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Abstract. We propose a class of non-Markov population models with contin-
uous or discrete state space via a limiting procedure involving sequences of
rescaled and randomly time-changed Galton – Watson processes. The class in-
cludes as specific cases the classical continuous-state branching processes and
Markov branching processes. Several results such as the expressions of mo-
ments and the branching inequality governing the evolution of the process are
presented and commented. The generalized Feller branching diffusion and the
fractional Yule process are analyzed in detail as special cases of the general
model.
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1. Introduction

Since the seminal paper of Galton – Watson [24], branching structures are
subject to intensive theoretical and applied researches. The most studied ap-
plications of branching phenomena concern population growth models. In this
context, in 1958, M. Jǐrina [9] introduced the so-called continuous-state branch-
ing processes (shortly CSBPs) that represent a general class of linear branching
processes in which jumps of any finite size and a continuous state space are
permitted (see also [15] and the references therein). The original definition of
CSBPs is very similar to that of Lévy processes (with which they are linked
by means of a random time change, the Lamperti transform). However, an
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alternative definition, dating back to the work of J. Lamperti [12] considers
CSBPs as limit processes of sequences of rescaled Galton – Watson processes
(GWPs in the following) or Markov branching processes (see also [1, 5] for fur-
ther references). Due to their simple definition, generalizations of the GWPs
and CSBPs have arisen in several directions, leading for example to the intro-
duction of population-size-dependent GWPs and CSBPs [10,14], and controlled
branching processes [21], where the independence of individuals’ reproduction
is modified allowing dependence on the size of the current population. In this
paper we aim to extend the definition of GWPs and CSBPs in a different direc-
tion. Indeed, the Markov property characterizing these processes, although is
mathematically appealing, determines a limitation for their actual application;
furthermore, non-Markov branching processes would present interesting mathe-
matical properties that constitute a reason of study by itself. Here we introduce
a general class of non-Markov population models characterized by persistent
memory and constructed by means of a limiting procedure on a sequence of
suitably rescaled Galton – Watson processes time-changed by a specific random
process. In order to clarify our approach, we briefly recall how time-changes
play a fundamental role in the definition of models for anomalous diffusion.
We will take inspiration from them. Roughly speaking, the basic framework
is the following. Take a standard Brownian motion, say {B(t), t > 0}, and an
independent stable subordinator d = {D(t), t > 0}, that is a spectrally posi-
tive increasing Lévy process with stable unilateral probability density function.
Define the inverse process to D as

E(t) := inf{u > 0 : D(u) > t}, t > 0.

Then, the time-changed process {B(E(t)), t > 0} is a non-Markov process with
continuous sample paths and exhibiting a sub-diffusive behaviour. Furthermore,
if P(B(E(t)) ∈ dx)/dx = l(x, t) is the marginal probability density function of
the time-changed Brownian motion, then l(x, t) solves the fractional PDE

∂βt l(x, t) =
1

2

∂2

∂x2
l(x, t), t > 0, x ∈ R, β ∈ (0, 1).

The above operator acting on time is a non-local integro-differential operator
called Džrbašjan – Caputo derivative (see Section 2 for prerequisites and specific
information) and β is the stability parameter. The main consequence of the
presence of the fractional derivative is that, due to non-locality, it furnishes the
model with a long memory.

Hence, in this paper we build via a limiting procedure and specific time-
changes a large class of processes with branching structure also exhibiting non-
locality and long memory. This is actually carried out in Section 3.2. Specific
cases of interest being part of this class are, amongst others, the generalized
Feller branching diffusion and the fractional Yule process.
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Due to the nature of the considered problem, the paper fits exactly in-
between two classical topics of probability, namely population models (processes
exhibiting a branching structure) and models for anomalous diffusion (frequently
associated to fractional diffusion).

