INVARIANT HERMITIAN FORMS ON VERTEX ALGEBRAS

VICTOR G. KAC PIERLUIGI MÖSENEDER FRAJRIA PAOLO PAPI

Abstract. We study invariant Hermitian forms on a conformal vertex algebra and on their (twisted) modules. We establish existence of a non-zero invariant Hermitian form on an arbitrary W–algebra. We show that for a minimal simple W–algebra $W_k(\mathfrak{g}, \theta/2)$ this form can be unitary only when its $\frac{1}{2}\mathbb{Z}$ -grading is compatible with parity, unless $W_k(\mathfrak{g}, \theta/2)$ "collapses" to its affine subalgebra.

1. INTRODUCTION

In the present paper we study invariant Hermitian forms on a conformal vertex algebra V and its (possibly twisted) positive energy modules. By a conformal vertex algebra we mean a vector superspace V over \mathbb{C} , endowed with a structure of a vertex algebra (with state–field correspondence $a \mapsto Y(a, z)$, and a Virasoro vector L such that the eigenvalues of L_0 lie in 1 $\frac{1}{2}\mathbb{Z}_+$, all eigenspaces are finite–dimensional, and the 0–th eigenspace consists of multiples of the vacuum vector (cf. Definition 1.1 in Section [2](#page-1-0) and [\[11\]](#page-32-0)).

Let ϕ be a conjugate linear involution of V. A Hermitian form (\cdot, \cdot) on V is called ϕ -invariant if, for all $a \in V$, one has

(1.1)
$$
(v, Y(a, z)u) = (Y(A(z)a, z^{-1})v, u), \quad u, v \in V.
$$

Here $A(z): V \to V((z))$ is defined by

(1.2)
$$
A(z) = e^{zL_1} z^{-2L_0} g,
$$

where

(1.3)
$$
g(a) = e^{-\pi\sqrt{-1}(\frac{1}{2}p(a) + \Delta_a)}\phi(a), \quad a \in V,
$$

and $p(a) = 0$ or 1 stands for the parity of a and Δ_a for its L₀–eigenvalue. The definition of a ϕ -invariant Hermitian form on a V-module M is similar (cf. Definition [6.6\)](#page-22-0).

The operator $A(z)$ with $g = (-1)^{L_0}$ appeared first in [\[4\]](#page-32-1) in the construction of the coadjoint module in the case when V is purely even and the eigenvalues of L_0 are integers. Under the same assumptions on V this operator was used in [\[9\]](#page-32-2) for the construction of the dual to the V-modules.

Formula [\(1.2\)](#page-0-0) with $g = (-1)^{L_0} \phi$ was used in [\[7\]](#page-32-3) to define unitary structures on vertex operator algebras and this notion was generalized in [\[3\]](#page-32-4) to vertex algebras with $\frac{1}{2}\mathbb{Z}_{+}$ -grading compatible with parity, in which case formula (1.3) simplifies to (see (4.2))

$$
g = (-1)^{L_0 + 2L_0^2} \phi.
$$

As one can infer from the above remarks, the motivation for this definition stems from the observation that, given a V -module M , one has (as in the Lie algebra case), a bijective correspondence between ϕ –invariant Hermitian forms (\cdot, \cdot) on V and V–module conjugate

linear homomorphisms $\Theta : M \to M^{\dagger}$, where M^{\dagger} is the conjugate linear dual to M, with V-module structure defined by

(1.4)
$$
\langle Y_{M^{\dagger}}(a.z)m',m\rangle = \langle m', Y_M(A(z)a,z^{-1})m\rangle, \quad m \in M, m' \in M^{\dagger}.
$$

Our first result, which generalizes [\[9,](#page-32-2) Theorem 5.2.1, Proposition 5.3.1] (with a similar proof), is Proposition [3.6:](#page-7-0) formula (1.4) indeed defines a structure of a V-module on the restricted dual superspace M^{\dagger} of M. Our second result, which generalizes, with the same proof, that of [\[15\]](#page-32-5) in the symmetric case, is Proposition [4.3,](#page-10-1) which describes ϕ -invariant Hermitian forms on V . Its Corollary [4.7](#page-13-0) claims that a conformal vertex algebra V with a conjugate linear involution ϕ admits a (unique, up to a constant factor) ϕ –invariant Hermitian form if and only if any eigenvector of L_0 with eigenvalue 1 is annihilated by L_1 (see also Remark [4.4\)](#page-12-0). As usual, such a Hermitian form can be expressed in terms of the expectation value on the vacuum (see formula [\(4.9\)](#page-13-1)).

In Section [5](#page-15-0) we construct invariant Hermitian forms of fermionic, bosonic, affine and lattice vertex algebras. In Section [6](#page-19-0) we extend the results on invariant Hermitian forms on V to arbitrary positive–energy (twisted) modules M . Proposition 5.3 claims that the space of ϕ –invariant Hermitian forms on M is isomorphic to the set of ω –invariant Hermitian forms on the module M_0 over the Zhu algebra. Here M_0 is the lowest energy subspace of M and ω is the conjugate linear anti–involution of the Zhu algebra, induced by the endomorphism of the superspace V defined by

$$
\omega(v) = A(1)v, \quad v \in V.
$$

In Remark [6.8](#page-24-0) we note that actually Proposition [4.3](#page-10-1) is a special case of Proposition [6.7.](#page-23-0)

In Section [7](#page-24-1) we construct an invariant Hermitian form on the W-algebras $W^k(\mathfrak{g},x,f)$ [\[12\]](#page-32-6), [\[13\]](#page-32-7). This construction is based on Proposition [7.4](#page-26-0) (b), which says that the condition of Corollary [4.7,](#page-13-0) that all eigenvectors of L_0 with eigenvalue 1 of the vertex algebra are annihilated by L_1 , holds, provided that the elements $h := 2x$ and f can be included in a $sl(2)$ -triple $\{e, f, h\}.$

In conclusion of this section we briefly discuss unitarity (i.e., positive semi-definiteness) of this Hermitian form for minimal W-algebras $W^k(\mathfrak{g}, \theta/2)$. We show that the only interesting cases might occur when the $\frac{1}{2}\mathbb{Z}$ -grading on the W-algebra is compatible with parity. In all the other cases we show that the W –algebra can be unitary only at collapsing levels [\[1\]](#page-32-8), i.e. when the simple W-algebra $W_k(\mathfrak{g}, \theta/2)$ "collapses" to its affine subalgebra: see Propositions [7.9,](#page-29-0) [7.11.](#page-30-0) These are just the first steps towards classification of unitary minimal W–algebras.

Throughout the paper the base field is \mathbb{C} . We also denote by \mathbb{Z}_+ the set of nonnegative integers and by N the set of positive integers.

2. SETUP

2.1. **Basic definitions.** Recall that a vector superspace is a $\mathbb{Z}/2\mathbb{Z}$ -graded vector space $V =$ $V_{\bar{0}} \oplus V_{\bar{1}}$. The elements in $V_{\bar{0}}$ (resp. $V_{\bar{1}}$) are called even (resp. odd). Set

$$
p(v) = \begin{cases} 0 \in \mathbb{Z} & \text{if } v \in V_{\overline{0}}, \\ 1 \in \mathbb{Z} & \text{if } v \in V_{\overline{1}}, \end{cases}
$$

i.e. we will regard $p(v)$ as an integer, not as a residue class. We will often use the notation

(2.1)
$$
\sigma(u) = (-1)^{p(u)}u, \qquad p(u,v) = (-1)^{p(u)p(v)}.
$$

Let V be a vertex algebra. We let

(2.2)
$$
Y: V \to (\text{End } V)[[z, z^{-1}]],
$$

$$
v \mapsto Y(v, z) = \sum_{n \in \mathbb{Z}} v_{(n)} z^{-n-1} \quad (v_{(n)} \in \text{End } V),
$$

be the state–field correspondence. We denote by 1 the vacuum vector in V and by T the translation operator (see e.g. [\[11\]](#page-32-0) for details).

Definition 2.1. In the present paper we will call a vertex algebra V conformal if there exists a distinguished vector $L \in V_2$, called a Virasoro vector, satisfying the following conditions:

(2.3)
$$
Y(L, z) = \sum_{n \in \mathbb{Z}} L_n z^{-n-2}, \ [L_m, L_n] = (m - n)L_{m+n} + \frac{1}{12}(m^3 - m)\delta_{m+n,0}cI,
$$

$$
(2.4) \qquad L_{-1} = T,
$$

 (2.5) L₀ is diagonalizable and its eigenspace decomposition has the form

(2.6)
$$
V = \bigoplus_{n \in \frac{1}{2}\mathbb{Z}_+} V_n,
$$

where

(2.7)
$$
\dim V_n < \infty \text{ for all } n \text{ and } V_0 = \mathbb{C} \mathbf{1}.
$$

The number c is called the *central charge*.

Remark 2.2. Important examples of conformal vertex algebras are vertex operator superalgebras, namely the conformal vertex algebras for which decomposition [\(2.6\)](#page-2-0) is compatible with parity, i.e. $\sigma(u) = (-1)^{2L_0}u$.

In the definition of [\[11\]](#page-32-0) of conformal vertex algebras properties [\(2.6\)](#page-2-0) and [\(2.7\)](#page-2-1) are not required.

By an automorphism of a conformal vertex algebra V we mean a vertex algebra automorphism ϕ of V (i. e. $\phi(u_{(n)}v) = \phi(u)_{(n)}\phi(v)$ for all $n \in \mathbb{Z}$) with the property that $\phi(L) = L$. Consequently, $\phi(V_n) = V_n$.

The eigenvalues of L_0 on V are called *conformal weights*; the conformal weight of $v \in V$ is denoted by Δ_v , so that $v \in V_{\Delta_v}$. The eigenvector v of L_0 is called *quasiprimary* if $L_1v = 0$ and primary if $L_n v = 0$ for $n \geq 1$. One has for v of conformal weight Δ_v :

(2.8)
$$
[L_{\lambda}v] = (L_{-1} + \Delta_v \lambda)v + \sum_{n\geq 2} \frac{\lambda^n}{n!} L_{n-1}v.
$$

Here and throughout the paper we use the formalism of λ -brackets, which are defined by

$$
[u_{\lambda}v] = Res_{z}e^{z\lambda}Y(u,z)v, \quad u, v \in V.
$$

Let Γ be an additive subgroup of $\mathbb R$ containing $\mathbb Z$. If $\gamma \in \mathbb R$, denote by $[\gamma]$ its coset $\gamma + \mathbb Z$. **Definition 2.3.** Let V be a conformal vertex algebra. A Γ/\mathbb{Z} –grading on V is a map $\Upsilon : [\gamma] \mapsto V^{[\gamma]} \subseteq V$ such that V decomposes as

(2.9)
$$
V = \bigoplus_{[\gamma] \in \Gamma/\mathbb{Z}} V^{[\gamma]}
$$

and (2.9) is a vertex algebra grading, compatible with L_0 , i.e.

$$
V^{[\alpha]}{}_{(n)}V^{[\beta]}\subseteq V^{[\alpha+\beta]}, \quad L_0(V^{[\gamma]})\subseteq V^{[\gamma]}.
$$

If $a \in V^{[\gamma]}$ then $[\gamma]$ is called the *degree* of a. Given a vector $a \in V$ of conformal weight Δ_a and degree [γ], denote by ϵ_a the maximal non–positive real number in the coset $[\gamma - \Delta_a]$. This number has the following properties [\[5\]](#page-32-9):

(2.10)
$$
\epsilon_1 = 0, \quad \epsilon_{Ta} = \epsilon_a, \quad \epsilon_{a_{(n)}b} = \epsilon_a + \epsilon_b + \chi(a, b),
$$

where $\chi(a, b) = 1$ or 0, depending on whether $\epsilon_a + \epsilon_b \le -1$ or not. Let $\gamma_a = \Delta_a + \epsilon_a$. Then

(2.11)
$$
\gamma_1 = 0, \quad \gamma_{Ta} = \gamma_a + 1, \quad \gamma_{a_{(n)}b} = \gamma_a + \gamma_b + \chi(a,b) - n - 1.
$$

2.2. Twisted modules.

Definition 2.4. Let Γ be an additive subgroup of \mathbb{R} containing \mathbb{Z} , and let Υ be a Γ/\mathbb{Z} –grading on a conformal vertex algebra V. A Υ –twisted module for V is a vector superspace M and a parity preserving linear map from V to the space of $EndM$ –valued Υ –twisted quantum fields $a \mapsto Y^M(a, z) = \sum_{m \in [\gamma_a]} a^M_{(m)} z^{-m-1}$ (i.e. $a^M_{(m)} \in \text{End}M$ and $a^M_{(m)} v = 0$ for each $v \in M$ and $m \gg 0$, such that the following properties hold:

(2.12)
$$
\mathbf{1}_{(n)}^M = \delta_{n,-1} I_M,
$$

(2.13)
$$
\sum_{j\in\mathbb{Z}_+} \binom{m}{j} (a_{(n+j)}b)_{(m+k-j)}^M v
$$

$$
= \sum_{j\in\mathbb{Z}_+} (-1)^j \binom{n}{j} (a_{(m+n-j)}^M b_{(k+j)}^M - p(a,b)(-1)^n b_{(k+n-j)}^M a_{(m+j)}^M) v,
$$

where $a \in V^{[\gamma_a]}$ $(\gamma_a \in \Gamma)$, $m \in [\gamma_a]$, $n \in \mathbb{Z}$, $k \in [\gamma_b]$.

The following Lemma is known; we prove it for completeness.

Lemma 2.5. The Borcherds identity (2.13) is equivalent to (2.14)

$$
Res_u(i_{w,u}Y_M(Y(a,u)b,w)(w+u)^mu^nw^l) =
$$

\n
$$
Res_z(i_{z,w}Y_M(a,z)Y_M(b,w)z^m(z-w)^nw^l - p(a,b)i_{w,z}Y_M(b,w)Y_M(a,z)z^m(z-w)^nw^l)
$$

for all $n \in \mathbb{Z}$, $m \in [\gamma_a]$, $l \in [\gamma_b]$. As usual, $i_{x,y}$ means expanding in the domain $|x| > |y|$. Proof. Computing the residues we find that [\(2.14\)](#page-3-1) is equivalent to

$$
\sum_{t \in \mathbb{Z}, j \in \mathbb{Z}_+} {m \choose j} (a_{(j+n)}b)_{(t-j+m+l)}^M w^{-t-1}
$$
\n
$$
= \sum_{t \in \mathbb{Z}, j \in \mathbb{Z}_+} (-1)^j {n \choose j} \left(a_{(m+n-j)}^M b_{(t+j+l)}^M - p(a,b)(-1)^n b_{(t+n-j+l)}^M a_{(m+j)}^M \right) w^{-t-1}.
$$

Since $V^{[\gamma]}$ is L_0 -invariant, we have its eigenspace decomposition $V^{[\gamma]} = \bigoplus_{\Delta} V_{\Delta}^{[\gamma]}$, and we will write for $v \in V_{\Delta_v}^{[\gamma]}$ $\mathcal{\Delta}_v^{[\,\gamma]},$

$$
Y_M(v, z) = \sum_{n \in [\gamma - \Delta_v]} v_n^M z^{-n - \Delta_v}
$$

.

Definition 2.6. A Υ -twisted V-module M is called a *positive energy* V-module if M has an R–grading $M = \bigoplus_{j\geq 0} M_j$ such that

(2.15)
$$
a_n^M M_j \subseteq M_{j-n}, \ a \in V_{\Delta_a}.
$$

The subspace M_0 is called the *minimal energy subspace*. Then,

(2.16)
$$
a_n^M M_0 = 0 \text{ for } n > 0 \text{ and } a_0^M M_0 \subseteq M_0.
$$

2.3. Zhu algebras. Set

(2.17)
$$
V_{\Upsilon} = span(a \in V \mid \epsilon_a = 0).
$$

Define a subspace J_{Υ} of V as the span of elements

(2.18)
$$
\sum_{j\in\mathbb{Z}_+} {\binom{\gamma_a}{j}} a_{(-2+\chi(a,b)+j)} b = Res_z z^{-2+\chi(a,b)} Y((1+z)^{\gamma_a} a, z) b,
$$

with $\epsilon_a + \epsilon_b \in \mathbb{Z}$.

Let

$$
a * b = \sum_{j \in \mathbb{Z}_+} \binom{\gamma_a}{j} a_{(-1+j)} b,
$$

Then J_{Υ} is a two sided ideal in V_{Υ} with respect to the product *. The quotient $Zhu_{\Upsilon}(V) =$ $V_{\Upsilon}/J_{\Upsilon}$ is an associative superalgebra with respect to the product $*$ (see [\[5\]](#page-32-9) for a proof), which is called the Zhu algebra associated to the grading [\(2.9\)](#page-2-2).

Example 2.7. If Γ is the subgroup of R spanned by the conformal weights Δ_a then one has a Γ/\mathbb{Z} –grading [\(2.9\)](#page-2-2), for which

$$
V^{[\gamma]}=\oplus_{\Delta\in [\gamma]} V_\Delta.
$$

The corresponding Zhu algebra is called the L_0 -twisted (or Ramond twisted) Zhu algebra and denoted by $Zhu_{L_0}V$. If $\Gamma = \mathbb{Z}$ then one has the trivial grading [\(2.9\)](#page-2-2) by setting $V^{\mathbb{Z}} = V$. The corresponding Zhu algebra is denoted by $ZhuZV$ and is called the non-twisted Zhu algebra ([\[5\]](#page-32-9), Examples 2.14 and 2.15).

