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Exploring the deep insights into localization, disorder, and wave transport in non-Hermitian systems is an emergent area

of research of relevance in different areas of physics. Engineered photonic lattices, with spatial regions of optical gain

and loss, provide a prime and simple physical platform for tailoring non-Hermitian Hamiltonians and for unveiling the

intriguing interplay between disorder and non-Hermiticity. Here it is shown that in mosaic photonic lattices with on-site

uncorrelated disorder or quasi-periodic order, the addition of uniform loss at alternating sites of the lattice results in

the suppression or enhancement of wave spreading, thus providing a simple method for non-Hermitian control of wave

transport in disordered systems. The results are illustrated by considering discrete-time quantum walks in synthetic

photonic lattices.

Inspired by the concepts of non-Hermitian (NH) physics1,2,

in the past two decades NH photonics has emerged as a flour-

ishing area of research, enabling to mold the flow of light

in unprecedented ways (see, e.g., Refs.3–11 and references

therein). In NH systems, wave transport, localization, and

scattering can be deeply modified as compared to Hermitian

systems. For example, non-orthogonality of modes and scat-

tering in optical systems with spatial regions of optical gain

and loss is responsible for a wide variety of intriguing effects,

such as the appearance of exceptional points, unidirectional

scattering, chirality, invisibility, enhanced sensitivity to per-

turbations, etc.3–8 An important class of NH systems that is

attracting a great interest since long time is provided by sys-

tems with disorder or quasiperiodic order, in which the non-

Hermitian nature of the Hamiltonian can deeply modify the

localization and transport properties of waves (see e.g.12–35

and reference therein). Recently, the interplay among non-

Hermiticity and disorder has seen a renewed interest, also

in connection with the non-trivial spectral topology of NH

systems36–38. To this regard, photonics has provided sev-

eral experimentally accessible platforms with great flexibil-

ity to synthesize NH models with controllable topology and

disorder38–44. A largely open question is whether and how

gain and loss can be harnessed to control localization and

wave spreading in disordered systems. While application

of imaginary gauge fields, i.e. non-reciprocal couplings, is

known to prevent Anderson localization and to induce a NH

localization-delocalization transition with robust directional

transport14–16,19,20, it is not clear whether application of local

gain or loss in the system can be harnessed to change the wave

transport features in a controllable and simple way. Since

in an Hermitian system transport is enabled by extended or

weakly localized states of the Hamiltonian, a simple strategy

to control wave localization in an Hermitian disordered sys-

tem sustaining both localized and extended states would be

to selectively introduce loss for either extended or localized

states, i.e. to selectively control the lifetime of extended and
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localized states, so as to suppress or enhance wave spreading.

While such a method of mode selection could work for clean

systems45,46, unfortunately this strategy seems to be hopeless

in disordered systems since the wave function profiles of the

Hamiltonian depend on the specific realization of disorder in

a complex manner.

In this Letter it is shown that, in a class of mosaic (bi-

nary) disordered lattices47–49, in which uncorrelated disorder

or commensurate disorder is impressed at alternating sites of

the lattice, application of unbalanced losses at alternating sites

enables to strategically enhance or suppress wave spreading in

the system, thus providing a NH route of wave localization

control without resorting to non-reciprocal couplings. The

results are illustrated by considering discrete-time quantum

walks in synthetic photonic lattices.

The Hamiltonian of the dissipative tight-binding lattice

reads

H = J ∑
n

(|n+1〉〈n|+ |n〉〈n+1|)+∑
n

(Vn − iγn)|n〉〈n| (1)

where J is the hopping rate between adjacent sites and Vn,

γn describe the on-site potential disorder and loss rates, re-

spectively. After letting |ψ〉 = ∑n ψn|n〉 for the wave func-

tion, the energy spectrum of H is obtained from the discrete

Schrödinger equation

Eψn = J(ψn+1 +ψn−1)+(Vn − iγn)ψn

For a mosaic (binary) lattice, disorder is applied to odd sites

of the lattice solely (sublattice B), i.e. Vn = 0 for n even.

