed approach is shown by means of a comparison with other state-of-the-art and 197 

user-defined O&M strategies, on a case study which considers a wind farm composed of 30 Wind Turbines (WTs). 198 

The structure of the paper is as follows. In Section 2, we give an overview on state-of-the-art maintenance 199 

optimization methodologies. In Section 3, we introduce the problem statement and in Section 4 we discuss its 200 

formulation as a SDP. In Section 5, details about the RL algorithm adopted in this work are provided. In Section 201 

6, the case study concerning the wind farm is presented. Results are discussed in Section 7. In Section 8, further 202 

experiments are proposed and analyzed, and conclusions are drawn in Section 9. 203 

2. Maintenance in industrial systems 204 

Many studies have shown the possibility of increasing production availability of industrial systems by improving 205 

the effectiveness of maintenance (Coit and Zio, 2019; de Jonge and Scarf, 2020), whose activities amount to one 206 

of the largest costs. 207 

Maintenance optimization approaches have, thus, been developed. They can be classified according to different 208 

taxonomies: i) optimization algorithms, ii) optimization criteria, iii) outcomes of the optimization iv) 209 

characteristics of the system.  210 

With respect to the type of optimization algorithm (taxonomy i), graphical methods (Labib and Yuniarto, 2009), 211 

Multiple Criteria Decision Making (MCDM) approaches based on Analytic Hierarchy Process (AHP) (Bevilacqua 212 

and Braglia, 2000), Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) (Ding and 213 

Kamaruddin, 2012), and Elimination Et Choice Translating Reality (ELECTRE) (Trojan and Morais, 2012), 214 

combination of grid search algorithms and simulation methods based on Monte Carlo simulation (Fedele and Zio, 215 

2015; de Angelis, Patelli and Beer, 2017), Markov processes (Welte, Vatn and Heggset, 2006) and Petri nets 216 

(Santos, Teixeira and Soares, 2019), mixed integer programming (Nápoles-Rivera et al., 2013), evolutionary 217 

algorithms (Haladuick and Dann, 2018; Mellal and Zio, 2019) and RL approaches (Kuhnle, Jakubik and Lanza, 218 

2019; Rocchetta et al., 2019) have been developed. 219 
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With respect to the optimization criteria (taxonomy ii), the most commonly used criteria are of economic and 220 

safety nature, such as maintenance cost (Lin, Li and Zio, 2018; Wang, Zhu and Yuan, 2018), life-cycle cost 221 

(Morcous and Lounis, 2005; Mellal, Zio and Williams, 2020), plant profit (Borgonovo, Marseguerra and Zio, 222 

2000; Oke, 2005), availability (Laggoune, Ait Mokhtae and Kheloufi, 2011; Mellal and Zio, 2019), reliability 223 

(Marseguerra, Zio and Podofillini, 2004; Li, Guo and Zhou, 2016), resilience (Dehghani, Mohammadi Darestani 224 

and Shafieezadeh, 2020; Fang et al., 2021). Both single objective and multi-objective approaches have been 225 

proposed. To address issues related to specific applications, other optimization criteria such as personnel 226 

management (Ni and Jin, 2012), spare parts inventory (Marseguerra, Zio and Podofillini, 2005; Ilgin and Tunali, 227 

2007), environmental impact (García-Segura et al., 2017) and production quality (Wang, Chu and Wu, 2007) have 228 

been considered. 229 

With respect to the outcomes of the maintenance optimization (taxonomy iii), the methods can provide: a) 230 

indications to the technicians to assist in their maintenance decisions making and planning (Ben Said et al., 2013), 231 

b) the best maintenance strategy among some a-priori defined alternatives (Haladuick and Dann, 2018), c) the 232 

optimal setting of the maintenance strategy, e.g., the optimal time interval between scheduled maintenance 233 

interventions (Compare, Martini and Zio, 2015; Javanmard and Koraeizadeh, 2016) or optimal degradation 234 

threshold in condition-based strategy (Marseguerra, Zio and Podofillini, 2002). 235 

With respect to the characteristics of the considered systems (taxonomy iv), the methods can be distinguished 236 

between those addressing single-unit (Cha, Finkelstein and Levitin, 2017) and multi-unit systems (Vu et al., 2014). 237 

Also systems characterized by different types of dependence among components have been considered: 238 

independent units (Bajestani and Banjevic, 2016), economic dependence, stochastic dependence, structural 239 

dependence and logistical dependence (Vu, Do and Barros, 2016; Farsi and Zio, 2020). 240 

2.1. Maintenance in the wind power industry 241 

For what concerns the optimization of maintenance in the wind power industry, various approaches have been 242 

proposed. In (Nielsen and Sørensen, 2011), a framework based on Bayesian updating is developed to optimize 243 

condition-based maintenance in offshore wind farms. In (Ding and Tian, 2011), an opportunistic maintenance plan 244 

has been optimized by simulating the effect of different parameters sets and considering the impact of imperfect 245 

maintenance. In (Tian et al., 2011), a procedure to optimize failure probability thresholds assuming a condition-246 

based maintenance strategy for WTs has been proposed. for  In (Carlos et al., 2013), Genetic Algorithms (GAs) 247 

are used to optimize the scheduled maintenance strategy of a wind farm taking into account the stochasticity of 248 

wind power production. In (Nielsen and Sørensen, 2014), several methods for maintenance optimization of WTs, 249 

such as graphical, Bayesian and simulation-based approaches have been investigated. The authors have shown that 250 

the methods which make use of more sources of information and are able to provide time-variant policies are those 251 

which provide more satisfactory performance. In (Atashgar and Abdollahzadeh, 2016), an opportunistic 252 

maintenance strategy for a wind farm is optimized using particle swarm algorithm. In (Zhang et al., 2017), the 253 

fruit fly optimization algorithm has been used to determine the optimal opportunistic maintenance threshold. In 254 

