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Abstract— This note proposes a novel architecture of integral
sliding mode control, in which a special “ideal control” part
is introduced. This part incorporates a fairly general form of
internal model to deal with regular (i.e., modeled) persistent
disturbances. A key property of this architecture is a complete
separation of the internal model from the design of the “discon-
tinuous” component of the controller. In particular, the latter
component is designed for systems whose dimension coincides
with that of the plant, even if the internal model is infinite
dimensional.

Index Terms— Sliding mode control, internal-model princi-
ple, repetitive control, time-delay systems.

I. INTRODUCTION

High-gain feedback is an efficient mean to attenuate
unmeasured load (i.e., matched input) disturbances, even in
the presence of classes of modeling uncertainty. An example
of a successful use of this idea is the sliding mode control
(SMC), whose discontinuous nonlinear control law can be
viewed as a high gain followed by a saturation element, see
[1]–[3] and the references therein. The price of attaining
highly efficient disturbance attenuation is the introduction
of chattering effects, as well as sensitivity to measurement
imperfections and unmodeled loop lags.

A way to introduce less costly high-gain elements, albeit at
the expense of limiting the class of compensated disturbances
and resorting to asymptotic requirements, is the use of the
internal model principle (IMP) [4]. If disturbances belong to
a class of signals with fixed unstable, mostly pure imaginary,
modes, then the inclusion of these modes into the feedback
loop produces infinite loop gains at required frequencies
and perfect asymptotic disturbance rejection. A classical
example of this approach is the use of controllers with an
integral action [5], which are capable of rejecting all constant
disturbances by smooth control signals. Another example
is the repetitive control [6], in which infinite-dimensional
internal models are employed to reject arbitrary periodic
disturbances of a given period.

The idea of combining SMC with internal models to have
the best of both worlds is not new, especially regarding the
use of integral actions, see [2, Sec. 2.5] for an introduction
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and [7] for a more recent take on the idea. The concept,
loosely speaking, is to employ smooth control to handle a
regular, e.g., that generated by a known model under un-
known initial conditions, component of the disturbance and
complement it by a SMC element to handle its unmodeled
part. If irregular components of disturbances are relatively
small, then their suppression by SMC has a lower price tag.
Technically, this combination involves augmenting the plant
by dynamics of the internal model. The resulting dimension
increases and the need in additional measurements may be
tolerable in the integrator or a harmonic oscillator cases.
However, it might not be manageable in the repetitive control
case, where the model includes a time delay.

In this note we put forward an alternative approach to
amalgamate SMC and the IMP. We propose a nontrivial twist
on the integral sliding mode (ISM) scheme of [8], where
the “ideal control” is a specially designed state-feedback
controller with an internal model. Our scheme includes also
a compensation element, whose role is to make the internal
controller invisible for the design of the discontinuous part
of the ISM controller. Consequently, the latter needs to be
designed for the very same “ideal system” as in the case
with no internal models. The only difference is that now the
discontinuous design should cope only with a deviation of the
disturbance signal from its nominal component used in the
internal model. As such, the proposed architecture is readily
applicable to high-dimensional internal models and even to
infinite-dimensional models, like those in repetitive control.
To the best of our knowledge, this is the first continuous-time
SMC architecture enabling that.

The paper is organized as follows. Section II reviews
the conventional ISM control configuration and explains its
limitations in the studied context. Section III introduces the
proposed control architecture, its justification and main prop-
erties, in particular, separation. In Section IV a numerical
example illustrating advantages of the proposed approach
is presented. The paper ends with concluding remarks in
Section V.

Notation: The transpose of a matrix M is denoted by
M ′. The sets of non-negative reals is notated as R+. Signals
in the time and Laplace domains are denoted by lower- and
upper-case letters, respectively, like x(t), or just x, and X(s).
Linear systems in the time domain are denoted by capital
letters with no argument, like G, and G(s) stands for the
corresponding transfer function. The L∞ norm of a signal
f : R+ → R is ‖f‖∞ := supt∈R+

|f(t)|.