We also assume that the loss rates γn take only the two val-

ues γn = γA for n even (sublattice A) and γn = γB for n odd

(sublattice B); see Fig.1(a) for a schematic. Given the binary

nature of the lattice, it is worth writing the wave function as

|ψ〉= ∑n(an|2n〉+bn|2n+1〉), so that the energy spectrum of

the Hamiltonian H is defined by the set of coupled equations

Ean = J(bn +bn−1)− iγAan (2)

Ebn = J(an +an+1)+(V2n+1 − iγB)bn. (3)

An interesting result that readily follows from Eqs.(2) and

(3) is that, regardless of the specific form of the disordered

T
hi

s 
is

 th
e 

au
th

or
’s

 p
ee

r 
re

vi
ew

ed
, a

cc
ep

te
d 

m
an

us
cr

ip
t. 

H
ow

ev
er

, t
he

 o
nl

in
e 

ve
rs

io
n 

of
 r

ec
or

d 
w

ill
 b

e 
di

ffe
re

nt
 fr

om
 th

is
 v

er
si

on
 o

nc
e 

it 
ha

s 
be

en
 c

op
ye

di
te

d 
an

d 
ty

pe
se

t.

P
L

E
A

S
E

 C
IT

E
 T

H
IS

 A
R

T
IC

L
E

 A
S

 D
O

I:
 1

0
.1

0
6
3
/5

.0
1
7
5
6
7
5



2

FIG. 1. (a) Schematic of a mosaic (binary) dissipative lattice with

loss rates γA and γB in the two sublattices A and B. Disorder is ap-

plied at sites of sublattice B solely. J is the coupling rate between

adjacent sites. (b) Schematic of the coupled fiber loops of slightly

unbalance lengths L±∆L that realize the dissipative mosaic lattice in

synthetic dimension. β is the coupling angle between the two fiber

loops, AM and PM are amplitude and phase modulators.

potential Vn, the energy E =−iγA always belongs to the spec-

trum of H and the corresponding wave function is an extended

state occupying only the sublattice A, given by an = (−1)n

and bn = 0. For E 6= −iγA, we can eliminate the amplitudes

an from Eqs.(2) and (3),

an =
J(bn +bn−1)

E + iγA

(4)

yielding the following recursive equation for the amplitudes

bn in sublattice B

J2(bn+1 +bn−1)+Wnbn = [(E + iγB)(E + iγA)−2J2]bn (5)

where we have set

Wn ≡ (E + iγA)V2n+1. (6)

Equation (5) can be regarded as the spectral problem of a

tight-binding lattice with hopping amplitude J2 and with an

effective energy-dependent on-site disordered potential Wn.

Interestingly, for an energy E close to −iγA, the effective po-

tential is weak (vanishing as E + iγA), so that the correspond-

ing wave functions are expected to be either extended states

or weakly-localized states (depending on the nature of dis-

order Vn). Hence, the lifetime of such extended (or weakly

localized) eigenstates of H – given by the inverse of the imag-

inary part (in modulus) of the energy – is ≃ 1/γA. Also, from

Eq.(4) it follows that for such wave functions the excitation

is mostly localized in sublattice A. Conversely, for energies

such that E + iγA is far from zero, the effective potential Wn is

not anymore weak and the corresponding wave functions are

expected to be moderately or strongly localized (for reason-

able strong potential disorder Vn), occupying both sublattices

A and B rather generally. Hence, the localized eigenstates

of H should have a lifetime that lies between 1/γA and 1/γB.

This means that, for γA < γB (γA > γB) the extended (or weakly

localized) states have a longer (shorter) lifetime than the lo-

calized states, resulting in an enhancement (suppression) of

wave spreading for a rather arbitrary initial localized excita-

tion of the system. Therefore, regardless of the specific form

and realization of disorder, selective application of losses at

either sublattice A or B should provide a simple and viable

route to wave spreading control, i.e. to either suppress of en-

hance transport in the lattice. We mention that, as compared to

the NH delocalization transition obtained by applying imagi-

nary gauge fields5,14,15, our method is much simpler since it

does not require to make mode coupling asymmetric. To get

deeper insights into such a strategical control of wave spread-

ing, let us consider two paradigmatic models of disorder: the

incommensurate disorder and the uncorrelated disorder.