The paper is organized as follows: in Section 2 we introduce the notation and
recall the basic definitions and properties that we use in the sequel; in Section 3
we define the time-changed processes both in the discrete and the continuous
setting and we prove the scaling limit; in Section 4 we focus on the time-changed
CSBPs with the proof of some properties and some examples.

2. Backgrounds

The aim of this section is to give a brief overview of the processes we are
interested in. We recall the definition and some basic properties of GWPs and
of CSBPs; in particular the branching property is of fundamental importance.
Moreover, basic information on fractional calculus and fractional diffusion is
also recalled.

2.1. From GWPs to CSBPs

GWPs are classical discrete-time branching processes, where each individual
of a population reproduces independently and according to the same offspring
distribution p, see [2] for a complete introduction. Rigorously, given a probabil-
ity measure p on N, a GWP {Zn}n>0 with offspring distribution p is the Markov
chain such that, for all n > 0,

Zn+1
d
=

Zn∑
i=1

ξi,

where ξi are i.i.d. random variables with common distribution p. Let us indicate
with m =

∑∞
k=0 kp(k) the first moment of the distribution of the offspring. It

classifies GWPs into three classes: subcritical if m < 1, supercritical if m > 1
and critical if m = 1. The following characteristic feature of GWPs is the
branching property. Let us call (j)Z the GWP starting with j individuals, i.e.

(j)Z0 = j almost surely. Then the GWP is the only discrete-time and discrete-
space Markov process such that for all j,k > 0,

(j+k)Z
d
= (j)Z

(1) + (k)Z
(2), (2.1)

where Z, Z(1) and Z(2) are independent GWPs with the same offspring distri-
bution. From a modelling point of view, this property underlines the fact that
each individual in the population reproduces independently from the others
according to the same offspring distribution p.
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Since the seminal works of Jǐrina and Lamperti [9, 11, 12], there has been
interest in defining branching processes in a continuous state-space setting and
in identifying them as scaling limits of GWPs. The simplest way to extend the
definition of branching processes to describe the evolution in continuous time of a
population with values in R+ is by means of the branching property. Indeed, we
define the CSBPs as the continuous time-continuous space processes satisfying
an analogue of the branching property (2.1) as follows. Rigorously, a stochastic
process X = {X(t) : t > 0} is a CSBP if it is a Markov process characterized by
a family of transition kernels {Pt(x,dy), t > 0, x ∈ R+} satisfying, for all t > 0
and x, x ′ ∈ R+ (see e.g. [11]),

Pt(x, ·) ∗ Pt(x ′, ·) = Pt(x+ x ′, ·).

Let D(R+) be the set of càdlàg functions defined on R+ with values on R+, a
CSBP is a random variable in D(R+). From now on we will consider D(R+) as a
topological space endowed with the usual Skorokhod topology. For a complete
description see [8]. Further, we denote by Ex the expectation with respect to
the law of the process X starting from the initial value x ∈ R+. Let us underline
that CSBPs are characterized by their Laplace transform, i.e. for all λ > 0 we
have

Ex

[
e−λX(t)

]
=

∞∫
0

e−λyPt(x,dy) = e
−xνt(λ),

where νt(λ) is the unique nonnegative solution to the equation

νt(λ) +

t∫
0

ψ(νs(λ))ds = λ. (2.2)

Here ψ can be written as

ψ(u) = bu+ cu2 +

∫
(e−zu − 1 + zu)m(dz),

where b ∈ R, c > 0 and m is a σ-finite measure on (0,∞) such that
∫
(z ∧

z2)m(dz) <∞. The function ψ is called the branching mechanism of the CSBP
and, at the same time, it is the characteristic function of a Lévy process without
negative jumps killed at the first time it becomes negative. This identifies
a relationship between CSBPs and the latter class of Lévy processes that is
known as Lamperti transform. Indeed, also the converse property holds true,
i.e. the characteristic function ψ of every Lévy process without negative jumps
and killed at zero is the branching mechanism of a CSBP (see [13, 22]). The
branching mechanism ψ, in addition to the Lamperti transform, plays a role
in classifying CSBPs in three categories: critical, subcritical and supercritical
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processes. A CSBP is supercritical when b < 0, critical when b = 0 and
subcritical when b > 0. Moreover, in [12] we see that the parameters of ψ
appear in the explicit form of the first two moments of a CSBP X, that is

