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ABSTRACT

Licensing the next-generation of nuclear reactor designs requires extensive use of Modeling and Simu-
lation (M&S) to investigate system response to many operational conditions, identify possible accidental
scenarios and predict their evolution to undesirable consequences that are to be prevented or mitigated
via the deployment of adequate safety barriers. Deep Learning (DL) and Artificial Intelligence (Al) can
support M&S computationally by providing surrogates of the complex multi-physics high-fidelity models
used for design. However, DL and Al are, generally, low-fidelity ‘black-box’ models that do not assure any
structure based on physical laws and constraints, and may, thus, lack interpretability and accuracy of the
results. This poses limitations on their credibility and doubts about their adoption for the safety
assessment and licensing of novel reactor designs.

In this regard, Physics Informed Neural Networks (PINNs) are receiving growing attention for their
ability to integrate fundamental physics laws and domain knowledge in the neural networks, thus as-
suring credible generalization capabilities and credible predictions. This paper presents the use of PINNs
as surrogate models for accidental scenarios simulation in Nuclear Power Plants (NPPs). A case study of a
Loss of Heat Sink (LOHS) accidental scenario in a Nuclear Battery (NB), a unique class of transportable,
plug-and-play microreactors, is considered. A PINN is developed and compared with a Deep Neural
Network (DNN). The results show the advantages of PINNs in providing accurate solutions, avoiding
overfitting, underfitting and intrinsically ensuring physics-consistent results.
© 2023 Korean Nuclear Society, Published by Elsevier Korea LLC. This is an open access article under the

CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

conditions are propagated through high-fidelity Best Estimate (BE)
models, typically via a Monte-Carlo approach, to quantify the un-

The licensing of future-generation Nuclear Power Plants (NPPs)
requires extensive development of Modeling and Simulation (M&S)
to investigate the system response to various operational and
environmental conditions for identifying possible accident sce-
narios, predicting their consequences and assessing the effective-
ness of safety systems and barriers [1]. Safety analysis frameworks
based on Best Estimate Plus Uncertainty (BEPU) are becoming
popular, as they allow computing Quantities of Interest (Qol) and
their safety margins (e.g., peak cladding temperature and fuel pellet
maximum temperature) by considering the response to accidental
scenarios modeled without excessive conservativism [2]. Uncer-
tainty of design parameters, model input variables and operating
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certainty in the Qols and provide a knowledgeable characterization
of the NPP risk profile [3]. However, BE models are complex and
include a large number of parametrized quantities (i.e., material
properties, initial conditions, boundary conditions, constitutive
laws, etc.), which make them computationally expensive so that
their direct use for UQ, which could require a large number of
lengthy simulations, is often prohibitive [4]. Therefore, computa-
tionally cheap surrogates must be built to approximate the input-
output response of the original BE models [5].

The existing surrogate modeling approaches can be categorized
into reduced order models (ROMs) and data-driven models [6]. The
former category reduces the degrees of freedom and the accuracy of
the physical models to alleviate the computational burden. How-
ever, ROMs are code-intrusive and their potential to speed up the
simulations is limited when strong nonlinearity exists [7]. The
latter category uses a limited number of data and trajectories
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simulated by the BE model to learn, replicate and generalize the
input-output relation [8]. Examples are Machine Learning (ML)
models such as Support Vector Machine (SVM) [9], Gaussian Pro-
cesses (GP) [10—12], Polynomial Chaos Expansion (PCE) [13,14],
Proper Orthogonal Decomposition (POD) (Kang, Tian, Chen, Li, &
Wang, 2022), Finite Mixture Models (FMMs) [15], Artificial Neural
Networks (ANNs) (Kang, Tian, Chen, Li, & Chu, 2022 [16]; and Radial
Basis Functions (RBF) [17], and Deep Learning (DL) models, such as
Deep Neural Networks (DNNs) [18] and Deep GP [1]. ML and DL
metamodels have been widely applied in the nuclear industry, e.g.,
to replace multi-physics complex codes [19], to accelerate thermal-
hydraulic analyses [20], to quantify safety margins [21], to perform
uncertainty analysis [3], sensitivity analysis [22], neutron transport
predictions [23] and autonomous control of next-generation re-
actors [24]. [16] used an ANN to create a surrogate thermal-
hydraulic model of a NPP assessing the failure probability of a
passive safety system. In Ref. [18], a Deep Neural Network (DNN) is
used to simulate a postulated loss-of-coolant accident (LOCA), and
support uncertainty quantification and probabilistic decision
analysis [25]. developed a surrogate model based on GP to assess
failure probabilities in radioactive waste repositories [26]. used a
DNN as a surrogate model of normal and abnormal conditions of a
microreactor to perform multi-objective optimization of control
drum operation [8]. examined the application of twenty-five ML
surrogates to model a fire hazard in a nuclear power plant [15].
developed a surrogate model based on FMM and adaptive GP to
simulate the decay heat removal of a passive safety system in a NPP
[23]. used DNN to estimate reactor core parameters in a Pressurized
Water Reactor (PWR) to optimize its design [27]. developed a DL-
based surrogate to emulate thermal-hydraulic (TH) codes,
whereas [28] considered Long-Short Term Memory (LSTM) net-
works to substitute massive simulations of TH dynamics and per-
formed the Probabilistic Safety Assessment (PSA) of a NPP [29].
proposed a ML-based surrogate to optimize the configuration of a
spent fuel cask in a seismic environment. In Ref. [30], a surrogate is
used to perform UQ and inverse UQ in order to quantify the un-
certainty in input parameters, and reduce the discrepancies be-
tween code output and experimental data, whereas [1]
investigated the use of Deep-GP to substitute a computationally
expensive BE model and perform advanced UQ tasks.