II. PRELIMINARY: INTEGRAL SLIDING MODE CONTROL

We start with reviewing the integral sliding mode (ISM)
control approach, originated in [8]. To streamline the expo-
sition, we consider a stripped-down disturbance attenuation
problem for a linear plant with matched load disturbances
and fully measured state. Extensions to some more complex
settings should be standard, see [2, Sec. 2.7] or [3, Sec. 1.6].

So consider an LTI system described by the state equation

ẋ(t) = Ax(t) +Bd(t) +Bu(t), (1)

where u(t) ∈ R is the control input, d(t) ∈ R is the load
disturbance, and x(t) ∈ Rn is the (measurable) state. The
transfer function of the plant, which is the u 7→ x part of
(1), is P (s) = (sI − A)−1B. The control problem is to
attenuate, or even reject, the effect of d on x.

The idea of the ISM control is to amalgamate a sliding-
mode control (SMC) loop with a smooth control law, repre-
senting an “ideal” nominal behavior of the controlled system.
In this way, the discontinuous SMC loop is designed for a
specially selected sliding surface, which follows the nominal
evolution of the plant. Moreover, it guarantees that the sliding
mode is enabled from the initial time instant, thus removing
the so-called reaching phase.

Applying to (1), the approach may be presented as follows.
Choose the control signal as composed of two components,

u(t) = u0(t) + u1(t), (2)

where u0 is the “ideal control” to be designed for the nominal
dynamics, i.e., (1) without d, and u1 is a (discontinuous)
SMC add-on, aiming at handling deviations from the nominal
case. Consider the choice

u0(t) = Kx(t), (3)

for a gain K ∈ R1×n such that A+BK is Hurwitz and the
nominal dynamics ẋ(t) = (A+BK)x(t) are satisfactory, in
whatever appropriate sense.

The component u1 is then chosen according to the stan-
dard SMC law

u1(t) = −ρ(t) sign(σ(x(t))), (4)

for some gain ρ (constant / varying / adaptive) and sliding
variable σ. The trick now is to select the sliding variable,
for which the sliding mode σ ≡ 0 achieved by (4) attempts
to keep the closed-loop system evolving as the nominal one.
This property can be attained by the choice

σ(x(t)) = Sx(t)− z(t), (5a)

where the transient function z(t) satisfies

ż(t) = S(A+BK)x(t), z(0) = Sx(0) (5b)

and S ∈ R1×n is a design variable. With this choice,

σ̇(x(t)) = SB
(
d(t) + u1(t)

)
, σ(0) = 0. (6)

If S is chosen so that SB 6= 0 and S(sI − A − BK)−1B
is minimum phase, which is always possible, then σ ≡ 0
yields σ̇ ≡ 0 and leads to the so-called equivalent control

corresponding to u1 given by ũ1(t) = −d(t), [3, Ch. 1].
Consequently, u1 cancels the load disturbance in (1) and
causes the closed-loop dynamics to evolve according to the
ideal response shaped by A+BK.

Conceptually, the ISM control approach does not limit the
choice of the ideal control component by (3). A more sophis-
ticated nominal design can be incorporated. For example, if
d contains some “regular” component, like a constant or a
periodic signal, it would make sense to include a model of
that component into the nominal design, potentially leading
to a smaller gain ρ in (4) and less dominant discontinuous
component u1. The inclusion of internal models is not new to
SMC, see [2, Sec. 2.5] for the use of an integral action, or [9]
for a more general finite-dimensional disturbance model. The
dynamics of the internal model can be routinely combined
with those of the plant, bringing us back to (1), but now
for a higher-dimensional augmented plant. This increased
complexity is an artefact of the approach, affecting the choice
of the discontinuous part in (4). Moreover, the approach
is not readily extendable to include infinite-dimensional
disturbance models, like those used in repetitive control.

III. THE PROPOSED ISM CONTROL ARCHITECTURE

Motivated by the reasonings at the end of the previous
section, we now present an alternative ISM control archi-
tecture to include an internal model of d. This architecture
keeps the spirit of the ISM approach, but also includes a
compensating element in the ideal loop to simplify the design
and properties of the discontinuous component (4).