Ex[X(t)] = xe
−bt, (2.3)

Ex[X(t)
2] =

{
x2 + xβ̃t, b = 0,

x2e−2bt − β̃x
b

(
e−2bt − e−bt

)
, b 6= 0,

where β̃ =
(
2c+

∫∞
0 u

2m(du)
)
. Let us mention that, despite CSBPs in general

have discontinuous sample paths, the Feller branching diffusion (introduced in
[4]) which is a CSBP whose branching mechanism has the form ψ(u) = bu+cu2,
exhibits continuous sample paths.

Results on convergence of suitably rescaled sequences of GWPs to CSBPs
appeared first in [12] and, subsequently, in several other papers such as [1, 5,
15]. In the following we briefly state the results and the approach. Consider a
sequence of GWPs

Z(k) = {Z(k)
n }n∈N, k = 1, 2, 3, . . . ,

defined through their offspring distribution p(k). Define a sequence of positive
integers {ck}k∈N, tending to infinity, and the Markov process

{Xk(t)}t>0 =

Z
(k)
bktc

ck


t>0

, Z
(k)
0 = ck a.s., (2.4)

where for each y ∈ R we denote with byc its integer part. If the sequence of
processes {Xk}k>0 has a weak limit in the sense of finite-dimensional distribu-
tions, then this limit is a CSBP. This result is extended to convergence in the
Skorokhod space D(R+) in [5]. Briefly, let µk be the probability measure on
{−1/ck, 0, 1/ck, 2/ck, . . . } defined as follows: for all n ∈ N,

µk

(
n− 1

ck

)
= p(k)(n),

and assume that there exists a measure µ such that (µk)
∗kck → µ, weakly as

k→∞. Then the sequence of GWPs Z(k) with offspring distribution p(k) and
normalized as in (2.4), has a weak limit as a sequence of random variables on
D(R+); this limit, say X, is a CSBP with initial condition X(0) = 1 almost surely.
Conversely, for every CSBP X there exists a sequence of GWPs {Z(k)}k∈N and
a sequence of positive integers {ck}k∈N such that X is the limit of the sequence
rescaled as in (2.4).
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2.2. Random times and stable subordinators

Let us consider a sequence i.i.d. real positive random variables J1, J2, . . .
representing for us a sequence of random waiting times. We define for all n > 0
the process Tn : =

∑n
i=1 Ji. Its inverse, for all t > 0, is the renewal process

Nt : = max{n > 0 : Tn 6 t}. (2.5)

We assume now that these waiting times belong to the strict domain of at-
traction of a certain completely skewed stable random variable D with stability
parameter β ∈ (0, 1). Note that due to the extended central limit theorem
there exists a sequence {bn}n>0 such that the following convergence holds in
distribution [17]:

bnTn ⇒ D.

As a consequence, the rescaled process
{
bnTbntc

}
t>0

converges in D(R+) to

the stable subordinator {D(t)}t>0 of parameter β, i.e. a Lévy process such that

D(t)
d
= t1/βD for all t > 0 and with Laplace transform

E[e−sD(t)] = exp{−sβt}, s > 0.

Similarly, the scaling limit for the renewal process {Nt}t>0 is the hitting time

process of {D(t)}t>0, that we define below. Indeed, let {b̃n}n>0 be a regularly
varying sequence with index β such that limn→∞ nbbb̃nc = 1, then the following
limit holds: {

Nnt

b̃n

}
t>0

⇒ {E(t)}t>0, (2.6)

where the process {E(t)}t>0 is known as the inverse β-stable subordinator, de-
fined as

E(t) := inf{u > 0 : D(u) > t}, t > 0.