(Izquierdo et al., 2019), GAs are used to optimize an opportunistic maintenance strategy considering the 255 

dependencies among several components. In (Santos, Teixeira and Soares, 2019), a Petri net-based simulation 256 

approach is used to compare the performance of several maintenance strategies with respect to the minimization 257 

of the maintenance cost of a wind farm. The work has shown that opportunistic corrective maintenance allows 258 

obtaining the best performance in the considered case study. In (Zhou et al., 2020), mixed integer linear 259 

programming has been used to discover cost-effective joint preventive maintenance plans for three wind farms. to 260 

In (Yang et al., 2020), an opportunistic maintenance strategy for a wind farm is developed using an artificial bee 261 

colony algorithm, which considers information about wind and aging. In (Zhang and Yang, 2021), GAs are used 262 

to optimize the maintenance schedules of adjacent wind farms taking into account resource allocation. 263 

Electronic copy available at: https://ssrn.com/abstract=3875191



All these literature works address the maintenance optimization problem by selecting state-of-the-art maintenance 264 

approaches and choosing the best performing one or by tuning the parameters of an a-priori selected maintenance 265 

approach, e.g., planned periodic or condition-based, to obtain the best possible result with respect to the selected 266 

optimization criteria. This implies that the search space is restricted to a limited number of state-of-the-art or user-267 

defined maintenance strategies. Also, although many works have discussed the possibility of estimating the RUL 268 

of WTs (Ziegler et al., 2018; Njiri et al., 2019), according to the authors’ best knowledge, no work has exploited 269 

this information in a maintenance optimization approach applied to wind farms. Finally, even if RL has been 270 

already applied to several maintenance optimization problems, its capability in dealing with maintenance 271 

optimization of renewable energy systems and, in particular, of wind farms, has not been discussed, yet.272 

3. Problem Statement 273 

We consider a renewable energy system composed of 𝐿 independently degrading units. The time horizon, 𝑇𝑀, is 274 

discretized into 𝑁𝑇𝑀
 decision times and we indicate the generic decision time as 𝑡. Maintenance is performed by 275 

a maintenance crew. At each decision time, the possible destinations of the maintenance crew are the 𝐿 units or 276 

the depot, 𝐻. Once the maintenance crew reaches the generic 𝑙 − 𝑡ℎ unit, it performs: i) Preventive Maintenance 277 

(PM) if the unit is not failed, or ii) Corrective Maintenance (CM) if the unit is failed. Once the maintenance crew 278 

reaches the depot, 𝐻, it waits up to the next decision time, 𝑡 + 1. The downtimes of the units caused by PM and 279 

CM actions, Π𝑃𝑀 and Π𝐶𝑀, are uncertain quantities, with the downtime of PM interventions expected to be smaller 280 

than that of CM interventions, as logistic support issues have already been addressed (Compare et al., 2018). 281 

The costs of preventive and corrective maintenance actions are 𝑈𝑃𝑀  and 𝑈𝐶𝑀, respectively, and take into account 282 

the maintenance equipment costs and the maintenance crew costs. 283 

The 𝑙 − 𝑡ℎ unit, 𝑙 ∈ Λ = {1, … , 𝐿}, is equipped with a PHM system for the prediction of its RUL. A PHM system 284 

is typically composed of a monitoring system for the measurement, transmission and storing of the relevant 285 

physical quantities and algorithms for the evaluation of the system health state and prediction of the RUL 286 

(Aivaliotis, Georgoulias and Chryssolouris, 2018). 287 

The production level 𝑃𝑙(𝑡) of the 𝑙 − 𝑡ℎ unit at time 𝑡 represents the fraction of power produced at time 𝑡 with 288 

respect to the absolute maximum power that can be produced by that unit. 𝑃𝑙(𝑡) depends on the environmental 289 

conditions, which are typically estimated in advance using data-driven approaches (Haddad et al., 2019; Nazir et 290 

al., 2020), and the component degradation state, which is related to the component age, 𝐴𝑔𝑙. We assume to have 291 

available a model predicting at any time 𝑡 the present production level, �̂�𝑙(𝑡), and the future ones, �̂�𝑙(𝑡 + 𝑗), for 292 

the following 𝐽 days. 293 

At any time 𝑡, the revenue generated from the total system production, ∑ 𝑃𝑙(𝑡)𝐿
𝑙=1 , is indicated as 𝐺𝑡. 294 

The objective of the work is to define the optimal O&M policy, 𝜋∗, i.e., the optimal sequence of actions to be 295 

taken at every decision instant 𝑡 in order to maximize the system profit, i.e., the difference between revenues and 296 

costs, over the time horizon 𝑇𝑀. 297 

4. Problem Formulation 298 

We formulate the problem as a SDP defined by the set ⟨𝒮, 𝒜, 𝒫, ℛ, 𝛾⟩, where: 299 

• 𝒮 is the state-space, i.e., the set of variables describing the state of the system; 300 

• 𝒜 is the action-space, i.e., the set of possible actions; 301 

• 𝒫 represents the transition probability, i.e., 𝒫(𝑠′|𝑠, 𝑎) is the probability of making a transition from state 302 

𝑠 to state 𝑠′ by performing action 𝑎; 303 
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• ℛ is the reward function, i.e., ℛ(𝑠′|𝑠, 𝑎) is the reward which is received as results of reaching state 𝑠′ 304 

after performing action 𝑎 in state 𝑠, and it is used to update the policy; 305 

• 𝛾 ∈  [0,1] is the discount factor, i.e., the factor used to evaluate the present value of future rewards.  306 

 307 

In Subsections 4.1, 4.2 and 4.3, the state-space, 𝒮, the action-state, 𝒜, and the reward function, ℛ, are defined, 308 

respectively. In Subsection 4.4, the developed model of the environment is described. Notice that, since in RL the 309 

learning agent directly interacts with the model of the environment, the explicit definition of the transition function 310 

