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Existence and stability of strong solutions to
the Abels–Garcke–Grün model in three dimensions

Andrea Giorgini

Abstract. This work is devoted to the analysis of the strong solutions to the Abels–Garcke–Grün
(AGG) model in three dimensions. First, we prove the existence of local-in-time strong solutions
originating from an initial datum .u0; �0/ 2 H1� �H2.�/ such that �0 2 H1.�/ and j�0j � 1.
For the subclass of initial data that are strictly separated from the pure phases, the corresponding
strong solutions are locally unique. Finally, we show a stability estimate between the solutions to
the AGG model and the model H. These results extend the analysis achieved by the author in 2021
from two-dimensional bounded domains to three-dimensional ones.

1. Introduction

Given a domain � � R3, we study the Abels–Garcke–Grün (AGG) model in � � .0; T /8̂̂̂̂
<̂
ˆ̂̂:
@t .�.�/u/C div .u˝ .�.�/uC zJ// � div .�.�/Du/CrP D �div .r� ˝r�/;

div u D 0;
@t� C u � r� D ��;

� D ��� C‰0.�/;

(1.1)

completed with the following boundary and initial conditions:´
u D 0; @n� D @n� D 0 on @� � .0; T /;

u.�; 0/ D u0; �.�; 0/ D �0 in �:
(1.2)

Here, n is the unit outward normal vector on @�, and @n denotes the outer normal deriva-
tive on @�. In the system, u D u.x; t/ represents the volume averaged velocity,
P D P.x; t/ is the pressure of the mixture, and � D �.x; t/ is the difference of the fluids’
concentrations. The operator D is the symmetric gradient 1

2
.r C rT /. The flux term zJ,

the density � and the viscosity � of the mixture are defined as

zJD�
�1 � �2

2
r�; �.�/D �1

1C �

2
C�2

1 � �

2
; �.�/D �1

1C �

2
C�2

1 � �

2
; (1.3)
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where �1, �2 and �1, �2 are the positive homogeneous density and viscosity parameters of
the two fluids, respectively. The homogeneous free energy density‰ is the Flory–Huggins
potential

‰.s/ D F.s/ �
�0

2
s2 D

�

2

�
.1C s/ log.1C s/C.1 � s/ log.1 � s/

�
�
�0

2
s2 (1.4)

for all s 2 Œ�1;1�, where the constant parameters � and �0 fulfill the conditions 0 < � < �0.
In what follows, we will often use the non-conservative form of (1.1)1, that is,

�.�/@tuC �.�/.u � r/u � �0.�/.r� � r/u � div .�.�/Du/CrP
D �div .r� ˝r�/: (1.5)

We also recall the total energy associated to system (1.1) given by

E.u; �/ D Ekin.u; �/CEfree.�/ D

Z
�

1

2
�.�/juj2 dx C

Z
�

1

2
jr�j2 C‰.�/ dx;

and the corresponding energy equation that reads as

d
dt
E.u; �/C

Z
�

�.�/jDuj2 dx C
Z
�

jr�j2 dx D 0: (1.6)

The AGG system is a primary model in the theory of diffuse interface (phase field)
modeling, which describes the motion of two viscous incompressible fluids with different
densities. It was proposed in the seminal work [9] (see also [8]). The well-known model H
is recovered from (1.1) in the case of matched densities �1 D �2 (see [27] for the deriva-
tion and [2, 25] for the analysis of the model H). The existence of global weak solutions
(with finite energy) to the AGG model (1.1)–(1.2) has been established in the case of
non-degenerate mobility in [5] and in the case of degenerate mobility in [6]. Global weak
solutions were also proven for viscous non-Newtonian fluids in [4] and for the case with
dynamic boundary conditions describing moving contact lines in [21]. Further generaliza-
tions to non-local versions of the AGG model have been studied in [10] for fractional free
energies and in [19] and [20] for free energy with regular convolution kernels. The con-
nection between local and non-local AGG models has recently been investigated in [11]
by exploiting the arguments in [17]. Concerning the existence and uniqueness of regular
solutions, far fewer results are known. In [12], the local well-posedness of strong solutions
is proven in three dimensions for polynomial-like potentials ‰ provided that u0 2 H1

�

and �0 2 .Lp.�/;W 4
p;N .�//1� 1p ;p

for 4 < p < 6 (in this range of p, �0 2 H 3.�/)
such that k�0kL1 � 1. It is worth mentioning that the solution in [12] may not satisfy
j�.x; t/j � 1 for all positive times. In [24], the local well-posedness of strong solutions in
two-dimensional bounded domains has been achieved for the logarithmic potential case
(see (1.4)) with initial conditions .u0; �0/ 2 H1

� � H
2.�/ such that �0 2 H 1.�/ and

j�0j � 1. In this case, the solution satisfies the physical bound j�.x; t/j � 1 at all times. In
addition, in the case of periodic boundary conditions, the strong solutions are shown to be
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globally defined in time in [24]. We also refer the interested reader to [14,18,23,28,30,33]
and [1,3,7,15,16,26,29,35] for the modeling and the analysis of different diffuse interface
models with unmatched densities.

The purpose of the present contribution is to study the well-posedness of strong solu-
tions to the AGG model (1.1)–(1.2) in bounded domains in R3. In particular, we aim at
generalizing the analysis obtained in [24] from the two-dimensional case to the three-
dimensional one. The first result regarding the existence and uniqueness of strong solu-
tions reads as follows:

Theorem 1.1. Let � be a bounded domain of class C 3 in R3. Assume that u0 2 H1
�

and �0 2 H 2.�/ such that k�0kL1 � 1, j�0j < 1, �0 D ���0 C‰0.�0/ 2 H 1.�/, and
@n�0 D 0 on @�. Then, there exist T0 > 0, depending on the norms of the initial data,
and (at least) a strong solution .u; P; �/ to system (1.1)–(1.2) on .0; T0/ in the following
sense:

(i) The solution .u; P; �/ satisfies the properties

u 2 C.Œ0; T0�IH1
� / \ L

2.0; T0IH2
� / \W

1;2.0; T0IL2� /;
P 2 L2.0; T0IH

1.�//;

� 2 L1.0; T0IW
2;6.�//; @t� 2 L

1.0; T0I .H
1.�//0/ \ L2.0; T0IH

1.�//;

� 2 L1.� � .0; T0// such that j�.x; t/j < 1 a.e. in � � .0; T0/;

� 2 L1.0; T0IH
1.�// \ L2.0; T0IH

3.�//;

F 0.�/ 2 L1.0; T0IL
6.�//: (1.7)

(ii) The solution .u; P; �/ fulfills the system (1.1) almost everywhere in � � .0; T0/
and the boundary conditions @n� D @n� D 0 almost everywhere in @� � .0; T0/.

Furthermore, if additionally � is a bounded C 4 domain in R3 and k�0kL1 < 1, then the
solution is locally unique, that is, there exists a time T1 2 .0; T0�, depending only on the
norms of the initial data, such that the solution is unique on the time interval Œ0; T1/.

Before proceeding with our second result, it is worth mentioning that the proof of
Theorem 1.1, although still based on a semi-Galerkin approximation, differs from the one
of [24, Theorem 3.1] in several aspects. First, the proof of [24, Theorem 3.1] exploited
the continuity of the chemical potential and the regularity of its time derivative, which are
properties available for the strong solutions of the convective Cahn–Hilliard equation in
two dimensions. Since these are still an open question in three dimensions, we overcome
this issue by employing an approximation procedure involving the convective viscous
Cahn–Hilliard equation (see Appendix A), together with an appropriate regularization of
the initial datum. Such approximations are crucial to rigorously justify the higher-order
Sobolev estimates obtained for the approximate solutions. Secondly, due to the lack of
global-in-time separation property in three dimensions, we show local uniqueness of solu-
tions departing from a subclass of initial data such that k�0kL1 < 1. For such a class of
solutions, the separation property holds on a (possibly short) time interval due to the reg-
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ularity of the solution in Hölder spaces. We point out that the separation property (or, at
least, Lp-estimates of ‰00.�/ and ‰000.�/) seems to be necessary to control the additional
term �0.�/.r� � r/u in (1.5). Notice that the argument proposed in [25] based on esti-
mates in dual spaces cannot be used due to the non-constant density. On the other hand,
the estimate in L2� �H 1.�/ of the difference of the solutions in [24, Theorem 3.1] fails
in three dimensions due to the above-mentioned term �0.�/.r� � r/u in (1.5). To over-
come these issues, the proof of the uniqueness is carried out by means of a Sobolev type
estimate in L2� �H 2.�/ for the difference of the solutions.

Next, we prove a stability result between the strong solutions to the AGG model and
to the model H departing from the same initial datum in terms of the density values.

Theorem 1.2. Let � be a bounded domain of class C 3 in R3. Given an initial
datum .u0; �0/ as in Theorem 1.1, we consider the strong solution .u; P; �/ to the AGG
model with density (1.3) and the strong solution .uH ; PH ; �H / to the model H with con-
stant density � > 0, both defined on Œ0; T0�. Then, there exists a constant C , that depends
on the norm of the initial data, the time T0 and the parameters of the systems, such that

sup
t2Œ0;T0�

ku.t/ � uH .t/k.H1� /0 C sup
t2Œ0;T0�

k�.t/ � �H .t/k.H1/0

� C
�ˇ̌̌�1 � �2

2

ˇ̌̌
C

ˇ̌̌�1 C �2
2

� �
ˇ̌̌�
: (1.8)

Remark 1.3. Assuming that �1 D � and �2 D � C ", for (small) " > 0, the stability
estimate (1.8) reads as

sup
t2Œ0;T0�

ku.t/ � uH .t/k.H1� /0 C sup
t2Œ0;T0�

k�.t/ � �H .t/k.H1/0 � C":

Theorem 1.2 justifies the model H as the constant density approximation of the AGG
model when the two viscous fluids have negligible difference between their densities.
To make a comparison with [24, Theorem 3.5], we notice that the estimate holds in dual
Sobolev spaces. Indeed, the main idea is to write the momentum equation for the solutions
difference .u � uH ; � � �H / as the Navier–Stokes equations with constant density and
exploit the uniqueness argument introduced in [25].