3. The conjugate contragredient module

In this section we adapt to our setting the proofs of Section 5 of [\[9\]](#page-32-2), where the action of a vertex operator algebra on the linear dual of a module is defined. If $a \in V_{\Delta_a}$, set

(3.1)
$$
(-1)^{L_0}a = e^{\pi\sqrt{-1}\Delta_a}a, \quad \sigma^{1/2}(a) = e^{\frac{\pi}{2}\sqrt{-1}p(a)}a.
$$

Lemma 3.1. Let q be a diagonalizable parity preserving conjugate linear operator on V with modulus 1 eigenvalues, such that $g(L) = L$. Then one has the relation

(3.2)
$$
gY(a, z)g^{-1}b = p(a, b)Y(g(a), -z)b
$$

if and only if the operator

(3.3)
$$
\phi = (-1)^{L_0} \sigma^{1/2} g
$$

is a conjugate linear automorphism of V . Moreover

(3.4)
$$
g^2 = I \iff \phi^2 = I.
$$

Proof. Assume that q satisfies (3.2) . Then

(3.5)
$$
\phi(a)_{(n)}\phi(b) = ((-1)^{L_0} \sigma^{1/2} g)(a)_{(n)}((-1)^{L_0} \sigma^{1/2} g)(b) = e^{\pi\sqrt{-1}(\Delta_a + \Delta_b)} e^{\pi/2\sqrt{-1}(p(a) + p(b))} g(a)_{(n)} g(b).
$$

By [\(3.2\)](#page-4-0), $g(a_{(n)}b) = (-1)^{n+1}p(a,b)g(a)_{(n)}g(b)$. Substituting in [\(3.5\)](#page-5-0), and noting that $p(a)$ + $p(b) + 2p(a)p(b) = p(a_{(n)}b) \mod 4\mathbb{Z}$, we obtain

$$
\phi(a)_{(n)}\phi(b) = e^{\pi\sqrt{-1}(\Delta_a + \Delta_b)}e^{\pi/2\sqrt{-1}(p(a) + p(b))}(-1)^{n+1}p(a, b)g(a_{(n)}b)
$$

=
$$
e^{\pi\sqrt{-1}\Delta_{a_{(n)}b}}e^{\pi/2\sqrt{-1}(p(a) + p(b) + 2p(a)p(b))}g(a_{(n)}b)
$$

=
$$
e^{\pi\sqrt{-1}\Delta_{a_{(n)}b}}e^{\pi/2\sqrt{-1}p(a_{(n)}b)}g(a_{(n)}b) = \phi(a_{(n)}b).
$$

Reversing the argument we obtain the converse statement.

To prove [\(3.4\)](#page-4-1) remark that $g(L) = L$, hence $L_0g(a) = g(L)_0g(a) = g(L_0a)$, so, since $\Delta_a \in \mathbb{R}, \Delta_{q(a)} = \Delta_a$. Moreover g is parity preserving and conjugate linear, hence

$$
\phi^2(a) = (-1)^{L_0} \sigma^{1/2} g(-1)^{L_0} \sigma^{1/2} g(a) = e^{\pi \sqrt{-1} (\Delta_a + \frac{1}{2} p(a))} g e^{\pi \sqrt{-1} (\Delta_a + \frac{1}{2} p(a))} g(a)
$$

= $e^{\pi \sqrt{-1} (\Delta_a + \frac{1}{2} p(a))} e^{-\pi \sqrt{-1} (\Delta_a + \frac{1}{2} p(a))} g^2(a) = g^2(a).$

.

 \Box

Definition 3.2. Let g be a diagonalizable parity preserving conjugate linear operator on V , satisfying [\(3.2\)](#page-4-0) and such that $g^2 = I$. Define $A(z) : V \to V((z))$ by

(3.6)
$$
A(z)v = e^{zL_1}z^{-2L_0}gv, \quad v \in V.
$$

Lemma 3.3. We have

(3.7)
$$
p(a,b)A(w)Y(a,z)A(w)^{-1}b = i_{w,z}Y\left(A(z+w)a,\frac{-z}{(z+w)w}\right)b
$$

and

$$
(3.8)\qquad \qquad A(z^{-1}) = A(z)^{-1}
$$

Proof. It is clear that

(3.9)
$$
w^{-2L_0} Y(a, z) w^{2L_0} b = Y(w^{-2L_0} a, z/w^2) b.
$$

By [\(3.2\)](#page-4-0)

(3.10)
$$
p(a,b)gw^{-2L_0}Y(a,z)w^{2L_0}g^{-1}b = Y(gw^{-2L_0}a, -z/w^2)b.
$$

Finally we use that, if $|wz| < 1$, then

(3.11)
$$
e^{wL_1}Y(a,z)e^{-wL_1} = Y(e^{w(1-wz)L_1}(1-wz)^{-2L_0}a, \frac{z}{1-wz})
$$

(see $(5.2.38)$ of [\[9\]](#page-32-2) and $(4.9.17)$ of [\[11\]](#page-32-0)) to get, for $|z| < |w|$,

$$
(3.12) \t p(a,b)e^{wL_1}Y(gw^{-2L_0}a, -z/w^2)e^{-wL_1}b = Y(e^{(w+z)L_1}g(w+z)^{-2L_0}a, \frac{-z}{w(w+z)})b,
$$

which is (3.7) .

Since $g^2 = I$, [\(3.8\)](#page-5-2) is equivalent to

(3.13)
$$
A(z)a = g^{-1}z^{-2L_0}e^{-z^{-1}L_1}a = gz^{-2L_0}e^{-z^{-1}L_1}a.
$$

Next observe that

$$
gz^{-2L_0}e^{-z^{-1}L_1}a = \sum_r z^{-2L_0}(-1)^r \frac{1}{r!}g(L_1^r a)z^{-r}
$$

=
$$
\sum_r z^{-2\Delta_a}z^{2r}(-1)^r \frac{1}{r!}g(L_1^r a)z^{-r}
$$

=
$$
\sum_r (-1)^r \frac{1}{r!}g(L_1^r a)z^{r-2\Delta_a}.
$$

Since $g(L_1v) = -g(L)_{1}g(v) = -L_1g(v)$ we obtain

$$
gz^{-2L_0}e^{-z^{-1}L_1}a = \sum_r \frac{1}{r!}L_1^r g(a)z^{r-2\Delta_a} = e^{zL_1}z^{-2L_0}g(a) = A(z)a.
$$

Remark 3.4. Note that, by (3.13) , if v is quasiprimary, we have

$$
(3.14) \t\t A(z)v = z^{-2\Delta_v}g(v).
$$

If Υ is a Γ/Z-grading on V, we let the *opposite* grading $-\Upsilon$ be the grading defined by setting

$$
-\Upsilon([\gamma])=\Upsilon(-[\gamma]).
$$

We say that a Γ/\mathbb{Z} -grading is compatible with a map ϕ if $\phi(V^{[\gamma]}) \subseteq V^{[\gamma]}$.

Let M be a positive energy Υ -twisted module and let M^{\dagger} denote the restricted conjugate dual of M , that is

(3.15)
$$
M^{\dagger} = \bigoplus_{n \geq 0} M_n^{\dagger}
$$

where M_n^{\dagger} is the space of conjugate linear maps from M_n to \mathbb{C} .

Lemma 3.5. If $M + K \in \mathbb{Z}$, then

$$
(3.16) \quad Res_z z^M w^N i_{z,w}(z+w)^K = (-1)^{K+M-1} Res_z z^{-2-K-M} w^{2+2K+M+N} i_{w,z}(z+w)^M.
$$

Proof. If $M + K < -1$, both sides of [\(3.16\)](#page-6-0) are zero. If $M + K \ge -1$, then

$$
Res_{z} z^{M} w^{N} i_{z,w}(z+w)^{K} = Res_{z} \sum_{j \in \mathbb{Z}_{+}} {K \choose j} z^{M+K-j} w^{N+j}
$$

$$
= {K \choose M+K+1} w^{N+M+K+1}.
$$

On the other hand

$$
Res_{z} z^{m} w^{n} i_{w,z} (z+w)^{k} = Res_{z} \sum_{j \in \mathbb{Z}_{+}} {k \choose j} z^{m+j} w^{n+k-j}
$$

=
$$
{k \choose -m-1} w^{n+m+k+1}
$$

=
$$
(-1)^{-m-1} {m-1-k-1 \choose -m-1} w^{n+m+k+1}.
$$

Equality holds for $m = -2 - K - M$, $n = 2 + 2K + M + N$, $k = M$.

 \Box

Theorem 3.6. Let ϕ be a conjugate linear involution of a conformal vertex algebra V. Choose g as in Definition [3.2](#page-5-4) and define $A(z)$ by [\(3.6\)](#page-5-5). Let Υ be a Γ/\mathbb{Z} -grading on V compatible with ϕ . Let M be a Υ -twisted positive energy module. Then

(a) The map $Y_{M^{\dagger}}$ given by

(3.17)
$$
\langle Y_{M^{\dagger}}(v,z)m',m\rangle = \langle m', Y_M(A(z)v,z^{-1})m\rangle, \ m \in M, m' \in M^{\dagger},
$$
 define a on M[†] the structure of a (- Υ), twisted V, module.

defines on M^{\dagger} the structure of a $(-\Upsilon)$ -twisted V-module. (b) If $\dim M_n < \infty$ for all n then $(M^{\dagger})^{\dagger}$ is naturally isomorphic to M.

Proof. Let $V = \bigoplus_{\gamma \in \Gamma / \mathbb{Z}} V^{\gamma}$ be the grading Υ . Write explicitly for $v \in V^{\gamma}_{\Delta}$ $\stackrel{\gamma}{\Delta}_v,$

$$
Y_{M^{\dagger}}(v, z) = \sum_{n \in -\gamma - \Delta_v} v_n^{M^{\dagger}} z^{-n - \Delta_v}.
$$

Then we have

$$
\sum_{n} \langle v_n^{M^{\dagger}} m', m \rangle z^{-n - \Delta_v} = \sum_{n} \langle m', \sum_{t} \frac{1}{t!} (L_1^t g(v))_n^M m \rangle z^{n - \Delta_v}.
$$

In other words, if $n \in -\gamma - \Delta_v$, then

(3.18)
$$
\langle v_n^{M^{\dagger}} m', m \rangle = \langle m', \sum_t \frac{1}{t!} (L_1^t g(v))_{-n}^M m \rangle.
$$

In particular, $v_n^{M^{\dagger}} M_j^{\dagger} \subseteq M_{j-n}^{\dagger}$. This proves that, by [\(3.15\)](#page-6-1), $Y^{M^{\dagger}}$ is indeed a $(-\Upsilon)$ -twisted quantum field.

Next observe that

(3.19)
$$
\langle \mathbf{1}_{(n)}^{M^{\dagger}} m', m \rangle = \langle \mathbf{1}_{n+1}^{M^{\dagger}} m', m \rangle = \langle m', \mathbf{1}_{-n-1}^{M} m \rangle = \delta_{-n-1,0} \langle m', m \rangle,
$$

hence (2.12) for M^{\dagger} follows.

We now prove the Borcherds identity (2.14) for M^{\dagger} , that is

(3.20)
$$
Res_{u} \langle Y_{M^{\dagger}}(Y(a, u)b, w)i_{w,u}(w+u)^{k}u^{n}w^{l}m', m \rangle
$$

$$
= Res_{z} (\langle Y_{M^{\dagger}}(a, z)Y_{M^{\dagger}}(b, w)i_{z,w}z^{k}(z-w)^{n}w^{l}m', m \rangle)
$$

$$
- p(a, b)Res_{z} (\langle Y_{M^{\dagger}}(b, w)Y_{M^{\dagger}}(a, z)i_{w,z}z^{k}(z-w)^{n}w^{l}m', m \rangle)
$$

for all $n \in \mathbb{Z}$, $k \in [-\gamma_a], l \in [-\gamma_b]$. Since

$$
\langle Y_{M^{\dagger}}(a,z)Y_{M^{\dagger}}(b,w)m',m\rangle = \langle m', Y_M(A(w)b,w^{-1})Y_M(A(z)a,z^{-1})m\rangle,
$$

$$
\langle Y_{M^{\dagger}}(b,w)Y_{M^{\dagger}}(a,z)m',m\rangle = \langle m', Y_M(A(z)a,z^{-1})Y_M(A(w)b,w^{-1})m\rangle,
$$

$$
\langle Y_{M^{\dagger}}(Y(a,u)b,w)m',m\rangle = \langle m', Y_M(A(w)Y(a,u)b,w^{-1})m\rangle,
$$

we have to prove that

$$
Res_u(\langle m', Y_M(A(w)Y(a, u)b, w^{-1})m \rangle i_{w,u}(w+u)^k u^n w^l)
$$

= $Res_z(\langle m', Y_M(A(w)b, w^{-1})Y_M(A(z)a, z^{-1})m \rangle i_{z,w} z^k (z-w)^n w^l)$
- $p(a, b) Res_z(\langle m', Y_M(A(z)a, z^{-1})Y_M(A(w)b, w^{-1})m \rangle i_{w,z} z^k (z-w)^n w^l).$

Hence we need to check that

(3.21)
$$
Res_u(Y_M(A(w)Y(a, u)b, w^{-1})i_{w,u}(w+u)^k u^n w^l)
$$

$$
= Res_z(Y_M(A(w)b, w^{-1})Y_M(A(z)a, z^{-1})i_{z,w}z^k(z-w)^n w^l)
$$

$$
- p(a, b)Res_z(Y_M(A(z)a, z^{-1})Y_M(A(w)b, w^{-1})i_{w,z}z^k(z-w)^n w^l).
$$

Changing variables in the Borcherds identity [\(2.14\)](#page-3-1) for Y_M we obtain, for all $n \in \mathbb{Z}$, $m \in [\gamma_a]$, $l\in[\gamma_b],$

$$
Res_t Y_M(Y(a, t^{-1})b, w^{-1})i_{w^{-1}, t^{-1}}(w^{-1} + t^{-1})^m t^{-n-2} w^{-l}
$$

=
$$
Res_t(Y_M(a, t^{-1})Y_M(b, w^{-1})i_{t^{-1}, w^{-1}}t^{-m-2}(t^{-1} - w^{-1})^n w^{-l})
$$

-
$$
p(a, b)Res_t(Y_M(b, w^{-1})Y_M(a, t^{-1})i_{w^{-1}, t^{-1}}t^{-m-2}(t^{-1} - w^{-1})^n w^{-l}),
$$

which is equivalent to

(3.22)
$$
Res_t(Y_M(Y(a, t^{-1})b, w^{-1})i_{t,w}(w+t)^m t^{-n-2-m}w^{-l-m}
$$

$$
= Res_t(Y_M(a, t^{-1})Y_M(b, w^{-1})i_{w,t}t^{-m-n-2}(w-t)^n w^{-l-n})
$$

$$
- p(a, b)Res_t(Y_M(b, w^{-1})Y_M(a, t^{-1})i_{t,w}t^{-m-2-n}(w-t)^n w^{-l-n}).
$$

Write explicitly $A(w)a = \sum_{r \in \mathbb{Z}_+} C_r(a)w^{r-2\Delta_a}$, where $C_r(a) \in V$. Then

$$
Y_M(A(t)a, t^{-1}) = \sum_{r \in \mathbb{Z}_+, h \in [\gamma_a]} C_r(a)_{(h)} t^{h+1} t^{r-2\Delta_a} = \sum_{r \in \mathbb{Z}_+} Y_M(C_r(a), t^{-1}) t^{r-2\Delta_a},
$$

so, by [\(3.22\)](#page-8-0),

$$
Res_{t}(Y_{M}(A(t)a, t^{-1})Y_{M}(A(w)b, w^{-1})i_{w,t}t^{-m-n-2}(w-t)^{n}w^{-l-n})
$$

\n
$$
-p(a,b)Res_{t}(Y_{M}(A(w)b, w^{-1})Y_{M}(A(t)a, t^{-1})i_{t,w}t^{-m-2-n}(w-t)^{n}w^{-l-n})
$$

\n
$$
= \sum_{r} Res_{t}(Y_{M}(C_{r}(a), t^{-1})Y_{M}(A(w)b, w^{-1})i_{w,t}t^{-m-n-2+r-2\Delta_{a}}(w-t)^{n}w^{-l-n})
$$

\n
$$
-p(a,b) \sum_{r} Res_{t}(Y_{M}(A(w)b, w^{-1})Y_{M}(C_{r}(a), t^{-1})i_{t,w}t^{-m-2-n+r-2\Delta_{a}}(w-t)^{n}w^{-l-n})
$$

\n
$$
= \sum_{r} Res_{t}(Y_{M}(Y(C_{r}(a), t^{-1})A(w)b, w^{-1})i_{t,w}(w+t)^{m-r+2\Delta_{a}}t^{-n-2-m+r-2\Delta_{a}}w^{-l-m+r-2\Delta_{a}}
$$

\n
$$
= Res_{t}(Y_{M}(i_{t,w}Y(A(\frac{wt}{w+t})a, t^{-1})A(w)b, w^{-1})(w+t)^{m}t^{-n-2-m}w^{-l-m}.
$$

Therefore we have

$$
Res_z(Y_M(A(z)a, z^{-1})Y_M(A(w)b, w^{-1})i_{w,z}z^k(w-z)^n w^l)
$$

- $p(a, b)Res_z(Y_M(A(w)b, w^{-1})Y_M(A(z)a, z^{-1})i_{z,w}z^k(w-z)^n w^l)$
= $Res_t(Y_M(i_{t,w}Y(A(\frac{wt}{w+t})a, t^{-1})A(w)b, w^{-1})(w+t)^{-k-n-2}t^k w^{l+k+2n+2}).$

Hence [\(3.21\)](#page-7-1) turns into

$$
Res_t(i_{t,w}Y_M(Y(A(\frac{wt}{w+t})a,t^{-1})A(w)b,w^{-1})(w+t)^{-k-n-2}t^kw^{l+k+2n+2}
$$

= $-p(a,b)(-1)^n Res_t(Y_M(A(w)Y(a,t)b,w^{-1})i_{w,t}(w+t)^k t^n w^l).$

Expand the L.H.S. above as

$$
Res_t(Y_M(i_{t,w}Y(A(\frac{wt}{w+t})a,t^{-1})A(w)b,w^{-1})(w+t)^{-k-n-2}t^kw^{l+k+2n+2}) =
$$

$$
\sum_{p,q,r,s} Res_t((C_r(a)_{(p)}C_s(b))_{(q)}i_{t,w}(w+t)^{-r+2\Delta_a-k-n-2}t^{k+r-2\Delta_a+p+1}w^{l+k+2n+2+q+s-2\Delta_b+r-2\Delta_a}),
$$

and apply Lemma [3.5](#page-6-2) to obtain

$$
Res_{t}(Y_{M}(i_{t,w}Y(A(\frac{wt}{w+t})a,t^{-1})A(w)b,w^{-1})(w+t)^{-k-n-2}t^{k}w^{l+k+2n+2}
$$
\n
$$
= Res_{t} \sum_{p,q,r,s} (-1)^{p-n-1} (C_{r}(a)_{(p)}C_{s}(b))_{(q)}i_{w,t}(w+t)^{k+r-2\Delta_{a}+p+1}t^{n-p-1}w^{l+q+s+p+1-2\Delta_{b}}
$$
\n
$$
= (-1)^{n+1}Res_{t} \sum_{p} (-1)^{p}Y_{M}((A(w+t)a_{(p)}A(w)b),w^{-1})i_{w,t}(w+t)^{k+p+1}t^{n-p-1}w^{l+p}
$$
\n
$$
= (-1)^{n+1}Res_{t}(i_{w,t}Y_{M}(Y((A(w+t)a,\frac{-t}{w(w+t)})A(w)b),w^{-1})(w+t)^{k}t^{n}w^{l}).
$$

Thus we are reduced to prove that

$$
Res_{t}(i_{w,t}Y_{M}(Y(A(t+w)a, \frac{-t}{w(t+w)})A(w)b, w^{-1})w^{l}(t+w)^{k}t^{n}
$$

= $p(a, b)Res_{t}(Y_{M}(A(w)Y(a, t)b, w^{-1})i_{w,t}(w+t)^{k}t^{n}w^{l}),$

or equivalently

(3.23)
$$
p(a,b)A(w)Y(a,t)b = i_{w,t}Y\left(A(t+w)a,\frac{-t}{(t+w)w}\right)A(w)b,
$$

which is equation [\(3.7\)](#page-5-1) with $A(w)b$ in place of b. Claim (a) follows.