However, DL and ML models are ‘black-box’ models that do not
contain any structure based on physics and, thus, are difficult to
interpret and it is difficult to quantify their output uncertainty. This
limits the credibility of their use in safety assessment and licensing,
especially in a tightly regulated industry such as the nuclear in-
dustry [31]. Moreover, the training of DL models can require large
amounts of data, which may be unfeasible to obtain experimentally
or by simulation with the computationally expensive BE models
used in nuclear technology. In this regard, desirable characteristics
of a surrogate model are i) accuracy with respect to the original BE
model; ii) consistency with the physical laws governing the simu-
lated phenomena; iii) capability to be trained in low data regime,
when only a few simulations are available for the training; iv) the
ability to deal with a large amount of data, if many simulations of
long transients were available; and v) capability to run tens of
thousands of simulations in a reasonable computational time.

Physics Informed Neural Networks (PINNs) allow integrating
physics laws and domain knowledge, to yield more physically
consistent outputs, and assure sound generalization capabilities
[32]. When no data are available, PINNs use specific governing
Ordinary Differential Equations (ODEs) or Partial Differential
Equations (PDEs), and the related boundary conditions and initial
conditions, to mimic a process. On the other hand, when simulation
or experimental data are available, PINNs can integrate them with
physics knowledge and governing physics laws (usually in the form
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of PDEs) [33]. With regards to the above, PINNs are expected to a)
provide accurate solutions, intrinsically consistent with the phys-
ical laws describing the phenomena of interest; b) limit under-
fitting (i.e., the situation where the model fails to both learn the
training data and generalize), thanks to the integration of the
physical laws in the training; c) avoid overfitting (i.e., the situation
where the model performs well on the training data but is not able
to generalize and accurately predict previously unseen data); d) be
able to handle both situations of small or large amount of data for
the network training. PINNs have been used in various domains
such as Computational Fluid Dynamic (CFD) [20], thermal-
hydraulics [34], nuclear physics [35] and solid mechanics [36].
[20] developed a PINN that, without relying on any simulation data,
uses the initial and boundary conditions to solve Navier—Stokes
equations [37]. encoded hydro-fracture physical knowledge, in
the form of PDEs, in order to develop a surrogate model to optimize
hydro-fracture geometries during construction [35]. proposed the
use of PINNs to solve Point Kinetics Equations (PKEs) with tem-
perature feedback [34]. used PINNs in the thermal design of power
electronics and for inverse problems of heat transfer, given forced
and mixed convection. In Ref. [36], a PINN was used to incorporate
the momentum balance and constitutive relations in solid me-
chanics, for linear and nonlinear elasticity applications. Despite the
use of PINNs to solve specific PDEs or ODEs, their application to
surrogate multi-physics BE models representing the overall
response of complex systems, such as nuclear reactors, has not
been investigated yet. Moreover, to the best of the authors’
knowledge, most of PINN applications in the nuclear domain solve
PDEs without relying on any simulation data and the knowledge
therein, and none of them considers the use of partial domain
knowledge (only a part of the governing PDEs) in a low data regime.