A. Disturbance model

Return to system (1) and assume now that the disturbance
can be decomposed as

d(t) = dM (t) + dδ(t), (7)

where dM is a “regular” part, satisfying some known evolu-
tion law (model), and dδ is an “irregular” part, which is only
known to be bounded. We assume that ‖dδ‖∞ � ‖dM‖∞,
i.e., that the regular component is dominant. This is a logical
assumption, justifying a special treatment of the regular part.

It is conventional to describe regular disturbances in the
deterministic setting as the output of a known model (exosys-
tem), represented by unknown initial conditions [4]. Accord-
ingly, we assume that the Laplace transform of dM satisfies

DM (s) = M(s)D0(s) (8)

for a not-necessarily stable model M(s) and “initial condi-
tions” d0(t), whose Laplace transform D0(s) is holomorphic
and bounded in the right-half plane {s ∈ C | Re s > 0}. We
need the following assumption about the model:
A1: M(s) = 1/(1−N(s)) for a stable strictly proper N(s).
This assumption, saying that M(s) is minimum phase and
has the unit high-frequency gain, is technical and nonrestric-
tive. Some common particular cases are presented below.
• Any constant dM (t) = µ can be presented via

M(s) =
s+ a

s
and d0(t) = e−atµ, (9a)
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Fig. 1. Proposed ISM control architecture

for every a > 0. This choice corresponds to the admissible
N(s) = a/(s+ a).

• Any harmonic dM (t) = µ sin(θt + φ) with a given θ
corresponds to

M(s) =
(s+ a)2

s2 + θ2
and d0(t) = e−at(α t+ β)µ, (9b)

for α = θ cosφ − a sinφ and β = sinφ. This yields the
admissible N(s) = (2as+ a2 − θ2)/(s+ a)2.

• A pragmatic model in repetitive control is

M(s) =
1

1− F (s)e−τs
and d0 : [0, τ ]→ R, (9c)

for a strictly proper stable F (s). This corresponds to the
admissible N(s) = F (s)e−τs. If F (s) = 1, this model
would represent all τ -periodic signals, those equal to d0
over each period. However, the internal model in that case
leads normally to a non-stabilizable system [6]. Thus, a
low-pass F is introduced such that F (jωi) ≈ 1 over a
sufficiently large number of frequencies ωi := iπ/τ .

The generating signal d0 can be made decaying arbitrarily
fast if a is chosen sufficiently large in (9a) and (9b) and it
vanishes after t = τ in (9c). Thus, we may indeed regard d0
as standard nonzero initial conditions.

If the disturbance satisfied (8), then the inclusion of M(s)
into the controller would guarantee its asymptotic rejection.
However, presuming that d = dM would not be realistic.
This is why we assume (7), whose irregular term dδ may, for
example, account for slow drifts or occasional jumps in the
case of dM from class (9a). Alternatively, it may represent
deviations of (9c) from periodic disturbances in repetitive
control, as well as aperiodic components and mismatches
due to uncertain periods. The very presence of dδ motivates
the introduction of the SMC add-on term u1.

B. ISM architecture and the separation

Consider the block-diagram in Fig. 1. It presents the
proposed “ideal” component of the proposed ISM control
configuration. Instead of adding up the ideal and discontinu-
ous components, as done by (2), it injects the discontinuous
component u1 between two added elements. The block M(s)
is the exosystem, which corresponds to the model of the
regular part of the disturbance in (7) and is the conventional
internal model helping to reject dM .

The 1 × n system Π , which together with the state-
feedback gain K as in (3) constitutes the feedback gain of
this system, is less orthodox. It is introduced to cancel out
the effect of M on the design of u1, while still keeping the

attenuation of the regular part of d by M . Technically, Π(s)
may be any stable transfer function, satisfying

Π(s)P (s) = N(s) = 1− 1/M(s), (10)

where the strictly proper and stable N(s) is defined as in
A1. A required Π always exists. One particular solution is

Π(s) = N(s)B#(sI −A),

where B# is a left inverse of B, although it is not unique and
other alternatives may be used if they offer implementational
benefits. The choice above in the particular case of the PI
M(s) as in (9a) yields

Π(s) = aB# − a

s+ a
B#(aI +A).