Let us now check (b). We need only to check that the map $m \mapsto f_m \in (M^{\dagger})^{\dagger}$ where $\langle f_m, m' \rangle = \langle m', m \rangle$ is a V-module isomorphism. The map is clearly bijective since we are assuming dim $M_n < \infty$. Now

$$
\langle (Y_{(M^{\dagger})^{\dagger}}(v,z)f_m,m' \rangle = \langle f_m, Y_{M^{\dagger}}(A(z)v,z^{-1})m' \rangle = \overline{\langle Y_{M^{\dagger}}(A(z)v,z^{-1})m',m \rangle}
$$

= $\overline{\langle m', Y_M(A(z)A(z^{-1})v),z)m \rangle}.$

Now use [\(3.8\)](#page-5-2) to get

$$
\langle (Y_{(M^{\dagger})^{\dagger}}(v,z)f_m,m'\rangle = \overline{\langle m', Y_M(v,z)m\rangle} = \langle f_{Y_M(v,z)m},m'\rangle.
$$

4. Invariant Hermitian forms on conformal vertex algebras

Let V be a conformal vertex algebra. By a Hermitian form on V we mean a map (\cdot, \cdot) : $V \times V \to \mathbb{C}$ conjugate linear in the first argument and linear in the second, such that $(v_1, v_2) = (v_2, v_1)$ for all $v_1, v_2 \in V$.

Let ϕ be a conjugate linear parity preserving involution of V. Consider the conjugate linear operator (cf [\(3.3\)](#page-4-2))

(4.1)
$$
g = ((-1)^{L_0} \sigma^{1/2})^{-1} \phi.
$$

By [\(3.4\)](#page-4-1), we have that $g^2 = I$. Obviously g satisfies the hypothesis of Definition [3.2.](#page-5-4) Two instances of such a situation are the following.

(1) Recall from Remark [2.2](#page-2-3) that, if V is a vertex operator superalgebra, then $(-1)^{2\Delta_a}$ = $(-1)^{p(a)}$ for all $a \in V$. Set $s(a) = \Delta_a + \frac{1}{2}$ $\frac{1}{2}p(a)$ and note that in this case $s(a)$ is an integer. Then

$$
\Delta_a + 2\Delta_a^2 = s(a) - \frac{1}{2}p(a) + 2(s(a) - \frac{1}{2}p(a))^2
$$

= $s(a) - \frac{1}{2}p(a) + 2s(a)^2 - 2s(a)p(a) + \frac{1}{2}p(a)^2$.

As $p(a) - p(a)^2 = 0$ and $p(a)$, $s(a)$ are integers, we see that

 $\Delta_a + 2\Delta_a^2 \equiv s(a) \mod 2$

so that

$$
g(a) = e^{-\pi\sqrt{-1}(\Delta_a + \frac{1}{2}p(a))}\phi(a) = (-1)^{s(a)}\phi(a) = (-1)^{\Delta_a + 2\Delta_a^2}\phi(a)
$$

hence, if V is a vertex operator superalgebra,

(4.2)
$$
g = (-1)^{L_0 + 2L_0^2} \phi.
$$

(2) The vertex algebra of symplectic bosons provides an example of a conformal vertex algebra that is not a vertex operator superalgebra, where our definition applies. Let $R_{\mathbb{R}}$ be a real finite dimensional even vector space equipped with a bilinear nondegenerate symplectic form $\langle \cdot, \cdot \rangle$. Let $R = \mathbb{C} \otimes R_{\mathbb{R}}$. Equip R with the structure of a nonlinear conformal algebra with λ-bracket given by

$$
[a_{\lambda}b] = \langle a, b \rangle.
$$

Let V be the corresponding universal enveloping vertex algebra. The Virasoro vector is

$$
L = \frac{1}{2} \sum : T(a^i) a_i :
$$

with $\{a_i\}$, $\{a^i\}$ dual bases of R. The elements in R are primary of conformal weight 1 $\frac{1}{2}$. Let $\phi(r) = \bar{r}$, where \bar{r} is complex conjugation with respect to $R_{\mathbb{R}}$. Then, clearly,

$$
[\phi(a)_\lambda \phi(b)] = \overline{\langle a, b \rangle},
$$

hence ϕ extends to a conjugate linear involution of V. In this case

$$
g(r) = -\sqrt{-1}\bar{r}, \ r \in R.
$$

The following definition first appeared in [\[3\]](#page-32-4) for vertex operator superalgebras, generalizing the definition, given in [\[7\]](#page-32-3), for vertex operator algebras.

Definition 4.1. Let ϕ be a conjugate linear involution of a conformal vertex algebra V. Choose g as in Definition [3.2](#page-5-4) and define $A(z)$ by [\(3.6\)](#page-5-5). A Hermitian form (\cdot, \cdot) on V is said to be ϕ -invariant if, for all $a \in V$,

(4.3)
$$
(v, Y(a, z)u) = (Y(A(z)a, z^{-1})v, u), \quad u, v \in V.
$$

Remark 4.2. If $v \in V$ is quasi-primary, then, due to (3.14) , (4.3) becomes

(4.4)
$$
(v, a_n u) = (g(a)_{-n}(v), u), \quad u, v \in V.
$$

The statement of the main result of [\[15\]](#page-32-5) can be extended to our setting as follows.

Theorem 4.3. In the setting of Definition [4.1,](#page-10-3) the space of ϕ –invariant Hermitian forms on V is linearly isomorphic to the set of conjugate linear functionals $F \in V_0^{\dagger}$ such that $\langle F, L_1V_1 \rangle = 0$ and $\langle F, g(v) \rangle = \overline{\langle F, v \rangle}$ for all $v \in V_0$.

The proof is the same as in [\[15,](#page-32-5) Theorem 3.1]. In the following we simply check that the argument also works in our modified setting. Recall that an element m in a V -module M is called vacuum–like if $a_{(n)}m = 0$ for all $n \ge 0$ and all $a \in V$. By Proposition 2.3 of [\[15\]](#page-32-5), a vector $m \in M$ is vacuum-like if and only if $L_{-1}m = 0$, i.e. the space of vacuum–like vectors is the space $M^{L_{-1}}$ of L_{-1} –invariants; moreover, if m is a vacuum–like vector in M, then $Y(u, z)m = e^{zL-1}u_{(-1)}m.$

Consider the map

$$
\Psi: Hom_V(V, M) \to M, \quad \Psi(\psi) = \psi(1).
$$

By Proposition 3.4 of [\[15\]](#page-32-5), for any V-module M, Ψ is an isomorphism between $\text{Hom}_V(V, M)$ and the space $M^{L_{-1}}$.

Proof of Theorem [4.3.](#page-10-1) Assume that (\cdot, \cdot) is a ϕ -invariant Hermitian form on V. Note that, since $g(L) = L$, [\(4.4\)](#page-10-4) implies that $(L_0v, w) = (v, L_0w)$. In particular the eigenspaces of L_0 are orthogonal. Define $F \in V_0^{\dagger}$ by $\langle F, v \rangle = (v, 1)$. Then (\cdot, \cdot) is uniquely determined by F , since, letting $u = 1$ and taking $Res_z z^{-1}$ of both sides of [\(4.3\)](#page-10-2), we obtain

$$
(v, a) = Res_z z^{-1} (Y(A(z)a, z^{-1})v, \mathbf{1}).
$$

By Remark [4.2,](#page-10-5)

(4.5)
$$
(L_1v, 1) = (v, L_{-1}1) = 0, (1, L_1v) = (L_{-1}1, v) = 0,
$$

hence, since $L_{-1}1 = 0$, we see that $\langle F, L_1V_1 \rangle = 0$.

Next we prove that, if $a \in V$, then

(4.6) (g(a), 1) = (1, a),

Since the form is Hermitian, we have $(1, a) = (a, 1)$, so that (4.6) implies $\langle F, q(a) \rangle = \overline{\langle F, a \rangle}$. To prove [\(4.6\)](#page-11-0) we observe that, since $g(L) = L$, g preserves the L_0 –eigenspace decomposition. Since the eigenspaces of L_0 are orthogonal, we have that [\(4.6\)](#page-11-0) is satisfied if $\Delta_a \neq 0$. We can therefore assume that $\Delta_a = 0$, so that

$$
(1, a) = Res_z z^{-1}(1, Y(a, z)1) = Res_z z^{-1}(Y(A(z)a, z^{-1})1, 1)
$$

=
$$
\sum_r (\frac{1}{r!} (L_1^r g(a))_{\Delta_a} 1, 1)
$$

=
$$
\sum_r \frac{1}{r!} ((L_1^r g(a))_0 1, 1).
$$

By (4.5) , in order to prove (4.6) , we need only to prove that

(4.7)
$$
(L_1^r g(a))_0 \mathbf{1} \in L_1 V_1, \ r \ge 1, a \in V_0.
$$

We prove by induction on r that

$$
(L_1^r b)_0 \mathbf{1} \in L_1 V_1, \ r \ge 1, b \in V_0.
$$

If $r = 1$, then

$$
[L_1, b_{-1}] = \sum_{j \in \mathbb{Z}_+} {2 \choose j} (L_{(j)}b)_0 = (L_{-1}a)_0 + 2\Delta_b b_0 + (L_1b)_0.
$$

Since $\Delta_b = 0$, $(L_{-1}b)_0 = 0$, so

$$
(L_1b)_0\mathbf{1}=L_1(a_{-1}\mathbf{1})-b_{-1}(L_1\mathbf{1})=L_1(b_{-1}\mathbf{1})\in L_1V_1.
$$

If $r > 1$, then

$$
[L_1, (L_1^{r-1}b)_{-1}] = \sum_{j \in \mathbb{Z}_+} {2 \choose j} (L_{(j)}(L_1^{r-1}b))_0
$$

= $L_{-1}(L_1^{r-1}b)_0 - 2(r-1)(L_1^{r-1}b)_0 + (L_1^{r}b)_0$
= $-(r-1)(L_1^{r-1}b)_0 + (L_1^{r}b)_0$,

so

$$
(L_1^r b)_0 \mathbf{1} = L_1((L_1^{r-1} b)_{-1} \mathbf{1}) - (L_1^{r-1} b)_{-1} L_1 \mathbf{1} + (r-1)(L_1^{r-1} b)_0 \mathbf{1}
$$

= $L_1((L_1^{r-1} b)_{-1} \mathbf{1}) + (r-1)(L_1^{r-1} b)_0 \mathbf{1}.$

The claim now follows by the induction hypothesis.

We now prove the converse statement. Consider V as a Γ/\mathbb{Z} -graded vertex algebra with $\Gamma = \mathbb{Z}$ and the trivial grading $\Upsilon(\mathbb{Z}) = V$. Then the state–field correspondence defines on V the structure of a Υ –twisted positive energy module. Since Υ is clearly compatible with ϕ , by Thoerem [3.6,](#page-7-0) we have a Υ -twisted module structure on V^{\dagger} . Fix $F \in V_0^{\dagger}$ which vanishes on L_1V_1 . Then F is a vacuum–like vector in V^{\dagger} . In particular the map $\Phi_F: V \to V^{\dagger}$ defined by $\Phi_F(v) = v_{(-1)}^{\dagger} F$ is a V-module homomorphism. Here and in what follows we write for simplicity a_n^{\dagger} instead of $a_n^{V^{\dagger}}$. Define

$$
(u,v) = \langle v_{(-1)}^{\dagger} F, u \rangle = \langle \Phi_F(v), u \rangle.
$$

Let us check that this form is ϕ -invariant:

$$
(v, Y(a, z)u) = \langle \Phi_F(Y(a, z)u), v \rangle
$$

= $\langle Y_{V^{\dagger}}(a, z) \Phi_F(u), v \rangle$
= $\langle \Phi_F(u), Y(A(z)a, z^{-1})v \rangle$
= $(Y(A(z)a, z^{-1})v, u).$

It remains to show that, if $\langle F, a \rangle = \overline{\langle F, g(a) \rangle}$, then the form is Hermitian. Since the form is ϕ -invariant, by (4.6) ,

$$
\overline{(a,1)} = \overline{\langle F, a \rangle} = \langle F, g(a) \rangle = (g(a), 1) = (1, a).
$$

We can now check that the form is Hermitian:

$$
\overline{(u,v)} = Res_z z^{-1} \overline{(u, Y(v, z) \mathbf{1})}
$$

= Res_z z^{-1} \overline{(Y(A(z)v, z^{-1})u, \mathbf{1})}
= Res_z z^{-1} (\mathbf{1}, Y(A(z)v, z^{-1})u)
= Res_z z^{-1} \overline{(Y(A(z)A(z^{-1})v, z) \mathbf{1}, u)}
= Res_z z^{-1} \overline{(Y(v, z) \mathbf{1}, u)} = (v, u),

where, in the last step, we used (3.8) .

Remark 4.4. Note that we didn't use in the proof the assumptions that $V_0 = \mathbb{C}1$ and that $\dim V_n = 0$ for $n < 0$. However, if $V_0 = \mathbb{C}1$, then Theorem [4.3](#page-10-1) implies that there exists a non–zero ϕ –invariant Hermitian form on V if and only if V_1 consists of quasiprimary elements, and for this form $(1,1) \neq 0$. The last statement follows observing that the eigenspaces of L_0 are orthogonal to each other and the kernel of a ϕ -invariant Hermitian form is an ideal.

So if $(1, 1) = 0$, then 1 lies in the kernel, hence the kernel of the form is V. Also, such a Hermitian form, satisfying $(1, 1) = 1$, is unique.

Lemma 4.5. Let M be a module over $sl(2) := span\{e, h, f\}$, such that h is diagonalisable with finite–dimensional eigenspaces and negative eigenvalues. Then M is a direct sum of Verma modules.

Proof. Since the sum of h–eigenspaces with eigenvalues congruent mod 2 is a submodule, we may assume that all eigenvalues of h are congruent mod 2. Since the h–eigenspaces are finite–dimensional, U decomposes as the direct sum of the generalized eigenspaces for the Casimir operator Ω of $sl(2)$. We can therefore assume that Ω has only one eigenvalue. Any irreducible subquotient of M has negative highest weight, say n, and the eigenvalue of Ω is 1 $\frac{1}{2}n^2 + n$ on it. Hence if two irreducible subquotients with non–equal highest weights have the same Ω –eigenvalue, the sum of these highest weights is -2 . Since all eigenvalues of h are negative and congruent mod 2, we deduce that all irreducible subquotients have the same highest weight n. So, on the space M^e of e–invariants (which is non-zero since the set of eigenvalues of h is bounded above), h has one eigenvalue n, and the same is true for any quotient of M. But on $N = M/U(sl(2))M^e$, h has eigenvalues strictly smaller that n, hence $N^e = 0$ and $M = U(sl_2)M^e$. Since $n < 0$, any vector from M^e generates an irreducible Verma module, so M is a direct sum of Verma modules with highest weight n. \square

Proposition 4.6. Let V be a conformal vertex algebra such that $L_1V_1 = 0$, i.e. V_1 consists of quasiprimary vectors. Let $\{v_1, v_2, \ldots\}$ be a minimal system of strong generators, which includes L , and consists of eigenvectors for L . Then, summing to the v_i elements from $L_{-1}V$, we can make these generators quasiprimary.

Proof. By Lemma [4.5,](#page-13-2) applied to $U = \bigoplus_{n>0} V_n$ and $f = L_{-1}, h = -2L_0, e = -\frac{1}{2}$ $\frac{1}{2}L_1$, we get

(4.8)
$$
V = \mathbb{C} \mathbf{1} \oplus \sum_{i} M_{i},
$$

where the M_i are Verma modules for $sl(2)$ with highest weight vectors quasiprimary elements. We proceed by induction on the conformal weight of a generator. If the conformal weight is $\frac{1}{2}$ or 1 there is nothing to prove. Take now a generator v_i whose conformal weight is strictly greater than 1. By [\(4.8\)](#page-13-3), we can write $v_i = v'_i + L_{-1}b$, where v'_i is quasiprimary and non-zero, due to minimality. By inductive assumption b lies in the subalgebra generated by quasiprimary generators. Hence we can replace v_i by v'_i .

Recall (cf. [\[11\]](#page-32-0)) that, since $V_0 = \mathbb{C}1$, one can define the expectation value $\langle v \rangle$ of v by the equation $P_{V_0}(v) = \langle v \rangle \mathbf{1}$ where P_{V_0} is the projection onto V_0 with respect to the decomposition $V = V_0 \oplus (\sum_{n \neq 0} V_n).$

Corollary 4.7. Suppose that V is a conformal vertex algebra such that V_1 consists of quasiprimary vectors. Let ϕ be a conjugate linear involution of V. Then there exists a unique ϕ invariant Hermitian form (\cdot, \cdot) on V such that $(1, 1) = 1$. Moreover for any collection ${Uⁱ | i \in I}$ of quasiprimary elements that strongly generate V (it exists by Proposition [4.6\)](#page-13-4) we have

(4.9)
$$
\begin{aligned}\n\left((U_{j_1}^{i_1})^{m_1} \cdots (U_{j_t}^{i_t})^{m_t} \mathbf{1}, (U_{j'_1}^{i'_1})^{m'_1} \cdots (U_{j'_r}^{i'_r})^{m'_r} \mathbf{1} \right) \\
= \left\langle ((g(U^{i_t})_{-j_t})^{m_t} \cdots (g(U^{i_1})_{-j_1})^{m_1} (U_{j'_1}^{i'_1})^{m'_1} \cdots (U_{j'_r}^{i'_r})^{m'_r} \mathbf{1} \right\rangle.\n\end{aligned}
$$

Proof. Since $L_1V_1 = \{0\}$, the first statement follows from Theorem [4.3.](#page-10-1)

To prove the second statement, note that, by (4.4) , for a quasiprimary element U, we have $(g(U)_n v, w) = (v, U_{-n}w)$ and

$$
(U_n v, w) = \overline{(w, U_n v)} = \overline{(g(U)_{-n} w, v)} = (v, g(U)_{-n} w).
$$

Since $V_0 = \mathbb{C}1$, we have $(1, a) = \langle a \rangle$, hence formula [\(4.9\)](#page-13-1) follows.

Definition 4.8. If the Hermitian form (4.9) is positive definite, the vertex algebra V is called unitary.