𝒫 is not required. 311 
 312 

4.1. State-space 313 

The state at time 𝑡 contains all the information retrievable from the energy renewable system and its environment. 314 

It is defined by the vector 𝒔𝑡 = [�̂�𝑡
∗, �̂�𝑡 , 𝑴𝑻𝑡 , 𝑨𝒈𝑡, 𝑡], obtained appending the vectors of the units RULs predicted 315 

at time 𝑡 by the PHM system, �̂�𝑡
∗ = [�̂�1

∗(𝑡), … , �̂�𝐿
∗(𝑡)], the predictions of the production of the units at time         316 

𝑡, 𝑡 + 1, … , 𝑡 + 𝐽, �̂�𝒕 = [�̂�1(𝑡), … �̂�𝐿(𝑡), �̂�1(𝑡 + 1), … , �̂�𝐿(𝑡 + 1), … , �̂�1(𝑡 + 𝐽), … , �̂�𝐿(𝑡 + 𝐽)], the times needed to 317 

complete the ongoing maintenance actions, 𝑴𝑻𝑡 = [𝑀𝑇1, … , 𝑀𝑇𝐿], which are set to 0 if the units are not under 318 

maintenance at time 𝑡, the current ages of the units 𝑨𝒈𝑡 = [𝐴𝑔1, … , 𝐴𝑔𝐿] and the current time 𝑡. The total 319 

dimensionality of the state-space is (4 + 𝐽) ∙ 𝐿 + 1.  320 

4.2. Action-space 321 

The possible destinations, i.e., the 𝐿 units and the depot, are organized in the vector 𝑨 = [𝑎1, … , 𝑎𝐿+1], where 322 

𝑎𝑙 , 𝑙 = 1, … , 𝐿, refers to the 𝑙 − 𝑡ℎ unit and 𝐿 + 1 to the depot. At any time 𝑡, a decision is taken about the next 323 

destination of the maintenance crew. Namely, the learning agent returns as output a scalar 𝑎𝑡 ∈ 𝑨, that represents 324 

the destination of the crew. If one of the 𝐿 units is selected as destination, the maintenance intervention, which can 325 

be preventive, if the unit is not failed, or corrective, if it is failed, starts as soon as the crew reaches the unit, 326 

whereas if the depot is selected as destination, the crew will start waiting for a new assignment as soon as it arrives 327 

at destination. When a maintenance operation starts, the corresponding unit is stopped and its production level 328 

becomes 0.  329 

4.3. Reward function 330 

At every decision instant 𝑡, the learning agent receives a reward 𝑟𝑡:  331 

𝑟𝑡 = 𝐺𝑡 − 𝑋𝑡       (2) 332 

where the revenue 𝐺𝑡 at time 𝑡 is directly proportional to the total system production: 333 

 𝐺𝑡 =  ∑ 𝐾 ∙ 𝑃𝑙(𝑡)𝐿
𝑙=1       (3) 334 

being 𝐾 the maximum revenue per unit, i.e., the revenue obtained when 𝑃𝑙(𝑡) = 1. The maintenance cost 𝑋𝑡 at 335 

time 𝑡 is:  336 

𝑋𝑡 =  ∑ 𝑈𝑃𝑀  ∙ 𝐼𝑡<𝑇𝑙
(𝑡)𝐿

𝑙=1 ∙ 𝐼𝑎𝑡=𝑎𝑙
(𝑡) + 𝑈𝐶𝑀 ∙ 𝐼𝑡≥𝑇𝑙

(𝑡) ∙ 𝐼𝑎𝑡=𝑎𝑙
(𝑡)   (4) 337 

where 𝐼𝑡<𝑇𝑙
, 𝐼𝑡≥𝑇𝑙

 and 𝐼𝑎𝑡=𝑎𝑙
 are Boolean variables equal to 1 only when the condition at the subscript is satisfied. 338 

In practice, 𝐼𝑡≥𝑇𝑙
 (𝐼𝑡<𝑇𝑙

) indicates whether the component has (not) already failed at time 𝑡 and therefore should 339 
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undertake corrective (preventive) maintenance. 𝐼𝑎𝑡=𝑎𝑙
 indicates whether the 𝑙 − 𝑡ℎ unit has been selected as 340 

destination for the maintenance crew at time 𝑡. 341 

 342 

4.4. Model of the environment 343 

Despite that the learning agent can discover the optimal O&M policy by means of direct interactions with the real-344 

world system, this turns out to be unfeasible in the case of renewable energy systems for economic, safety and 345 

time issues (Sutton and Barto, 2018). Due to the trial-and-error nature of the learning process, the agent would 346 

need to perform several times actions suggested by the algorithm to explore their outcomes, leading to 347 

economically inconvenient and unsafe system management in the early stages of the learning process, when they 348 

are not yet optimal. Thus, the learning agent is trained using a white-box model of the system of interest. 349 

The model of the environment developed in this work includes a stochastic model of the unit failure time, which 350 

is based on: i) a probability density function, 𝑓𝑇𝑙
∗(𝑡), describing the failure time of the 𝑙 − 𝑡ℎ unit, 𝑇𝑙

∗, assuming 351 

that it works until failure in nominal operating conditions ii) a law which allows computing the unit ground-truth 352 

failure time, 𝑇𝑙, considering 𝑇𝑙
∗ and the operating conditions actually experienced by the unit during its entire life. 353 

The white-box model of the system uses the two components in i) and ii) to represent the operating conditions’ 354 

influence on the degradation process and consequent failure time. 355 

At any decision time, 𝑡 ∈ {1, … , 𝑇𝑀}, the PHM system predicts the 𝑙 − 𝑡ℎ unit RUL, �̂�𝑙
∗(𝑡),  𝑙 = 1, … , 𝐿, assuming 356 

that it works in nominal operating conditions for the rest of its useful life. The prediction is affected by an error 357 