By multiplying it by the delay e−τs we obtain Π(s) for the
repetitive control as in (9c) under

F (s) =
a

s+ a
. (11)

The structure of the closed-loop system that connects the
available component of the control signal, u1, with the state
x is derived below.

Theorem 1: Let A1 hold. If A + BK is Hurwitz and Π
satisfying (10) is stable, then the system in Fig. 1 satisfies

ẋ(t) = (A+BK)x(t) +Bδ(t) +Bu1(t), (12)

where δ = M−1d is bounded. Moreover, u stabilizes (1) iff
u1 stabilizes (12).

Proof: First, note that the stability of Π implies that
all cancellations in the system in Fig. 1 are stable. Hence,
the internal stability arguments of [10, Prop. 1], which are
based on loop shifting, can be applied, so that the stability
statement (the last sentence) of the theorem follows. Now,

U(s) =
1

1−N(s)

(
U1(s) + (K −Π(s))X(s)

)
X(s) = P (s)

(
D(s) + U(s)

)
,

where uppercase letters denote the Laplace transforms of
corresponding signals. Combining these equations,(

1−N(s)− (K −Π(s))P (s)
)
U(s)

= U1(s) + (K −Π(s))P (s)D(s).

At this point condition (10) pays off, leading to the following
simpler relation:(

1−KP (s)
)
U(s) = (KP (s)−N(s))D(s) + U1(s),

from which

U(s) =
1

1−KP (s)

(
(1−N(s))D(s) + U1(s)

)
−D(s)

and then x = P (d+ u) reads

X(s) = Td(s)
(
∆(s) + U1(s)

)
,

where ∆(s) = M−1(s)D(s) and

Td(s) := P (s)(1−KP (s))−1 = (sI −A−BK)−1B.



By A1, 1/M is stable, so the signal δ is bounded.
The new closed-loop system (12) is of the same form as

the system for which the conventional ISM with the ideal
control (3) has to be designed. The only difference is that the
original disturbance d is replaced with δ = M−1dδ +d0 (cf.
(8)). We can expect that if d is indeed dominated by dM , then
δ is substantially smaller than d. This is because the model
M is expected to have high gains at dominant frequencies
of d, so that its inverse suppresses those frequencies. This is
indeed the situation in the examples discussed in §III-A.
• If M is an integrator as in (9a), then 1/M(s) = s/(s+a)

is a high-pass filter, whose gain is strictly contractive at
all finite frequencies. Hence, |∆(jω)| < |D(jω)| at every
finite frequency. Moreover, |∆(0)| < ∞ whenever d is
bounded, meaning that δ has a zero DC component, as
expected.

• If M is as in (9b), then 1/M(s) = (s2 +θ2)/(s+a)2 and
its gain is also strictly contractive at all finite frequencies,
provided a > θ. Also, |∆(jθ)| < ∞, so the dominant
harmonic at ω = θ is eliminated in δ.

• In the repetitive control case, with M as in (9c), we have
1/M(s) = 1−F (s)e−τs and its gain is upperbounded by
2, provided |F (jω)| ≤ 1 for all frequencies. Also, at each
ωi = 2iπ/τ such that F (jωi) ≈ 1 we have 1/|M(jωi)| �
1, so that those harmonics are substantially attenuated in δ.

Thus, we may expect that the design of a discontinuous u1
for the ISM architecture in Fig. 1 requires a lower amplitude
of the discontinuous control signal than the design of u for
the original system (1).