Lemma 4.9. Let V be a conformal vertex algebra and let ϕ be a conjugate linear involution on V. If there is a ϕ -invariant positive definite Hermitian form on V and $a \in V$ is a non-zero quasiprimary element such that $\phi(a) = a$ then

$$
\langle a_{\Delta_a} a_{-\Delta_a} 1 \rangle \in \mathbb{R} \setminus \{0\} \qquad \qquad \text{if } (-1)^{2L_0} \sigma(a) = a,
$$

$$
\langle a_{\Delta_a} a_{-\Delta_a} 1 \rangle \in \sqrt{-1} \mathbb{R} \setminus \{0\} \qquad \qquad \text{if } (-1)^{2L_0} \sigma(a) = -a.
$$

Proof. Since

$$
(a,a) = e^{-\frac{\pi}{2}\sqrt{-1}(2\Delta_a + p(a))} \langle a_{\Delta_a} a_{-\Delta_a} \mathbf{1} \rangle,
$$

and $(a, a) > 0$, we see that $\langle a_{\Delta_a} a_{-\Delta_a} 1 \rangle$ is real and non-zero if $(-1)^{2\Delta_a} \sigma(a) = a$, while it is purely imaginary and non-zero otherwise.

In conclusion of this section we discuss invariant Hermitian forms on tensor products of vertex algebras. Recall from [\[11\]](#page-32-0) that if V, W are vertex algebras, their tensor product is the vertex algebra having $V \otimes W$ as space of states, $\mathbf{1} \otimes \mathbf{1}$ as vacuum vector and $T \otimes I + I \otimes T$ as translation operator. The state–field correspondence is given by

$$
Y(u\otimes v,z)=Y(u,z)\otimes Y(v,z).
$$

If V, W are conformal vertex algebras, also $V \otimes W$ is conformal: its Virasoro vector is $L =$ $L_V \otimes \mathbf{1} + \mathbf{1} \otimes L_W.$

Let ϕ_V , ϕ_W be conjugate linear involutions of V, W and set

$$
g_V = ((-1)^{(L_V)_0} \sigma_V^{1/2})^{-1} \phi_V, \quad g_W = ((-1)^{(L_W)_0} \sigma_W^{1/2})^{-1} \phi_W,
$$

$$
g = g_V \otimes g_W, \quad \phi = \phi_V \otimes \phi_W.
$$

Observe that

$$
\phi = (-1)^{L_0} \sigma^{1/2} g.
$$

Moreover

$$
A(z) = e^{zL_1}z^{-2L_0}g = (e^{z(L_V)_1} \otimes e^{z(L_W)_1})(z^{-2(L_V)_0} \otimes z^{-2(L_W)_0})(g_V \otimes g_W) = A_V(z) \otimes A_W(z).
$$

If $(., .)_V$, $(., .)_W$ are invariant Hermitian forms on V, W, respectively, we can induce an invariant Hermitian form $(., .)_{V \otimes W}$ on $V \otimes W$ by setting

$$
(v_1 \otimes w_1, v_2 \otimes w_2)_{V \otimes W} = (v_1, v_2)_V(w_1, w_2)_W.
$$

Indeed,

$$
(v_1 \otimes v_2, Y(a \otimes b, z)(w_1 \otimes w_2)) = (v_1, Y(a, z)w_1)_V(v_2, Y(b, z)(w_2))_W
$$

=
$$
(Y(A_V(z)a, z^{-1})v_1, w_1)_V(Y(A_W(z)b, z^{-1})v_2, w_2)_W
$$

=
$$
(Y(A_V(z) \otimes A_W(z)(a \otimes b), z^{-1})(v_1 \otimes v_2), w_1 \otimes w_2)
$$

=
$$
(Y(A(z)(v_1 \otimes v_2), w_1 \otimes w_2).
$$

5. Examples of invariant Hermitian forms

In this Section we apply Corollary [4.7](#page-13-0) to fermionic, bosonic, affine, and lattice vertex algebras.

5.1. **Superfermions.** Consider a superspace $A = A_{\bar{0}} \oplus A_{\bar{1}}$ endowed with a non-degenerate even skew-supersymmetric bilinear form $(. | .)$. Let $V(A)$ be the universal vertex algebra of the Lie conformal superalgebra $A \oplus \mathbb{C}K$ with λ -bracket

$$
[a_{\lambda}b]=(a|b)K,
$$

K being an even central element. Let F be the fermionic vertex algebra:

$$
F = V(A)/(K - 1).
$$

Let ϕ be a conjugate linear involution of A such that

$$
(\phi(a)|\phi(b)) = \overline{(a|b)}.
$$

By setting $\phi(K) = K$ we can extend ϕ to a conjugate linear involution of $A \oplus \mathbb{C}K$. Indeed

$$
[\phi(a)_\lambda \phi(b)] = (\phi(a)|\phi(b)) = \overline{(a|b)}K = \phi((a|b)K).
$$

This implies that ϕ extends to a conjugate linear involution of $V(A)$, hence, since $\phi(K-1)$ $K - 1$, to an involution of F.

Fix a basis $\{a^i\}$ of A and let $\{b^i\}$ be its dual basis w.r.t. (.) (i.e. $(a^i|b^j) = \delta_{i,j}$). The Virasoro vector is [\[11\]](#page-32-0)

(5.1)
$$
L = \frac{1}{2} \sum_{i=1}^{n} : (Tb^{i})a^{i} : .
$$

It is easy to see that $\phi(L) = L$. We embed A in F by identifying v with : v1 :. It is easily checked that $v \in A$ is a primary element of F of conformal weight 1/2. Set

(5.2)
$$
g_A = ((-1)^{L_0} \sigma^{1/2})^{-1} \phi.
$$

By [\(3.4\)](#page-4-1), we have that $g_A^2 = I$. Note that

(5.3)
$$
g_A(a) = -\sqrt{-1}\phi(a), \ a \in A_{\bar{0}}, \ g_A(a) = -\phi(a), \ a \in A_{\bar{1}}.
$$

The set $\{a^i\}$ strongly and freely generates F. This means that, if we order $\left(-\frac{1}{2} - \mathbb{Z}_+\right) \times$ $\{1, \ldots, m+n\}$ lexicographically, then the set

$$
B = \bigcup_{r} \{ (a_{j_1}^{i_1})^{h_1} \cdots (a_{j_r}^{i_r})^{h_r} \mathbf{1} \mid (j_1, i_1) < \cdots < (j_r, i_r), h_s = 1 \text{ if } p(a^{i_s}) = 1 \}
$$

is a basis of F. With this choice one easily checks that

$$
F_0 = \mathbb{C} \mathbf{1}, \quad F_1 = span_{\mathbb{C}}(\{ :a^i a^j : \}).
$$

Since, by Wick formula [\[11\]](#page-32-0),

$$
[L_{\lambda} : a^{i}a^{j} :] =: T(a^{i})a^{j} : + : a^{i}T(a^{j}) : + \lambda : a^{i}a^{j} : + \int_{0}^{\lambda} ([T(a^{i})_{\mu}a^{j}] + \frac{1}{2}\lambda[a^{i}_{\mu}a^{j}])d\mu
$$

$$
= T(:a^{i}a^{j} :) + \lambda : a^{i}a^{j} : -\frac{1}{2}\lambda^{2}(a^{i}|a^{j}) + \frac{1}{2}\lambda^{2}(a^{i}|a^{j})
$$

$$
= T(:a^{i}a^{j} :) + \lambda : a^{i}a^{j} :,
$$

we see that $L_1(F_1) = \{0\}$, hence Corollary [4.7](#page-13-0) applies. Let (\cdot, \cdot) be the unique invariant Hermitian form on F such that $(1, 1) = 1$. By (5.3) and (4.4) , the invariance amounts to

$$
(v_j a, b) = -\sqrt{-1}(a, \phi(v)_{-j}b), v \in A_{\bar{0}}, (v_j a, b) = -(a, \phi(v)_{-j}b), v \in A_{\bar{1}}
$$

for all $a, b \in F$, $j \in \frac{1}{2} + \mathbb{Z}$.

We now discuss the unitarity of F. Assume that F is unitary and $A_{\bar{0}}\neq 0$. Choose $a\neq 0$ in $A_{\bar{0}}$; we can assume $\phi(a) = a$. Then, by Lemma [4.9,](#page-14-0) $\langle a_{1/2}a_{-1/2}1 \rangle \neq 0$ but $\langle a_{1/2}a_{-1/2}1 \rangle =$ $(a|a) = 0$. It follows that, if F is unitary, then $A = A_{\bar{1}}$. Set $A_{\mathbb{R}} = \{a \in A \mid \phi(a) = -a\}$. Then, if $a \in A_{\mathbb{R}}$,

$$
0 < (a, a) = \langle a_{1/2}a_{-1/2}\mathbf{1} \rangle = (a|a),
$$

so $(. | .)_{A_{\mathbb{R}} \times A_{\mathbb{R}}}$ must be positive definite. In such a case, choose $\{a^{i}\}\$ to be an orthonormal basis of $A_{\mathbb{R}}$. It can be checked (say by induction on r) that

$$
\left\langle a_{-j_t}^{i_t} \cdots a_{-j_1}^{i_1} a_{j'_1}^{i'_1} \cdots a_{j'_r}^{i'_r} 1 \right\rangle = \delta_{r,t} \prod_{s=1}^r \delta_{i_s, i'_s} \prod_{s=1}^r \delta_{j_s, j'_s}
$$

so the invariant Hermitian form is the form defined by declaring the basis B to be orthonormal. Hence F is a unitary conformal vertex algebra if and only if A is purely odd.

5.2. Superbosons. Let h be a vector superspace equipped with a supersymmetric even bilinear form $(.).$ Let $V(\mathfrak{h})$ be the universal vertex algebra of the Lie conformal superalgebra $\mathfrak{h} \oplus \mathbb{C}K$ with λ -bracket

$$
[v_{\lambda}w] = \lambda(v|w)K,
$$

K being an even central element. Let $M(\mathfrak{h})$ be the vertex algebra:

$$
M(\mathfrak{h})=V(\mathfrak{h})/(K-1).
$$

Let ϕ be a conjugate linear involution of $\mathfrak h$. As in the previous example, if

$$
(\phi(a)|\phi(b)) = \overline{(a|b)}.
$$

we can extend ϕ to a conjugate linear involution of $M(\mathfrak{h})$.

Fix a basis $\{a^i\}$ of $\mathfrak h$ and let $\{b^i\}$ be its dual basis w.r.t. (.) (i.e. $(a^i|b^j) = \delta_{i,j}$). The Virasoro vector is

(5.4)
$$
L = \frac{1}{2} \sum_{i=1}^{n} :b^{i} a^{i} : .
$$

It is easy to see that $\phi(L) = L$.

We embed h in $M(\mathfrak{h})$ by identifying h with : h1 :. It is easily checked that $h \in \mathfrak{h}$ is a primary element of $M(\mathfrak{h})$ of conformal weight 1.

Set

(5.5)
$$
g_{\mathfrak{h}} = ((-1)^{L_0} \sigma^{1/2})^{-1} \phi.
$$

By [\(3.4\)](#page-4-1), we have that $g_{\mathfrak{h}}^2 = I$. Note that

(5.6)
$$
g_{\mathfrak{h}}(a) = -\phi(a), \ a \in A_{\bar{0}}, \ g_{\mathfrak{h}}(a) = \sqrt{-1}\phi(a), \ a \in A_{\bar{1}}.
$$

As in the previous example we can apply Corollary [4.7,](#page-13-0) thus there is a unique ϕ -invariant Hermitian form (\cdot, \cdot) on $M(\mathfrak{h})$ such that $(1, 1) = 1$.

We now discuss the unitarity of $M(\mathfrak{h})$. Assume that $M(\mathfrak{h})$ is unitary and $\mathfrak{h}_{\bar{1}}\neq 0$. Choose $h \neq 0$ in $\mathfrak{h}_{\bar{1}}$; we can assume $\phi(h) = h$. Then, by Lemma [4.9,](#page-14-0) $\langle h_1 h_{-1} 1 \rangle \neq 0$ but $\langle h_1 h_{-1} 1 \rangle =$ $(h|h) = 0$. It follows that, if $M(h)$ is unitary, then $h = h_0$. If this is the case, set $h_{\mathbb{R}} = \{h \in$ $\mathfrak{h} \mid \phi(h) = -h\}$. Then, as in Subsection [5.1,](#page-15-2) we must have that $(. | .)_{\mathfrak{h}_{\mathbb{R}} \times \mathfrak{h}_{\mathbb{R}}}$ is positive definite.

We choose an orthonormal basis $\{a^i\}$ of $\mathfrak{h}_\mathbb{R}$, ; the ϕ -invariant Hermitian form is therefore given by

$$
\left((a_{j_1}^{i_1})^{m_1} \cdots (a_{j_t}^{i_t})^{m_t} \mathbf{1}, (a_{j'_1}^{i'_1})^{m'_1} \cdots (a_{j'_r}^{i'_r})^{m'_r} \mathbf{1} \right) = \left\langle (a_{-j_t}^{i_t})^{m_t} \cdots (a_{-j_1}^{i_1})^{m_1} (a_{j'_1}^{i'_1})^{m'_1} \cdots (a_{j'_r}^{i'_r})^{m'_r} \mathbf{1} \right\rangle.
$$

If we order $(-\mathbb{N}) \times \{1, \ldots, \dim \mathfrak{h}\}\$ lexicographically, then the set

$$
B = \bigcup_{r} \{a_{j_1}^{i_1} \cdots a_{j_r}^{i_r} \mathbf{1} \mid (j_1, i_1) < \cdots < (j_r, i_r) \}
$$

is a basis of $M(\mathfrak{h})$. As in Example [5.1,](#page-15-2) one can check that the basis B is orthogonal; moreover the norm of each element is positive, so $M(\mathfrak{h})$ is a unitary vertex operator superalgebra, if and only if h is purely even.

5.3. Affine vertex algebras. Let $\mathfrak g$ be a simple Lie algebra or a basic classical simple finite–dimensional Lie superalgebra and let $(.).$ be a supersymmetric non-degenerate even invariant bilinear form on g.

We normalize the form $(.|.)$ on g by choosing an even highest root θ of g as in [\[13\]](#page-32-7) or [\[1\]](#page-32-8), and requiring $(\theta|\theta) = 2$. If $\mathfrak{g} = D(2,1,a)$, we assume $a \in \mathbb{R}$.

Let ϕ be a conjugate linear involution of \mathfrak{g} . We assume that

$$
(\phi(x)|\phi(y)) = \overline{(x|y)},
$$

noting that, if $\mathfrak g$ is a Lie algebra, then the above assumption always holds.

Let Cur $\mathfrak{g} = \mathfrak{g} \oplus \mathbb{C}K$ be the current Lie conformal algebra associated to \mathfrak{g} [\[11\]](#page-32-0). We extend ϕ to Cur g by setting $\phi(K) = K$. Since

$$
[\phi(x)\lambda\phi(y)] = [\phi(x), \phi(y)] + \lambda(\phi(x)|\phi(y)K = \phi([x, y]) + \lambda\overline{(x|y)}K = \phi([x\lambda y]),
$$

 ϕ is a conjugate linear involution of Cur g, hence we can extend ϕ to a conjugate linear involution of the universal enveloping vertex algebra $V(\mathfrak{g})$ of Cur \mathfrak{g} .

Choosing $k \in \mathbb{R}$, we note that $\phi(K - k\mathbf{1}) = K - k\mathbf{1}$, so ϕ pushes down to a conjugate linear involution of the the universal affine vertex algebra of level k.

We identify $a \in \mathfrak{g}$ with $: a1 \in V^k(\mathfrak{g})$. Let h^{\vee} be the dual Coxeter number of \mathfrak{g} , i.e. the eigenvalue of the Casimir operator $\sum_i b^i a^i$ on g divided by 2, where $\{a^i\}$ and $\{b^i\}$ are dual bases of \mathfrak{g} , i. e. $(a^i|b^j) = \delta_{ij}$.

A Virasoro vector is provided by the Sugawara construction (defined for $k \neq -h^{\vee}$), see e.g. [\[11\]](#page-32-0):

(5.7)
$$
L^{\mathfrak{g}} = \frac{1}{2(k + h^{\vee})} \sum_{i=1}^{\dim \mathfrak{g}} :b^i a^i : .
$$

It is easy to see that $\phi(L^{\mathfrak{g}}) = L^{\mathfrak{g}}$ provided that $k \in \mathbb{R}$. Set

$$
g_{\mathfrak{g}} = ((-1)^{L_0} \sigma^{1/2})^{-1} \phi.
$$

Explicitly

$$
g_{\mathfrak{g}}(a) = -\phi(a), \ a \in \mathfrak{g}_{\bar{0}}, \quad g_{\mathfrak{g}}(a) = \sqrt{-1}\phi(a), \ a \in \mathfrak{g}_{\bar{1}}.
$$

It is well known that $a \in \mathfrak{g}$ is a primary element of $V^k(\mathfrak{g})$ of conformal weight 1 (see e.g. [\[11\]](#page-32-0)). Moreover, the set $\{a^i\}$ strongly and freely generates $V^k(\mathfrak{g})$. It follows that $V^k(\mathfrak{g})_0 = \mathbb{C}1$ and

 $L_1V^k(\mathfrak{g})_1=0.$ By Corollary [4.7,](#page-13-0) there exists a unique ϕ -invariant Hermitian form on $V^k(\mathfrak{g})$, given by

$$
\left((a_{j_1}^{i_1})^{m_1} \cdots (a_{j_t}^{i_t})^{m_t} \mathbf{1}, (a_{j'_1}^{i'_1})^{m'_1} \cdots (a_{j'_r}^{i'_r})^{m'_r} \mathbf{1} \right) \n= \left\langle (g_{\mathfrak{g}}(a^{i_t})_{-j_t})^{m_t} \cdots (g_{\mathfrak{g}}(a^{i_1})_{-j_1})^{m_1} (a_{j'_1}^{i'_1})^{m'_1} \cdots (a_{j'_r}^{i'_r})^{m'_r} \mathbf{1} \right\rangle.
$$

If $k \neq -h^{\vee}$, the vertex algebra $V^k(\mathfrak{g})$ has a unique simple quotient that we denote by $V_k(\mathfrak{g})$. We now discuss the unitarity of $V_k(\mathfrak{g})$. Assume that there is a conjugate linear involution ϕ such that the corresponding ϕ –invariant form on $V_k(\mathfrak{g})$ is positive definite. If \mathfrak{g} is not a Lie algebra then there is $a \in \mathfrak{g}_{\bar{1}}$, $a \neq 0$. Since ϕ is parity preserving we can assume $\phi(a) = a$. Then

$$
(a, a) = (a_{-1}\mathbf{1}, a_{-1}\mathbf{1}) = \sqrt{-1} \langle a_1 a_{-1} \mathbf{1} \rangle = \sqrt{-1} k(a|a) = 0.
$$

If $V_k(\mathfrak{g})$ is unitary, then a is in the maximal ideal of $V^k(\mathfrak{g})$, hence $k=0$ and $V_k(\mathfrak{g})=\mathbb{C}$.