Plan of the paper. We report in Section 2 the preliminaries for the analysis. Sections 3
and 4 are devoted to the proof of Theorem 1.1, in particular, the local existence of strong
solutions and their uniqueness, respectively. In Section 5 we prove the stability result
contained in Theorem 1.2. Appendix A is concerned with the well-posedness results for
the convective viscous Cahn–Hilliard equation.

2. Notation and functional spaces

Let X be a real Banach space. Its norm is denoted by k � kX and the symbol h�; �iX 0;X
stands for the duality between X and its dual space X 0. We assume that � is a bounded
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domain in R3 with boundary @� of class C 3. For p 2 Œ1;1�, let Lp.�/ be the Lebesgue
space with norm k � kLp . The inner product in L2.�/ is denoted by .�; �/. For s 2 N,
p 2 Œ1;1�, W s;p.�/ is the Sobolev space with norm k � kW s;p . If p D 2, we use the
notation W s;p.�/ D H s.�/. For every f 2 .H 1.�//0, we denote by xf the general-
ized mean value over � defined by xf D j�j�1hf; 1i.H1.�//0;H1.�/. If f 2 L1.�/, then
xf D j�j�1

R
�
f dx. By the generalized Poincaré inequality, there exists a positive con-

stant C such that

kf kH1 � C
�
krf k2

L2
C j xf j2

� 1
2 ; 8f 2 H 1.�/: (2.1)

We recall the Ladyzhenskaya, Agmon and Gagliardo–Nirenberg inequalities in three dim-
ensions:

kf kL3 � Ckf k
1
2

L2
kf k

1
2

H1 ; 8f 2 H 1.�/; (2.2)

kf kL1 � Ckf k
1
2

H1kf k
1
2

H2 ; 8f 2 H 2.�/; (2.3)

krf kL4 � Ckf k
1
2

L1kf k
1
2

H2 ; 8f 2 H 2.�/; (2.4)

kf kW 1;4 � Ckf k
5
8

H1kf k
3
8

W 2;6 ; 8f 2 W
2;6.�/: (2.5)

Next, we introduce the Hilbert spaces of solenoidal vector-valued functions:

L2� D
®
u 2 L2.�/ W div u D 0 in �; u � n D 0 on @�

¯
;

H1
� D

®
u 2 H1.�/ W div u D 0 in �; u D 0 on @�

¯
:

We also use .�; �/ and k � kL2 for the inner product and the norm in L2� , respectively.
The space H1

� is endowed with the inner product and norm .u; v/H1� D .ru; rv/ and
kukH1� D krukL2 , respectively. We recall the Korn inequality

krukL2 �
p
2kDukL2 ; 8u 2 H1

� ; (2.6)

which implies that kDukL2 is a norm on H1
� equivalent to kukH1� . We introduce the space

H2
� D H2.�/\H1

� with inner product .u; v/H2� D .Au;Av/ and norm kukH2� D kAukL2 ,
where A D P .��/ is the Stokes operator and P is the Leray projection from L2.�/
onto L2� . We recall that there exists a positive constant C > 0 such that

kukH2 � CkukH2� ; 8u 2 H2
� : (2.7)

We denote by A�1 W .H1
� /
0 ! H1

� the inverse map of the Stokes operator; that is, given
f 2 .H1

� /
0, there exists a unique u D A�1f 2 H1

� such that .rA�1f ;rv/ D hf ; vi.H1� /0;H1� ,
for all v 2 H1

� . As a consequence, it follows that

kfk] WD krA�1fk D hf ;A�1fi
1
2

.H1� /0;H1�

is an equivalent norm on .H1
� /
0.
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Throughout this paper, we will use the following notation:

�� D min¹�1; �2º; �� D max¹�1; �2º; �� D min¹�1; �2º; �� D max¹�1; �2º:

The symbol C will denote a generic positive constant whose value may change from line
to line. The specific value depends on the domain � and the parameters of the system,
such as ��, ��, ��, ��, � and �0. Further dependencies will be specified when necessary.

3. Proof of Theorem 1.1. Part one: Existence of solutions

3.1. Approximation of the initial datum

First of all, we approximate the initial concentration �0 following the method introduced
in [25]. For k 2 N, we consider the elliptic problem´

���0;k C F
0.�0;k/ D z�0;k in �;

@n�0;k D 0 on @�;
(3.1)

where z�0;k D hk ı z�0, hk W R! R is the globally Lipschitz function

hk.z/ D

8̂̂<̂
:̂
�k; z < �k;

z; z 2 Œ�k; k�;

k; z > k;

(3.2)

and z�0 D ���0 C F 0.�0/. Thanks to the superposition principle [31], we have that
z�0;k 2 H

1.�/ \ L1.�/ and

kz�0;kkH1 � kz�0kH1 : (3.3)

As shown in [25, Lemma A.1], there exists a unique solution �0;k to (3.1) such that
�0;k 2 H

2.�/, F 0.�0;k/ 2 L2.�/, which satisfies (3.1) almost everywhere in � and
@n�0;k D 0 almost everywhere on @�. In addition, there exist zm 2 .0; 1/, which is inde-
pendent of k, and xk sufficiently large such that

k�0;kkH1 � 1C k�0kH1 ; j�0;kj � zm < 1; k�0;kkH2 � C.1C kz�0kL2/ (3.4)

for any k > xk. Furthermore, by [25, Theorem A.2] (see also [2, Lemma 2]), we have

kF 0.�0;k/kL1 � kz�0;kkL1 � k:

Then, there exists ı D ı.k/ > 0 such that

k�0;kkL1 � 1 � ı: (3.5)

As a consequence, since F 0.�0;k/ 2 H 1.�/, it is easily seen that �0;k 2 H 3.�/ by ellip-
tic regularity. Finally, observing that z�0;k ! z�0 in L2.�/, it follows that �0;k ! �0
in H 1.�/.
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3.2. Definition of the approximated problem

Let us consider the family of eigenfunctions ¹wj º1jD1 and eigenvalues ¹�j º1jD1 of the
Stokes operator A. For any integerm � 1, let Vm denote the finite-dimensional subspaces
of L2� defined as Vm D span¹w1; : : : ;wmº. The finite-dimensional spaces Vm are endowed
with the norm of L2� . The orthogonal projection on Vm with respect to the inner product
in L2� is denoted by Pm. Recalling that� is of class C 3, the regularity theory of the Stokes
operator yields that wj 2 H3.�/ \ H1

� for all j 2 N. As a consequence, the following
inverse Sobolev embedding inequalities hold for all v 2 Vm:

kvkH1 � CmkvkL2 ; kvkH2 � CmkvkL2 ; kvkH3 � CmkvkL2 : (3.6)

Let us set T > 0. For any k > 0; ˛ 2 .0; 1/ and m 2 N, we claim that there exists an
approximate solution .um; �m/ to system (1.1)–(1.2) in the following sense:

um 2 C 1.Œ0; T �IVm/;
�m 2 L

1.0; T IH 3.�//; @t�m 2 L
1.0; T IH 1.�// \ L2.0; T IH 2.�//;

�m 2 L
1.� � .0; T // such that j�m.x; t/j � 1 � ı a.e. in � � .0; T /;

�m 2 L
1.0; T IH 2.�// \W 1;2.0; T IL2.�//;

(3.7)

for some ı > 0, such that

.�.�m/@tum;w/C .�.�m/.um � r/um;w/C .�.�m/Dum;rw/

�
�1 � �2

2
..r�m � r/um;w/ D .�mr�m;w/; (3.8)

for all w 2 Vm and t 2 Œ0; T �, and

@t�mC um � r�m D��m; �m D ˛@t�m ���mC‰
0.�m/ a.e. in �� .0;T /; (3.9)

together with ´
um D 0; @n�m D @n�m D 0 on @� � .0; T /;

um.�; 0/ D Pmu0; �.�; 0/ D �0;k in �:
(3.10)

3.3. Existence of approximate solutions

We now exploit a fixed point argument to show the existence of .um; �m/ satisfying
(3.7)–(3.10). For this purpose, we fix v 2 W 1;2.0; T IVm/. We consider the convective
viscous Cahn–Hilliard system´

@t�m C v � r�m D ��m
�m D ˛@t�m ���m C F

0.�m/ � �0�m
in � � .0; T /; (3.11)

which is equipped with the boundary and initial conditions

@n�m D @n�m D 0 on @� � .0; T /; �m.�; 0/ D �0;k in �: (3.12)
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Thanks to Theorem A.1, there exists a unique solution �m to (3.11)–(3.12) such that

�m 2 L
1.0; T IH 3.�//; @t�m 2 L

1.0; T IH 1.�// \ L2.0; T IH 2.�//;

�m 2 L
1.� � .0; T // such that j�m.x; t/j � 1 � zı a.e. in � � .0; T /;

�m 2 L
1.0; T IH 2.�// \W 1;2.0; T IL2.�//;

(3.13)

for some zı which depends on ˛ and k. We report the following estimates for sys-
tem (3.11)–(3.12):

(1) L2 estimate: for any T > 0,

sup
t2Œ0;T �

�
k�m.t/k

2
L2
C ˛kr�m.t/k

2
L2

�
C

Z T

0

k��m.�/k
2
L2

d�

� k�0;kk
2
L2
C ˛kr�0;kk

2
L2
C �20 j�jT I

(2) Energy estimate: for any T > 0,

sup
t2Œ0;T �

Efree.�.t//C
1

2

Z T

0

kr�m.�/k
2
L2

d� C ˛
Z T

0

k@t�m.�/k
2
L2

d�

� Efree.�0;k/C
1

2

Z T

0

kv.�/k2
L2

d�: (3.14)