The process {E(t)}t>0 is a non-Markov process with non-decreasing continuous
sample paths and plays a role in models of phenomena exhibiting long memory;
for instance E has a fundamental importance in the study of time-fractional sub-
diffusions [18]. Let us now denote by h(u, t) the probability density function of
the random variable E(t) for a fixed time t > 0. It is known that the Laplace
transform of h(u, t) w.r.t. variable t is

L(h(u, t))(s) = sβ−1 exp{−usβ}, s > 0. (2.7)

Furthermore, the Laplace transform w.r.t. variable u reads

E[e−λE(t)] = Eβ(−tλ
β), λ > 0,
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where Eν(z) is the Mittag – Leffler function defined as the convergent series

Eν(x) =

∞∑
r=0

xr

Γ(rν+ 1)
, x ∈ R, ν > 0. (2.8)

Moreover, the dynamic of this process is driven by a fractional evolution, i.e.
h(u, t) evolves according a governing equation involving a fractional derivative
in the t variable and a first order derivative in the u variable. This means that
h(u, t), for all t > 0 and u > 0, solves the fractional PDE

∂βt h(u, t) = −∂uh(u, t),

where ∂βt stands for the Džrbašjan – Caputo fractional derivative of order β
which is defined as follows:

Definition 2.1 (Džrbašjan – Caputo derivative). Let α > 0, m = dαe,
and f ∈ ACm(0,b). The Džrbašjan – Caputo derivative of order α > 0 is defined
as

∂αt f(t) =
1

Γ(m− α)

t∫
a

(t− s)m−1−α dm

dsm
f(s) ds. (2.9)

3. Time fractional branching processes

Following the approach used in [16] to define time-fractional diffusions, we
introduce in this section a time-changed GWP and we prove that there exists a
certain scaling such that its limit is exactly a time-changed CSBP.

3.1. Time-changed GWPs

Let us consider a GWP Z, we want to define a GWP with random waiting
times between successive generations. Further, let {J1, J2, . . . } be a sequence of
i.i.d. random variables. The time-changed GWP is defined as

Zt : = ZNt , (3.1)

for all t > 0, where Nt, independent of Z, is the renewal process defined in (2.5).
As soon as the waiting times {J1, J2, . . . } are not exponentially distributed, the
process {Zt}t>0 is not a Markov process anymore. The following property holds.

Proposition 3.1 (Branching inequality). We have, for all j, k ∈ N and all
λ > 0,

Ej+k
[
e−λZt

]
> Ej

[
e−λZt

]
Ek
[
e−λZt

]
. (3.2)



598 L. Andreis, F. Polito and L. Sacerdote

Proof. Let us consider the function

Kj,k(t) = Ej+k
[
e−λZt

]
− Ej

[
e−λZt

]
Ek
[
e−λZt

]
. (3.3)

By taking conditional expectation with respect to N(t), we get

Kj,k(t) = E
[
Ej+k

[
e−λZN(t) | N(t)

]]
(3.4)

− E
[
Ej
(
e−λZN(t) | N(t)

)]
E
[
Ek
(
e−λZN(t) | N(t)

)]
.

Observe that Ex
[
exp{−λZN(t)} | N(t)

]
and Ey

[
exp{−λZN(t)} | N(t)

]
are posi-

tively correlated being functions of the same random variable N(t). Indeed, if
we denote by f the generating function of the GWP Z and fn its n-th iterate,
we know that we have

Ex
[
e−λZN(t)

∣∣N(t)
]
= fN(t)

(
e−λ

)x
;

Ey
[
e−λZN(t)

∣∣N(t)
]
= fN(t)

(
e−λ

)y
.

Hence
Kj,k(t) = Cov

(
fN(t)

(
e−λ

)j
, fN(t)

(
e−λ

)k)
.