Assume now that $\mathfrak g$ is a Lie algebra. Since ϕ is a conjugate linear involution of $V^k(\mathfrak g)$ then $\phi_{|\mathfrak{g}|}$ is a conjugate linear involution of \mathfrak{g} . Let $\mathfrak{g}_{\mathbb{R}}$ be the corresponding real form. As shown above, if $a \in \mathfrak{g}_{\mathbb{R}}$, then

$$
0 < (a, a) = (a_{-1}\mathbf{1}, a_{-1}\mathbf{1}) = -\langle a_1 a_{-1} \mathbf{1} \rangle = -k(a|a),
$$

hence $(. |.)_{|\mathfrak{g}_{\mathbb{R}} \times \mathfrak{g}_{\mathbb{R}}}$ is either positive or negative definite. Let $\overset{\circ}{\omega}_0$ be a compact conjugate linear involution of g such that $\phi \circ \phi = \phi \circ \phi$. Let $\mathfrak{k}_{\mathbb{R}}$ be the corresponding compact real form. Then

$$
\mathfrak{g}_{\mathbb{R}}=\mathfrak{g}_{\mathbb{R}}\cap\mathfrak{k}_{\mathbb{R}}\oplus\mathfrak{g}_{\mathbb{R}}\cap(\sqrt{-1}\mathfrak{k}_{\mathbb{R}}).
$$

Since $(. |.)_{|\mathfrak{k}_{\mathbb{R}} \times \mathfrak{k}_{\mathbb{R}}}$ is negative definite and $\mathfrak{k}_{\mathbb{R}} \cap \mathfrak{g}_{\mathbb{R}} \neq \{0\}$, we see that $(. |.)_{|\mathfrak{g}_{\mathbb{R}} \times \mathfrak{g}_{\mathbb{R}}}$ is negative definite so $\phi = \mathcal{L}_0$. Let ω_0 be the conjugate linear involution of the affinization $\hat{\mathfrak{g}}$ of \mathfrak{g} which extends $\hat{\omega}_0$ as in §7.6 of [\[10\]](#page-32-10). Then the $\hat{\omega}_0$ -invariant Hermitian form on $V^k(\mathfrak{g})$ is defined by the property that

$$
(a_jx, y) = -(x, \overset{\circ}{\omega}_0(a)_{-j}y), \ a \in \mathfrak{g}.
$$

It follows from Theorem 11.7 of [\[10\]](#page-32-10) combined with the formula for ω_0 given at page 103 of loc. cit., that the $\mathring{\omega}_0$ -invariant Hermitian form on $V^k(\mathfrak{g})$ is positive semi-definite if and only if $k \in \mathbb{Z}_+$.

5.4. Lattice vertex algebras. Let Q be a positive definite integral lattice and V_Q be its associated lattice vertex superalgebra (see e.g. [\[11,](#page-32-0) §5.4]). Set $\mathfrak{h} = \mathbb{C} \otimes_{\mathbb{Z}} Q$. Recall that the free bosons vertex operator algebra $M(\mathfrak{h})$ embeds in $V_Q = \bigoplus_{\alpha \in Q} (M(\mathfrak{h}) \otimes \mathbb{C}e^{\alpha})$ with parity $p(M(\mathfrak{h}) \otimes e^{\alpha}) = (\alpha|\alpha) \mod 2$. Let $\{a^1, \ldots, a^l\}$ be an orthogonal basis of $\mathbb{R} \otimes_{\mathbb{Z}} Q$ and let ${b^1, \ldots, b^l}$ be the dual basis of h with respect to the form $(. | .)$ linearly extended from the form on Q . The Virasoro vector of V_Q is

$$
L = \frac{1}{2} \sum_{i=1}^{l} :a^{i}b^{i}:
$$

There are primary elements $e^{\alpha} \in V_Q$, $\alpha \in Q$ of conformal weight $\frac{1}{2}(\alpha|\alpha)$, such that a basis of V_Q is

$$
B = \bigcup_{r,\alpha} \{a_{j_1}^{i_1} \cdots a_{j_r}^{i_r} e^{\alpha} \mid (j_1, i_1) < \cdots < (j_r, i_r) \},\
$$

where, as in Example [5.2,](#page-16-0) $(-\mathbb{N}) \times \{1, \ldots, \dim \mathfrak{h}\}\$ is ordered lexicographically.

Following [\[7\]](#page-32-3), we define a conjugate linear involution ϕ of V_Q by setting

(5.8)
$$
\phi(a_{-j_1}^{i_1} \cdots a_{-j_r}^{i_r} e^{\alpha}) = (-1)^r a_{-j_1}^{i_1} \cdots a_{-j_r}^{i_r} e^{-\alpha}.
$$

It is immediate to see that $\phi(L) = L$. Since the conformal weight of e^{α} is $\frac{1}{2}(\alpha|\alpha)$, we have that $(-1)^{2L_0}\sigma = I$ so, if $g = ((-1)^{L_0}\sigma^{1/2})^{-1}\phi$, then

$$
g = (-1)^{L_0 + 2L_0^2} \phi.
$$

We have

$$
(V_Q)_0 = \mathbb{C} \mathbf{1}, \quad (V_Q)_1 = span_{\mathbb{C}}(\{a^i\} \cup \{e^{\alpha} \mid (\alpha|\alpha) = 2\}).
$$

Since the a^i , as well as the e^{α} , are primary, we see that Corollary [4.7](#page-13-0) applies. In particular the explicit expression for the ϕ -invariant Hermitian form is

$$
\left((a_{j_1}^{i_1})^{m_1} \cdots (a_{j_t}^{i_t})^{m_t} e^{\alpha}, (a_{j'_1}^{i'_1})^{m'_1} \cdots (a_{j'_r}^{i'_r})^{m'_r} e^{\beta} \right) = \delta_{\alpha, -\beta} \left\langle ((a_{-j_t}^{i_t})^{m_t} \cdots (a_{-j_1}^{i_1})^{m_1} (a_{j'_1}^{i'_1})^{m'_1} \cdots (a_{j'_r}^{i'_r})^{m'_r} 1 \right\rangle.
$$

As in Example [5.2](#page-16-0) one can check that the basis B is orthogonal and consists of elements of positive norm, so V_Q is unitary.

6. Invariant Hermitian forms on modules

Let V be a conformal vertex algebra. Recall from (3.6) the definition of $A(z)$. We let

(6.1)
$$
\omega(v) = A(1)v, v \in V.
$$

Assume that V is Γ/\mathbb{Z} –graded and let Υ be a Γ/\mathbb{Z} –grading compatible with ϕ .

Proposition 6.1. $\omega(J_\Upsilon) \subseteq J_{-\Upsilon}$ so ω induces a conjugate linear anti-isomorphism of associative algebras $\omega: Zhu_{\Upsilon}(V) \to Zhu_{-\Upsilon}(V)$. Moreover $\omega^2 = Id$.

Proof. By (2.18) , we have

(6.2)
$$
\omega \left(\sum_{j \in \mathbb{Z}_+} {\gamma_a \choose j} a_{(-2+\chi(a,b)+j)} b \right) = Res_w(w^{-2+\chi(a,b)} A(z) (Y((1+w)^{\gamma_a} a, w) b)_{|z=1}).
$$

By [\(3.2\)](#page-4-0)

$$
p(a,b)A(z)Y((1+w)^{\gamma_a}a, w)b =
$$

= $p(a,b)e^{zL_1}z^{-2L_0}gY((1+w)^{\gamma_a}a, w)b$
= $e^{zL_1}z^{-2L_0}Y((1+w)^{\gamma_a}g(a), -w)g(b).$

By [\(3.9\)](#page-5-6)

$$
e^{zL_1}z^{-2L_0}Y((1+w)^{\gamma_a}g(a),w)g(b) = e^{zL_1}Y((1+w)^{\gamma_a}z^{-2L_0}g(a), -w/z^2)z^{-2L_0}g(b).
$$

By [\(3.11\)](#page-5-7)

$$
e^{zL_1}Y((1+w)^{\gamma_a}z^{-2L_0}g(a), -w/z^2)z^{-2L_0}g(b)
$$

= $Y(e^{(z+w)L_1}(z+w)^{-2L_0}(1+w)^{\gamma_a}g(a), \frac{-w}{z(z+w)})e^{zL_1}z^{-2L_0}g(b),$

which means that

$$
p(a,b)A(z)Y((1+w)^{\gamma_a}a,w)b =
$$

= $Y(e^{(z+w)L_1}(z+w)^{-2L_0}(1+w)^{\gamma_a}g(a), \frac{-w}{z(z+w)})A(z)b,$

so that, since the grading is compatible with ϕ and $g(L) = L$,

$$
(p(a,b)A(z)Y((1+w)^{\gamma_a}a,w)b)_{|z=1} = Y(e^{(1+w)L_1}(1+w)^{-L_0+\epsilon_a}g(a),\frac{-w}{(1+w)})\omega(b)
$$

= $Y(e^{(1+w)L_1}(1+w)^{-L_0+\epsilon}g(a),\frac{-w}{(1+w)})\omega(b)$

Note that

$$
e^{(1+w)L_1}(1+w)^{-L_0+\epsilon} = (1+w)^{-L_0+\epsilon}e^{L_1}.
$$

Indeed, if $a \in V$,

$$
e^{(1+w)L_1}(1+w)^{-L_0+\epsilon}a = e^{(1+w)L_1}(1+w)^{-\Delta_a+\epsilon_a}a = (1+w)^{-\Delta_a+\epsilon_a}\sum_{r\geq 0}(1+w)^r\frac{1}{r!}L_1^r a
$$

=
$$
\sum_{r\geq 0}(1+w)^{-\Delta_a+r+\epsilon_a}\frac{1}{r!}L_1^r a = (1+w)^{-L_0+\epsilon}\sum_{r\geq 0}\frac{1}{r!}L_1^r a
$$

=
$$
(1+w)^{-L_0+\epsilon}e^{L_1}a.
$$

Hence,

$$
(6.3) \quad (p(a,b)A(z)Y((1+w)^{L_0+\epsilon}a,w)b)_{|z=1} = Y((1+w)^{-L_0+\epsilon}e^{L_1}g(a),\frac{-w}{(1+w)})\omega(b)
$$

$$
= Y((1+w)^{-L_0+\epsilon}\omega(a),\frac{-w}{(1+w)})\omega(b) = (1+w)^{-L_0}Y((1+w)^{\epsilon}\omega(a),-w)(1+w)^{L_0}\omega(b).
$$

Set

$$
\varpi_a = \begin{cases}\n-\epsilon_a - 1 & \text{if } \epsilon_a \neq 0, \\
0 & \text{if } \epsilon_a = 0.\n\end{cases}
$$

Note that ϖ is the function ϵ defined in Section [2](#page-1-0) corresponding to the grading $-\Upsilon$.

Since $\epsilon_a + \epsilon_b \in \mathbb{Z}$, we have that $\varpi_a = -\chi(a, b) - \epsilon_a$ and $\chi(a, b) = 1$ if and only if $\varpi_a + \varpi_b \leq \chi_a$ -1 . It follows that

$$
Res_w(w^{-2+\chi(a,b)}(1+w)^{-L_0}Y((1+w)^{\epsilon}a, -w)(1+w)^{L_0}b)
$$

= $Res_w(w^{-2+\chi(a,b)}\sum_{n,j}(-1)^n\binom{-\Delta_a+\epsilon_a+n+1}{j}(a_{(n)}b)w^{-n-1+j})$
= $\sum_j(-1)^j\binom{-\Delta_a+\epsilon_a+j+\chi(a,b)-1}{j}(a_{(-2+\chi(a,b)+j)}b)$
= $\sum_j\binom{\Delta_a-\epsilon_a-\chi(a,b)}{j}(a_{(-2+\chi(a,b)+j)}b)$
= $\sum_j\binom{\Delta_a+\varpi_a}{j}(a_{(-2+\chi(a,b)+j)}b) = Res_w(w^{-2+\chi(a,b)}Y((1+w)^{L_0+\varpi}a, w)b.$

Since Υ is compatible with ϕ , we have that $\epsilon_{\omega(a)} = \epsilon_a$ (hence $\chi(a, b) = \chi(\omega(a), \omega(b))$). We find that

$$
Res_w(w^{-2+\chi(a,b)}A(z)(Y((1+w)^{L_0}a,w)b)_{|z=1})
$$

= $p(a,b)Res_w(w^{-2+\chi(\omega(a),\omega(b))}Y((1+w)^{L_0+\varpi}\omega(a),w)\omega(b)),$

hence, by [\(6.2\)](#page-19-1), $\omega(J_{\Upsilon}) \subset J_{-\Upsilon}$.

Next we prove that ω is an anti-automorphism. If $a \in V_{\Upsilon}$ (cf. [\(2.17\)](#page-4-4)) then $\epsilon_a = \epsilon_{\omega(a)} = 0$, thus, if $a, b \in V_\Upsilon$, by (6.3) ,

$$
p(a,b)\omega(a*b) = p(a,b)Res_w(w^{-1}A(z)(Y((1+w)^{L_0}a,w)b)_{|z=1})
$$

= Res_ww^{-1}(1+w)^{-L_0}Y(\omega(a), -w)(1+w)^{L_0}\omega(b).

Now use skew–symmetry $Y(a, z)b = p(a, b)e^{zL-1}Y(b, -z)a$ (see e.g. [\[11\]](#page-32-0)) to get $\omega(a * b)$

$$
= Res_w(w^{-1}(1+w)^{-L_0}e^{-wL_{-1}}Y((1+w)^{L_0}\omega(b), w)\omega(a))
$$

\n
$$
= Res_w\sum_{n,j,r} (-1)^r {\binom{-\Delta_{\omega(a)}+n+1-r}{j}} \frac{1}{r!}L_{-1}^r(\omega(b)_{(n)}\omega(a))w^{-n-2+j+r}
$$

\n
$$
= \sum_{j,r} (-1)^r {\binom{-\Delta_{\omega(a)}+j}{j}} \frac{1}{r!}L_{-1}^r(\omega(b)_{(-1+j+r)}\omega(a))
$$

\n
$$
= \sum_{r,j} (-1)^r {\binom{-\Delta_{\omega(a)}+j}{j}} {\binom{-\Delta_{\omega(b)}-\Delta_{\omega(a)}+j+r}{r}} (\omega(b)_{(-1+j+r)}\omega(a)
$$

\n
$$
= \sum_{r,j} (-1)^{r+j} {\binom{\Delta_{\omega(a)}-1}{j}} {\binom{-\Delta_{\omega(b)}-\Delta_{\omega(a)}+j+r}{r}} (\omega(b)_{(-1+j+r)}\omega(a))
$$

\n
$$
= \sum_{r,j} (-1)^{r+j} {\binom{\Delta_{\omega(a)}-1}{j}} {\binom{-\Delta_{\omega(b)}-\Delta_{\omega(a)}+j+r}{r}} (\omega(b)_{(-1+j+r)}\omega(a))
$$

\n
$$
= \sum_{r,j} (-1)^{r} {\binom{\Delta_{\omega(a)}-1}{n-r}} {\binom{-\Delta_{\omega(b)}-\Delta_{\omega(a)}+n}{r}} (\omega(b)_{(-1+n)}\omega(a))
$$

\n
$$
= \sum_{n \geq r} (-1)^n {\binom{-\Delta_{\omega(b)}+n-1}{n}} (\omega(b)_{(-1+n)}\omega(a))
$$

\n
$$
= \sum_{n} {\binom{\Delta_{\omega(b)}}{n}} (\omega(b)_{(-1+n)}\omega(a))
$$

\n
$$
= \sum_{n} {\binom{\Delta_{\omega(b)}}{n}} (\omega(b)_{(-1+n)}\omega(a)) = \omega(b) * \omega(a).
$$

We used the fact that in $Zhu\gamma V$ we have (cf. [\[5,](#page-32-9) (2.35)])

$$
\frac{1}{r!}L_{-1}^r a = \binom{-\Delta_a}{r}a.
$$

and the Vandermonde identity on binomial coefficients.

Finally, by (3.8) ,

$$
\omega^2(a) = A(1)^2 a = a.
$$

hence $\omega^2 = I$. $2^2 = I$.

Remark 6.2. We now make explicit the map ω in the examples dealt with in Section [4.](#page-9-0) In general, if α is quasi-primary, we have, by (6.1)

$$
(6.4) \t\t \t\t \omega(a) = g(a).
$$

(1) Let $V = F$ be the fermionic vertex algebra associated to a superspace A as in Example [5.1.](#page-15-2) According to [\[5,](#page-32-9) Theorem 3.25], $Zhu_{L_0}(V)$ is the Clifford algebra of A, i.e. the unital associative algebra generated by A with relations

$$
[a, b] = (a|b), \quad a, b \in A.
$$

Then, according to (6.4) and (5.3) ,

(6.5)
$$
\omega(a) = -\sqrt{-1}\phi(a), \ a \in A_{\bar{0}}, \quad \omega(a) = -\phi(a), \ a \in A_{\bar{1}}.
$$

(2) Let $V = M(\mathfrak{h})$ be the vertex algebra of superbosons associated to a superspace \mathfrak{h} as in Example [5.2.](#page-16-0) According to [\[5,](#page-32-9) Theorem 3.25], $Zhu_{L_0}(V)$ is the (super)symmetric algebra of A . Then, according to (6.4) and (5.6) ,

$$
\omega(a) = -\phi(a), \ a \in A_{\bar{0}}, \quad \omega(a) = \sqrt{-1}\phi(a), \ a \in A_{\bar{1}}.
$$

(3) If $V = V^k(\mathfrak{g})$ (cf. Example [5.3\)](#page-17-0), then $Zhu_{L_0}(V) = U(\mathfrak{g})$ (see e.g. [\[5\]](#page-32-9)). Then, according to [\(6.4\)](#page-21-0),

$$
\omega(a) = -\phi(a), \ a \in \mathfrak{g}_{\bar{0}}, \quad \omega(a) = \sqrt{-1}\phi(a), \ a \in \mathfrak{g}_{\bar{1}}.
$$

(4) If $V = V_Q$ is a lattice vertex algebra (cf. Example [5.4\)](#page-18-0), formulas [\(5.8\)](#page-19-3) and [\(6.4\)](#page-21-0) give

$$
\omega(e^{\alpha}) = (-1)^{\frac{(\alpha|\alpha)((\alpha|\alpha)+1)}{2}} e^{-\alpha}, \quad \omega(h) = -\bar{h}, \, h \in \mathfrak{h}.
$$

Here \bar{h} is the conjugatie of $h \in \mathfrak{h}$ with respect to $\mathbb{R} \otimes_{\mathbb{Z}} Q$. If Q is even, $Zhu_{L_0}(V_Q)$ has been proved in [\[6\]](#page-32-11) to be isomorphic to a generalized Smith algebra, denoted there by $\overline{A(Q)}$. The algebra $\overline{A(Q)}$ is generated by elements E_{α} , $\alpha \in Q$, $h \in \mathfrak{h}$, and the explicit formula for the isomorphism $Zhu_{L_0}V_Q \cong A(Q)$ given in [\[6,](#page-32-11) Theorem 3.4] implies that

$$
\omega(E_{\alpha}) = (-1)^{\frac{(\alpha|\alpha)}{2}} E_{-\alpha}, \quad \omega(h) = -\bar{h}, \ h \in \mathfrak{h},
$$

is a conjugate linear anti-automorphism of $\overline{A(Q)}$.