We now make the ansatz that

um.x; t/ D
mX
jD1

amj .t/wj .x/

is the solution to the Galerkin approximation of (1.1)1 which reads as

.�.�m/@tum;wl /C .�.�m/.v � r/um;wl /C .�.�m/Dum;rwl /

�
�1 � �2

2
..r�m � r/um;wl / D .�mr�m;wl /; 8 l D 1; : : : ; m; (3.15)

such that um.�; 0/ D Pmu0. Setting Am.t/ D .am1 .t/; : : : ; a
m
m.t//

T , (3.15) is equivalent to
the system of differential equations

Mm.t/
d
dt

Am C Lm.t/Am D Gm.t/; (3.16)

where the matrices Mm.t/, Lm.t/ and the vector Gm.t/ are defined as

.Mm.t//l;j D

Z
�

�.�m/wl � wj dx;

.Lm.t//l;j D
Z
�

�
�.�m/.v � r/wj � wl C �.�m/Dwj W rwl

�

��1 � �2
2

�
.r�m � r/wj � wl

�
dx;
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.Gm.t//l D

Z
�

�mr�m � wl dx;

and Am.0/D ..Pmu0;w1/; : : : ; .Pmu0;wm//T : The regularity properties (3.13) imply the
continuity of �m 2 C.Œ0; T �IW 1;4.�// and �m 2 C.Œ0; T �IH 1.�//. In turn, we have
that �.�m/; �.�m/ 2 C.� � Œ0; T �/. Moreover, we observe that v 2 C.Œ0; T �IL2� /. Thus,
we infer that Mm and Lm belong to C.Œ0; T �IRm�m/, and Gm 2 C.Œ0; T �IRm/. Since the
matrix Mm.�/ is positive definite on Œ0; T � (see [26, Appendix A]), the inverse .Mm/�1 2

C.Œ0; T �IRm�m/. Thus, the existence and uniqueness theorem for systems of linear ODEs
guarantees that there exists a unique solution Am 2 C 1.Œ0; T �IRm/ to (3.16) on Œ0; T �. As
a result, the problem (3.15) has a unique solution um 2 C 1.Œ0; T �IVm/.

Next, multiplying (3.15) by am
l

and summing over l , we findZ
�

�.�m/@t

�
jumj2

2

�
dx C

Z
�

�.�m/v � r
�
jumj2

2

�
dx C

Z
�

�.�m/jDumj2 dx

�
�1 � �2

2

Z
�

r�m � r
�
jumj2

2

�
dx D

Z
�

�mr�m � um dx:

Integrating by parts, we obtain

d
dt

Z
�

�.�m/
jumj2

2
dx �

Z
�

�
@t�.�m/C div

�
�.�m/v

�� jumj2
2

dx

C

Z
�

�.�m/jDumj2 dx C
�1 � �2

2

Z
�

��m
jumj2

2
dx D

Z
�

�mr�m � um dx:

Recalling that �0.�m/ D
�1��2
2

and div v D 0, by using (3.11)1, we have

�

Z
�

�
@t�.�m/C div

�
�.�m/v

�� jumj2
2

dx C
�1 � �2

2

Z
�

��m
jumj2

2
dx D 0:

Thus, we infer that

d
dt

Z
�

�.�m/
jumj2

2
dx C

Z
�

�.�m/jDumj2 dx D
Z
�

�mr�m � um dx: (3.17)

By using (3.13)2 and the Poincaré inequality, we getZ
�

�mr�m � um dx � k�mkL1kr�mkL2kumkL2 �
��

2
kDumk2L2 C

1

�1��
kr�mk

2
L2
:

So, we find the differential inequality

d
dt

Z
�

�.�m/
jumj2

2
dx C

��

2

Z
�

jDumj2 dx �
1

�1��
kr�mk

2
L2
: (3.18)

Integrating the above inequality on Œ0; s� with s 2 Œ0; T �, and using (3.14), it follows thatZ
�

��

2
jum.s/j2 dx �

Z
�

�.�0;k/
jPmu0j2

2
dx C

2

�1��
Efree.�0;k/

C
1

�1��

Z s

0

kv.�/k2
L2

d�; (3.19)



A. Giorgini 10

which, in turn, entails that

kum.s/k2L2 �
��

��
ku0k2L2 C

4

�1����
Efree.�0;k/C

2

�1����

Z s

0

kv.�/k2
L2

d�: (3.20)

At this point, setting

C1 D
��

��
ku0k2L2 C

4

�1����
Efree.�0;k/; C2 D

2

�1����
;

and assuming Z t

0

kv.�/k2
L2

d� � C3eC2t ; t 2 Œ0; T �; (3.21)

where C3 D C1T , we deduce thatZ t

0

kum.s/k2L2 ds � C3 C C2

Z t

0

Z s

0

kv.�/k2
L2

d� ds � C3eC2t ; 8 t 2 Œ0; T �: (3.22)

Furthermore, thanks to (3.20) and (3.21), we also infer that

sup
t2Œ0;T �

kum.t/kL2 �
�
C1 C C3C2eC2T

� 1
2 DW K0: (3.23)

Now, we control the time derivative of um. Multiplying (3.15) by d
dt a

m
l

and summing
over l , we find

��k@tumk2L2 � �.�.�m/.v � r/um; @tum/ � .�.�m/Dum;r@tum/

C
�1 � �2

2
..r�m � r/um; @tum/C .�mr�m; @tum/:

By exploiting (3.6), we obtain

��k@tumk2L2 � �
�
kvkL2krumkL1k@tumkL2 C ��kDumkL2kr@tumkL2

C

ˇ̌̌�1 � �2
2

ˇ̌̌
krumkL1kr�mkL2k@tumkL2

C k�mkL1kr�mkL2kr@tumkL2
� ��CkvkL2kumkH3k@tumkL2 C ��C 2mkumkL2k@tumkL2

C C
ˇ̌̌�1 � �2

2

ˇ̌̌
kumkH3kr�mkL2k@tumkL2 C Cmkr�mkL2k@tumkL2

� ��CmkvkL2kumkL2k@tumkL2 C ��C 2mkumkL2k@tumkL2

C Cm

ˇ̌̌�1 � �2
2

ˇ̌̌
kumkL2kr�mkL2k@tumkL2

C Cmkr�mkL2k@tumkL2 :

Then, by using (3.14), (3.21), (3.22) and (3.23), we infer thatZ T

0

k@tum.�/k2L2 d� � 4
���
��
CmK0

�2 Z T

0

kv.�/k2
L2

d� C 4
���
��
C 2m

�2
C3eC2T

C 4
��Cm
��

ˇ̌̌�1 � �2
2

ˇ̌̌
K0

�2
C
C 2m
�2�

� Z T

0

kr�m.�/k
2
L2

d�
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� 4
����
��
CmK0

�2
C

���
��
C 2m

�2�
C3eC2T

C 4
��Cm
��

ˇ̌̌�1 � �2
2

ˇ̌̌
K0

�2
C
C 2m
�2�

��
2Efree.�0;k/C C3eC2T

�
DW K21 ; (3.24)

where K1 depends only on ��, ��, ��, �0, ku0kL2 , Efree.�0/, T , �, m.

We define the setting of the fixed point argument. We introduce the set

S D
°

u 2 W 1;2.0; T IVm/ W
Z t

0

ku.�/k2
L2

d� � C3eC2t ; t 2 Œ0; T �;

k@tukL2.0;T IVm/ � K1
±
;

which is a subset of L2.0; T IVm/. We define the map

ƒ W S ! L2.0; T IVm/; ƒ.v/ D um;

where um is the solution to the system (3.15). In light of (3.22) and (3.24), we deduce that
ƒ W S! S . It is easily seen that S is convex and closed. Furthermore, S is a compact set in
L2.0; T IVm/. We are left to prove that the mapƒ is continuous. This is done by adapting
the argument in [24, proof of Theorem 3.1] to the viscous case. Let us consider a sequence
¹vnº � S such that vn ! zv in L2.0; T IVm/. By arguing as above, there exist a sequence
¹. n; �n/º and a pair . z ; z�/ that solve the convective viscous Cahn–Hilliard equat-
ion (3.11)–(3.12), where v is replaced by vn and zv, respectively. Repeating the unique-
ness argument in the proof of Theorem A.1, we have

1

2

d
dt

�
krA�1. n � z /k

2
L2
C ˛k n � z k

2
L2

�
C kr. n � z /k

2
L2

�

Z
�

 n.vn � zv/ � rA�1. n � z / dx C
Z
�

. n � z /zv � rA�1. n � z / dx

C �0k n � z k
2
L2
;

where the operator A is the Laplace operator �� with homogeneous Neumann boundary
conditions. Since zv belong to S , we infer that