Remark 3.1 (choice of K): Apart from the stability of
A+BK, the gain K is unconstrained. This can be exploited
to various purposes, like the reduction of the sensitivity of
system (12) to its disturbance inputs. Pursuing this direction
is beyond the scope of this note. O

C. Discontinuous SMC design

There is a complete freedom in the choice of the sliding
mode component u1. We may consider the conventional (4)
or even choose high-order SMC algorithms, see [2, Ch. 4 and
6] or [3, Ch. 2]. What should be emphasized is that, since
we may expect ‖δ‖∞ � ‖d‖∞, then the gain ρ required in
(4) to dominate the disturbance may be substantially smaller
than that required in the direct SMC of (1).

In fact, it appears logical to tune ρ(t) adaptively, in which
case the gain can be reduced if dδ in (7) becomes small
and increased if some spikes arise. There is a number of
available adaptation methods, see [11] and the references
therein. Below we slightly modify the approach of [12], with
the following gain adaptation law:

ρ̇(t) =

{
ρ̄ |σ(t)| sign(|σ(t)| − ε) if ρ(t) ≥ ρ0
c if ρ(t) < ρ0

, (13)

where ρ0 = ρ(0) > 0 is an upper bound on ‖δ‖∞, ρ̄ > 0,
0 < ε � 1, and c > ε are design parameters. In particular,
ε represents an index of robustness, as it determines how
far the sliding variable is allowed to deviate from the ideal

sliding motion σ ≡ 0 in the steady state. We refer the reader
to [12, Sec. 4] for further details on practices of tuning this
parameter. Note that the choice (13) is motivated mostly
by our experience with this law in simulations, but other
adaptation mechanisms can be used as well.

The result below shows the boundedness of all involved
variables in the resulting closed-loop system. It extends the
results in [12], by exploiting an integral sliding surface.

Proposition 2: Let SB 6= 0 and S(sI−A−BK)−1B be
minimum phase. If in (12) ‖δ‖∞ < ρ0 and the control gain
is tuned according to (13), then u1 in (4) guarantees that
there is tσ > 0 such that σ(t) = 0 for all t ≥ tσ , resulting
in the evolution of x according to

ẋ(t) = (A+BK)x(t),

and ρ(t) is bounded.
Proof: If |σ| > ε, then in line with arguments of

[12], we can select a suitable Lyapunov function V1, which
depends on sizes of σ and ρ, such that

V̇1(t) ≤ −β
√
V1(t)

for some β > 0. This implies that there is a finite time
instant at which the boundary |σ| = ε is reached and that ρ
is bounded during this stage.

Now, consider the case of |σ| < ε and assume, without
loss of generality, that SB = 1. Equation (13) can then be
rewritten as ρ̇ = −κ sign(ρ − ρ0), where κ(t) ≥ 0 equals
either ρ̄|σ(t)| or c, according to (13). Consider the Lyapunov
candidate V2 = (σ2+(ρ−ρ0)2)/2. As σ̇ = δ−ρ signσ now,

V̇2 = σ(δ − ρ signσ)− κ|ρ− ρ0|
= −(ρ0 − δ signσ)|σ| − (κ+ sign(ρ− ρ0)|σ|)|ρ− ρ0|.

Let γ = ρ0 − ‖δ‖∞. Because ‖δ‖∞ < ρ0, we have that
|δ(t)| ≤ ρ0 − γ for all t and

V̇2 ≤

{
−γ|σ| − (ρ̄+ 1)|σ||ρ− ρ0| if ρ ≥ ρ0
−γ|σ| − (c− |σ|)|ρ− ρ0| if ρ < ρ0

Taking into account that c > ε > |σ|, we have that V̇2 ≤
−γ|σ|. This implies that σ → 0. Moreover,

σσ̇ = σ(δ − ρ signσ) = −(ρ− δ signσ)|σ| < −γ|σ|,

where the last inequality follows by the facts that ρ cannot
drop below ρ0 in (13) and |δ(t)| ≤ ρ0−γ for all t. Thus, the
reachability condition [1] holds and we have σ converging
in finite time. Therefore, exploiting the concept of equivalent
control, defined as ũ1, computing σ̇ and posing it equal to
zero, we have ũ1 + δ = 0, that is ũ1 = −δ, which makes
system (12) invariant with respect to δ.