Definition 6.3. Let R be an associative superalgebra over $\mathbb C$ with a conjugate linear antiinvolution ω , and let M be an R-module. A Hermitian form (\cdot, \cdot) on M is called ω -invariant if

$$
(\omega(a)m_1, m_2) = (m_1, a m_2), a \in R, m_1, m_2 \in M.
$$

Assume for the rest of this Section that $\Gamma = \mathbb{Z}$ or $\Gamma = \frac{1}{2}\mathbb{Z}$, so that $Zhu_{\Upsilon} = Zhu_{-\Upsilon}$. The following is the natural extension of Definition [4.1](#page-10-3) to V -modules.

Definition 6.4. Let ϕ be a conjugate linear involution of the vertex algebra V. A Hermitian form (\cdot, \cdot) on a Υ -twisted V-module M is called ϕ -invariant if, for all $v \in V$,

(6.6)
$$
(m_1, Y_M(a, z)m_2) = (Y_M(A(z)a, z^{-1})m_1, m_2).
$$

From now on we assume that the module M is a positive energy module (see Definition [2.6\)](#page-4-5).

Remark 6.5. The space of ϕ –invariant Hermitian forms on M is linearly isomorphic to

$$
\{\Theta \in Hom_V(M, M^{\dagger}) \mid \langle \Theta(m_1), m_2 \rangle = \overline{\langle \Theta(m_2), m_1 \rangle} \}
$$

Indeed, given $\Theta: M \to M^{\dagger}$ a V-module homomorphism, then setting, for $m_1, m_2 \in M$

$$
(m_1, m_2)_{\Theta} = \langle \Theta(m_2), m_1 \rangle
$$

defines a ϕ -invariant hermitian form on M. In fact

$$
(m_1, Y_M(a, z)m_2)_{\Theta} = \langle \Theta(Y_M(a, z)m_2), m_1 \rangle = \langle Y_{M^{\dagger}}(a, z)\Theta(m_2), m_1 \rangle
$$

= $\langle \Theta(m_2), Y_M(A(z)v, z^{-1})m_1 \rangle = (Y_M(A(z)v, z^{-1})m_1, m_2)_{\Theta}.$

Conversely, let $F: M \times M \to \mathbb{C}$ be a ϕ -invariant hermitian form; then $\Theta_F: M \to M^{\dagger}$ defined by $\langle \Theta_F(m_1), m_2 \rangle = F(m_2, m_1)$ is a V-homomorphism from M to M^{\dagger} . Indeed

$$
\langle \Theta_F(Y_M(a,z)m_1), m_2 \rangle = F(m_2, Y_M(a,z)m_1) = F(Y_M(A(z)a, z^{-1})m_2, m_1)
$$

=
$$
\langle \Theta_F(m_1), Y_M(A(z)a, z^{-1})m_2 \rangle = \langle Y_{M^{\dagger}}(a, z)\Theta_F(m_1), m_2 \rangle.
$$

Recall that a positive energy Υ –twisted V–module M is said quasi–irreducible if it is

generated by M_0 and there are no non-zero submodules $N \subset M$ such that $N \cap M_0 = \{0\}.$ By [\[5,](#page-32-9) Lemma 2.2], if M is a positive energy Υ -twisted V-module, then the map $a \mapsto$ $(a_0^M)_{|M_0}$ descends to define a $Zhu\gamma V$ -module structure on M_0 .

Lemma 6.6. If M is quasi-irreducible then M^{\dagger} is quasi-irreducible.

Proof. Set $N = VM_0^{\dagger}$. Then N^{\perp} is graded and $\langle F, v \rangle = 0$ for all $v \in N_0^{\perp}$, $F \in M_0^{\dagger}$. This implies that $N_0^{\perp} = \{0\}$, so $N^{\perp} = \{0\}$, hence $N = M^{\dagger}$.

If N is a graded submodule of M^{\dagger} with $N_0 = \{0\}$ then N^{\perp} is a graded submodule of M ntaining M_0 . Since M_0 generates M , it follows that $N^{\perp} = M$ hence $N = \{0\}$. containing M_0 . Since M_0 generates M , it follows that $N^{\perp} = M$ hence $N = \{0\}$.

Proposition 6.7. Let M be a Υ -twisted positive–energy V-module generated by M_0 . Then the space of ϕ –invariant Hermitian forms on M is linearly isomorphic to the set of ω – invariant Hermitian forms on the $Zhu\gamma V$ -module M_0 .

Proof. If (\cdot, \cdot) is a ϕ -invariant Hermitian form on M, then $(\cdot, \cdot)_0 = (\cdot, \cdot)_{|M_0 \times M_0}$ is a ω -invariant Hermitian form on M_0 by Proposition [6.1.](#page-19-4)

Let $(\cdot, \cdot)_0$ be a ω -invariant Hermitian form on the $Zhu\gamma V$ -module M_0 . Let N be the sum of all graded submodules N' of M such that $N' \cap M_0 = \{0\}$. Then M/N is quasi-irreducible and $(M/N)_0 = M_0$. Define $\Phi_0 : M_0 \to M_0^{\dagger}$ by setting $\Phi_0(m_1)(m_2) = (m_2, m_1)_0$. Since the form $(\cdot, \cdot)_0$ is ω -invariant, we have

$$
\Phi_0(v_0^M m_1)(m_2) = (m_2, v_0^M m_1)_0 = (\omega(v)_0^M m_2, m_1)_0 = \Phi_0(m_1)(\omega(v)_0^M m_2)
$$

= $(v_0^M)^{\dagger} \Phi_0(m_2)(m_1),$

so Φ_0 is a $Zhu_{\Upsilon}(V)$ -module map between M_0 and M_0^{\dagger} . By Lemma [6.6](#page-23-1) and [\[5,](#page-32-9) Theorem 2.30], there is a V-module map $\Phi: M/N \to (M/N)^{\dagger}$ such that $\Phi_{|M_0} = \Phi_0$. Define, for $m_1, m_2 \in M$,

$$
(m_1, m_2) = \Phi(m_2 + N)(m_1 + N).
$$

It is clear that the form (\cdot, \cdot) is ϕ -invariant and that $(\cdot, \cdot)_0 = (\cdot, \cdot)_{|M_0 \times M_0}$. It remains to check that the form is Hermitian.

Consider the form $(\cdot, \cdot)'$ defined by $(m_1, m_2)' = (m_2, m_1)$. Note that $(\cdot, \cdot)'$ is ϕ invariant:

$$
(m_1, Y_M(a, z)m_2)' = \overline{(Y_M(a, z)m_2, m_1)} = \overline{(Y_M(A(z)A(z^{-1})a, z)m_2, m_1)} = \overline{(m_2, Y_M(A(z)a, z^{-1})m_1)} = (Y_M(A(z)a, z^{-1})m_1, m_2)'
$$

Since $(\cdot, \cdot)_0$ is Hermitian, then

$$
(\,\cdot\,\,,\,\cdot\,)'_{|M_0\times M_0}=(\,\cdot\,\,,\,\cdot\,)_{|M_0\times M_0},
$$

hence $(\cdot, \cdot)' = (\cdot, \cdot)$. $\mathcal{I} = (\cdot \, , \, \cdot).$

Remark 6.8. Theorem [4.3](#page-10-1) is a consequence of Proposition [6.7.](#page-23-0) Indeed, the space of ω invariant Hermitian forms on V_0 is linearly isomorphic to $(V_0/L_1V_1)^{\dagger}$. The isomorphism is defined by mapping $(\cdot, \cdot)_0$ to $F_{(\cdot, \cdot)_0}$ where $F_{(\cdot, \cdot)_0}(v) = (v, 1)_0$. To prove that this map is well defined, let us check that $F_{(\cdot, \cdot)_0}(L_1V_1) = 0$. If $v \in V_1$, then

$$
L_1v = (L_1v)_0\mathbf{1} = (v_0 + (L_1v)_0)\mathbf{1}) = \omega(g(v))_0\mathbf{1},
$$

so

$$
F_{(\cdot,\,\cdot)_0}(L_1v)=(L_1v,\mathbf{1})_0=((\omega(g(v))_0\mathbf{1},\mathbf{1})_0=-(\mathbf{1},g(v)_0\mathbf{1})_0=0.
$$

The inverse is the map $F \mapsto (\cdot, \cdot)_F$, where $(v, w)_F = F(\omega(w)_0 v)$. Let us check that $(\cdot, \cdot)_F$ is ω -invariant. If $u, v \in V_0$ and $w \in V_{\mathbb{Z}}$, then $(u, w_0v)_F = F(\omega(w_0v)_0u)$ and $(\omega(w)_0u, v)_F =$ $F(\omega(v)_0 \omega(w)_0 u)$. Viewing F as an element of V^{\dagger} , we observe that

$$
F(\omega(w_0v)_0u) = ((w_0v)_0^{V^{\dagger}}F)(u), \ F(\omega(v)_0\omega(w)_0u) = (w_0^{V^{\dagger}}v_0^{V^{\dagger}}F)(u),
$$

so it is enough to check that

(6.7)
$$
(w_0 v)_0^{V^{\dagger}} F = w_0^{V^{\dagger}} v_0^{V^{\dagger}} F.
$$

Observe that, since $\langle F, L_1 V_1 \rangle = 0, L_{-1} F = 0, F$ is a vacuum–like element of V^{\dagger} . It follows from Proposition 3.4 of [\[15\]](#page-32-5) that the map $\Phi: V \to V^{\dagger}$ defined by $\Phi(a) = a_{(-1)}^{V^{\dagger}} F$ is a V -module map. In particular,

$$
\Phi(a_{(n)}b) = a_{(n)}^{V^{\dagger}}\Phi(b) = a_{(n)}^{V^{\dagger}}(b_{(-1)}^{V^{\dagger}}F).
$$

On the other hand

$$
\Phi(a_{(n)}b) = (a_{(n)}b)_{(-1)}^{V^{\dagger}}F
$$

so

$$
a_{(n)}^{V^{\dagger}}(b_{(-1)}^{V^{\dagger}}F) = (a_{(n)}b)_{(-1)}^{V^{\dagger}}F.
$$

Since $\Delta_v = \Delta_{w_0v} = 0$, we find $v_{(-1)}^{V^{\dagger}}F = v_0^{V^{\dagger}}F$ and $(w_0v)_{(-1)}^{V^{\dagger}}F = (w_0v)_0^{V^{\dagger}}F$, so [\(6.7\)](#page-24-2) follows.

7. Invariant Hermitian forms on W–algebras

We adopt the setting and notation of Section 1 of [\[13\]](#page-32-7). We let $W^k(\mathfrak{g},x,f)$ be the universal W–algebra of level $k \in \mathbb{R}$ associated to the datum (\mathfrak{g}, x, f) , where \mathfrak{g} is a simple finite–dimensional Lie superalgebra with a reductive even part and a non-zero even invariant supersymmetric bilinear form $(. | .), x$ is an ad-diagonalizable element of $\mathfrak g$ with eigenvalues in 1 $\frac{1}{2}\mathbb{Z}, f$ is an even element of g such that $[x, f] = -f$ and the eigenvalues of ad x on the centralizer \mathfrak{g}^f of f in \mathfrak{g} are non-positive. Recall that we are assuming that $a \in \mathbb{R}$ for $\mathfrak{g} = D(2, 1; a)$. We call the datum (\mathfrak{g}, x, f) a Dynkin datum if there is a $sl(2)$ -triple $\{f, h, e\}$ containing f and $x=\frac{1}{2}$ $\frac{1}{2}h$.

Let

(7.1)
$$
\mathfrak{g} = \bigoplus_{j \in \frac{1}{2}\mathbb{Z}} \mathfrak{g}_j
$$

be the grading of g by $ad(x)$ –eigenspaces. We assume that $k \neq -h^{\vee}$ so that $W^{k}(\mathfrak{g}, x, f)$ has a Virasoro vector. Then $W^k(\mathfrak{g}, x, f)$ is a conformal vertex algebra in the sense of Definition [2.1.](#page-2-4)

Remark 7.1. It is easy to show that a datum (g, x, f) as above is independent, up to isomorphism, from the choice of f, hence we may use notation $W^k(\mathfrak{g},x)$.

Remark 7.2. An important special case is when f is a minimal nilpotent element of the even part of $\mathfrak g$, i.e. f is the root vector $e_{-\theta}$ corresponding to a maximal even root θ . In this case, the invariant bilinear form (. | .) is normalized so that $(\theta|\theta) = 2$. Choose the root vector $e_{\theta} \in \mathfrak{g}_{\theta}$ in such a way that $(e_{\theta}|e_{-\theta}) = \frac{1}{2}$. Setting $x = [e_{\theta}, e_{-\theta}]$, it is clear that $(\mathfrak{g}, x, e_{-\theta})$ is a Dynkin datum. Identifying the Cartan subalgebra h with its dual using $(. | .)$, one has $x = \theta/2$. The algebra $W^k(\mathfrak{g}, \theta/2)$ is called a *minimal* W-algebra.

Lemma 7.3. Let ϕ be a conjugate linear involution of g such that

(7.2)
$$
\phi(f) = f, \quad \phi(x) = x.
$$

Assume also, as in Subsection [5.3,](#page-17-0) that

(7.3)
$$
\overline{(\phi(X)|\phi(Y))} = (X|Y),
$$

so that ϕ extends to a conjugate linear involution of $V^k(\mathfrak{g})$. Then ϕ descends to an involution of the vertex algebra $W^k(\mathfrak{g},x,f)$.

Proof. Let A be the superspace $\Pi(\sum_{j>0} \mathfrak{g}_j)$ where Π is the reverse parity functor. Let A^* be the linear dual of A and set $A_{ch} = A \oplus A^*$. Define the form $\langle \cdot, \cdot \rangle_{ch}$ on A_{ch} by setting, for $a, b \in A, a', b' \in A^*,$

$$
\langle a,b\rangle_{ch} = \langle a',b'\rangle_{ch} = 0, \quad \langle a,b'\rangle_{ch} = b'(a), \quad \langle b',a\rangle_{ch} = -p(a,b')a'(b).
$$

Let A_{ne} be the superspace $\mathfrak{g}_{1/2}$ equipped with the form $\langle \cdot , \cdot \rangle_{ne}$ defined by

$$
\langle a, b \rangle_{ne} = (f|[a, b]).
$$

Since $\phi(f) = f$,

$$
\langle \phi(a), \phi(b) \rangle_{ne} = (f|[\phi(a), \phi(b)]) = (\phi(f)|\phi([a, b])) = \overline{(f|[a, b])} = \overline{\langle a, b \rangle}_{ne}.
$$

It follows that ϕ extends to a conjugate linear involution of $F(A_{ne})$. Similarly, setting $\phi(b^*)(a) = b^*(\phi(a))$ for $b^* \in A^*$ and $a \in A$, we have

$$
\langle \phi(a), \phi(b^*) \rangle_{ch} = \phi(b^*)(\phi(a)) = \overline{b^*(a)} = \overline{\langle a, b^* \rangle}_{ch},
$$

so ϕ extends to a conjugate linear involution of $F(A_{ch})$. It follows that ϕ is a conjugate linear involution of the vertex algebra $\mathcal{C}(\mathfrak{g}, f, x, k) = V^k(\mathfrak{g}) \otimes F(A_{ch}) \otimes F(A_{ne}).$

Recall that there is an element $d \in \mathcal{C}(\mathfrak{g}, f, x, k)$ such that d_0 is an odd derivation and $d_0^2 = 0$, making $\mathcal{C}(\mathfrak{g}, f, x, k)$ a complex. It is easy to see that $\phi(d) = d$, hence the involution ϕ descends to an involution of the vertex algebra $W^k(\mathfrak{g},x,f) = H^0(\mathcal{C}(\mathfrak{g},f,x,k),d)$ [\[12\]](#page-32-6), [\[13\]](#page-32-7). \Box

Recall from [\[13\]](#page-32-7) that the vertex algebra $W^k(\mathfrak{g}, x, f)$ is strongly and freely generated by fields $J^{\{x_i\}}$ with $\{x_i\}$ a basis of \mathfrak{g}^f , the centralizer of f in g. We can clearly assume that the elements x_i are homogeneous with respect to the gradation $\mathfrak{g}^f = \bigoplus_j \mathfrak{g}^f_j$ ^{*j*}. Let $\mathfrak{g}_{\mathbb{R}}$ be the fixed point set of ϕ . By [\(7.3\)](#page-25-0), we see that $(. | .)_{\mathfrak{g}_{\mathbb{R}} \times \mathfrak{g}_{\mathbb{R}}}$ is a real bilinear form. Since $\phi(x) = x$, we see that $\mathfrak{g}_j = (\mathfrak{g}_j \cap \mathfrak{g}_{\mathbb{R}}) \oplus (\sqrt{-1} \mathfrak{g}_j \cap \mathfrak{g}_{\mathbb{R}})$. Moreover $\langle \cdot, \cdot \rangle_{ne}$ is real when restricted to $\mathfrak{g}_{1/2} \cap \mathfrak{g}_{\mathbb{R}}$. Likewise, we can identify the real dual of $\mathfrak{g}_+ \cap \mathfrak{g}_\mathbb{R}$ with the set of $b^* \in A^*$ such that $\phi(b^*) = b^*$. It follows that we can identify the algebra $\mathcal{C}(\mathfrak{g}_{\mathbb{R}}, f, x, k)$ as a real subalgebra of $\mathcal{C}(\mathfrak{g}, f, x, k)$. We can therefore carry out the construction of the fields $J^{\{a\}}$ for $a \in \mathfrak{g}_\mathbb{R}^f$ inside $\mathcal{C}(\mathfrak{g}_\mathbb{R}, f, x, k)$ and therefore obtain that $\phi(J^{\{a\}}) = J^{\{a\}}$. As $a \in \mathfrak{g}^f$ can be written as $a = a_{\mathbb{R}} + ib_{\mathbb{R}}$ with $a_{\mathbb{R}}, b_{\mathbb{R}} \in \mathfrak{g}^f_{\mathbb{R}},$ we see that we can construct the field $J^{\{a\}}$ so that $\phi(J^{\{a\}}) = J^{\{\phi(a)\}}$.