1

2

d
dt
f .t/C

1

2
kr. n � z /k

2
L2
� Cf .t/C kvn � zvk2L2 ;

where f .t/ D krA�1. n.t/ � z .t//k2L2 C ˛k n.t/ �
z .t/k2

L2
, for some constant C

depending on C1; C2; K1 and �0. Observing that  n.0/ � z .0/ D 0, by the Gronwall
lemma we obtain

k n � z kL1.0;T IL2.�//\L2.0;T IH1.�// � eCT
Z T

0

kvn.�/ � zv.�/k2L2 d� ! 0 (3.25)
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as n!1. On the other hand, using that ¹vnº and zv belong to S , the continuous embedding
W 1;2.0; T IVm/ ,! YT (see Appendix A for the definition of YT ) and the properties of
the initial condition �0;k (cf. �0;k 2 H 3.�/ and (3.5)), it follows from Theorem A.1 that

k@t nkL1.0;T IH1.�// C k@t nkL2.0;T IH2.�// � C; (3.26)

k@t z kL1.0;T IH1.�// C k@t z kL2.0;T IH2.�// � C; (3.27)

for some C independent of n. Moreover, we also have

k�nkL1.0;T IH2.�// C k nkL1.0;T IH3.�// � C; (3.28)

kz�kL1.0;T IH2.�// C k
z kL1.0;T IH3.�// � C; (3.29)

k@t�nkL2.0;T IL2.�// C k@t z�kL2.0;T IL2.�// � C (3.30)

and

max
.x;t/2��.0;T /

j n.x; t/j � 1 � ı
�; max

.x;t/2��.0;T /
j z .x; t/j � 1 � ı�; (3.31)

for some positive C and ı� 2 .0; 1/ independent of n. Our claim is that �n ! z� in
L1.0; T IH 1.�//. To this end, in light of the above estimates, we first deduce from the
Aubin–Lions compactness result that there exists a subsequence �nj with the property
that �nj � z�! �� in L1.0; T IH 1.�//. Let us show that �� D 0 by using the equation

�n � z� D "@t . n � z / ��. n � z /C‰
0. n/ �‰

0. z /:

By interpolation, we infer from (3.25), (3.28) and (3.29) that

k n � z kL1.0;T IH2.�// ! 0; as n!1: (3.32)

As a consequence, thanks to (3.31), k‰0. n/ � ‰0. z /kL1.0;T IL2.�// ! 0, as n! 1.
On the other hand, it follows from (3.25), (3.26) and (3.27) that (up to a subsequence)
@t . nj �

z / * 0 weakly in L2.0; T IH 2.�//. Thus, we obtain that �� D 0. Besides, by
uniqueness of the (weak) limit point, we conclude that

k�n � z�kL1.0;T IH1.�// ! 0; as n!1: (3.33)

We now define un D ƒ.vn/ 2 S , for any n 2 N, and zu D ƒ.zv/ 2 S . We consider
u D un � zu,  D  n � z , v D vn � zv, and � D �n � z� that solve

.�. n/@tu;w/C ..�. n/ � �. z //@tzu;w/C .�. n/.vn � r/un � �. z /.zv � r/zu;w/

C .�. n/Du;rw/C ..�. n/ � �. z //Dzu;rw/

�
�1 � �2

2
..r�n � r/un � .rz� � r/zu;w/ D .�nr n � z�r z ;w/ (3.34)
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for all w 2 Vm and for all t 2 Œ0; T �. Taking w D u, we obtain

1

2

d
dt

Z
�

�. n/juj2 dx C
Z
�

�. n/jDuj2 dx

D
�1 � �2

4

Z
�

@t njuj2 dx �
�1 � �2

2

Z
�

 .@tzu � u/ dx

�

Z
�

�
�. n/.vn � r/un � �. z /.zv � r/zu

�
� u dx �

�1 � �2

2

Z
�

 .Dzu W Du/ dx

C
�1 � �2

2

Z
�

�
.r�n � r/un� .rz� � r/zu

�
� u dxC

Z
�

�
�nr n � z�r z 

�
� u dx:

Thanks to (2.6) and (3.26), we have

�1 � �2

4

Z
�

@t njuj2 dx � Ck@t nkL6kukL2kukL3 �
��

10
kDuk2

L2
C Ckuk2

L2

and

�
�1 � �2

2

Z
�

 .@tzu � u/ dx � Ck kL1k@tzukL2kukL2 � Ckuk2L2 C Ck@tzuk
2
L2
k k2

H2 :

Noticing that vn, zv;un 2 S , by exploiting (2.6) and (3.6), we find

�

Z
�

�
�. n/.vn � r/un � �. z /.zv � r/zu

�
� u dx

D �
�1 � �2

2

Z
�

 ..vn � r/un/ � u dx �

Z
�

�. z /..v � r/un/ � u dx

�

Z
�

�. z /..zv � r/u/ � u dx

� Ck kL1kvnkL1krunkL2kukL2 C CkvkL2krunkL1kukL2
C CkzvkL1krukL2kukL2

� Cmk kH2kukL2 C CmkvkL2kukL2 C CkrukL2kukL2

�
��

10
kDuk2

L2
C Cmkuk2L2 C Cmk k

2
H2 C Cmkvk2L2 :

In addition, we deduce that

�
�1 � �2

2

Z
�

 .Dzu W Du/ dx � Ck kL1kDzukL2kDukL2 �
��

10
kDuk2

L2
C Cmk k

2
H2

and

�1 � �2

2

Z
�

..r�n � r/un � .rz� � r/zu/ � u dx

D �
�1 � �2

2

Z
�

.�n�un � z��zu/ � u dx �
�1 � �2

2

Z
�

.�nrun � z�rzu/ W ru dx

D �
�1 � �2

2

Z
�

.��un C z��u/ � u dx �
�1 � �2

2

Z
�

.�run C z�ru/ W ru dx
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� Ck�kL2k�unkL2kukL1 C Ckz�kL6k�ukL2kukL3
C Ck�kL2krunkL6krukL3 C Ckz�kL6krukL6krukL3

� Cmk�kL2krukL2 C CmkrukL2kukL2

�
��

10
kDuk2

L2
C Cmk�k

2
L2
C Cmkuk2L2 :

Finally, by (3.28)–(3.29), we haveZ
�

�
�nr n � z�r z 

�
� u dx � .k�kL2kr nkL6 C kz�kL2kr kL6/kukL3

� C.k�kL2 C k kH2/krukL2

�
��

10
kDuk2

L2
C Ck�k2

L2
C Ck k2

H2 :

Combining the above inequalities, we are led to the differential inequality

d
dt

Z
�

�. n/juj2 dx � h1.t/
Z
�

�. n/juj2 dx C h2.t/;

where
h1.t/ D Cm

�
1C k@t n.t/k

2
H1

�
and

h2.t/ D Cm
�
k@tzu.t/k2L2k .t/k

2
H2 C k .t/k

2
H2 C kv.t/k2L2 C k�.t/k

2
L2

�
:

Thus, the Gronwall lemma entails

sup
t2Œ0;T �

ku.t/k2
L2
�

1

��
e
R T
0 h1.�/d�

Z T

0

h2.�/ d�:

On account of (3.26), (3.32), (3.33), and the convergence vn ! zv in L2.0; T IVm/, we
deduce that un! zu in L1.0; T IVm/, implying that the mapƒ is continuous. Finally, we
are in the position to apply the Schauder fixed point theorem and conclude that the mapƒ
has a fixed point in S , which gives the existence of the approximate solution .um; �m/
on Œ0; T � satisfying (3.7)–(3.10) for any m 2 N.

3.4. Uniform estimates independent of the approximation parameters

Integrating (3.9)1 over �, we getZ
�

�m.t/ dx D
Z
�

�0;k dx; 8 t 2 Œ0; T �: (3.35)

Owing to (3.4), for k > xk, j�m.t/j � zm < 1 for all t 2 Œ0; T �. Taking w D um in (3.8) and
integrating by parts, we have (cf. (3.17))

d
dt

Z
�

1

2
�.�m/jumj2 dx C

Z
�

�.�m/jDumj2 dx D
Z
�

�mr�m � um dx: (3.36)
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Multiplying (3.11) by �m, integrating over� and exploiting the definition of �m, we find

d
dt

�Z
�

1

2
jr�mj

2
C‰.�m/ dx

�
C

Z
�

jr�mj
2
C ˛j@t�mj

2 dx

C

Z
�

um � r�m�m dx D 0: (3.37)

By summing (3.36) and (3.37), we reach

d
dt
E.um; �m/C

Z
�

�.�m/jDumj2 dx C
Z
�

jr�mj
2 dx C

Z
�

˛j@t�mj
2 dx D 0: (3.38)

An integration in time on Œ0; t �, with 0 < t � T , yields

E.um.t/; �m.t//C
Z t

0

k
p
�.�m.s//Dum.s/k2L2 C kr�m.s/k

2
L2
C ˛k@t�m.s/k

2
L2

ds

D E.Pmu0; �0;k/:

Thanks to (3.4) and (3.5), we observe that

E.Pmu0; �0;k/ �
��

2
ku0k2L2 C

1

2
k�0k

2
H1 C �0

�
1C j�j max

s2Œ�1;1�
j‰.s/j

�
:

Since �m 2 L1.� � .0; T // such that j�m.x; t/j < 1 almost everywhere in � � .0; T /,
we obtain

kumkL1.0;T IL2� / C kumkL2.0;T IH1� / � C; (3.39)

k�mkL1.0;T IH1.�// � C; (3.40)

kr�mkL2.0;T IL2.�// � C; (3.41)
p
˛k@t�mkL2.0;T IL2.�// � C; (3.42)

where the constant C depends on ku0kL2 and k�0kH1 , but is independent of m, ˛ and k.
Multiplying (3.11) by ���m, integrating over � and using (3.13), we get

k��mk
2
L2
C

Z
�

F 00.�m/jr�mj
2 dx D ˛

Z
�

@t�m��m dx C
Z
�

r�m � r�m dx

C �0kr�mk
2
L2
:

Since F 00.s/ > 0 for s 2 .�1; 1/, by using (3.40), we have

k��mk
2
L2
� C

�
1C kr�mk

2
L2
C ˛2k@t�mk

2
L2

�
; (3.43)

for some C independent of m. Then, it follows from (3.41) and (3.42) that

k�mkL2.0;T IH2.�// � C: (3.44)
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We now recall the well-known inequality (see [32])Z
�

jF 0.�m/j dx � C1

Z
�

F 0.�m/
�
�m � �0;k

�
dx C C2; (3.45)

where the positive constants C1; C2 depends only on �0;k , thereby they are independent
of k (for large k). Then, multiplying (3.9)2 by �m � �0;k (cf. (3.35)), we findZ