IV. ILLUSTRATIVE EXAMPLE

In this section, the proposed control architecture is as-
sessed in simulation on an academic example given by a DC
electric motor with negligible electric dynamics. We consider
a current-controlled DC motor, described by

ẋ(t) =

[
0 1
0 −h/J

]
x(t) +

[
0

1/J

]
u(t) +

[
0

1/J

]
d(t),



where x(t) ∈ R2 is the state, whose first component is
the shaft position and the second component is its angular
velocity, u(t) ∈ R is the input torque (proportional to the
armature current), and d(t) ∈ R is the resistance torque. The
motor shaft is connected with a rigid mechanical load having
the damping coefficient h = 1 N m s rad−1 and the moment
of inertia J = 1 N m s2 rad−1. The transfer function of this
system is

P (s) =

[
1
s

]
1

s(s+ 1)
.

We assume that the regular component dM in (7) is a
periodic unit-amplitude signal, a square wave filtered by
1/(0.3s+1), whose period τ = π. Its waveform over a period
is as in the signals in Fig. 2 for t ∈ [0, τ ]. The disturbance
contains also an irregular parasitic component dδ such that
‖dδ‖∞ < 0.3 N m. The latter is not persistent. Rather, it is
assumed to act only during some finite time intervals.

A. The ideal control

The need to cope with a periodic disturbance signal fits
the repetitive control framework presented by model (9c).
We choose the first-order F (s) as in (11) with a = ω1α,
where ω1 = 2π/τ = 2 is the fundamental frequency of π-
periodic signals. A possible choice of the function Π(s) is
then

Π(s) = e−τs
ω1α(s+ 1)

s+ ω1α

[
0 1

]
,

which is stable and satisfies (10). We select K = −
[
2 2

]
,

which places the eigenvalues of A+BK to {−1,−2}.
The equivalent disturbance δ = M−1d for model (12)

is shown in Fig. 2 for α = 10 (thin gray line) and α =
100 (thick blue line). The curves for t ∈ [0, τ ], the same

Fig. 2. Equivalent disturbance δ(t) for the filtered square wave dM (t).

for all α, correspond to the initial condition d0, which is
dM over one period. In steady state, for t ≥ 2τ , we can
see residual oscillations, which are caused by the use of the
filter F in the model M . As α increases, F (jω) ≈ 1 in a
wider frequency range, thus rendering residual oscillations
smaller and δ � d, cf. the discussion after the proof of
Theorem 1. Consequently, the steady-state response of the
motor for α = 100 under only the linear repetitive control,
which corresponds to u1 = 0 in (12), is satisfactory, see the
solid blue line in Fig. 3.

The situation changes when dδ , chosen as a random zero-
mean signal acting in the interval t ∈ [5τ, 10τ ], is added to

Fig. 3. Disturbance response under only linear repetitive controller.

the disturbance d. The equivalent disturbance δ, shown by
the dashed red line in Fig. 2, also for α = 100, contains then
substantial components after t = 5τ . This is because the
spectrum of dδ is not limited to the frequencies ωi = iπ/τ ,
so it might be amplified by M−1. As a result, disturbance
attenuation properties of the linear controller are not satis-
factory, see the dashed red line in Fig. 3. This motivates the
introduction of an adaptive discontinuous control discussed
in §III-C.

B. SMC add-ons to repetitive control

Now add the discontinuous loop (4) under the ISM (5) and
the adaptation law (13). We choose S =

[
1 1

]
, for which

SB = 1 6= 0 and S(sI −A−BK)−1B = 1
s+2 is minimum

phase. The parameters of (13) are selected as ρ̄ = 10000,
ρ0 = 0.2, c = 0.1, and ε = 0.01.

Fig. 4. Disturbance response under d(t) = dM (t)+dδ(t) and the proposed
control architecture with the adaptive SMC loop.