Let $L^{\mathfrak{g}}$ the Virasoro vector for $V^k(\mathfrak{g})$ defined in [\(5.7\)](#page-17-1). The vertex algebra $W^k(g, x, f)$ carries a Virasoro vector L , making it a conformal vertex algebra, which is the homology class of $L^{\mathfrak{g}} + T(x) + L^{ch} + L^{ne}$ (see [\[12\]](#page-32-6)).

In particular, by the above discussion and the explicit expressions for $L^{\mathfrak{g}}, L^{ch}, L^{ne}$, we obtain that $\phi(L) = L$. Following [\(3.3\)](#page-4-2) we set

$$
g = ((-1)^{L_0} \sigma^{1/2})^{-1} \phi.
$$

If $x_i \in \mathfrak{g}^f_j$ j , then the conformal weight of $J^{\{x_i\}}$ is $1-j$. It follows that

$$
W^k(\mathfrak{g},x,f)_0=\mathbb{C}\mathbf{1},\quad W^k(\mathfrak{g},x,f)_1=span(\lbrace J^{\lbrace x_i\rbrace}\mid x_i\in\mathfrak{g}_0^f\rbrace).
$$

Theorem 7.4. (a) Let $v \in \mathfrak{g}^f_0$ \int_0^f . If $J^{\{v\}} \in W^k(\mathfrak{g},x,f)_1$ is quasiprimary for more than one $k \in \mathbb{C}$, then

(7.4) (x|v) = 0.

(b) If the datum (\mathfrak{g},x,f) is a Dynkin datum, then the elements $J^{\{v\}}$ are primary for all $v \in \mathfrak{g}^f_0$ $\begin{array}{c} \int_0^f$ and $k \in \mathbb{C} \ \ (k \neq -h^{\vee})$. In particular, by Corollary [4.7,](#page-13-0) there is a unique ϕ -invariant Hermitian form (\cdot, \cdot) on $W^k(\mathfrak{g}, x, f)$ such that $(1, 1) = 1$.

(c) Assume that $\mathfrak g$ is a Lie algebra. If [\(7.4\)](#page-26-1) holds for a datum $(\mathfrak g, x, f)$ and all $v \in \mathfrak g_0^f$ $\frac{J}{0}$, then it is a Dynkin datum.

Proof. By [\[12,](#page-32-6) Theorem 2.4b], if $v \in \mathfrak{g}_0^f$ $_0^{\prime}$, then

$$
[L_{\lambda}J^{\{v\}}] = (T + \lambda)J^{\{v\}} + \lambda^{2}(\frac{1}{2}str_{\mathfrak{g}_{+}}(ad\,v) - (k + h^{\vee})(v|x)),
$$

hence claim (a) follows immediately.

If the datum (\mathfrak{g}, x, f) is a Dynkin datum, then $2(x|v) = ([e, f]|v) = (e|[f, v]) = 0$ if $v \in \mathfrak{g}^f$. Hence for (b) it suffices to show $str_{\mathfrak{g}_j}(ad\,v) = 0$ for all $j \in \frac{1}{2} \mathbb{N}$ and $v \in \mathfrak{g}_0^f$ $\frac{1}{0}$.

Consider the following bilinear form on \mathfrak{g}_i :

$$
\langle a, b \rangle = ((ad f)^{2j} a | b).
$$

By $sl(2)$ -representation theory, $(ad f)^{2j}$: $\mathfrak{g}_j \to \mathfrak{g}_{-j}$ is injective for $j > 0$, hence $\langle \cdot, \cdot \rangle$ is non-degenerate. The form is clearly $ad\mathfrak{g}_0^f$ $_{0}^{J}$ -invariant. The form is super (resp. skew-super) symmetric if $j \in \mathbb{Z}$ (resp. $j \in \frac{1}{2} + \mathbb{Z}$):

$$
\langle a, b \rangle = ((ad f)^{2j} a | b) = (-1)^{2j} (a | (ad f)^{2j} b) = (-1)^{2j} p(a, b) \langle b, a \rangle.
$$

Hence for $v \in \mathfrak{g}^f_0$ $_0^f$, adv lies in $osp(\mathfrak{g}_j)$ (resp. $spo(\mathfrak{g}_j)$) if $j \in \mathbb{Z}$ (resp. $j \in \frac{1}{2} + \mathbb{Z}$). Hence in either case its supertrace is 0. This proves (b).

By Theorem 1.1 from [\[8\]](#page-32-12), $x=\frac{1}{2}$ $\frac{1}{2}h+c$, where $\{e, h, f\}$ is an $sl(2)$ -triple for some $e \in \mathfrak{g}_1$ and c is a semisimple central element from the centralizer of this triple. We may assume that c is defined over R. But then $(x|c) = (\frac{1}{2}h + c|c) = (c|c)$. Since we are assuming that $\mathfrak g$ is a simple Lie algebra, [\(7.4\)](#page-26-1) implies that $c = 0$, proving (c).

Remark 7.5. Let g be a simple Lie algebra. It follows from Theorem [7.4](#page-26-0) that a datum (\mathfrak{g}, x, f) is Dynkin if and only if $(x | \mathfrak{g}_0^f)$ \mathcal{L}_0^f = 0 (\iff $(x|\mathfrak{g}^f) = 0$). In other words a $\frac{1}{2}\mathbb{Z}$ -grading of $\mathfrak g$ is Dynkin iff $f \in \mathfrak g_{-1}$, all eigenvalues of *adx* on $\mathfrak g^f$ are non-positive and $(x|\mathfrak g^f) = 0$.

Example 7.6. Let $\mathfrak{g} = sl(3)$ with the data $(\mathfrak{g}, \frac{1}{2})$ $\frac{1}{2}(E_{11}-E_{33}), E_{31}, k)$ and $(\mathfrak{g}, -2E_{11}+E_{22}+$ E_{33}, E_{31}, k). The first one is a Dynkin datum corresponding to the minimal W-algebra $W^k(\mathfrak{g}, \theta/2)$. The second one is not Dynkin: indeed, if $v = E_{11} - 2E_{22} + E_{33}$, then $v \in \mathfrak{g}_0^f$ $_0^{\prime}$ and $(x|v) \neq 0.$

Corollary 7.7. Assume that (\mathfrak{g}, x, f) is a Dynkin datum. Then there is a unique ϕ -invariant Hermitian form $(.,.)$ on $W^k(\mathfrak{g},x,f)$ such that $(1,1)=1$.

Proof. By Theorem [7.4](#page-26-0) (b), we can apply Corollary [4.7.](#page-13-0)

We now describe the ϕ -invariant Hermitian form more explicitly using formula [\(4.9\)](#page-13-1). Fix a basis $\{x^i\}$ of \mathfrak{g}^f . Set $\Delta_i = \Delta_{x^i}$ and $p_i = p(x^i)$. By Proposition [4.6](#page-13-4) we may assume that the fields $J^{\{x_i\}}$ are quasiprimary for all i. We can clearly assume that $\phi(x^i) = x^i$ for all i. Since $\phi(L) = L$, the proof of Lemma [4.5,](#page-13-2) hence of Proposition [4.6,](#page-13-4) can be done over R, so $\phi(J^{\{x^i\}}) = J^{\{x^i\}}$ and let $J^{\{x^i\}}(z) = \sum$ $n\in-\overline{\Delta}_i+\mathbb{Z}$ $J_n^{\{x^i\}} z^{-n-\Delta_i}.$

Order the set

$$
\{(j,i)\in \frac{1}{2}\mathbb{Z}_+\times\{0,\ldots,\dim\mathfrak{g}^f-1\}\mid j\in\Delta_i+\mathbb{Z}_+\}
$$

lexicographically. Then the set

(7.5)
$$
\{ (J_{-j_1}^{\{x^{i_1}\}})^{m_1} \cdots (J_{-j_t}^{\{x^{i_t}\}})^{m_t} \mathbf{1} \mid m_i = 0 \text{ or } 1 \text{ if } x^i \text{ is odd} \}
$$

is a basis of $W^k(\mathfrak{g},x,f)$. Since

$$
g(J^{\{x^i\}}) = (-\sqrt{-1})^{2\Delta_i + p_i} J^{\{x^i\}},
$$

formula [\(4.9\)](#page-13-1) gives that

$$
(7.6) \qquad \left((J_{j_1}^{\{x^{i_1}\}})^{m_1} \cdots (J_{j_t}^{\{x^{i_t}\}})^{m_t} \mathbf{1}, (J_{j'_1}^{\{x^{i'_1}\}})^{m'_1} \cdots (J_{j'_r}^{\{x^{i'_t}\}})^{m'_t} \mathbf{1} \right)
$$

$$
= (-\sqrt{-1})^{\sum_r m_r (2\Delta_{ir} + p_{ir})} \left\langle (J_{-j_t}^{\{x^{i_t}\}})^{m_t} \cdots (J_{-j_1}^{\{x^{i_1}\}})^{m_1} (J_{j'_1}^{\{x^{i'_1}\}})^{m'_1} \cdots (J_{j'_r}^{\{x^{i'_r}\}})^{m'_r} \right\rangle.
$$

Remark 7.8. Set $R = span(T^k(J^{\{x^i\}}), k \in \mathbb{Z}^+).$ Let π_Z be the quotient map from $W^k(\mathfrak{g}, x, f)$ to $Zhu_{L_0}(W^k(\mathfrak{g},x,f))$. Set $\mathfrak{w}=span(\pi_Z(J^{\{x^i\}}))$. By [\(7.5\)](#page-27-0) the set

{:
$$
(T^{k_1} J^{\{x^{i_1}\}})^{m_1} \cdots (T^{k_t} J^{\{x^{i_t}\}})^{m_t} : | m_i = 0 \text{ or } 1 \text{ if } x^{j_i} \text{ is odd}\}
$$

is a basis of $W^k(\mathfrak{g},x,f)$. It follows from Theorem 3.25 of [\[5\]](#page-32-9) that

$$
R/(L_{-1}+L_0)R\simeq \mathfrak{w}
$$

has the structure of a nonlinear Lie superalgebra and that $Zhu_{L_0}(W^k(\mathfrak{g},x,f))$ is its universal enveloping algebra. In particular the set

$$
\{(\pi_Z J^{\{x^{i_1}\}})^{m_1} * \cdots * (\pi_Z J^{\{x^{i_t}\}})^{m_t} \mid m_i = 0 \text{ or } 1 \text{ if } x^{j_i} \text{ is odd}\}
$$

is a basis of $Zhu_{L_0}(W^k(\mathfrak{g},x,f))$. Since, by Proposition [4.6,](#page-13-4) $J^{\{x_i\}}$ can be chosen to be quasiprimary for all i, it is clear that the involution ω in this basis is given by

$$
\omega((\pi_Z J^{\{x^{i_1}\}})^{m_1} * \cdots * (\pi_Z J^{\{x^{i_t}\}})^{m_t}) = (-\sqrt{-1})^{\sum_r m_r(2\Delta_{i_r} + p_{i_r})}(\pi_Z J^{\{x^{i_t}\}})^{m_t} * \cdots * (\pi_Z J^{\{x^{i_1}\}})^{m_1}.
$$

We now restrict to the case of a minimal W–algebra $W^k(\mathfrak{g}, \theta/2)$ (see Remark [7.2\)](#page-25-1) where one has a more explicit description of $Zhu_{L_0}(W^k(\mathfrak{g}, \theta/2))$ and its involution.

Set $\mathfrak{g}^{\natural} = \mathfrak{g}^f_0$ f. Then $\mathfrak{g}^f = \mathfrak{g}^{\natural} \oplus \mathfrak{g}_{-1/2} \oplus \mathbb{C}f$. The elements $J^{\{v\}}$ are uniquely determined for $v \in \mathfrak{g}^{\natural} \oplus \mathfrak{g}_{-1/2}$ and have been computed explicitly in [\[12\]](#page-32-6). One usually denotes $J^{\{v\}}$ by $G^{\{v\}}$ if $v \in \mathfrak{g}_{-1/2}$. We also write $\mathfrak{g}^{\natural} = \bigoplus_{i=0}^{r} \mathfrak{g}_i$ with \mathfrak{g}_0 the (possibly zero) center and \mathfrak{g}_i a simple ideal for $i > 0$.

Set, for $u, v \in \mathfrak{g}_{-1/2}$,

$$
\langle u, v \rangle = (e_{\theta} | [u, v])
$$

and note that $\langle \cdot, \cdot \rangle$ is a \mathfrak{g}^{\sharp} –invariant skew–supersymmetric bilinear form on $\mathfrak{g}_{-1/2}$. Fix a basis $\{a_i\}$ of \mathfrak{g}^{\sharp} and a basis $\{u_i\}$ of $\mathfrak{g}_{-1/2}$. Then $W^k(\mathfrak{g},\theta)$ has as set of free generators

$$
\{J^{\{a_i\}}\} \cup \{G^{\{u_i\}}\} \cup \{L\}.
$$

Moreover the λ -brackets between generators is known explicitly [\[12\]](#page-32-6), [\[13\]](#page-32-7), [\[1\]](#page-32-8), [\[14\]](#page-32-13), and Section [8:](#page-31-0) L is the Virasoro vector and its central charge is $\frac{k \text{ sdim}\mathfrak{g}}{k+h^{\vee}} - 6k + h^{\vee} - 4$, the $J^{\{u\}}$ are primary of conformal weight 1, the $G^{\{v\}}$ are primary of conformal weight $\frac{3}{2}$ and

- (1) $[J^{\{a\}}_{\lambda} J^{\{b\}}] = J^{\{[a,b]\}} + \lambda \delta_{ij} (k + \frac{h^{\vee} h^{\vee}_{0,i}}{2})(a|b)$ for $a \in \mathfrak{g}_{i}^{\natural}$ $_{i}^{\natural},\,b\in\mathfrak{g}_{j}^{\natural}$ ч.
j;
- (2) $[J^{\{a\}}\lambda G^{\{u\}}] = G^{\{[a,u]\}}$ for $u \in \mathfrak{g}_{-1/2}, a \in \mathfrak{g}^{\natural};$
- (3)

.

$$
[G^{\{u\}}_{\lambda}G^{\{v\}}] = -2(k+h^{\vee})\langle u,v\rangle L + \langle u,v\rangle \sum_{\alpha=1}^{\dim \mathfrak{g}^{\natural}}: J^{\{a^{\alpha}\}}J^{\{a_{\alpha}\}}: +
$$

$$
2\sum_{\alpha,\beta=1}^{\dim \mathfrak{g}^{\natural}} \langle [a_{\alpha},u],[v,a^{\beta}]\rangle: J^{\{a^{\alpha}\}}J^{\{a_{\beta}\}}: +2(k+1)(\partial+2\lambda)J^{\{[[e_{\theta},u],v]^{\natural}\}}+ 2\lambda \sum_{\alpha,\beta=1}^{\dim \mathfrak{g}^{\natural}} \langle [a_{\alpha},u],[v,a^{\beta}]\rangle J^{\{[a^{\alpha},a_{\beta}]\}} + 2p(k)\lambda^{2}\langle u,v\rangle.
$$

Here $\{a_{\alpha}\}$ (resp. $\{u_{\gamma}\}\$) is a basis of \mathfrak{g}^{\natural} (resp. $\mathfrak{g}_{1/2}$) and $\{a^{\alpha}\}$ (resp. $\{u^{\gamma}\}\$) is the corresponding dual basis w.r.t. $(. | .)$ (resp w.r.t. $\langle \cdot, \cdot \rangle_{ne} = (e_{-\theta} | [\cdot, \cdot])$), a^{\dagger} is the orthogonal projection of $a\in\mathfrak{g}_0$ on $\mathfrak{g}^\natural,\,a_i^\natural$ ^{\natural} is the projection of a^{\natural} on the *i*th minimal ideal $\mathfrak{g}_i^{\natural}$ $\frac{\natural}{i}$ of \mathfrak{g}^{\natural} , $k_i = k + \frac{1}{2}$ $\frac{1}{2}(h^{\vee} - h_{0,i}^{\vee}),$ where $h_{0,i}^{\vee}$ is the dual Coxeter number of $\mathfrak{g}_i^{\natural}$ with respect to the restriction of the form $(\, . \, | \, . \,),$ and $p(k)$ is the monic quadratic polynomial given in Table 4 of [\[1\]](#page-32-8). See Appendix [8](#page-31-0) for the derivation of formula (3) from the formulas given in [\[12\]](#page-32-6).

Identify **w** with $\mathfrak{g}^{\natural} \oplus \mathfrak{g}_{-1/2} \oplus \mathbb{C}L$ by identifying $\pi_Z J^{\{a\}}$ with a, $\pi_Z G^{\{v\}}$ with v and $\pi_z L$ with L. As in Remark [7.8,](#page-27-1) a basis of $Zhu_{L_0}(W^k(\mathfrak{g},\theta))$ is given by

$$
\{u_{i_1}^{m_1} * \cdots * u_{i_t}^{m_t} * a_{j_1}^{n_1} * \cdots * a_{j_r}^{n_r} * L^k \mid i_1 < \cdots i_t; \ j_1 < \cdots < j_r; \ m_p, n_q \in \{0,1\} \text{ if } a_{i_p} \text{ or } u_{j_q} \text{ is odd}\}.
$$

Moreover the commutation relations among the generators are as follows (here $[\cdot, \cdot]_{\mathfrak{g}}$ denotes the bracket in \mathfrak{g} , while $[\cdot, \cdot]$ is the bracket in $Zhu_{L_0}(W^k(\mathfrak{g}, \theta)).$

- (1) L is a central element, (2) $[a, b] = [a, b]_{\mathfrak{g}}$ if $a, b \in \mathfrak{g}^{\natural}$,
- (3) $[a, v] = [a, v]_{\mathfrak{g}}$ if $a \in \mathfrak{g}^{\natural}$ and $v \in \mathfrak{g}_{-1/2}$,
- (4)

$$
[u, v] = \langle u, v \rangle \left(\sum_{\alpha=1}^{\dim \mathfrak{g}^{\natural}} (a^{\alpha} * a_{\alpha} - [a^{\alpha}, a_{\alpha}]_{\mathfrak{g}}) - 2(k + h^{\vee})L - \frac{1}{2}p(k) \right)
$$

+
$$
\sum_{\alpha, \beta=1}^{\dim \mathfrak{g}^{\natural}} \langle [a_{\alpha}, u]_{\mathfrak{g}}, [v, a^{\beta}]_{\mathfrak{g}} \rangle (2a^{\alpha} * a_{\beta} - [a^{\alpha}, a_{\beta}]_{\mathfrak{g}}).
$$

By (2) , (3) we can drop the subscript g from the bracket. Moreover observe that

$$
\sum_{\alpha=1}^{\dim \mathfrak{g}^{\natural}} [a^{\alpha}, a_{\alpha}]_{\mathfrak{g}} = 0
$$

and that

$$
2a^{\alpha} * a_{\beta} - [a^{\alpha}, a_{\beta}]_{\mathfrak{g}} = 2a^{\alpha} * a_{\beta} - [a^{\alpha}, a_{\beta}] = a^{\alpha} * a_{\beta} + p(a_{\alpha}, a_{\beta})a_{\beta} * a^{\alpha}.
$$

Setting $L' = 2(k + h^{\vee})L + \frac{1}{2}$ $\frac{1}{2}p(k)$, a new generating space is $\mathfrak{g}^{\natural} \oplus \mathfrak{g}_{-1/2} \oplus \mathbb{C}L'$ and the commutation relations are (1) with L' in place of L , (2), (3) and

 $(4')$

$$
[u, v] = \langle u, v \rangle \left(\sum_{\alpha=1}^{\dim \mathfrak{g}^{\natural}} a^{\alpha} * a_{\alpha} - L' \right) + \sum_{\alpha, \beta=1}^{\dim \mathfrak{g}^{\natural}} \langle [a_{\alpha}, u]_{\mathfrak{g}}, [v, a^{\beta}]_{\mathfrak{g}} \rangle (a^{\alpha} * a_{\beta} + p(a_{\alpha}, a_{\beta}) a_{\beta} * a^{\alpha}).
$$

It is then clear that $Zhu_{L_0}(W^k(\mathfrak{g},\theta/2))$ does not depend on k if $k \neq -h^{\vee}$.