This work describes the use of PINNs for surrogate modeling of
accidental scenarios in NPPs. PINN, including partial domain
knowledge, is compared with its DNN counterpart. Moreover, the
influence of the numerosity of the training data points is investi-
gated to highlight the advantages of PINNs when a small amount of
data is available. Also, the capabilities of the PINN to avoid over-
fitting and underfitting are explored. The results are validated by
considering the simulation of the Loss of Heat Sink (LOHS) acci-
dental scenario in a Nuclear Battery (NB), which is a unique class of
transportable, plug-and-play microreactors [38].

The contributions of the work can be summarized as follows:

e It proposes and investigates the use of PINNs as surrogate
models of multi-physics BE models of complex systems.

o It proposes the use of PINNs with partial domain knowledge in a
low data regime.

o It investigates the influence of the amount of training data on
PINNs and compares the results with DNNs.

o It develops an accurate, physics-consistent surrogate model of
the LOHS accidental scenario in a NB.

The remainder of the paper is organized as follows: Section 2
presents the case study of the nuclear battery; Section 3 de-
scribes the developed PINN; Section 4 presents the results and the
comparison with Deep NNs; finally, Section 5 draws some conclu-
sions and points to potential future lines of work.

2. Case study: LOHS in a nuclear battery

Section 2.1 describes the considered nuclear battery design,
Section 2.2 presents the LOHS accident scenario and Section 2.3
illustrates the BE model used to simulate the behavior of the NB
during the LOHS.
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2.1. Nuclear battery design

NBs are standardized plug-and-play micro-reactors that
generate 1-20 MW of heat and/or electricity, which can provide
low-carbon energy for various applications, including chemical
processes, manufacturing, desalinition of water, hydrogen, food
production, ship propulsion, to mention a few. They are envisioned
as reliable, flexible, resilient, semi-autonomous, decentralized,
affordable and transportable installations [38]. The NB design
considered here is a 5 MW (thermal) high-temperature heat pipe
reactor designed at MIT. Fig. 1 shows the core cross-section and the
hexagonal pitch of the Fuel Assemblies (FAs). The core is charac-
terized by solid monolithic blocks of graphite with three types of
channels that encapsulate the yttrium hydride (YtH) neutron
moderator, the fuel and the heat pipes. The core is surrounded by a
neutron reflector, which accommodates Control Drums (CDs) to
provide reactivity control during normal operation. Core and
reflector are encased in a Canister Containment Subsystem (CCS),
which is itself surrounded by a Reactor Vessel Auxiliary Cooling
System (RVACS) for decay-heat removal, whereas Shutdown Rods
(SRs) provide rapid shutdown. During normal operation, heat pipes
remove the heat from the core to the heat exchanger and, then, to
the Power Conversion Unit (PCU). Finally, the NB is designed to
operate autonomously: The SRs provide rapid reactivity control,
whereas a remote operator monitors operations and actuates a
manual shutdown, should the protection system fail to do so. More
details of the design are given in Ref. [39].

2.2. Loss of Heat Sink accident scenario

The scenario considered in this work is the unprotected Loss of
Heat Sink (LOHS). This event leads to a sudden loss of heat transfer
to the secondary side PCU, and to the inability to control the
reactivity with the CDs and SRs. Thus, the reactivity control relies
on the Reactivity Feedback (RF) only, whereas the heat is removed
radially through the core by conduction and eventually by the
RVACS.

2.3. NB simulation model

The BE model has been developed using the RELAP-5 3D code.
Heat Structures (HSs) are used to model the system elements and
the heat transfer among structures is modeled using the gap
conductance approach. Fig. 2 represents the general high-level
nodalization of the NB. Heat is transferred among the various
core regions to the RVACS, which is represented using a pipe
element with Time-Dependent Volumes (TDV) to model the air
source and sink.

1. Fuel Assemblies
2. Unfuelled region
3. Reflector

Heat Pipe

Graphite

. Core OD

Fig. 1. Core cross-section and hexagonal pitch of the FAs.
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Fig. 2. High-level nodalization of the NB model.