𝜖𝑅 ∼ 𝑁(0, 𝜎𝑅), which describes the uncertainty due to the aleatory nature of the degradation process, the 358 

measurement error and the epistemic uncertainty of the prediction model (Baraldi, Mangili and Zio, 2013; Deng, 359 

Santos and Curran, 2020). 360 

We assume to have available a model predicting at any time 𝑡 the present production level, �̂�𝑙(𝑡), and the future 361 

ones, �̂�𝑙(𝑡 + 𝑗), 𝑗 = 1, … , 𝐽, for the following 𝐽 days, 362 

�̂�𝑙(𝑡 + 𝑗) = 𝑃𝑙(𝑡 + 𝑗) + 𝜖𝑃          𝑗 = 0, … , 𝐽    (1) 363 

where 𝑃𝑙(𝑡 + 𝑗) is the ground-truth production level and 𝜖𝑃 ∼ 𝑁(0, 𝜎𝑃) is the model prediction error. 364 

The training of the learning agent is performed using the white-box model of the environment, whereas the actual 365 

data collected from the real-world renewable energy system can be fed to the RL algorithm, which provides as 366 

output the O&M actions to be performed.367 

 368 

5. Reinforcement Learning Algorithms 369 

A schematic view of the general RL procedure is shown in Figure 1. At each decision time, the learning agent 370 

observes the state of the environment and selects the action to be performed. This action leads to a change of the 371 

environment state and to a reward that is given as feedback to the agent for learning. By repeating this procedure 372 

several times, the learning agent discovers the optimal policy, 𝜋∗, which maps the possible environment states into 373 

the most suitable actions. 374 
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 375 
Figure 1. Schematic representation of RL. 376 

RL algorithms can be classified into three groups: policy search, value function and actor-critic methods (Konda 377 

and Tsitsiklis, 2000). Policy search methods directly look for the optimal policy by learning a parameterized policy 378 

through which optimal actions are selected. The update of the policy parameters can be performed by means of 379 

gradient-free methods, e.g., evolutionary algorithms, or gradient-based methods, e.g. REINFORCE algorithms 380 

(Williams, 1992). Even if these methods have been shown to be effective in high dimensional or continuous actions 381 

spaces, they typically suffer from high variance in the estimates of the gradient and tend to converge to local 382 

optima rather than to the global optimum (Grondman et al., 2012). 383 

Differently, value function methods learn the value of being in a particular state and, then, select the optimal action 384 

according to the estimated state values. A well-known example of value function method is Deep Q-Networks 385 

(DQN) (Mnih et al., 2015), in which a DNN is used to approximate the action-value function, 𝑄𝜋(𝑠, 𝑎), for each 386 

possible state-action pair. Then, the optimal policy 𝜋∗ is the one that maximizes the action-value function 387 

𝑄𝜋∗
(𝑠, 𝑎): 388 

 𝜋∗ = 𝑎𝑟𝑔𝑚𝑎𝑥𝑎  𝑄𝜋(𝑠, 𝑎)     (5)  389 

On one hand, the non-linear function approximation of the action-value function provided by the DNN allows 390 

dealing with complex systems for which an analytical treatment is unfeasible, but, on the other hand, it can 391 

introduce instability and divergence in the learning process, mainly because of two sources of correlations: among 392 

consecutive observations, and among the action-values and the target values of the learning process. Several 393 

improvements have been proposed to deal with this issue, such as experience replay and target networks (Mnih et 394 

al., 2015). Experience replay stores transitions in a cyclic buffer from which training batches are randomly sampled 395 

in order to remove the correlations in the sequence of observations and to increase the method sample efficiency, 396 

whereas target networks rely on a second DNN, with a different set of weights from those used to select the most 397 

suitable action, to provide the target of the learning process. These weights are only periodically updated to remove 398 

the correlations between the action-value function 𝑄 and the target values. Value function methods usually show 399 

slow convergence rate and have been shown to fail on many simple problems (Schulman et al., 2017).  400 

Actor-Critic methods learn both the value function and the policy in an attempt to combine the strong points of 401 

value function and policy search methods (Konda and Tsitsiklis, 2000). Actor-Critic methods consist of two 402 

models: the critic, which learns the value function and the actor, which learns the policy by updating the parameters 403 

in the direction suggested by the critic.  404 

In this work, the RL algorithm adopted to optimize O&M in a renewable energy system is PPO (Schulman et al., 405 

2017). PPO is an actor-critic algorithm, which aims at monotonically improving the policy during the learning 406 

process. PPO can be considered an enhancement of Trust Region Policy Optimization (TRPO) (Schulman et al., 407 
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2015), in which the monotonicity of the improvement is guaranteed by means of a constraint that can be managed 408 

by means of second order approximations. The main idea is to avoid too large policy updates, which can increase 409 

the probability of accidental performance collapses. In PPO, the complexity of the second order approximations 410 

used in TRPO is overcome by clipping the objective function, which is defined as: 411 

𝐹 = 𝔼𝑡 [min (
𝜋(𝑎|𝑠)

𝜋𝑜𝑙𝑑(𝑎|𝑠)
�̂�𝜋(𝑠, 𝑎), 𝑐𝑙𝑖𝑝 (

𝜋(𝑎|𝑠)

𝜋𝑜𝑙𝑑(𝑎|𝑠)
, 1 − 𝜖, 1 + 𝜖) �̂�𝜋(𝑠, 𝑎))]  (6) 412 

where 𝜖 is an hyperparameter used to perform the clipping operation and �̂�𝜋(𝑠, 𝑎) is an estimator of the advantage 413 

function, defined as the difference between the action-value function, 𝑄𝜋(𝑠, 𝑎), and the value function, 𝑉𝜋(𝑠), for 414 

a given state 𝑠: 415 

𝐴𝜋(𝑠, 𝑎) = 𝑄𝜋(𝑠, 𝑎) − 𝑉𝜋(𝑠)     (7)  416 

The advantage function informs about the gain on the reward that can be obtained by performing a particular action 417 