Fig. 4 shows the response of the shaft position and its
angular velocity in this case. It is evident that the distur-
bance rejection capabilities are substantially improved in
the interval t ∈ [5τ, 10τ ], where the irregular disturbance
dδ acts. According to Proposition 2, the sliding variable is
steered inside the layer of size ε and kept there as far as
the disturbance is smaller than the amplitude of the adaptive
control gain. This property can be seen in Fig. 5. At the
beginning of the interval t ∈ [5τ, 10τ ], where the amplitude
of δ = M−1d is small (see the dashed red line in Fig. 2),
the sliding variable is kept equal to zero as can be seen
in Fig. 6. The SMC add-on amplitude is equal to ρ0, and
the disturbance deviation is completely dominated. When δ
increases, the sliding mode is lost and the sliding variable
increases, exceeding the threshold ε. As a consequence,



Fig. 5. The control signal u(t) under d(t) = dM (t) + dδ(t) and the
proposed control architecture for t ∈ [5τ, 10τ ].

Fig. 6. The sliding variable σ(t) steered to the boundary layer of size ε
for t ∈ [5τ, 10τ ].

the control amplitude increases in order to dominate the
disturbance and the sliding variable is then steered again
inside the layer, as shown in Fig. 6 accordingly.

C. Comparisons

We conclude this section with a brief comparison of
the proposed control algorithm with some other available
options. As discussed in Section II, our main motivation
for the use of the ISM approach with the internal model
is to reduce the discontinuous component of u. This is also
the incentive for adapting the SMC gain by (13). It thus
makes sense to compare the proposed algorithm with other
approaches to generate the discontinuous control signal u1.

Our comparison criteria are:
1) the disturbance attenuation performance, measured by the

root mean square of the shaft position x1, termed oRMS;
2) the the root mean square of the discontinuous control

component u1, termed iRMS.
Apart from the adaptive algorithm discussed throughout
this section, we select two additional strategies. One is
the conventional fixed-gain SMC with ρ = 1.25, which is
sufficient to dominate the equivalent disturbance δ. Another
one is the dead-zone SMC algorithm, for which the control
law with fixed gain is activated only outside the boundary
layer [−0.01, 0.01]. The comparison is then carried out in
the interval t ∈ [5τ, 10τ ].

The results reported in Table I show that the adaptive strat-
egy allows about 34% reduction of the discontinuous control
effort with respect to the fixed-gain strategy. Although the
dead-zone approach yields an even smaller u1, about 75% of
the iRMS level of the fixed-gain SMC, it results the worst

TABLE I
PERFORMANCE OF THE SMC LOOP

strategy oRMS iRMS
adaptive-gain 4.33× 10−4 0.83

fixed-gain 9.75× 10−6 1.25
dead-zone 5.8× 10−3 0.31

disturbance attenuation among all three. As expected, the
oRMS achieved by using the fixed-gain strategy is the best
one. Still, the adaptive integral sliding mode control law
allows a good trade-off between disturbance attenuation and
control effort.

V. CONCLUDING REMARKS

The note has proposed a novel architecture of integral
sliding mode control, in which the “ideal control” part can
incorporate an internal model without affecting the “discon-
tinuous control” part. This separation is enabled by the use
of a special compensation element and facilitates the use of
high- or even infinite-dimensional models, like those used in
repetitive control.

Although only the relatively simple linear state-feedback
setup with matched disturbances has been addressed, the
presented ideas appear to be extendable to more general
settings. For example, it extends to MIMO case seamlessly.
Less immediate extensions, where some nonlinearities, mod-
eling uncertainty, and unmatched disturbances are present
and only a part of the state variable can be measured,
are currently under investigation. The use of alternative
adaptation mechanisms is also of interest.
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[3] A. Ferrara, G. P. Incremona, and M. Cucuzzella, Advanced and
Optimization Based Sliding Mode Control: Theory and Applications.
Philadelphia, PA: SIAM, 2019.

[4] B. A. Francis and W. M. Wonham, “The internal model principle
for linear multivariable regulators,” Appl. Math. Opt., vol. 2, no. 2,
pp. 170–412, 1975.
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