�

jr�mj
2 dx C

Z
�

F 0.�m/
�
�m � �0;k

�
dx

D �˛

Z
�

@t�m
�
�m � �0;k

�
dx C

Z
�

�
�m � �m

�
�m dx

C �0

Z
�

�m
�
�m � �0;k

�
dx:

By the Poincaré inequality and (3.40), we obtainˇ̌̌Z
�

F 0.�m/.�m � �0;k/ dx
ˇ̌̌
� C

�
1C kr�mkL2 C ˛k@t�mkL2

�
: (3.46)

Since �m D F 0.�m/ � �0�0;k , we infer from (3.45) and (3.46) that

j�mj � C
�
1C kr�mkL2 C ˛k@t�mkL2

�
:

Thanks to (2.1), we have

k�mkH1 � C
�
1C kr�mkL2 C ˛k@t�mkL2

�
: (3.47)

As a direct consequence, we deduce that

k�mkL2.0;T IH1.�// � C; (3.48)

for some constant C independent of m, ˛ and k. In addition, using the boundary condi-
tions (3.10) and (3.39), we find

k@t�mk.H1/0 � C
�
1C kr�mkL2

�
; (3.49)

which, in turn, implies that

k@t�mkL2.0;T I.H1.�//0/ � C:

Next, taking w D @tum in (3.8), we find

1

2

d
dt

Z
�

�.�m/jDumj2 dx C
Z
�

�.�m/j@tumj2 dx

D �

Z
�

�.�m/..um � r/um/ � @tum dx C
�1 � �2

2

Z
�

@t�mjDumj2 dx

C
�1 � �2

2

Z
�

..r�m � r/um/ � @tum dx C
Z
�

�mr�m � @tum dx: (3.50)
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Thanks to the regularity of �m (cf. (3.13)), we multiply (3.9)1 by @t�m and integrate
over � to obtain

1

2

d
dt

Z
�

jr�mj
2 dx C .@t�m; @t�m/C .@t�m;um � r�m/ D 0:

Direct computations give that

.@t�m; @t�m/ D ˛.@t t�m; @t�m/C kr@t�mk
2
L2
C

Z
�

F 00.�m/j@t�mj
2 dx

� �0k@t�mk
2
L2

and

.@t�m;um � r�m/ D
d
dt

�Z
�

�mum � r�m dx
�
�

Z
�

�m@tum � r�m dx

�

Z
�

�mum � r@t�m dx:

As a result, we find

d
dt

�Z
�

1

2
jr�mj

2 dx C
Z
�

˛

2
j@t�mj

2 dx C
Z
�

�mum � r�m dx
�
C kr@t�mk

2
L2

� �0k@t�mk
2
L2
C

Z
�

�m@tum � r�m dx C
Z
�

�mum � r@t�m dx: (3.51)

By summing (3.50) and (3.51), we arrive at

d
dt
Hm C ��k@tumk2L2 C kr@t�mk

2
L2

� �

Z
�

�.�m/..um � r/um/ � @tum dx C
�1 � �2

2

Z
�

@t�mjDumj2 dx

C
�1 � �2

2

Z
�

..r�m � r/um/ � @tum dx C 2
Z
�

�mr�m � @tum dx

C �0k@t�mk
2
L2
C

Z
�

�mum � r@t�m dx

D

6X
kD1

Ri ; (3.52)

where

Hm.t/ D
1

2

Z
�

�.�m/jDumj2 dx C
1

2

Z
�

jr�mj
2 dx C

˛

2

Z
�

j@t�mj
2 dx

C

Z
�

�mum � r�m dx:
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By exploiting (2.2), (2.6), (3.39), (3.40), and (3.47), we observe thatˇ̌̌Z
�

�mum � r�m dx
ˇ̌̌
� k�mkL6kumkL3kr�mkL2

� C
�
1C kr�mkL2 C ˛k@t�mkL2

�
krumk

1
2

L2

�
1

4

Z
�

�.�m/jDumj2 dx C
1

4
kr�mk

2
L2
C
˛

4
k@t�mk

2
L2
C C0;

for some C0 independent of m, ˛ and k. Thus, it follows that

Hm �
1

4

Z
�

�.�m/jDumj2 dx C
1

4
kr�mk

2
L2
C
˛

4
k@t�mk

2
L2
� C0: (3.53)

Similarly, it is easily seen that

Hm �

Z
�

�.�m/jDumj2 dx C kr�mk2L2 C ˛k@t�mk
2
L2
C zC0; (3.54)

for some zC0 independent of m, ˛ and k. Before proceeding with the estimate of the
terms Ri , i D 1; : : : ; 7, we need to control the norms kAumkL2 and k�mkH3 . To this
end, taking w D Aum in (3.15), we have

�
1

2
.�.�m/�um;Aum/ D �.�.�m/@tum;Aum/ � .�.�m/.um � r/um;Aum/

C
�1 � �2

2
..r�m � r/um;Aum/C .�mr�m;Aum/

C
�1 � �2

2
.Dumr�m;Aum/: (3.55)

By arguing as in [25] (see also [24]), there exists �m 2 C.Œ0; T �IH 1.�// such that
��um Cr�m D Aum almost everywhere in � � .0; T /. Moreover, �m satisfies

k�mkL2 � Ckrumk
1
2

L2
kAumk

1
2

L2
; k�mkH1 � CkAumkL2 ; (3.56)

where C is independent of m, ˛ and k. Therefore, we obtain

1

2
.�.�m/Aum;Aum/ D �.�.�m/@tum;Aum/ � .�.�m/.um � r/um;Aum/

C
�1 � �2

2
..r�m � r/um;Aum/C .�mr�m;Aum/

C
�1 � �2

2
.Dumr�m;Aum/ �

�1 � �2

4
.�mr�m;Aum/

D

12X
iD7

Ri : (3.57)

On the other hand, taking the gradient of (3.9)1, multiplying it by r��m and integrating
over �, we find

kr��mk
2
L2
D .r@t�m;r��m/C .r.um � r�m/;r��m/: (3.58)
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Then, in light of (3.9)1 and (3.10)1, it follows that

k�mk
2
H3 � C

�
k�mk

2
H1 C kr��mk

2
L2

�
;

which, in turn, by (3.53) gives that

k�mk
2
H3 � C

�
1C kr�mk

2
L2
C ˛2k@t�mk

2
L2
C .r@t�m;r��m/

C .r.um � r�m/;r��m/
�

D C.1C C0 CHm/C

14X
iD13

Ri ; (3.59)

where C is independent ofm, ˛ and k. Now, multiplying (3.57) and (3.59) by two positive
constants $1 and $2 (which will be chosen later on), respectively, and summing them
with (3.52), we obtain

d
dt
Hm C ��k@tumk2L2 C kr@t�mk

2
L2
C
��$1

2
kAumk2L2 C$2k�mk

2
H3

� C.1C$2/.1C C0 CHm/C

6X
iD1

Ri C$1

12X
iD7

Ri C$2

14X
iD13

Ri : (3.60)

Let us proceed with the estimate of the terms Ri , i D 1; : : : ; 14. In what follows, the
generic constant C may depend on $1 and $2. Exploiting (2.2), (2.6), (3.39) and (3.53),
we haveˇ̌̌
�

Z
�

�.�m/..um � r/um/ � @tum dx
ˇ̌̌
� ��kumkL6krumkL3k@tumkL2

�
��

8
k@tumk2L2 C Ckrumk3L2kAumkL2

�
��

8
k@tumk2L2 C

��$1

32
kAumk2L2 C CkDumk6L2

�
��

8
k@tumk2L2 C

��$1

32
kAumk2L2

C C.C0 CHm/
3:

By the Sobolev embedding, (2.2) and (3.53), we obtainˇ̌̌�1 � �2
2

Z
�

@t�mjDumj2 dx
ˇ̌̌
� Ck@t�mkL6kDumkL3kDumkL2

�
1

8
kr@t�mk

2
L2
C CkAumkL2kDumk3L2

�
1

8
kr@t�mk

2
L2
C
��$1

32
kAumk2L2 C CkDumk3L2

�
1

8
kr@t�mk

2
L2
C
��$1

32
kAumk2L2 C C.C0 CHm/

3:



A. Giorgini 20

By the Sobolev interpolation, (2.3) and (3.47), we getˇ̌̌�1 � �2
2

Z
�

..r�m � r/um/ � @tum dx
ˇ̌̌
�Ckr�mkL1krumkL2k@tumkL2

�Ckr�mk
1
2

H1k�mk
1
2

H3krumkL2k@tumkL2

�
��

8
k@tumk2L2 C Ckr�mk

1
2

L2
k�mk

3
2

H3kDumk2L2

�
��

8
k@tumk2L2 C

$2

6
k�mk

2
H3

C Ckr�mk
2
L2
kDumk8L2

�
��

8
k@tumk2L2 C

$2

6
k�mk

2
H3 C C.C0 CHm/

5:

Exploiting (3.43), (3.47), (3.49) and (3.53), we findˇ̌̌
2

Z
�

�mr�m � @tum dx
ˇ̌̌
� 2k�mkL6kr�mkL3k@tumkL2

�
��

8
k@tumk2L2 C Ck�mk

2
H2k�mk

2
H1

�
��

8
k@tumk2L2 C C

�
1C kr�mk

2
L2
C ˛2k@t�mk

2
L2

�2
�
��

8
k@tumk2L2 C C.1C C0 CHm/

2;

and

�0k@t�mk
2
L2
� Ck@t�mk.H1/0kr@t�mkL2

�
1

8
kr@t�mk

2
L2
C C.1C C0 CHm/;

as well asˇ̌̌Z
�

�mum � r@t�m dx
ˇ̌̌
� k�mkL6kumkL3kr@t�mkL2

�
1

8
kr@t�mk

2
L2
C CkDumk2L2

�
1C kr�mk

2
L2
C ˛2k@t�mk

2
L2

�
�
1

8
kr@t�mk

2
L2
C C.1C C0 CHm/

2:

By Young’s inequality, we haveˇ̌̌
�

Z
�

�.�m/@tum � Aum dx
ˇ̌̌
� $1�

�
k@tumkL2kAumkL2

�
��

8$1

k@tumk2L2 C
2.��/2$1

��
kAumk2L2 :
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By using (2.2), (2.3), (2.6) and (3.53), we findˇ̌̌
�

Z
�

�.�m/.um � r/um � Aum dx
ˇ̌̌
� ��kumkL6krumkL3kAumkL2

� CkDumk
3
2

L2
kAumk

3
2

L2

�
��

32
kAumk2L2 C CkDumk6L2

�
��

32
kAumk2L2 C C.C0 CHm/

3;

andˇ̌̌�1 � �2
2

Z
�

.r�m � r/um � Aum dx
ˇ̌̌
� Ckr�mkL1krumkL2kAumkL2

� Ckr�mk
1
2

H1k�mk
1
2

H3krumkL2kAumkL2

�
��

32
kAumk2L2 C Ckr�mk

1
2

L2
k�mk

3
2

H3kDumk2L2

�
��

32
kAumk2L2 C

$2

6$1

k�mk
2
H3

C Ckr�mk
2
L2
kDumk8L2

�
��

32
kAumk2L2 C

$2

6$1

k�mk
2
H3 C C.C0 CHm/

5:

In light of (3.43) and (3.47), we haveˇ̌̌Z
�

�mr�m � Aum dx
ˇ̌̌
� k�mkL6kr�mkL3kAumkL2

�
��

32
kAumk2L2 C Ck�mk

2
H1k�mk

2
H2

�
��

32
kAumk2L2 C C

�
1C kr�mk

2
L2
C ˛2k@t�mk

2
L2

�2
�
��

32
kAumk2L2 C C.1C C0 CHm/

2;

and ˇ̌̌�1 � �2
2

Z
�

Dumr�m � Aum dx
ˇ̌̌
� CkDumkL3kr�mkL6kAumkL2

� CkDumk
1
2

L2
kAumk

3
2

L2
k�mkH2

�
��

32
kAumk2L2 C CkDumk2L2k�mk

4
H2

�
��

32
kAumk2L2 C C .1C C0 CHm/

3 :
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Owing to (3.43) and (3.56), we obtainˇ̌̌�1 � �2
4

Z
�

�mr�m � Aum dx
ˇ̌̌
� Ck�mkL3kr�mkL6kAumkL2

� Ck�mk
1
2

L2
k�mk

1
2

H1k�mkH2kAumkL2

� CkDumk
1
4

L2
kAumk

7
4

L2

�
1C kr�mk

2
L2

C ˛2k@t�mk
2
L2

� 1
2

�
��

32
kAumk2L2 C CkDumk2L2

�
1C kr�mk

2
L2

C ˛2k@t�mk
2
L2

�4
�
��

32
kAumk2L2 C C.1C C0 CHm/

5:

By using the Young inequality, it easily follows thatˇ̌̌Z
�

r@t�m � r��m dx
ˇ̌̌
�

1

8$2

kr@t�mk
2
L2
C 2$2k�mk

2
H3 :

Finally, by exploiting (2.2), (2.3), (2.6), (3.43) and (3.53), we infer thatˇ̌̌Z
�

r.um � r�m/ � r��m dx
ˇ̌̌
� C.kDumkL3kr�mkL6

C kr
2�mkL2kumkL1/kr��mkL2

� CkDumk
1
2

L2
kAumk

1
2

L2
k�mkH2k�mkH3

�
��$1

32$2

kAumk2L2 C
1

6
k�mk

2
H3 C CkDumk2L2k�mk

4
H2

�
��$1

32$2

kAumk2L2 C
1

6
k�mk

2
H3 C C.1C C0 CHm/

3:

Combining (3.60) with the above estimates, we arrive at

d
dt
Hm C

��

2
k@tumk2L2 C

1

2
kr@t�mk

2
L2
C

���$1

4
�
2.��/2$2

1

��

�
kAumk2L2

C

�$2

2
� 2$2

2

�
k�mk

2
H3 � C.1C C0 CHm/

5; (3.61)

where the positive constant C depends on $1 and $2, but is independent of m, ˛ and k.
Therefore, by setting

$1 D
����

16.��/2
; $2 D

1

8
;

we deduce the differential inequality

d
dt
Hm C Fm � C.1C C0 CHm/

5; (3.62)
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where

Fm.t/ D
��

2
k@tum.t/k2L2 C

1

2
kr@t�m.t/k

2
L2
C
$1��

8
kAum.t/k2L2 C

1

32
k�m.t/k

2
H3 ;

and the constant C is independent of the approximation parameters ˛, m and k. Hence,
whenever zT > 0 satisfies

1 � 4C zT .1C C0 CHm.0//
4 > 0;

we infer that

C0 CHm.t/ �
1C C0 CHm.0/�

1 � 4C t.C1 CHm.0//4
� 1
4

; 8 t 2 Œ0; zT �: (3.63)

To deduce an estimate of Hm which is independent of m, ˛ and k, we are left to control
˛k@t�m.0/k

2
L2

(cf. the definition ofHm and (3.54)). For this purpose, we first observe that
@t�m 2 C.Œ0; T �IH

1.�//, �m 2 C.Œ0; T �IH 1.�// due to the regularity in Theorem A.1.
By comparison with terms in (3.9)2, it follows that���mC‰0.�m/ 2 C.Œ0;T �IH 1.�//.
Now, multiplying (3.9)2 by @t�m and integrating over �, we have

˛k@t�mk
2
L2
C .���m C‰

0.�m/; @t�m/ D .�m; @t�m/:

By using (3.9)1, we find

˛k@t�mk
2
L2
C .���m C‰

0.�m/;��m � um � r�m/ D .�m; ��m � um � r�m/:

Integrating by parts, we arrive at

˛k@t�mk
2
L2
C kr�mk

2
L2
D .r.���m C‰

0.�m//;r�m � �mum/C .r�m; �m um/:

By continuity, we obtain

˛k@t�m.0/k
2
L2
C kr�m.0/k

2
L2

D .r.���0;k C‰
0.�0;k//;r�m.0/ � �0;k um.0//C .r�m.0/; �0;k um.0//;

which, in turn, implies that

˛k@t�m.0/k
2
L2
Ckr�m.0/k

2
L2
� Ckr.���0;k C‰

0.�0;k//k
2
L2
CCkum.0/k2L2 : (3.64)

Thus, we conclude from (3.1), (3.3), (3.4) and (3.54) that

Hm.0/ � C
�
1C ku0k2H1� C k ���0 C F

0.�0/k
2
H1 C k�0k

2
H1

�
C zC0 WD zK0;

where the constant C is independent of m, ˛ and k. Therefore, setting zT0 D 1

4C.C1C zK0//4

yields that

0 � C0 CHm.t/ �
1C C0 C zK0�

1 � 4C t.C1 C zK0/4
� 1
4

; 8 t 2 Œ0; zT0/:
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Notice that zT0 is independent ofm, ˛ and k. Let us now fix T0 2 .0; zT0/. Thanks to (3.53),
we infer that

sup
t2Œ0;T0�

krum.t/kL2 C sup
t2Œ0;T0�

kr�m.t/kL2 C sup
t2Œ0;T0�

p
˛k@t�m.t/kL2 � K1; (3.65)

where K1 is a positive constant that depends on E.u0; �0/, ku0kH1� , k�0kH1 , and the
parameters of the system, but is independent of m, ˛ and k. Recalling (3.43) and (3.47),
we immediately obtain

sup
t2Œ0;T0�

k�m.t/kH2 C sup
t2Œ0;T0�

k�m.t/kH1 C sup
t2Œ0;T0�

kF 0.�m.t//kL2 � K2: (3.66)

Integrating (3.60) on Œ0; T0�, we deduce thatZ T0

0

k@tum.�/k2L2 C kr@t�m.�/k
2
L2
C kAum.�/k2L2 C k�m.�/k

2
H3 d� � K3: (3.67)

Finally, in light of (3.65) and (3.67), we observe that separation property (3.13)2 (cf. The-
orem A.1) depends on ˛ and k, but is independent of m, that is,

�m 2 L
1.� � .0; T // is such that j�m.x; t/j � 1 � zı a.e. in � � .0; T0/ (3.68)

for some zı D zı.˛; k/.