𝑎 in state 𝑠, with respect to the reward obtained on average from that state. Its use allows reducing the variability 418 

of the objective function that would be obtained directly using the action-value function, 𝑄𝜋(𝑠, 𝑎) (Baird III, 1993). 419 

According to Eq.(6), the objective function is defined as the minimum between an unclipped and a clipped version 420 

of the objective function used in TRPO (Schulman et al., 2017). The minimum is used to define a lower, i.e., 421 

pessimistic, bound on the unclipped objective and the clipping operation is used as a regularizer that discourages 422 

to dramatically change the updated policy from the old one. PPO is considered relatively easy to implement and 423 

tune, and despite its simplicity, it has been shown able to outperform many state-of-the-art approaches on several 424 

benchmarks (Schulman et al., 2017). 425 

Finally, since the state space is very large, it can be hard for the agent to find the optimal action to be performed 426 

in every state in an efficient way starting from a random initialization of the neural network. This problem has 427 

been tackled by including domain knowledge in the learning process using methods such as reward shaping 428 

(Mataric, 1994) and state-action similarity solutions (Rosenfeld, Taylor and Kraus, 2017). In this work, we resort 429 

to Imitation Learning (IL) (Hester et al., 2017), which consists in pre-training the agent to reproduce a heuristic 430 

policy by means of supervised learning and, then, fine-tuning the agent using RL. Notice that imitation learning 431 

allows exploiting the experts’ knowledge about existing maintenance practices. 432 

6. Case Study 433 

We consider a wind farm composed of 𝐿 = 30 identical 1.3MW WTs, each one equipped with a dedicated PHM 434 

system over a time horizon of 𝑇𝑀 = 5000 days. We assume that a WT works in nominal conditions when its 435 

production level 𝑃𝑙(𝑡) is lower than 0.7. The failure time, 𝑇𝑙
∗, of a WT operating in nominal conditions is 436 

distributed as an exponential distribution with failure rate 𝜆𝑓 = 6.58 ∙ 10−3 days−1, obtained by modeling the WT 437 

as a series equivalent of sub-systems, whose failure rates are set equal to the values reported in (Ozturk, Fthenakis 438 

and Faulstich, 2018). Sampled failure times lower than 75 days are not considered to assure an acceptable value 439 

of useful life after each maintenance intervention and to avoid the rise of behaviors associable to maintenance-440 

induced failures, for which RUL after maintenance is lower than RUL before maintenance (Jackson and Mailler, 441 

2013). 442 

The effect of operation in non-nominal conditions characterized by 𝑃𝑙(𝑡) ≥ 0.7 is to increase the degradation 443 

speed and, therefore, to reduce the useful life of the WT (Figure 2). This is modeled by assuming that for each 444 

time step in which the WT operates at 𝑃𝑙(𝑡) ≥ 0.7, the useful life of the WT decreases of a random quantity 𝜈 ∼445 

𝑈(1,5) days. In practice, the ground-truth failure time, 𝑇𝑙, of the 𝑙 − 𝑡ℎ WT is given by: 446 
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𝑇𝑙 = 𝑇𝑙
∗ − ∑ 𝜈𝜏

𝑇𝑙
𝜏=1        (8) 447 

The PHM system of the 𝑙 − 𝑡ℎ WT provides at each time 𝑡 a prediction �̂�𝑙
∗(𝑡) of the WT RUL in nominal condition, 448 

𝑅𝑙
∗(𝑡). The RUL prediction is affected by a Gaussian error with mean equal to 0 and standard deviation 𝜎𝑅 = 0.1 ∙449 

𝑅𝑙
∗(𝑡). The variance of the error is decreasing as time passes in consideration of the fact that RUL predictions 450 

become more accurate as the WT approaches the failure time (Liu, Zio and Hu, 2018). The wind speed is simulated 451 

using the Markov model developed in (Shamshad et al., 2005). In particular, historical data are used to compute 452 

the transition probabilities of a Markov chain whose states represent different wind speed ranges. The Markov 453 

model is, then, used to generate wind speed trajectories of the desired length. In this work, we consider 33 wind 454 

velocity ranges of 1
𝑚

𝑠
. Starting from the wind velocity trajectories, the power production is, then, estimated by 455 

means of the power curve shown in Figure 3, where 𝑣𝑐𝑢𝑡−𝑖𝑛 = 3.5
𝑚

𝑠
, 𝑣𝑟𝑎𝑡𝑒𝑑 = 13

𝑚

𝑠
 and 𝑣𝑐𝑢𝑡−𝑜𝑢𝑡 = 25

𝑚

𝑠
, 456 

according to the data available for 1.3MW WTs (Bauer and Matysik, 2011). Notice that the WT produces power 457 

only when the wind speed is in the range [𝑣𝑐𝑢𝑡−in, 𝑣𝑐𝑢𝑡−𝑜𝑢𝑡], since for values lower than 𝑣𝑐𝑢𝑡−𝑖𝑛 the wind speed 458 

is too low for the turbine blades to start rotating and for values larger than 𝑣𝑐𝑢𝑡−𝑜𝑢𝑡 the WT is disconnected to 459 

avoid catastrophic failures. The nominal power value is reached for wind speed larger than or equal to 𝑣𝑟𝑎𝑡𝑒𝑑.  460 

The influence of the WT degradation on the power production is modeled assuming that the WT performance 461 

declines by 1.6% per year according to (Staffell and Green, 2014). This is implemented by accordingly reducing 462 

the maximum achievable power production at each time step. We consider both PM and CM to be perfect, i.e., the 463 

maximum achievable power production is restored to its original value after each maintenance intervention.  464 

Figure 4 shows a simulated trajectory of the power produced by a WT.  465 

We assume that there is a prediction algorithm that allows estimating the future power production for the following 466 