Being positive powers of the same positive function of N(t), positive correlation
follows and we obtain the inequality (3.2). 2

Remark 3.1. In a GWP, when we start with an initial population Z0 = j + k,
the number of individuals Zn in the n-th generation is the sum of two inde-
pendent copies of the process with initial size equal to j and k respectively. By
introducing a random time change between the generations, we create a positive
correlation between the sizes of subgroups of a given initial population.

Remark 3.2. In the special case of deterministic time-change, that is when
P(Nt = l) = 1, with g : N → N, l = g([t]) a suitable non decreasing function,
the inequality (3.2) becomes the classical equality that expresses the branching
property of GWPs, i.e.

Ej+k
[
e−λZl

]
= Ej

[
e−λZl

]
Ek
[
e−λZl

]
, (3.5)

for all j, k ∈ N and all λ > 0.

3.2. Time-changed CSBP and scaling limit

Let us consider a CSBP X and an inverse β-stable subordinator E indepen-
dent of X. Consider the time-changed process

X(t) : = X(E(t)),

for all t > 0. It is possible to show that there exists a sequence of time-changed

GWPs {Z
(n)
t }t>0, such that, suitably rescaled, converges to the process {X(t)}t>0

in D([0,∞)).
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Theorem 3.1. Let {X(t)}t>0 be a CSBP and {E(t)}t>0 be the inverse of a β-
stable subordinator, β ∈ (0, 1], independent of {X(t)}t>0. Consider the process

{X(t) := X(E(t))}t>0; there exists a sequence of time-changed GWPs {Z
(n)
t }t>0

and two increasing sequences {b̃n}n>0 and {cn}n>0 with limn→∞b̃n= limn→∞cn
=∞, such that for n→∞{

Z
(b̃n)
nt

cb̃n

}
t>0

=⇒ {X(t)}t>0, (3.6)

where the convergence is in D([0,∞)).

Proof. Consider J1, J2. . . . , i.i.d. waiting times in the domain of attraction of a
stable law of index β, (see Section 2.2). Then there exists a sequence of positive
real numbers {b̃n}, diverging to infinity, such that the limit (2.6) holds. At the
same time, we consider a sequence of GWPs {Z(k)}k>0 such that (2.4) holds.
Since the waiting times and the GWPs are independent, it follows that, for all
n > 0, (

Xb̃n(t),
T(nt)

bn

)
=
(Z(b̃n)(bb̃ntc)

cb̃n
,
T(nt)

bn

)
=⇒ (X(t),D(t))

in the product space D([0,∞)) × D([0,∞)), where Z(k)(0)/ck → x, X(t) is a
CSBP with transition semigroup Pt(x, ·) and D(t) is the stable subordinator of
parameter β. Let us write D↑,u(R+) for the subset of unbounded non decreasing
càdlàg functions and D↑↑,u(R+) for the subset of unbounded strictly increasing
ones. We see that, for all n > 0, the pair(Z(b̃n)(bb̃ntc)

cb̃n
,
T(nt)

bn

)
belongs to the product space D(R+)× D↑,u(R+) and the limit (X(t),D(t)) be-
longs to D(R+) × D↑↑,u(R+). Then, following the approach in [23], we define
the function Ψ : D(R+) × D↑,u(R+) → D(R+) × D(R+) mapping (x(t),d(t)) to
(x(e(t)), t), where e(t) is the inverse of d(t). In general the function Ψ is not
continuous, however, in our case, since the limit point (X(t),D(t)) actually be-
longs to D(R+) × D↑↑,u(R+), as stated in [23, Proposition 2.3], the function Ψ
is continuous at (X(t),D(t)). This implies that the following limit holds, where
π1 is the projection on the first coordinate,

Z
(b̃n)
nt

cb̃n
= Xb̃n(N(nt)) = π1

(
Ψ
(
Xb̃n(t),

T(nt)

bn

))
=⇒ π1 (Ψ (X(t),D(t))) .