The first case corresponds to the quasi-periodic potential

Vn = 2V0 cos(2παn+ θ), where α is irrational Diophantine

and θ an arbitrary phase. In the Hermitian limit γA = γB = 0,

this model exhibits exact mobility edges near E = 0, separat-

ing extended and localized wave functions43. In fact, in this

case one has Wn = 2EV0 cos(4παn+2πα +θ) and Eq.(5) de-

scribes the famous Aubry-André model50, which is known to

have all extended states for |EV0|< J2 and all localized states

for |EV0| > J2. Further, the energy-dependent Lyapunov ex-

ponent γ(E), i.e. inverse of localization length of the eigen-

states bn of Eq.(5), reads

γ(E) =

{

0 |E|< J2/V0

ln(|E|V0/J2) |E|> J2/V0
(7)

Therefore a narrow energy interval, centered at E = 0 and of

width 2J2/V0, corresponds to extended states that permit bal-

listic wave spreading in the lattice. When we introduce losses

in the system, we expect that wave spreading is suppressed for

γA > γB, while it is enhanced when γA < γB. The lifetime of

the eigenfunctions of H is the inverse of the imaginary part

(in modulus) of the energy E, whereas their degree of local-

ization is measured by the inverse participation ratio (IPR),

which for a normalized wave function on a lattice of size L is

defined as IPR = ∑n(|an|4 + |bn|4). Note that 0 < IPR ≤ 1;

for an extended or weakly-localized wave functions, the IPR

takes a small value (of order ∼ 1/L), whereas for a tightly con-

fined wave function the IPR takes a finite value, with IPR = 1

when excitation is localized in a single site. An example of en-

hancement and suppression of wave spreading for incommen-

surate disorder is shown in Fig.2. We assumed a lattice of size

L = 500 with open boundary conditions and parameter values

J = 1, V0 = 2.5, θ = 0 and α = (
√

5− 1)/2. The figures de-

pict the numerically-computed energy spectrum of H in com-

plex energy plane [panels (a1), (b1) and (c1)], IPR of corre-

sponding eigenstates [panels (a2), (b2) and (c2)], and tempo-

ral evolution of the wave amplitudes |ψn(t)| corresponding to

single-site excitation ψn(0) = δn,0 [panels (a3), (b3) and (c3)].

Panels (a) refer to the Hermitian regime γA = γB = 0; in panels

(b) γA = 0.05, γB = 0, corresponding to suppression of wave

spreading (dynamic localization); in panels (c) γA = 0, γB =
0.05, corresponding to wave spreading enhancement. Note

that, according to the theoretical analysis, by flipping the loss

rates in the two sublattices the lifetimes of extended states,

near the energy Re(E) = 0, change from low [panel (b1)] to

high values [panel (c1)] as compared to the lifetimes of local-

ized states, thus explaining wave spreading suppression and

enhancement. The wave spreading in the lattice can be ex-

perimentally detected by measuring the temporal evolution of
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FIG. 2. Non-Hermitian control of wave spreading in a mosaic dis-

sipative lattice with incommensurate potential. In (a) γA = γB = 0,

corresponding to the Hermitian regime. In (b) γA = 0.05, γB = 0,

corresponding to suppression of wave spreading (dynamic localiza-

tion); in (c) γA = 0, γB = 0.05, corresponding to wave spreading en-

hancement. Other parameter values are given in the text. The energy

spectra of the Hamiltonian in complex energy plane are shown in

panels (a1), (b1) and (c1); the IPR of corresponding eigenfunctions

are depicted in panels (a2), (b2) and (c2). Panels (a3), (b3) and (c3)

show on a pseudocolor map wave spreading dynamics in the lattice

for initial excitation of site n = 0. Panel (d) shows the correspond-

ing temporal evolution of the second moment σ2(t) on a log scale

(curve 1: γA = 0.05, γB = 0; curve 2: γA = 0, γB = 0.05; curve 3:

γA = γB = 0).

the second moment σ2(t) = (∑n n2|ψn(t)|2)/(∑n |ψn(t)|2) for

an initial excitation of site n = 0 (see for instance32). Fig-

ure 2(d) shows the temporal evolution of σ2(t) on a log scale

in the three different regimes, clearly showing the suppres-

sion (curve 1) or enhancement (curve 2) of wave spreading as

compared to the Hermitian case (curve 3).