𝐽 = 2 days. Then, at every decision time 𝑡, the value of the predicted production, �̂�𝑙, for the present and following 467 

𝐽 days, is set according to Eq.(3) with 𝜎𝑃 = 0.05. The maintenance times are sampled from exponential 468 

distributions with repair rate 𝜇𝑃𝑀 = 2.94 days−1 and 𝜇𝐶𝑀 = 1.83 days−1, for preventive and corrective 469 

maintenance, respectively, setting 𝜇𝑃𝑀 and 𝜇𝐶𝑀 equal to the inverse of the mean values of the PM and CM repair 470 

times of different WT sub-systems (Carroll, McDonald and McMillan, 2016). The maximum daily revenue per 471 

unit is set equal to 𝐾 = 96, whereas the cost of PM and CM actions are 𝑈𝑃𝑀 = 180 and 𝑈𝐶𝑀 = 2247 (Carroll, 472 

McDonald and McMillan, 2016), all in arbitrary units.  473 

Finally, the discount factor, 𝛾, as been set equal to 0.99. 474 
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 475 
Figure 2. Dependence of the ground-truth failure time, 𝑇𝑙, on the operating conditions. 476 

 477 
Figure 3. Wind turbine power curve. 478 

𝑣𝑐𝑢𝑡−𝑖𝑛 𝑣𝑟𝑎𝑡𝑒𝑑 𝑣𝑐𝑢𝑡−𝑜𝑢𝑡 
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 479 
Figure 4. Example of simulated power production trajectory. 480 

7. Results 481 

We resort to a feedforward neural network characterized by 2 hidden layers of 64 neurons each, as learning agent. 482 

The IL step is performed by simulating 500 predictive maintenance trajectories and training the learning agent for 483 

40 epochs. The PPO clipping hyperparameters 𝜖 is set equal to 0.2 and training lasts for a total of 106 time steps 484 

using 8 actors in parallel. The computations have been performed on two Intel® Xeon® CPUs at 2.30 GHz with 485 

13 GB of RAM using Python. 486 

The PPO-based RL optimized policy has been compared with the following user-defined strategies over 100 test 487 

episodes: i) a corrective maintenance strategy, ii) a scheduled maintenance strategy in which the maintenance 488 

interventions are scheduled at regular intervals, iii) a predictive maintenance strategy in which the maintenance 489 

interventions are performed only when the turbine RUL estimation is smaller than a user-defined threshold and iv) 490 

a predictive-heuristic maintenance strategy in which the maintenance intervention is planned when both the turbine 491 

RUL and future power production are below user-defined thresholds. The latter strategy has been introduced to 492 

consider the possibility of manually modifying the predictive maintenance strategy to take into account the 493 

information on the production level. The hyperparameters of all these maintenance strategies, i.e., time interval 494 

between two consecutive maintenance interventions for scheduled maintenance, degradation threshold for 495 

predictive maintenance, degradation and power thresholds for predictive-heuristic maintenance, have been set by 496 

optimizing the profit over 250 episodes using the Tree-structured Parzen Estimator (TPE) algorithm (Bergstra et 497 

al., 2011). The performance of the proposed PPO-based RL approach has been compared also to two other state-498 

of-the-art RL algorithms: v) a value function method, i.e., DQN with experience replay and target network and vi) 499 

an actor-critic method, i.e., sample-efficient Actor-Critic with Experience Replay (ACER) (Wang et al., 2017), 500 

which improves sample efficiency by introducing experience replay for actor-critic algorithms. The experience 501 

replay buffer size has been set equal to 50000 and to 5000 for DQN and ACER, respectively, and the training lasts 502 

2·106 and 106 time steps, respectively, since DQN generally requires longer training times to converge. 503 

The obtained performance over 100 test episodes are reported in Table 1. All the RL policies provide better 504 

performance than the corrective and scheduled maintenance strategies, which are the maintenance strategies most 505 

commonly applied to WTs (Pattison et al., 2016). The DQN-based and the PPO-based policies are characterized 506 

by performances comparable to the predictive and predictive-heuristic strategies, which exploit the information 507 

about the equipment health state. The PPO-based policy is able to increase the profit of 1% with respect to the 508 

predictive strategy, despite that it does not reduce the number of preventive maintenance interventions and the 509 

number of failures. This is because the learning agent prefers to perform a larger number of maintenance 510 
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interventions to keep the WT in low degradation states characterized by larger production levels and, on the other 511 

side, accepts the risk of failure when the predicted power production is large. Figure 5 shows the number of PM 512 

interventions performed by the predictive, predictive-heuristic and PPO-based policies, normalized by the number 513 

of time steps in which the unit production is at a given power level. The predictive strategy performs the same 514 

number of maintenance actions at every power level, the predictive-heuristic strategy performs many interventions 515 

at low power levels and few interventions at large power levels, with no interventions at power levels larger than 516 

0.95, whereas the RL agent prefers to perform maintenance at low power levels but, differently from the predictive-517 

heuristic strategy, it sometimes performs maintenance when the power is equal to one, in order to avoid failures. 518 

It is interesting to observe that, even if IL has been used to pre-train the RL agent to approximate the optimal 519 

predictive strategy, PPO is able to identify a different and better performing strategy.  520 

Finally, considering the last column of Table 1, it can be noticed that the DRL-based approaches require larger 521 

computational times to identify the optimal policy than that required for the optimization of the maintenance 522 

interval (scheduled maintenance), RUL thresholds (predictive maintenance), RUL and power thresholds 523 

(predicitive-heuristic) by the TPE algorithm. This is due to the fact that the investigated RL approaches are 524 

composed of two stages (IL and RL) both requiring the training of a DNN, which is usually characterized by long 525 

computational time. Nevertheless, the computational times are still acceptable since they are limited to a few hours. 526 