This proves (3.6). 2
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4. Some properties of the time-fractional CSBP

In the previous section we have characterized the process {X(t)}t>0 as the
limit of a rescaled sequence of time-changed GWPs, where in the discrete case
the time between two generations is substituted by random variables that pro-
duce a slowed-down dynamics. In the limit this is modeled by the inverse stable
subordinator. We are now interested in capturing the main features of the time-
changed process X and in underlining the differences between it and the classical
CSBP. Note that the tree structure underlying Markov branching processes and
CSBPs, although randomly stretched and squashed, it is still a characterizing
feature of the corresponding time-changed processes.

4.1. Branching property

Let us consider β ∈ (0, 1]. We expect the time-changed CSBP {X(t)}t>0 to
satisfy the classical branching property only when β = 1. Indeed, in general, it
holds

Ex+y
[
e−λX(t)

]
> Ex

[
e−λX(t)

]
Ey
[
e−λX(t)

]
(4.1)

and
lim
β→1

Ex+y
[
e−λX(t)

]
= Ex

[
e−λX(t)

]
Ey
[
e−λX(t)

]
. (4.2)

Similarly to Section 3.1, this is based on the following:

Ex+y
[
e−λX(t)

]
− Ex

[
e−λX(t)

]
Ey
[
e−λX(t)

]
= E

[
Ex+y

(
e−λX(E(t)) | E(t)

)]
− E

[
Ex
(
e−λX(E(t))|E(t)

)]
E
[
Ey
(
e−λX(E(t)) | E(t)

)]
= E

[
e−(x+y)νE(t)(λ)

]
− E

[
e−xνE(t)

]
E
[
e−yνE(t)

]
= Cov

(
e−xνE(t)(λ), e−yνE(t)(λ)

)
.

Then, by positive correlation, we see that

Cov(exp{−xνE(t)(λ)}, exp{−yνE(t)(λ)}) > 0.

Moreover, since E(t) → t in distribution as β → 1, by dominated convergence
and the continuity of νt(λ) in t (which is a consequence of (2.2)), we see that

lim
β→1

Cov(exp{−xνE(t)(λ)}, exp{−yνE(t)(λ)}) = 0,

proving (4.2). Note that the random time-change introduces a positive corre-
lation between the evolution of the subgroups of the initial population that is
not present in the classical CSBP. However, for any β ∈ (0, 1), we still have a
conditional branching property, i.e.

E
[
Ex+y[e

−λX(E(t)) | E(t)]
]
= E

[
Ex[e

−λX(E(t)) | E(t)] Ey[e
−λX(E(t)) | E(t)]

]
.
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4.2. First and second moment

Here we obtain the expression for the first and the second moment of the
process {X(t)}, when they exist. To this aim, we exploit the computations in [12]
for the explicit formula of first and second moment of a CSBP, see equation (2.3),
and the properties of the Mittag – Leffler function defined in (2.8), see [3].

Theorem 4.1. Let {X(t)}t>0 be a CSBP with Laplace exponent vt(λ) and
branching mechanism ψ(z) and let {E(t)}t>0 be an inverse stable subordina-
tor with index β ∈ (0, 1) and with density function h(·, t), for every fixed time
t > 0. If ∂vt(0

+)/∂λ exists and is finite and ψ ′(0+) = b > σh, where σh is the
abscissa of convergence for the Laplace transform of the function h(·, t), then
the time-changed process {X(t)}t>0 has finite first moment that takes the form

Ex[X(t)] = xEβ(−bt
β), t > 0. (4.3)

Proof. For the independence of {E(t)}t>0 from {X(t)}t>0, together with the for-
mula for the first moment of a CSBP, we get

Ex[X(t)] =

∞∫
0

Ex[X(u)]h(u, t)du =

∞∫
0

xe−buh(u, t)du. (4.4)

Since b > σh the last integral is finite and it is essentially the Laplace transform
of h(u, t) with respect to the variable u. To obtain an explicit form of the
integral, we apply again the Laplace transform to (4.4), this time with respect
to the variable t, obtaining

L [Ex[X(·)]] (µ) = x
∞∫
0

e−bu
∞∫
0

e−µth(u, t)dtdu.