Table 1 gives the list of the model input parameters considered
in the analysis. Notice that the values and distributions have been
taken according to Ref. [40]. In particular, the nominal values have
been: a) obtained from literature data, for example for the thermal
conductivity and wall roughness, b) computed based on literature
models, such as for the gap conductance, or c¢) assessed via dedi-
cated reactor core analyses, for example for the reactivity feedback
coefficient. The ranges of variability have been conservatively
considered large enough to account for design changes, for example
of the RVACS flow area and initial power, and for the lack of
knowledge on the actual values, for example of the thermal con-
ductivity and the gap conductance. Notice also that initial power,
RVACS flow rate and input air temperature can be considered initial
conditions of the accident scenarios. Further details about the
modeling strategies and the model parameters can be found in
Ref. [40].

The unprotected LOHS is simulated through the following
phases: 1) an initial normal operation condition, 2) the sudden loss
of heat transfer from the heat pipes to the heat sink and 3) the
simulation of the transient for 5,000 s. The key model output var-
iables considered here are: fuel average temperature in the hot FA,
net reactivity, peak cladding temperature and RVACS heat removal
rate (or power). Fig. 3 shows an example of the behavior of the fuel
temperature in the hot FA and of the reactivity during the first
2,500 s of a transient. The temperature increases following the
occurrence of the LOHS and reaches its maximum value after 150 s.
The increase of the temperature leads the RF to shut down the NB
by decreasing reactivity. Notice that the objective of the work is to
investigate the use of PINNs for the surrogate modeling of a generic
accident scenario, and, for the sake of simplicity, the unprotected
LOHS accident is here modeled without assuming additional initi-
ating events, control actions and degrees of severity. A compre-
hensive analysis of other accidental scenarios can be found in
Ref. [40], within a safety analysis framework.

Multiple simulations by the PINN surrogate model can be then
used to perform uncertainty quantification in support to BE safety
evaluations. As an example, Fig. 4 shows the probability density
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Table 1
Simulation model input parameters and ranges of variation.
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Parameter

Nominal Value [Range] [Distribution]

1. NB Power
2. Reactivity feedback coefficients

3. Graphite thermal conductivity

Gap conductance between:

4. Fuel and cladding

5. Cladding and graphite

6. Adjacent fuel assemblies

7. Gap conductance between canister and reflector
8. RVACS flow area

9. RVACS input air temperature

10. RVACS wall roughness

5 MW [ ¥15%] [Uniform]

Heat pipes: 5.6 pcm/(kg/m3)

Fuel coefficient: 1.5 pcm/K

Moderator coefficient: +0.1 pcm/K

Range: [ ¥30%] [Uniform]

Temperature dependent function [ ¥ 10%] [Uniform]
10* W/m2-K [5 x 103-10°] [LogUniform]

70 W/m?2-K [40—120] [Uniform]
0.3 m [0.2—0.4] [Uniform]

300 K [270-320] [Uniform]
104 [10-3-10°] [LogUniform]

. 1000 0.0
4
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g \ s
OEJ 9251 ‘g ‘
= 900 & -0.2
] \
> \
= 8751 \ ‘

850 -0.3( "

0 1000 2000 0 1000 2000
Time [s] Time [s]

Fig. 3. Example of the behavior of the fuel temperature in the hot FA and the reactivity
during a transient.
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Fig. 4. Peak Fuel Temperature distribution.

function (pdf) of the Peak Fuel Temperature (PFT), which is the
most safety-relevant parameter among the four model outputs. The
results are obtained with the PINN described in Section 4, trained
using 180 simulations.

3. Physics informed neural network-based surrogate model

The objective of the proposed surrogate model is to mimic the
BE simulation model. Let X=[x{,X,,...,xs]J€R? be an input
parameter vector of the BE model, where eachx; corresponds to one
of the parameters in Table 1. The BE model computes, at every time
step t, the values of the output variables yr = [y;1,Y¢2,...,.YtN] € RN,
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where y; ; is the observation of the i-th output variable, y;, at time t.
The simulation time is here considered relative to the beginning of
the LOHS accident scenario. Eventually, the BE model provides the
overall transient simulation Y = [y7,¥>,...,y7] €R™N.

Given the large dimensionality of the output Y, particularly
when long transients are simulated, traditional surrogate models,
such as SVMs, GPs, PCE and simple NNs, are not suitable for learning
the input-output relations between X and Y [10]. Dimensionality
reduction techniques can be used to reduce the output dimension.
Another solution is reconstructing only a limited number of critical
values of the output parameters, e.g., the maximum temperatures
reached by the fuel during the simulation, y,- ;. Thus, the surrogate

models learn the mapping between X and Y i- However, the above-
mentioned solutions are not particularly accurate and do not
replicate the overall transient, which is particularly important for
inverse UQ [10] and prognostics and health management [41]. In
light of this, advanced DL models can handle the large dimen-
sionality of the BE output and be used to mimic the overall BE
simulations [28]. In this work, we consider the use of PINNs to
surrogate the simulation of the overall BE model transient Y. In
particular, given the input vector X, the PINN is trained to map, for
each time step t, the pair (X, t) with the corresponding ;. Table 2
reports the considered input and output parameters.