Also, once the optimal policy has been found, it can be applied in almost real time to obtain the action to be 527 

performed given the environment data. 528 

 529 

Figure 5. Normalized number of preventive maintenance interventions as a function of the power level. 530 

  531 
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Table 1. Performance of the tested strategies in terms of average profit over 100 test episodes. 532 

Maintenance 

strategy 

Average profit 

(Ranking) 

Number of 

corrective 

maintenance 

interventions 

(Ranking) 

Number of 

preventive 

maintenance 

interventions 

(Ranking) 

Computational 

time [s] 

(Ranking) 

Corrective 
(2.84 ± 0.13) · 106          

(7) 

1550.91 ± 37.12           

(7) 

0.00 ± 0.00                        

(1) 

0.00                           

(1)         

Scheduled 
(4.10 ± 0.08) · 106         

(6) 

1009.97 ± 25.54           

(6) 

2066.07 ± 25.82                  

(5) 

2075.44                  

(4) 

Predictive 
(7.27 ± 0.01) · 106         

(2) 

0.51 ± 1.24                  

(1) 

1685.15 ± 39.84                

(3) 

2031.95                    

(2) 

Predictive-heuristic 
(7.25 ± 0.02) · 106           

(3) 

1.55 ± 3.03                  

(2) 

2070.44 ± 52.61                 

(6) 

2070.35                    

(3) 

PPO + IL 
(7.34 ± 0.01) · 106         

(1) 

1.69 ± 1.46                   

(3) 

1819.65 ± 45.42                  

(4) 

11479.97               

(5) 

DQN + IL 
(6.69 ± 0.11) · 106           

(4) 

43.53 ± 15.13              

(4) 

3139.84 ± 95.21                    

(7) 

32148.44                    

(7) 

ACER + IL 
(4.45 ± 0.02) · 106          

(5) 

47.04 ± 4.67                 

(5) 

1533.44 ± 49.17                

(2) 

16330.63             

(6) 

8. Further experiments 533 

The robustness of the proposed method in discovering the optimal policy, 𝜋∗, is verified further by performing 534 

experiments which consider renewable energy systems with different characteristics and subject to unexpected 535 

issues. 536 

 537 

8.1. Experiment 1 538 

The objective of this experiment is to investigate the robustness of the proposed method with respect to possible 539 

underperformance of the PHM system, which can have several causes, such as sensor failures or the onset of 540 

degradation mechanisms not considered by the prognostic model. To this aim, we modify the case study presented 541 

in Section 6 by assuming that a subset of 𝐿′ = 5 WTs, Λ′ = {1, … , 𝐿′} ⊂ Λ, is equipped with PHM systems 542 

providing less accurate RUL predictions, specifically characterized by an error with a standard deviation 𝜎𝑅
𝑙′

 equal 543 

to 0.99 ∙ 𝑅𝑙′
∗ . Figure 6-a shows the accurate RUL predictions obtained for the generic 𝑙 − 𝑡ℎ WT, with 𝑙 ∉ Λ′, and 544 
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Figure 6-b shows the inaccurate RUL predictions of the 𝑙′ − 𝑡ℎ WT, with 𝑙′ ∈ Λ′. The performance of the tested 545 

strategies over 100 test episodes are reported in Table 2. 546 

 547 
Figure 6. Comparison between the RUL prediction in case of small prediction error (a) and large prediction error (b). 548 

The PPO-based RL policy is able to outperform the scheduled one, which is the best performing strategy among 549 

the state-of-the-art strategies and of the other RL approaches, providing an increment of 2.5% in terms of average 550 

profit with respect to the scheduled maintenance strategy.  551 

Predictive and predictive-heuristic maintenance strategies perform a too large number of preventive maintenance 552 

interventions on the WTs equipped with underperforming PHM systems. PPO-based RL policy adopts a policy 553 

similar to a scheduled maintenance strategy for the five WTs of the set Λ′, which allow reducing the number of 554 

unnecessary maintenance interventions without significantly increasing the number of corrective interventions. 555 

Finally, despite a suboptimal policy has been used in the IL step, i.e., the predictive maintenance strategy, the 556 

learning agent is able to find the best performing policy. This allows us to conclude that IL does not force the 557 

learning agent to converge to an a-priori selected maintenance policy and does not require the a-priori knowledge 558 

of the best performing maintenance policy. 559 

 560 

  561 

(a) (b) 
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Table 2. Comparison of the performance of the tested strategies in terms of average profit over 100 test episodes. 562 

Maintenance 

strategy 

Average profit 

(Ranking) 

Number of 

corrective 

maintenance 

interventions 

(Ranking) 

Number of 

preventive 

maintenance 

interventions 

(Ranking) 

Number of 

corrective 

maintenance 

interventions 

on units 𝒍′ ∈ 𝚲′ 

(Ranking) 

Number of 

preventive 

maintenance 

interventions 

on unit 𝒍′ ∈ 𝚲′ 

(Ranking) 

Corrective 
(4.45 ± 0.09) · 106      

(6) 

1385.86 ± 37.76 

(7) 

0.00 ± 0.00     

(1) 

233.43 ± 14.56   

(7) 

0.00 ± 0.00     

(1) 

Scheduled 
(6.81 ± 0.02) · 106 

(2) 

40.84 ± 8.80   

(2) 

3606.06 ± 14.18 

(4) 

7.45 ± 3.52     

(3) 

599.71 ± 6.38  

(2) 

Predictive 
(6.67 ± 0.02) · 106 

(4) 

14.93 ± 8.80   

(1) 

4422.08 ± 28.45 

(7) 

0.01 ± 0.10     

(1) 

3394.41 ± 27.26  

(7) 

Predictive-

heuristic 

(6.70 ± 0.04) · 106 

(3) 

52.37 ± 19.97 

(4) 

4032.24 ± 41.02 

(5) 

0.12 ± 0.40     

(2) 

2965.32 ± 39.83 

(5) 