The involution ω is easily computed: since the generators are quasiprimary, we have by (6.4) : $\omega(J^{\{a\}}) = g(J^{\{a\}})$, hence

$$
\omega(L') = L',
$$

\n
$$
\omega(a) = (-1)^{p(a)+1} (\sqrt{-1})^{p(a)} \phi(a), \ a \in \mathfrak{g}^{\natural},
$$

\n
$$
\omega(v) = (-1)^{p(v)} (\sqrt{-1})^{p(v)+1} \phi(v), \ v \in \mathfrak{g}_{-1/2}.
$$

Recall that, if $k + h^{\vee} \neq 0$, then $W^k(\mathfrak{g}, \theta/2)$ has a unique simple quotient $W_k(\mathfrak{g}, \theta/2)$. Remark that the maximal proper ideal I^k of $W^k(\mathfrak{g}, \theta/2)$ is the kernel of the invariant Hermitian form on $W^k(\mathfrak{g},\theta/2)$, hence one can induce a invariant Hermitian form on $W_k(\mathfrak{g},\theta/2)$. The latter vertex algebra is unitary if and only if the invariant form on $W^k(\mathfrak{g},\theta/2)$ is positive semi-definite. Recall from [\[1\]](#page-32-8) that a level k is *collapsing* for $W^k(\mathfrak{g}, \theta/2)$ if $W_k(\mathfrak{g}, \theta/2)$ is contained in its affine vertex algebra part.

Theorem 7.9. Assume that $W_k(\mathfrak{g}, \theta/2)$ is unitary.

- (1) If $g \neq sl(2)$ is a Lie algebra then k is a collapsing level.
- (2) If \mathfrak{g}^{\natural} is not a Lie algebra then k is a collapsing level.

In particular, if $W_k(\mathfrak{g},\theta/2)$ unitary for three different values of k, then either $\mathfrak{g}=sl(2)$ or \mathfrak{g} is not a Lie algebra and \mathfrak{g}^{\natural} is a Lie algebra.

Proof. (1). By assumption $\mathfrak{g}_{-1/2} \neq 0$, take a nonzero $u \in \mathfrak{g}_{-1/2}$ such that $\phi(u) = u$ and compute using [\(7.6\)](#page-27-2) with $m_1 = m'_1 = 1$:

$$
(G^{\{u\}}, G^{\{u\}}) = (G_{-3/2}^{\{u\}} \mathbf{1}, G_{-3/2}^{\{u\}} \mathbf{1}) = \sqrt{-1} \left\langle G_{3/2}^{\{u\}} G_{-3/2}^{\{u\}} \mathbf{1} \right\rangle = 4p(k)\langle u, u \rangle = 0.
$$

If the form on $W^k(\mathfrak{g},\theta/2)$ is positive semidefinite then $G^{\{u\}} \in I^k$, hence k is a collapsing level.

(2). Take $a \in \mathfrak{g}^{\natural}$ such that $p(a) = 1$, $\phi(a) = a$. Compute using [\(7.6\)](#page-27-2) with $m_1 = m'_1 = 1$

$$
(J^{\{a\}},J^{\{a\}})=(J_{-1}^{\{a\}}\mathbf{1},J_{-1}^{\{a\}}\mathbf{1})=\sqrt{-1}\left\langle J_{1}^{\{a\}}J_{-1}^{\{a\}}\mathbf{1}\right\rangle =0,
$$

hence $J^{\{a\}} \in I^k$. Assume that \mathfrak{g}^{\dagger} is simple; since $I^k \cap \mathfrak{g}^{\dagger}$ is and ideal of \mathfrak{g}^{\dagger} , then $\mathfrak{g}^{\dagger} \subset I^k$. Since $\mathfrak{g}_{-1/2}$ is not the trivial representation of \mathfrak{g}^{\natural} , there exist $b \in \mathfrak{g}^{\natural}$ and $u \in \mathfrak{g}_{-1/2}$ such that $[b, u] \neq 0$. Since $[J^{\{b\}} \lambda G^{\{u\}}] = G^{\{[b, u]\}}$, [\[1,](#page-32-8) Prop. 3.2] implies that k is collapsing. The only remaining case, according to [\[1,](#page-32-8) Table 3], is $\mathfrak{g} = \alpha sp(m|n), m \geq 5$. In this case $\mathfrak{g}^{\natural} = \text{osp}(m-4|n) \oplus \text{sl}(2)$ and $\mathfrak{g}_{-1/2} = \mathbb{C}^{m-4|n} \otimes \mathbb{C}^2$, and the previous argument applies to $osp(m-4|n)$ acting on $\mathbb{C}^{m-4|n}$.

Remark 7.10. The proof of Theorem [7.9](#page-29-0) shows more generally that if there exists an odd (resp. even) element of integer (resp. half-integer) conformal weight in a W-algebra $W^k(\mathfrak{g},x)$, which does not lie in the kernel of its homomorphism to $W_k(\mathfrak{g}, f)$, then the latter W-algebra is not unitary.

In general, even at collapsing levels, the simple vertex algebra $W_k(\mathfrak{g}, \theta/2)$ might not be unitary. It is clear that if $W^k(\mathfrak{g},\theta/2)$ collapses to $\mathbb C$ then $W_k(\mathfrak{g},\theta/2)$ is unitary. The list of such cases is given in Proposition 3.4 of [\[1\]](#page-32-8).

In the next proposition we deal with other collapsing levels allowing unitarity.

Proposition 7.11. Assume $W_k(\mathfrak{g},\theta/2) \neq \mathbb{C}$. If k is a collapsing level and there is a conjugate linear involution ϕ on $W_k(\mathfrak{g}, \theta/2)$ such that the corresponding ϕ -invariant form is unitary, then the pair (\mathfrak{g},k) is one in the following list

(7.7)
$$
\mathfrak{g} = sl(m|n), \; m \neq n, n+1, n+2, m \geq 2,
$$
 $k = -1,$
\n(7.8) $\mathfrak{g} = G_2,$ $k = -4/3,$
\n(7.9) $\mathfrak{g} = \log(m|n), \; m - n \geq 10, \; m - n \; even,$ $k = -2,$
\n(7.10) $\mathfrak{g} = spo(2|3),$ $k = -3/4,$
\n(7.11) $\mathfrak{g} = D(2, 1; -\frac{1+n}{n+2}), \; n \in \mathbb{N},$ $k = -\frac{1+n}{n+2}.$

Proof. Looking at [\[2,](#page-32-14) Table 5] one gets that in the cases listed in the statement there is a conjugate linear involution ϕ such that the ϕ -invariant Hermitian form on $W_k(\mathfrak{g}, \theta/2)$ is positive definite. In case [\(7.7\)](#page-30-1) $W_k(\mathfrak{g}, \theta/2)$ is $M(\mathbb{C})$ (Heisenberg vertex algebra) and its unitarity is shown in Subsection [5.2.](#page-16-0) In cases [\(7.8\)](#page-30-2), [\(7.9\)](#page-30-3), [\(7.10\)](#page-30-4), [\(7.11\)](#page-30-5), $W_k(\mathfrak{g}, \theta/2)$ is a simple affine vertex algebra at positive integral level, hence unitarity follows from Subsection [5.3.](#page-17-0)

It remains only to check that the cases in the statement are the only cases where one can have unitarity at a collapsing level k , but, as explained in the discussion at the end of Subsection [5.3,](#page-17-0) a simple affine vertex algebra $V_k(\mathfrak{g})$ can be unitary if and only if \mathfrak{g} is even and k is a positive integer.

Corollary 7.12. The following simple minimal W-algebras are unitary:

- (1) $W_{-1}(sl(m|n),\theta/2) \cong M(\mathbb{C}), m \neq n, n+1, n+2, m \geq 2$, where $M(\mathbb{C})$ is the Heisenberg vertex algebra with central charge $c = 1$;
- (2) $W_{-4/3}(G_2, \theta/2) \cong V_1(sl(2))$ with central charge $c = 1$;
- (3) $W_{-2}(osp(m|n), \theta/2) \cong V_{\frac{m-n-8}{2}}(sl(2)), m-n \ge 10, m$ and n even, with central charge $c = \frac{3(m-n-8)}{m-n-4};$
- (4) $W_{-3/4}(spo(2|3), \theta/2) \cong V_1(sl(2))$ with central charge $c = 1$;
- (5) $W_{-\frac{1+n}{n+2}}(D(2,1;-\frac{1+n}{n+2}),\theta/2) \cong V_n(sl(2))$ with central charge $c = \frac{3n}{2+n}$ $\frac{3n}{2+n}$, $n \in \mathbb{Z}_+$.

Remark 7.13. Case (4) of Corollary [7.12](#page-30-6) is of special interest since $W_k(spo(2|3))$, tensored with one fermion, is the $N = 3$ superconformal algebra. The collapsing level corresponds to the central charge 1 of the simple W-algebra, isomorphic to $V_1(sl(2))$, hence to the central charge $c = 3/2$ of the $N = 3$ superconformal algebra, which is therefore unitary. This has been already observed in [\[16\]](#page-32-15).

Remark 7.14. Another interesting case of Corollary [7.12](#page-30-6) is (5). Recall that $W_k(D(2, 1; a)$, tensored with four fermions and one boson, is the big $N = 4$ superconformal algebra [\[13\]](#page-32-7). It follows from Corollary [7.12](#page-30-6) that this algebra is unitary when $a = -\frac{1+n}{n+2}$, $n \in \mathbb{Z}_+$, the central charge being −6a.

8. APPENDIX: λ -BRACKETS IN MINIMAL W–ALGEBRAS

If $u \in \mathfrak{g}_{-1/2}$ and $v \in \mathfrak{g}_{1/2}$, then a direct computation shows that

$$
[u,v] = \sum_{\alpha} ([u,v]|a^{\alpha})a_{\alpha} + \frac{([u,v]|x)}{(x|x)}x = \sum_{\alpha} (a_{\alpha}|[u,v])a^{\alpha} + \frac{(x|[u,v])}{(x|x)}x,
$$

so

$$
[u_{\gamma}, v]^{\dagger} = \sum_{\alpha} ([u_{\gamma}, v]|a^{\alpha})a_{\alpha} = \sum_{\alpha} (u_{\gamma}|[v, a^{\alpha}])a_{\alpha},
$$

$$
[u, u^{\gamma}]^{\dagger} = \sum_{\alpha} (a_{\alpha}|[u, u^{\gamma}])a^{\alpha} = \sum_{\alpha} ([a_{\alpha}, u]|u^{\gamma})a^{\alpha}.
$$

Moreover,

$$
[[u, u^{\gamma}], [u_{\gamma}, v]]^{\dagger} = \sum_{\alpha, \beta} ([a_{\alpha}, u] | u^{\gamma}) (u_{\gamma} | [v, a^{\beta}]) [a^{\alpha}, a_{\beta}].
$$

Since, if $v \in \mathfrak{g}_{-1/2}$, $v = \sum_{\gamma} (v | u^{\gamma}) [e_{-\theta}, u_{\gamma}]$, we obtain

$$
2[e_{\theta}, v] = 2 \sum_{\gamma} (v|u^{\gamma})[e_{\theta}, [e_{-\theta}, u_{\gamma}]] = 2 \sum_{\gamma} (v|u^{\gamma})[x, u_{\gamma}] = \sum_{\gamma} (v|u^{\gamma})u_{\gamma}.
$$

Substituting we find

$$
\sum_{\gamma} ([a_{\alpha}, u] | u^{\gamma})(u_{\gamma}| [v, a^{\beta}]) = (\sum_{\gamma} ([a_{\alpha}, u] | u^{\gamma}) u_{\gamma}| [v, a^{\beta}])
$$

= 2([e_{\theta}, [a_{\alpha}, u]] | [v, a^{\beta}]) = 2\langle [a_{\alpha}, u], [v, a^{\beta}]\rangle.

Recall from [\[1\]](#page-32-8), [\[14\]](#page-32-13) that

(8.1)
$$
[G^{\{u\}}_{\lambda}G^{\{v\}}] = -2(k+h^{\vee})\langle u,v\rangle L + \langle u,v\rangle \sum_{\alpha=1}^{\dim \mathfrak{g}^{\sharp}}: J^{\{a^{\alpha}\}}J^{\{a_{\alpha}\}}: + \sum_{\gamma=1}^{\dim \mathfrak{g}_{1/2}}: J^{\{[u,u^{\gamma}]\sharp\}}J^{\{[u_{\gamma},v]\sharp\}}: +2(k+1)(\partial+2\lambda)J^{\{[[e_{\theta},u],v]\sharp\}} + \lambda \sum_{\gamma \in S_{1/2}} J^{\{[[u,u^{\gamma}],[u_{\gamma},v]]^{\sharp}\}} + 2p(k)\lambda^{2}\langle u,v\rangle,
$$

where $p(k)$ is a monic quadratic polynomial in k, listed in [\[1,](#page-32-8) Table 4]. Using the above formulas we can rewrite [\(8.1\)](#page-31-1) as

(8.2)
$$
[G^{\{u\}}_{\lambda} G^{\{v\}}] = -2(k + h^{\vee})\langle u, v\rangle L + \langle u, v\rangle \sum_{\alpha=1}^{\dim \mathfrak{g}^{\natural}}: J^{\{a^{\alpha}\}} J^{\{a_{\alpha}\}}: + 2\sum_{\alpha,\beta} \langle [a_{\alpha}, u], [v, a^{\beta}] \rangle : J^{\{a^{\alpha}\}} J^{\{a_{\beta}\}}: + 2(k + 1)(\partial + 2\lambda) J^{\{[[e_{\theta}, u], v]^{\natural}\}} + 2\lambda \sum_{\alpha,\beta} \langle [a_{\alpha}, u], [v, a^{\beta}] \rangle J^{\{[a^{\alpha}, a_{\beta}]\}} + 2p(k)\lambda^{2} \langle u, v \rangle.
$$

REFERENCES

- [1] D. Adamović, V. G. Kac, P. Möseneder Frajria, P. Papi, O. Perše, Conformal embeddings of affine vertex algebras in minimal W–algebras I: Structural results, J. Algebra 500 (2018), 117–152.
- [2] D. Adamović, V. G. Kac, P. Möseneder Frajria, P. Papi, O. Perše, An application of collapsing levels to the representation theory of affine vertex algebras, International Mathematics Research Notices 2020, Issue 13, July 2020, 4103–4143.
- [3] C. Ai, X. Lin, On the unitary structures of vertex operator superalgebras, Journal of Algebra 487 (2017), 217–243.
- [4] R. E. Borcherds, Vertex algebras, Kac-Moody algebras, and the Monster, Proc. Natl. Acad. Sci. USA 8 3 (1986), 3068–3071.
- [5] A. De Sole, V. G. Kac, Finite vs affine W–algebras, Japan J. Math. 1 (2006), 137–261.
- [6] C. Dong, H. Li, G. Mason, Certain associative algebras similar to $U(sl2)$ and Zhu's algebra $A(V_L)$. J. Algebra 196 (1997), no. 2, 532–551.
- [7] C. Dong, X. Lin, Unitary vertex operator superalgebras, J. Algebra 397 (2014), 252–277.
- [8] A. G. Elashvili, V. G. Kac, Good gradings in simple Lie algebras, Amer. Math. Soc. Transl. (2) 213 (2005), 85–104.
- [9] I.B. Frenkel, Yi-Zhi Huang, J. Lepowsky, On axiomatic approaches to vertex operator algebras and modules, Memoirs of the American Mathematical Society 494, 1993.
- [10] V. G. Kac, Infinite dimensional Lie algebras, 3ed. Cambridge University Press, 1990.
- [11] V. G. Kac, Vertex algebras for beginners, 2ed. AMS (1998).
- [12] V. G. Kac, S.-S. Roan, M. Wakimoto, Quantum reduction for affine superalgebras, Comm. Math. Phys. 241 (2003) 307–342.
- [13] V. G. Kac and M. Wakimoto, *Quantum reduction and representation theory of superconformal algebras.*, Adv. in Math. 185 (2004), 400–458.
- [14] V. G. Kac, P. Möseneder Frajria, P. Papi, Yangians vs minimal W–algebras: a surprizing coincidence, Comm. Contemp. Math. 23 (2021), no. 4, 2050036.
- [15] H. Li, Symmetric invariant bilinear forms on vertex operator superalgebras. J. Pure and App. Algebra, 96 (1994), 279–297.
- [16] A. Schwimmer, N. Seiberg, Comments on the $N = 2, 3, 4$ superconformal algebras in two dimensions, Phys. Lett. B 184 (1987), no. 2,3, 191–196.

V.K.: Department of Mathematics, MIT, 77 Mass. Ave, Cambridge, MA 02139; kac@math.mit.edu

P.MF.: Politecnico di Milano, Polo regionale di Como, Via Anzani 4, 22100, Como, Italy; pierluigi.moseneder@polimi.it

P.P.: Dipartimento di Matematica, Sapienza Università di Roma, P.le A. Moro 2, 00185, Roma, Italy; papi@mat.uniroma1.it