3.1. Physics informed neural network

Fig. 5 displays the PINN architecture considered in this study.
The main difference from a traditional DNN is the loss function.
DNNs train on losses which are functions of the difference between
the actual values of the output vector, y;, and the values predicted
by the network, ;. Instead, PINNs make use of loss functions that
combine traditional losses with a physics-based loss, which forces
the network to satisfy domain knowledge and constraints, usually
in the form of PDEs.

In this work we use the point kinetic equation and, in particular,
the following reactivity feedback equation [42] as a physics-
constraint for the PINN:

R, 0T

a Yot M

The equation gives a simplified representation of the time-
dependent behavior of reactivity feedback in response to fuel
temperature changes during a transient, where the reactivity co-
efficient a describes the variation of the reactivity that corresponds
to the variation of the average fuel temperature in the core of 1 K.
The equation considers only the response of the reactivity due to
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Table 2
Simulation model input and output parameters.
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Input parameter

Output parameters

X1 NB power (Pyg) Y1 Average fuel temperature (Ty)
Xo Fuel temperature reactivity feedback coefficient («) V2 Net reactivity (R)
X3 Graphite thermal conductivity (Kg) V3 Peak cladding temperature (T)
Xy Gap conductance between fuel and cladding (GCy,) Va4 RVACS power (Pg)
X5 Gap conductance between adjacent fuel assemblies (GCp,)
X6 Gap conductance between cladding and graphite (GCeq)
X7 Gap conductance between canister and reflector (GCyg)
Xg RVACS flow area (Ag)
Xg RVACS input air temperature (Tg)
X10 RVACS wall roughness (kg)
PINN Loss = lossp + MSE (4)

NN

Fig. 5. Architecture of the considered PINN.

temperature variations and ignores other effects and the reactivity
manipulation via CDs and CRs. Notice that, the present work aims at
investigating the performance of PINNs with partial knowledge,
which is here considered as the implementation into the network
loss function of only a small subset of the physical laws governing
the process under analysis. During the considered LOHS accident
scenario, the NB is shut down only through the RF, which reduces
reactivity and, consequently, the reactor power, as the fuel tem-
perature increases. Thus, among the thousands of physical equa-
tions and correlations comprised in the RELAP-5 3D code, the
above-mentioned reactivity feedback equation, which drives the
dynamic of the NB during the LOHS, is here selected to investigate
the potential of using PINNs with partial knowledge.

The corresponding physics-based loss for a batch of data of size
M is:

(7%
ot

—Xyje®

)

Whereas, the traditional loss is computed using the Mean Squared
Error (MSE):

sz

Yo"
ot
i=1

(2)

lossp =

M

M=

o\ 2
MSE(: y_t*) i <Yt,i — Vi )

N

Then, the overall loss function is the combination of the physics-
based loss and the traditional loss:

[
—_

(3)
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Notice that, given a PINN, its DNN counterpart is the network
with the same architecture, but which uses only the traditional loss
and not also the physics-based loss. The details of the architecture
of the PINN and its DNN counterpart, and the hyperparameters
selected following a trial-and-error procedure, are given in Table 3.
The data have been scaled using a traditional min-max scaler and
the networks have been trained on 70%—80% of the available sim-
ulations, validated on 10%—20% to calibrate the hyperparameters,
and tested on the remaining 10%—20% simulations. The training has
been performed for 2000 epochs and a callback method has been
used to select the network performing the best on the validation
dataset. For the optimization, the first-order gradient-based opti-
mizer Adam, based on adaptive estimates of lower-order moments,
has been selected for its straightforward implementation and
computational efficiency [43]. Finally, Equation (5) gives the
considered Exponential Linear Unit (ELU) activation function,
whose characteristic of decreasing the bias by driving the mean
activation towards zero has been proven effective, compared to
other non-linear activation functions [44].