Formula (2.7) leads to

L [Ex[X(·)]] (µ) = xµβ−1

∞∫
0

e−u(b+µ
β)du = x

µβ−1

µβ + b
.

Since the latter expression is the Laplace transform of the Mittag – Leffler func-
tion Eβ(−bt

β) we immediately obtain formula (4.3). 2

Theorem 4.2. Let {X(t)}t>0 be a CSBP with Laplace exponent vt(λ) and
branching mechanism ψ(z) and let {E(t)}t>0 be an inverse stable subordinator
with index β ∈ (0, 1) and with density function h(·, t) for every fixed time t > 0.
If ∂vt(0

+)/∂λ and ∂2vt(0
+)/∂λ2 exist and are finite and ψ ′(0+) = b > σh as in
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Figure 1. Plots of the first moment E1[X(t)] of a time-changed CSBP for
t ∈ [0, 4] and different values of β, from 0.2 to 1. The time-changed CSBP
has initial condition X(0) = 1 a.s.; on the left the subcritical case with b = 1,
and on the right the supercritical case with b = −1.

Theorem 4.1, then the time-changed process {X(t)}t>0 has the following finite
second moment:

Ex
[
X(t)2

]
=

{
x2 + xβ̃ Γ(2)

Γ(β+1)t
β, b = 0,

x2Eβ(−2btβ) − β̃x
b

(
Eβ(−2btβ) − Eβ(−bt

β)
)

, b 6= 0,
(4.5)

where β̃ =
(
2c+

∫∞
0 u

2m(du)
)
.

Proof. Fix t > 0, we divide the proof into two different cases.

• Case b = 0: We know that

Ex
[
X(t)2

]
= E

[
Ex
[
X(E(t))2

∣∣E(t)]]
=

∞∫
0

(x2 + xβ̃u)h(u, t)du = x2 + xβ̃E[E(t)].

It is known, see [16], Corollary 3.1, that the first moment of the process
{E(t)}t>0, for a fixed time t > 0, takes the form

E [(E(t))] =
Γ(2)tβ

Γ(β+ 1)
.

Hence we obtain

Ex
[
X(t)2

]
= x2 + xβ̃

Γ(2)tβ

Γ(β+ 1)
.
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• Case b 6= 0: In this case we write

Ex
[
X(t)2

]
=

∞∫
0

(
x2e−2bu −

β̃x

b
(e−2bu − e−bu)

)
h(u, t)du

= x2Eβ(−2btβ) −
β̃x

b

(
Eβ(−2btβ) − Eβ(−bt

β)
)

.

2

Figure 2. Plots of Var(X(t)) for t ∈ [0, 4] and β from 0.2 to 1. The time-changed
CSBP has initial condition X(0) = 1 a.s. and the pair of parameters (b, β̃),
clockwise from the upper-left, equal to (1, 0.1), (1, 0.5), (1, 10) and (0, 1), re-
spectively.

Note that the Mittag – Leffler function is a generalization of the exponential
function, with which it coincides for β = 1. Comparing the moments of our
generalized model, in (4.3) and (4.5), to those of the CSBP in (2.3), it is easy
to see that the Mittag – Leffler function in the generalized case plays the same
role as the exponential in the classical case. See in Figure 1 and Figure 2 the
effect of the time-change on the mean and variance of the process X.
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4.3. Some examples

In the previous sections we have described in full generality the time-changed
CSBP {X(t)}t>0, now let us focus on some specific cases of interest in order to
better illustrate our framework.