3.5. Passage to the limit and existence of strong solutions

Thanks to estimates (3.65)–(3.67) given above, we deduce the following convergences (up
to a subsequence) as m!1:

um * u˛ weak-star in L1.0; T0IH1
� /;

um * u˛ weakly in L2.0; T0IH 2/ \W 1;2.0; T0IL2� /;
�m * �˛ weak-star in L1.0; T0IH 2.�//;

�m * �˛ weakly in W 1;2.0; T0IH
1.�//;

�m * �˛ weak-star in L1.0; T0IH 1.�//;

�m * �˛ weakly in L2.0; T0IH 3.�//:

(3.69)

The strong convergences of um and �m are recovered through the Aubin–Lions lemma,
which implies that

um ! u˛ strongly in L2.0; T0IH1
� /;

�m ! �˛ strongly in C.Œ0; T0�IW 1;p.�//; 8p 2 Œ2; 6/:
(3.70)

As a consequence, we infer that

�.�m/! �.�˛/; �.�m/! �.�˛/ strongly in C.Œ0; T0�IW 1;p.�//; (3.71)
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for all p 2 Œ2; 6/. Additionally, we have

�˛ 2 L
1.� � .0; T // is such that j�˛.x; t/j � 1 � ı a.e. in � � .0; T0/ (3.72)

for some ı D ı.˛; k/. The above properties entail the convergence of the non-linear terms
in (3.8) and of the logarithmic potential ‰0.�/ in (3.9), and thereby we pass to the limit in
the Galerkin formulation as m!1 in (3.8)–(3.9). The limit solution .u˛; �˛/ satisfies

.�.�˛/@tu˛;w/C .�.�˛/.u˛ � r/u˛;w/ � .div .�.�˛/Du˛/;w/
� .�0.�˛/.r�˛ � r/u˛;w/ � .�˛r�˛;w/ D 0; (3.73)

for all w 2 L2� and almost every t 2 .0; T0/, and

@t�˛Cu˛ � r�˛ D ��˛; �˛ D ˛@t�˛���˛C‰
0.�˛/ a.e. in �� .0; T0/: (3.74)

Moreover, we have´
u˛ D 0; @n�˛ D @n�˛ D 0 a.e. on @� � .0; T0/;

u˛.�; 0/ D u0; �.�; 0/ D �0;k in �:
(3.75)

Next, we proceed with the vanishing viscosity limit in the Cahn–Hilliard equation. Thanks
to the lower semicontinuity of the norm, we obtain from (3.65)–(3.67) that

ess sup
t2Œ0;T0�

kru˛.t/kL2 C ess sup
t2Œ0;T0�

k�˛.t/kH1 C ess sup
t2Œ0;T0�

p
˛k@t�˛.t/kL2 � K1; (3.76)

ess sup
t2Œ0;T0�

k�˛.t/kH2 C ess sup
t2Œ0;T0�

kF 0.�˛.t//kL2 � K2; (3.77)

andZ T0

0

k@tu˛.�/k2L2 C kr@t�˛.�/k
2
L2
C kAu˛.�/k2L2 C k�˛.�/k

2
H3 d� � K3: (3.78)

Therefore, we can infer that

u˛ * uk weak-star in L1.0; T0IH1
� /;

u˛ * uk weakly in L2.0; T0IH 2/ \W 1;2.0; T0IL2� /;
�˛ * �k weak-star in L1.0; T0IH 2.�//;

�˛ * �k weakly in W 1;2.0; T0IH
1.�//;

�˛ * �k weak-star in L1.0; T0IH 1.�//;

�˛ * �k weakly in L2.0; T0IH 3.�//:

(3.79)

In a similar manner as above, we have

u˛ ! uk strongly in L2.0; T0IH1
� /;

�˛ ! �k strongly in C.Œ0; T0�IW 1;p.�//;

�.�˛/! �.�k/ strongly in C.Œ0; T0�IW 1;p.�//;

�.�˛/! �.�k/ strongly in C.Œ0; T0�IW 1;p.�//;

(3.80)
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for all p 2 Œ2; 6/. In order to pass to the limit in F 0, we observe that

�˛ 2 L
1.� � .0; T0// is such that j�˛.x; t/j < 1 a.e. in � � .0; T0/:

Thanks to (3.80)2, it follows that �˛! �k almost everywhere in�� .0;T0/, and thereby,

�k 2 L
1.� � .0; T0// is such that j�k.x; t/j � 1 a.e. in � � .0; T0/:

Then, since F 0.�˛/! F 0.�k/ almost everywhere in� � .0; T0/, by the Fatou lemma we
have F 0.�k/ 2 L2.� � .0; T0//, which also implies that

�k 2 L
1.� � .0; T0// is such that j�k.x; t/j < 1 a.e. in � � .0; T0/:

Owing to this and (3.77), we conclude that

F 0.�˛/ * F 0.�k/ weak-star in L1.0; T0IL2.�//:

Thus, letting ˛ ! 0 in (3.74)–(3.73), we obtain

.�.�k/@tuk ;w/C .�.�k/.uk � r/uk ;w/ � .div .�.�k/Duk/;w/
� .�0.�k/.r�k � r/uk ;w/ � .�kr�k ;w/ D 0; (3.81)

for all w 2 L2� and almost every t 2 .0; T0/, and

@t�k C uk � r�k D ��k ; �k D ���k C‰
0.�k/ a.e. in � � .0; T0/; (3.82)

together with ´
uk D 0; @n�k D @n�k D 0 a.e. on @� � .0; T0/;

uk.�; 0/ D u0; �.�; 0/ D �0;k in �:
(3.83)

Finally, since the estimates (3.76)–(3.78) are independent of k, we can further pass to the
limit as k!1. The argument readily follows the one above, and so it is left to the reader.
As a result, we obtain�
�.�/@tuC �.�/.u � r/u � div .�.�/Du/ � �0.�/.r� � r/u � �r�;w

�
D 0; (3.84)

for all w 2 L2� and almost every t 2 .0; T0/, and

@t� C u � r� D ��; � D ��� C‰0.�/ a.e. in � � .0; T0/; (3.85)

together with ´
u D 0; @n� D @n� D 0 a.e. on @� � .0; T0/;

u.�; 0/ D u0; �.�; 0/ D �0 in �:
(3.86)
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Recalling the well-known relation

�r� D �div .r� ˝r�/Cr
�1
2
jr�j2 C‰.�/

�
;

in a canonical way, there exists P 2 L2.0; T0IH 1.�// (see, e.g., [22]) such that P .t/D 0
and

rP D ��.�/@tu � �.�/.u � r/uC div .�.�/Du/C �0.�/rur� � div .r� ˝r�/:

Moreover, exploiting the regularity theory of the Cahn–Hilliard equation with logarithmic
potential (see [2, Lemma 2] or [25, Theorem A.2]), we have that � 2 L1.0; T IW 2;6.�//

and F 0.�/ 2 L1.0; T IL6.�//.

4. Proof of Theorem 1.1. Part two: Uniqueness

Let .u1; P1; �1/ and .u2; P2; �2/ be two strong solutions to system (1.1)–(1.2) defined
on the interval Œ0; T0� as stated in Theorem 1.1. We define u D u1 � u2, P D P1 � P2,
� D �1 � �2, which solve

�.�1/@tuC .�.�1/ � �.�2//@tu2 C
�
�.�1/.u1 � r/u1 � �.�2/.u2 � r/u2

�
�
�1 � �2

2

�
.r�1 � r/u1 � .r�2 � r/u2

�
� div .�.�1/Du/

� div ..�.�1/ � �.�2//Du2/CrP D �div .r�1 ˝r�1 � r�2 ˝r�2/; (4.1)

and
@t� C u1 � r� C u � r�2 D ��;
��� C‰0.�1/ �‰

0.�2/ D �;
(4.2)

almost everywhere in � � .0; T0/, where �i D ���i C‰0.�i /, for i D 1; 2, and subject
to the boundary conditions

u D 0; @n� D @n� D 0 a.e. on @� � .0; T /: (4.3)

We recall that

k�ikL1.0;T0IW 2;6.�// C k@t�ikL2.0;T0IH1.�// � K; i D 1; 2; (4.4)

where K is a positive constant depending only on E.u0; �0/, ku0kH1� , k�0kH1 , T0, and
and the parameters of the system. As a consequence, we claim that

k�ik
C

5
16 .Œ0;T0�IC.�//

� CK; i D 1; 2;

for some constant C depending only on �. Indeed, by (2.5), we have

k�i .t1/ � �i .t2/kC.�/ � Ck�i .t1/ � �i .t2/kW 1;4
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� Ck�i .t1/ � �i .t2/k
5
8

H1k�i .t1/ � �i .t2/k
3
8

W 2;6

� CK
3
8

�Z t2

t1

k@t�i .�/kH1 d�
� 5
8

� CK
3
8 k@t�ik

5
8

L2.0;T0IH1.�//
jt1 � t2j

5
16 ; 8 t1; t2 2 Œ0; T0�; i D 1; 2:

In light of the assumption k�0kL1 < 1, we infer that

max
t2Œ0;T1�

k�i .t/kL1 < 1; where T1 < min
°�1 � k�0kL1

CK

� 16
5
; T0

±
; i D 1; 2: (4.5)

Owing to (4.5), it immediately follows that ‰00.�i /;‰000.�i / 2 L1.� � .0; T1//. Since�
is a C 4 domain, by the elliptic regularity theory of the Laplacian and (4.4), we deduce
that �i 2 L1.0; T1IH 3.�// \ L2.0; T1IH

4.�//, for i D 1; 2. In addition, it follows
from (4.3) that @n�� D 0 almost everywhere on @� � .0; T1/.

Next, multiplying (4.1) by u and integrating over �, we find

1

2

d
dt

Z
�

�.�1/juj2 dx C
Z
�

�.�1/jDuj2 dx

D �

Z
�

.�.�1/ � �.�2//@tu2 � u dx �
Z
�

�.�1/.u � r/u2 � u dx

�

Z
�

.�.�1/ � �.�2//.u2 � r/u2 � u dx C
�1 � �2

2

Z
�

..r� � r/u2/ � u dx

�

Z
�

.�.�1/ � �.�2//Du2 W ru dx C
Z
�

.r�1 ˝r� Cr� ˝r�2/ W ru dx

D

6X
iD1

Zi : (4.6)

Here, we have used that

�

Z
�

@t�.�1/
juj2

2
dx C

Z
�

�.�1/u1 � r
juj2

2
dx �

�1 � �2

2

Z
�

r�1 � r
juj2

2
dx D 0:

Taking the gradient of (4.2)1, multiplying by r�� and integrating over �, we obtain

1

2

d
dt
k��k2

L2
C k�2�k2

L2
D

Z
�

u1 � r��2� dx C
Z
�

u � r�2�2� dx

C

Z
�

�.‰0.�1/ �‰
0.�2//�

2� dx

D

9X
iD7

Zi :

Therefore, we arrive at

d
dt

�1
2

Z
�

�.�1/juj2 dx C
1

2
k��k2

L2

�
C

Z
�

�.�1/jDuj2 dx C k�2�k2
L2
D

9X
iD1

Zi :