{

where « is here set equal to 1.

elu(x) = a(exp(x) — 1) ifx<0
elux) =x ifx>0

(5)

4. Results

In this work, we implement and compare a PINN with its DNN
counterpart to create a surrogate of the BE model simulations of an
unprotected LOHS accidental scenario. We consider the develop-
ment of surrogate models using different amounts of training data.
In particular, we initially sampled 250 sets of input parameters
using the Latin Hypercube Strategy (LHS) strategy. These sets are
used by the RELAP5-3D BE model to simulate the corresponding
transients. Among the 250 sets of input-output samples, 180 are
used for the training of the PINN and the DNN, 30 for the validation
of the results and 40 for the testing. Note that, given the complexity
of the dataset and the nonlinear relationships driving the process,
the accuracy of the networks is affected by the randomness in the
initialization of the network weights and parameters. Thus, the
PINN and the DNN are trained, validated and tested considering 10
different random seeds. The networks are, then, analyzed consid-
ering the MSE and, in particular, comparing the minimum, the
maximum, the mean and the median MSE values among the 10
training seeds. Then, we reduce the number of training trajectories
to 50 and, eventually, to 10 samples, considering the same 30 sets
for validation and 40 for testing.

Table 4 reports the results for the PINN and DNN trained with
180 samples. Note that the relative errors of the four model outputs
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Table 3
PINN and DNN architecture details and hyperparameters.
Number of layers 6
Number of neurons per layer 128, 64, 32,32,14, 4
Optimizer Adam
Activation function Elu
Batch size 128
Learning rate 0.001
Maximum training epochs 2000

are comparable. Thus, for the sake of conciseness, only the results
and errors related to the fuel temperature, which is the most safety-
relevant parameter in our application, are displayed here. Notice
that the best PINN (the one with the minimum MSE) outperforms
the best DNN, both for the validation set and for the test set. In
particular, the PINN normalized MSE on the validation set is
8.3 x 1078 and corresponds to a rescaled MSE of 0.4 K2, which is
30% lower than the DNN one. Moreover, the worst PINN is char-
acterized by an MSE that is two orders of magnitude lower than
that of the worst DNN, in which the large error is due to network
overfitting. DNN underfitting is also shown by the mean MSE,
which is much larger than that of the PINN. Similar considerations
can be derived for the test set. Fig. 6 shows the MSE on the train and
validation sets at each of the training epochs for the DNN and PINN.
The comparison highlights the capability of the PINN to avoid
overfitting and provide more regularized training than DNN.
Finally, it is worth noticing that the computational time required to
train the PINN increases with respect to the time required by the
DNN, from 363 s to 2345 s on an Intel core (TM) i7-4790 CPU@
3.6 GHz, 16 GB RAM. On the other hand, given a trained model, the
computational time required to simulate the entire transient,
which is the term of reference for the performance of a surrogate
model, is a few seconds for both the PINN and the DNN.

The results are, then, compared with a DNN which integrates
the 12 regularization in the loss function, a widely used technique to
avoid overfitting [45]. The 12 regularization term has been set equal

Table 4
Results for the PINN and DNN trained with 180 samples.
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DINN with 2
0 —— Train MSE
—— Val MSE
g -2
:
—6 1= . . . .
0 500 1000 1500 2000

Bpochs

Fig. 7. Comparison of the MSE values for training and validation at each of the training
epochs for the DNN with 12 regularizer.

to 10~ following a trial-and-error procedure considering values in
the range [10~1,107%]. Fig. 7 shows the MSE values on the training
and validation datasets at each of the training epochs, and high-
lights the capability of the 12 regularizer to avoid overfitting.
However, the MSE is larger than that of the DNN which does not use
regularization. In this light, it is worth underlining the capabilities
of the PINN to avoid overfitting and reducing the MSE, at the same
time.

Table 5 reports the results for the PINN and DNN trained with 50
samples, drawn with the LHS strategy. The best PINN outperforms
the best DNN both for the validation set and for the test set. Also,
the worst PINN has a lower MSE than the worst DNN, and the mean
and median values among all the training seeds are better for the
PINN than for the DNN. This reflects the good regularization
properties of the PINN and its ability to avoid underfitting.