The second case corresponds to uncorrelated disorder, i.e.

Vn are independent random variables with the same probabil-

ity density p(V ). In the Hermitian limit γA = γB = 0, Eq.(5)

describes the usual problem of Anderson localization in a one-

dimensional lattice with random disorder Wn and thus, for any

energy E 6= 0, all eigenstates bn are Anderson localized, re-

gardless of how weak is the effective random potential Wn
51–53

. This means that, contrary to the incommensurate case dis-

cussed above and displaying mobility edges, the Lyapunov ex-

ponent γ(E) vanishes only at E = 0, and γ(E)> 0 for E 6= 0.

This situation is similar to the famous random dimer model54,

indicating that a set of weakly-localized states, with a diverg-

ing localization length and density of states, accumulates to-

ward E = 0. The specific form of γ(E) depends on the prob-

ability density p(V ) of disorder and can be given analytically

in very special cases. For example, for the Cauchy distri-

bution, p(V ) = (δ/π)(δ 2 +V 2)−1, the statistically-averaged

Lyapunov exponent reads53

γ(E) = cosh−1

(

√

(E2 −4J2)2 +δ 2E2 +
√

E4 +δ 2E2

4J2

)

(8)

vanishing like γ(E) ∼ |E|1/2 as E → 0, whereas for any dis-

tribution with a finite variance 〈ε2〉, such as the uniform dis-

tribution, the behavior of γ(E) can be calculated analytically

in the neighbor of E = 0 using a perturbative method55, and

reads

γ(E)≃ 0.2893
〈ε2〉1/3|E|2/3

J4/3
(9)

vanishing like γ(E) ∼ |E|2/3 as E → 0. We note that, even

though the Hamiltonian H for uncorrelated disorder has an al-

most pure point spectrum, with the exception of the extended

state at E = 0, like in the random dimer model54 wave spread-

ing and sub-ballistic transport in the lattice is allowed by

the set of weakly localized states with diverging localization

length near E = 0 (see also56 for the case of non-random po-

tentials). An example of wave spreading suppression and en-

hancement for a uniform probability distribution, p(V ) = 1/δ
for |V |< δ/2 and p(V ) = 0 for |V |> δ/2, obtained by adding

losses in either sublattices A or B, is shown in Fig.3. Note

that, as compared to the incommensurate disorder of Fig.2,

for random disorder the wave spreading enhancement is larger

[compare curves 2 and 3 in Figs.2(d) and 3(d)]. This behav-

ior can be explained as follows. In the incommensurate case

and in the Hermitian limit, the Hamiltonian H shows mobil-

ity edges with extended states enabling ballistic transport, and

the addition of losses at odd lattice sites, yielding a decrease of

the lifetime of localized states, does not substantially increase

the wave spreading of the system. On the other hand, in the

random potential case in the Hermitian limit the spectrum is

almost pure point and wave spreading is sub-ballistic. In this

case wave spreading greatly benefits from the decrease of the

lifetime of strongly-localized states, as compared to weakly-

localized states, by the addition of losses at odd sites of the

lattice.

An experimentally feasible platform to realize NH pho-

tonic lattices with controllable disorder in synthetic space is

provided by discrete-time quantum walks of optical pulses

in coupled fiber loops (see e.g.32,38,41,42,57–60 and references

therein). The system consists of two fiber loops of slightly dif-

ferent lengths (L±∆L) that are connected by a fiber coupler

with a coupling angle β , as schematically shown in Fig.1(b).