4.3.1. Time-changed Feller branching diffusion

Consider the Feller branching diffusion [4] and recall that it is the diffusion
process solving the SDE

dXt = −bXtdt+
√

2cXtdWt (4.6)

where Wt is a standard Brownian motion, b ∈ R and c > 0. This is the only
diffusion process in the class of CSBPs and its corresponding Fokker – Plack
equation is

∂

∂t
p(y, t) =

∂

∂y
(byp(y, t)) +

∂2

∂y2
(cyp(y, t)) .

The scaling limit of GWPs that leads to Feller branching diffusion is well-
known, see Pardoux [20] for a nice review on it; this is one of the few cases in
which this scaling scheme is known explicitly.

Consider thus a time-changed Feller branching diffusion {X(t)}t>0 with sta-
bility parameter β ∈ (0, 1). Since the process {X(t)}t>0 is a diffusion, its com-
position with {E(t)}t>0 fits in the framework of SDE driven by time-changed
Lévy processes, see [6]. Therefore, it is possible to write an analogue of the
Fokker – Planck equation solved by the marginal probability density function
mx(y, t) of {X(t)}t>0. The following proposition shows that the equation in-
volves Džrbašjan – Caputo derivatives of order β ∈ (0, 1), hence it classifies the
time-changed Feller branching diffusion in the class of subdiffusions.

Proposition 4.1. Let {X(t)}t>0 be a time-changed Feller branching diffusion
with branching mechanism ψ(u) = bu+cu2, for b ∈ R and c > 0 and parameter
β ∈ (0, 1). Let X(0) = x > 0 a.s. and mx(y, t) be the marginal probability
density function of X(t), for all t > 0. Then mx(y, t) satisfies the equation

∂βtmx(y, t) =
∂

∂y
(bymx(y, t)) +

∂2

∂y2
(cymx(y, t)) ,

where ∂βt is the Džrbašjan – Caputo derivative.

Moreover, note that it is possible to write explicitly the SDE solved by the
process {X(t)}t>0. Let (Ω,F,G = {Gt}t>0,P) be a filtered probability space and
let D = {D(t)}t>0 be a G-adapted stable subordinator of parameter β ∈ (0, 1).
Furthermore, let F = {Ft}t>0 be the filtration defined by means of time-change
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with the process {E(t)}t>0, inverse of D, such that, for all t > 0, Ft = GE(t)

(see [7], page 312). Consider the filtered space (Ω,F,F,P) and suppose {X(t)}t>0

is a G-adapted Feller branching diffusion. Then the process {X(t)}t>0 is solution
of the SDE

dX(t) = −bX(t)dE(t) +
√

2cX(t)dWE(t),

where {WE(t)}t>0 is an F-adapted time-changed Brownian motion, also known
as grey Brownian motion.

4.3.2. Time-changed Yule process

Let us consider a homogeneous Poisson process {Y(t)}t>0 with rate θ > 0
and shifted upwards by 1. By relation (2.2), it is transformed into a CSBP
{X(t)}t>0 with Laplace exponent

νt(λ) = log(1 − (1 − eλ)eθt), t > 0 λ > 0.

This is the Laplace exponent of a Yule process {X(t)}t>0, that is a pure birth
process with linear birth rate. If X(0) is supported on the strictly positive
integers, then the law of X at every time t > 0 is a probability measure {p(·, t)}
satisfying

∂

∂t
p(n, t) = θ(n− 1)p(n− 1, t) − θnp(n, t), n > 1.

The time-changed Yule process {X(t)}t>0 is studied in [19], where amongst other
properties it is proved that for each t > 0 its law is a probability measure pβ(·, t)
that satisfies the time-fractional difference-differential equations

∂βt pβ(n, t) = θ(n− 1)pβ(n− 1, t) − θnpβ(n, t), n > 1,

and whose explicit form is

pβ(n, t) =

n∑
j=1

(
n− 1

j− 1

)
(−1)j−1Eβ(−θjt

β), n > 1,

that is consistent with our results in Section 4.2.
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