Finally, Table 6 reports the results for the PINN and DNN trained
with 10 samples, drawn with the LHS strategy. Note that the best
PINN (the one with the minimum MSE) again outperforms the best

Validation set Min MSE (rescaled)
Max MSE (rescaled)
Mean MSE (rescaled)
Median MSE (rescaled)
Min MSE (rescaled)
Max MSE (rescaled)
Mean MSE (rescaled)
Median MSE (rescaled)

Test set

DNN PINN
1.18 x 107> (0.58) 8.27 x 1076 (0.41)
0.00421 (208.55) 3.63 x 107> (1.80)
0.000449 (22.22) 1.72 x 1077 (0.85)
1.70e-05 (0.84) 1.36 x 107° (0.67)
2.20e-05 (1.09) 1.69 x 107° (0.84)
0.00396 (196.11) 9.21 x 107° (4.56)
0.000436 (21.58) 3.63 x 107° (1.80)
3.10 x 107° (1.54) 2.64 x 107° (1.31)

DNN
Train MSE
0 val MSE
& -2
=3
g
—6' v v v v ’
0 500 1000 1500 2000
Epochs

PINN
0
—~
%)
-2
3
g .
..6 - J
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Fig. 6. Comparison of the MSE values for training and validation at each of the training epochs for the DNN and PINN.
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Table 5
Results for the PINN and DNN trained with 50 samples.
DNN PINN
Val set Min MSE (rescaled) 0.00265 (12.03) 0.000243 (8.21)
Max MSE (rescaled) 0.0163 (73.77) 0.00149 (70.15)
Mean MSE (rescaled) 0.000601 (24.82) 0.00562 (19.36)
Median MSE (rescaled) 0.000597 (19.84) 0.00401 (13.37)
Test set Min MSE (rescaled) 0.000344 (17.05) 0.000268 (13.25)
Max MSE (rescaled) 0.00175 (86.40) 0.00141 (69.75)
Mean MSE (rescaled) 0.000759 (37.59) 0.000659 (32.64)
Median MSE (rescaled) 0.000617 (30.51) 0.000517 (25.60)
Table 6
Results for the PINN and DNN trained with 10 samples.
DNN PINN
Val set Min MSE (rescaled) 0.00265 (131.36) 0.00208 (103.10)
Max MSE (rescaled) 0.0163 (809.17) 0.00820 (405.98)
Mean MSE (rescaled) 0.00662 (328.07) 0.00393 (194.70)
Median MSE (rescaled) 0.00597 (295.58) 0.00354 (175.25)
Test set Min MSE (rescaled) 0.00467 (231.11) 0.00263 (130.04)

Max MSE (rescaled)
Mean MSE (rescaled)
Median MSE (rescaled)

0.141 (6957.77)
0.0204 (1010.36)
0.00638 (315.81)

0.0118 (584.65)
0.00535 (264.64)
0.00434 (214.92)

DNN both for the validation set and for the test set. In particular, for
the test set, the rescaled errors of the best PINN and DNN corre-
spond to an absolute error of 10.4 K for the PINN and 15.1 for the
DNN. Despite both the PINN and the DNN are characterized by
larger errors than networks trained with more data, the MSE of the
PINN is 44% lower than that of the DNN. This underlines the sig-
nificant advantages of using PINNs in low data regimes. Moreover,
the worst PINN is characterized by a much lower MSE than the
worst DNN, which underfits the training data. This highlights,
again, the capability of the PINN to avoid underfitting and provide
more regularized training than DNN.

5. Conclusion

Developing more reliable, physics-consistent and accurate sur-
rogate models is crucial for the safe licensing of novel designs of
nuclear reactors. This work has developed a surrogate model of
accidental scenarios in nuclear reactors using PINNs, which,
embedding fundamental physics laws and domain knowledge in
the networks, assures good generalization, and reliable results. In
particular, considering the simulation of the LOHS accident sce-
nario in a nuclear battery, a PINN is developed including domain
knowledge, in the form of a differential equation, in the neural
network. The PINN is compared with a traditional DNN and the
results show that it i) outperforms traditional DNN, ii) reduces the
network error, iii) avoids overfitting and underfitting, and iv) pro-
vides more regularized and consistent simulations. This highlights
the benefit of including part of the governing fundamental laws in
the neural network training. The influence of the numerosity of
training data points has also been investigated. The results have
highlighted the particularly significant advantages of adding
physics domain knowledge in the PINNs when a small amount of
data is available.

For future work, one direction lies in the development of
different physics-informed deep learning network architectures,
such as recurrent and LSTM networks. Also, since only one physic-
law equation is considered in the developed PINN, the integration
of other laws and additional physical knowledge will be
investigated.
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