A phase and amplitude modulators are placed in one of the

two loops, which provide a desired control of the phase and
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FIG. 3. Same as Fig.2 but for a random didorder with uniform

probability density p(V ). Parameter values are J = 1, δ = 4 with

γA = γB = 0 in (a) (Hermitian regime), γA = 0.05, γB = 0 in (b), and

γA = 0, γB = 0.05 in (c). Panels (a), (b) and (c) depict energy spec-

trum, IPR and wave spreading dynamics for a single realization of

disorder, whereas the curves in (d) are obtained after statistical aver-

age over 200 realizations of disorder.

amplitude of the traveling pulses. Light evolution is described

by the set of discrete-time coupled-mode equations32,38,56–59

u
(m+1)
n =

(

cosβu
(m)
n+1 + isinβv

(m)
n+1

)

exp(−2iVn −2γn) (10)

v
(m+1)
n =

(

cosβv
(m)
n−1 + isinβu

(m)
n−1

)

(11)

where u
(m)
n and v

(m)
n are the pulse amplitudes at discrete time

step m and lattice site n in the two fiber loops, and Vn, γn

are the phase and amplitude terms impressed by the phase

and amplitude modulators, respectively. Assuming a cou-

pling angle β close to π/2 and for weak phase and ampli-

tude modulations, the light dynamics can be effectively de-

scribed by a continuous-time model [Eq.(1)], with the dis-

crete time m replaced by a continuous time variable t and with

a hopping amplitude J = ±(1/2)cosβ 56,60,61. Therefore, in

such a limit the discrete-time quantum walk [Eqs.(10) and

(11)] realizes the Hamiltonian (1) of the mosaic lattice with

controllable disorder Vn and alternating loss rates γn, which

FIG. 4. Non-Hermitian control of light spreading in a synthetic pho-

tonic lattice realized by the coupled fiber loop setup of Fig.1(b).

Coupling angle β = 0.98 × π/2, phase modulation (incommensu-

rate potential) Vn = 2V0 cos(2παn) at odd sites with V0 = 0.02,

α = (
√

5−1)/2, and loss modulation γn = γA at even sites, γn = γB

at odd sites. Panels (a-c) show the numerically-computed evolution

of the occupation probability P
(m)
n versus discrete time step m on a

pseudo color map for initial single-pulse excitation of the loops. In

(a) γA = γB = 0 (Hermitian lattice), in (b) γA = 0.02 and γB = 0, corre-

sponding to suppression of wave spreading (dynamical localization),

in (c) γA = 0 and γB = 0.02, corresponding to wave spreading en-

hancement. The behavior of the second moment σ2 versus m in the

three cases in shown in panel (d). Curve 1: γA = 0.02, γB = 0; curve

2: γA = 0, γB = 0.02; curve 3: γA = γB = 0.

are set by the phase and amplitude modulators. An exam-

ple of wave spreading suppression and enhancement in the

discrete-time quantum walk for an incommensurate poten-

tial is shown in Fig.4. The figure depicts the numerically-

computed evolution of the normalized occupation probabil-

ities P
(m)
n = |u(m)

n |2 + |v(m)
n |2/∑n(|u(m)

n |2 + |v(m)
n |2) at succes-

sive discrete time steps m [panels (a), (b) and (c)], and corre-

sponding second moment σ2(m) = ∑n n2P
(m)
n [panel (c)] for

the incommensurate potential Vn = V0 cos(2παn); parameter

values are β = 0.98×π/2, V0 = 0.02, and α = (
√

5− 1)/2.

Single pulse excitation at site n= 0 is assumed, corresponding

to u
(0)
n = δn,0 and v

(0)
n = 0. In Fig.4(a) the system is Hermitian

(γA = γB = 0), in Fig.4(b) γA = 0.02 and γB = 0, correspond-

ing to suppression of wave spreading, in Fig.4(c) γA = 0 and

γB = 0.02, corresponding to enhancement of wave spreading.

Similar results are obtained by assuming random (rather than

incommensurate) disorder for the phase Vn.

In conclusion, a simple and feasible method of NH wave

spreading control in a class of disordered mosaic lattices,

based on application of alternating local losses in the lattice,

has been theoretically proposed and demonstrated in numeri-

cal simulations for different types of disorder. The technique

enables to strategically enhance or suppress wave spreading

in the lattice in a simple and universal way, thus providing

a NH route of wave localization control without resorting to

non-reciprocal couplings. The results have been illustrated

by considering discrete-time quantum walks in synthetic pho-

tonic lattices, which should provide a feasible photonic plat-

form for the observation of loss-induced control of localiza-

tion.
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