PPO + IL 
(6.99 ± 0.04) · 106 

(1) 

46.31 ± 10.27 

(3) 

2434.98 ± 40.64 

(3) 

14.45 ± 5.02     

(5) 

753.09 ± 23.30 

(3) 

DQN + IL 
(5.85 ± 0.14) · 106 

(5) 

143.97 ± 19.81 

(6) 

4417.65 ± 51.11 

(6) 

19.47 ± 4.19     

(6) 

3347.79 ± 47.49  

(6) 

ACER + IL 
(4.25 ± 0.08) · 106 

(7) 

61.66 ± 15.43 

(5) 

2073.90 ± 39.27 

(2) 

 8.09 ± 5.66    

(4) 

1262.94 ± 29.24  

(4) 

 563 

8.2. Experiment 2 564 

In this experiment, investigate whether the proposed approach is able to discover an optimal policy even in 565 

situations in which there is not a clear advantage in performing PM with respect to CM, and for which state-of-566 

the-art and user-defined strategies are characterized by similar performance in terms of profit. 567 

To this aim, the cost of PM has been increased to 𝑈𝑃𝑀 = 1000 arbitrary units, which is more than five times the 568 

cost considered in the case study of Section 6, the WT failure rate has been decreased to 𝜆𝑓 = 1.81 ∙ 10−3 days−1, 569 

which is less than one third of the failure rate considered in the case study of Section 6 and the WTs degrade their 570 

performance with a large degradation rate equal to  16% per year, which is ten times the degradation rate 571 

considered in the case study of Section 6. Also, the PM interventions are assumed to be imperfect, i.e., each PM 572 

intervention is characterized by a restoration factor 𝑞𝑃𝑀 sampled from a uniform distribution 𝑈(0.35, 0.75). In 573 

practice, after each PM intervention, the age 𝐴𝑔𝑙(𝑡) of the 𝑙 − 𝑡ℎ unit is: 574 
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𝐴𝑔𝑙(𝑡) = 𝐴𝑔𝑙(𝑡 − 1) − 𝑞𝑃𝑀 ∙ 𝐴𝑔𝑙(𝑡 − 1)    (9) 575 

In this experiment, CM is expected to perform better than PM in some circumstances, e.g., when a unit is very 576 

degraded (large age). Also, the impact of the age on the wind farm power production is amplified. 577 

The performance of the tested strategies over 100 test episodes are reported in Table 3. 578 

Table 3. Comparison of the performance of the tested strategies in terms of average profit over 100 test episodes. 579 

Maintenance 

strategy 

Average profit 

(Ranking) 

Number of corrective 

maintenance 

interventions 

(Ranking) 

Number of preventive 

maintenance 

interventions 

(Ranking) 

Corrective 
(5.63 ± 0.08) · 106         

(6) 

405.12 ± 23.03             

(6)           

0.00 ± 0.00                                 

(1) 

Scheduled 
(5.70 ± 0.06) · 106          

(5) 

32.07 ± 20.63               

(7) 

396.16 ± 17.86                             

(3) 

Predictive 
(5.72 ± 0.12) · 106         

(2) 

0.00 ± 0.00                      

(1)                                      

402.42 ± 25.35                          

(4) 

Predictive-heuristic 
(5.71 ± 0.11) · 106         

(4) 

0.61 ± 1.02                            

(2) 

409.55 ± 29.45                              

(5) 

PPO + IL 
(5.76 ± 0.10) · 106         

(1) 

6.07 ± 2.85                             

(4) 

426.38 ± 24.94                            

(6) 

DQN + IL 
(5.71 ± 0.12) · 106         

(3) 

3.53 ± 2.34                           

(3) 

544.78 ± 37.54                        

(7) 

ACER + IL 
(3.82 ± 0.11) · 106         

(7) 

21.95 ± 3.93                             

(5) 

272.8 ± 23.73                                

(2) 

It can be noticed that all strategies are characterized by similar performances, except for the policy found by the 580 

ACER-based RL, that is not able to properly deal with the environment of this case study. In particular, the 581 

corrective and the scheduled maintenance strategies are now characterized by good performance since the CM are 582 

no more strongly penalized. The PPO-based RL policy is again the best performing policy with an increment of 583 

0.7% in terms of average profit with respect to the predictive maintenance strategy. The PPO-based RL policy, 584 

differently from the predictive and the predictive-heuristic strategies and from the case study in Section 6, performs 585 

a larger number of CM interventions, which, however, allow increasing the profit since they improve the WTs 586 

health state more than the PM interventions. 587 
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9. Conclusions 588 

A DRL-based approach for O&M optimization of renewable energy systems has been developed. It combines 589 

PPO, IL and a stochastic model of the environment which enables simulating the behavior of the renewable energy 590 

system. Its application to a wind farm of 30 WTs has shown that the proposed policy outperforms traditional 591 

maintenance strategies and other policies found by state-of-the-art DRL-based approaches, such as DQN and 592 

ACER, allowing increasing the average profit by 1% with respect to a predictive maintenance approach and by 593 

10% with respect to DQN. Also, differently from the other approaches for maintenance optimization, which require 594 

to select a maintenance strategy and, then, optimize its parameters, the proposed approach does not require to 595 

select a-priori a maintenance strategy: it is able to automatically identify maintenance policies based on corrective 596 

or on preventive maintenance interventions, depending on the characteristics of the system, such as maintenance 597 

costs and accuracy of PHM algorithm predictions, and on the available sources of information and their 598 

uncertainties. 599 

Future work will consider: i) the development of more advanced models of the environment which represent each 600 

unit as an engineering system formed by several interacting components, each one characterized by different 601 

degradation behavior, failure severity and impact on the power production, ii) the extension to the case in which 602 

more than one case maintenance crews are available and iii) the application of the O&M policy obtained using the 603 

model of the environment to data collected from a real-world renewable energy system.  604 
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