The Abels–Garcke–Grün model in 3D 29

Arguing in a similar way as in [24, Section 6], it is easily seen that

jZ1 CZ2 CZ3 CZ5 CZ6j �
��

2
kDuk2

L2

C C
�
1C ku2k2H2 C k@tu2k2L2

��
kuk2

L2
C k��k2

L2

�
:

By (4.4) and (4.5), together with Sobolev embeddings, we find

jZ4j �

Z
�

j.r�� � r/u2 � uj dx C
Z
�

ˇ̌�
r.‰0.�1/ �‰

0.�2// � r
�

u2 � u
ˇ̌

dx

� kr��kL6kru2kL3kukL2 C k‰00.�1/kL1kr�kL6kru2kL3kukL2
C .k‰000.�1/kL1 C k‰

000.�2/kL1/k�kL1kr�2kL1kru2kL2kukL2

�
1

6
k�2�k2

L2
C Ckru2k2L3kuk

2
L2
C C.1C kru2kL3/

�
kuk2

L2
C k��k2

L2

�
:

As for the remaining terms, by using (4.4) and (4.5) once more, we have

jZ7 CZ8j � ku1kL3kr�kL6k�2�kL2 C kukL2kr�2kL1k�2�kL2

�
1

6
k�2�k2

L2
C C

�
kuk2

L2
C k��k2

L2

�
and

jZ9j �

Z
�

ˇ̌�
‰00.�1/�� C .‰

00.�1/ �‰
00.�2//��2

�
�2�

ˇ̌
dx

C

Z
�

ˇ̌�
‰000.�1/.jr�1j

2
� jr�2j

2/C .‰000.�1/ �‰
000.�2//jr�2j

2
�
�2�

ˇ̌
dx

� Ck��kL2k�
2�kL2 C C

�
k‰000.�1/kL1

C k‰000.�2/kL1
�
k�kL1k��2kL2k�

2�kL2

C C
�
kr�1kL1/ C kr�2kL1

�
kr�kL2k�

2�kL2

C
�
k‰0000.�1/kL1 C k‰

0000.�2/kL1
�
k�kL1kr�2k

2
L1k�

2�kL2

�
1

6
k�2�k2

L2
C Ck��k2

L2
:

In conclusion, we find the differential inequality

d
dt

�1
2

Z
�

�.�1/juj2 dx C
1

2
k��k2

L2

�
C
��

2
kDuk2

L2
C
1

2
k�2�k2

L2

� C.K/
�
1C ku2k2H2 C k@tu2k2L2

��
kuk2

L2
C k��k2

L2

�
:

An application of the Gronwall lemma implies the desired uniqueness of strong solutions
on the time interval Œ0; T1�.

5. Proof of Theorem 1.2: Stability

Let .u; P; �/ and .uH ; PH ; �H / be the strong solutions to the AGG model with den-
sity �.�/ and to the model H with constant density �, respectively, defined on a common
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interval Œ0; T0�. We recall that the existence of .uH ; PH ; �H / fulfilling the same regularity
properties of .u; P; �/, as stated in Theorem 1.1, has been proven in [25, Theorem 5.1].
For simplicity, we assume that the viscosity function is given by �.s/ D �1 1Cs2 C �2

1�s
2

(cf. (1.3)) for both systems. We define v D u � uH , Q D P � PH , ' D � � �H , and the
difference of the chemical potentials w D � � �H . They clearly solve the problem��1 C �2

2

�
@tvC

��1 � �2
2

�
�
@tuC

��1 C �2
2

� �
�
@tuH

C
�
�.�/.u � r/u � �.uH � r/uH

�
�

��1 � �2
2

��
.r� � r/u

�
� div .�.�/Dv/

� div ..�.�/ � �.�H //DuH /CrQ D �div .r� ˝r� � r�H ˝r�H /; (5.1)

and

@t' C u � r' C v � r�H D �w;
��' C‰0.�/ �‰0.�H / D w;

(5.2)

almost everywhere in�� .0;T0/. In addition, we have the boundary and initial conditions

v D 0; @n' D @nw D 0 a.e. on @� � .0; T /;

v.�; 0/ D 0; '.�; 0/ D 0 in �:
(5.3)

Multiplying (5.1) by A�1v and integrating over �, we obtain��1 C �2
4

� d
dt
kvk2] C

Z
�

�.�/Dv W rA�1v dx D �
Z
�

��1 � �2
2

�
�
@tu � A�1v dx

�

Z
�

��1 C �2
2

� �
�
@tuH � A�1v dx �

Z
�

�
�.�/.u � r/u � �.uH � r/uH

�
� A�1v dx

C

Z
�

��1 � �2
2

��
.r� � r/u

�
� A�1v dx �

Z
�

.�.�/ � �.�H //DuH W rA�1v dx

C

Z
�

r� ˝r� � r�H ˝r�H W rA�1v dx:

Following [25, proof of Theorem 3.1], we infer thatZ
�

�.�/Dv W rA�1v dx �
��

2
kuk2

L2
�

Z
�

�0.�/DA�1vr� � v dx

C
1

2

Z
�

�0.�/r� � v… dx; (5.4)

where … 2 L1.0; T0IH 1.�// is such that ��A�1vC r… D v a.e. in � � .0; T0/. In
addition, … fulfills the estimates

k…kL2 � CkrA�1vk
1
2

L2
kvk

1
2

L2
; k…kH1 � CkvkL2 : (5.5)

Therefore, we are led to
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4

� d
dt
kvk2] C

��

2
kvk2

L2

D �

Z
�

��1 � �2
2

�
�
@tu � A�1v dx �

Z
�

��1 C �2
2

� �
�
@tuH � A�1v dx

�

Z
�

�
�.�/.u � r/u � �.uH � r/uH

�
� A�1v dx

C

Z
�

��1 � �2
2

��
.r� � r/u

�
� A�1v dx �

Z
�

.�.�/ � �.�H //DuH W rA�1v dx

C

Z
�

r� ˝r� � r�H ˝r�H W rA�1v dx C
Z
�

�0.�/DA�1vr� � v dx

�
1

2

Z
�

�0.�/r� � v… dx: (5.6)

On the other hand, multiplying (5.2)2 by A�1', where A is the Laplace operator with
homogeneous Neumann boundary conditions, and integrating over �, we get

1

2

d
dt
k'k2� C

1

2
kr'k2

L2
� Ck'k2� C

Z
�

' u � rA�1' dx C
Z
�

�H v � rA�1' dx (5.7)

(see [25, proof of Theorem 3.1] for more details). We proceed with the estimate of the
terms on the right-hand side of (5.6) and (5.7). To this end, we will exploit the following
bounds on the solution:

k.u;uH /kL1.0;T0IH1� /\L2.0;T0IH2� .�//\W 1;2.0;T0IL2� / � K0;

k.�; �H /kL1.0;T0IW 2;6.�// C kr�kL1.0;T0IL2.�// � K0;
(5.8)

where K0 is a constant depending on the norms of the initial conditions. Exploiting these
estimates, we haveˇ̌̌Z

�

��1 � �2
2

�
�
@tu � A�1v dx

ˇ̌̌
�

ˇ̌̌�1 � �2
2

ˇ̌̌
k�kL1k@tukL2kA�1vkL2

� Ckvk2] C C
ˇ̌̌�1 � �2

2

ˇ̌̌2
k@tuk2L2

and ˇ̌̌Z
�

��1 C �2
2

� �
�
@tuH � A�1v dx

ˇ̌̌
� Ckvk2] C C

ˇ̌̌�1 C �2
2

� �
ˇ̌̌2
k@tuHk2L2 :

By Sobolev embeddings, we findˇ̌̌Z
�

�
�.�/.u � r/u � �.uH � r/uH

�
� A�1v dx

ˇ̌̌
�

ˇ̌̌Z
�

�.�/.v � r/u � A�1v dx
ˇ̌̌
C

ˇ̌̌Z
�

�.�/.uH � r/v � A�1v dx
ˇ̌̌

C

ˇ̌̌Z
�

�
�.�/ � �

�
.uH � r/uH � A�1v dx

ˇ̌̌
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� ��kvkL2krukL6kA�1vkL3

C

ˇ̌̌Z
�

�.�/.uH � r/A�1v � v dx C
Z
�

�0.�/.r� � uH /
�
v � A�1v

�
dx
ˇ̌̌

C k�.�/ � �kL1kuHkL6kruHkL2kA�1vkL3

�
��

16
kvk2

L2
C C.1C kuk2

H2/kvk2] C �
�
krA�1vkL2kuHkL1kvkL2

C

ˇ̌̌�1 � �2
2

ˇ̌̌
kr�kL1kuHkL6kvkL2kA�1vkL3

C C.K0/
�ˇ̌̌�1 � �2

2

ˇ̌̌2
C

ˇ̌̌�1 C �2
2

� �
ˇ̌̌2�

�
��

8
kvk2

L2
C C.K0/

�
1C kuk2

H2 C kuHk2H2

�
kvk2]

C C.K0/
�ˇ̌̌�1 � �2

2

ˇ̌̌2
C

ˇ̌̌�1 C �2
2

� �
ˇ̌̌2�
;

and ˇ̌̌Z
�

��1 � �2
2

� �
.r� � r/u

�
� A�1v dx

ˇ̌̌
�

ˇ̌̌�1 � �2
2

ˇ̌̌
kr�kL2krukL3kA�1vkL6

� Ckvk2] C C.K0/
ˇ̌̌�1 � �2

2

ˇ̌̌2
kruk2

L3
:

In a similar way as in [25, proof of Theorem 5.1], we obtainˇ̌̌Z
�

.�.�/ � �.�H //DuH W rA�1v dx
ˇ̌̌
� Ck'kL6kDuHkL3krA�1vkL2

�
1

6
kr'k2

L2
C CkuHk2H2kvk2] ;ˇ̌̌Z

�

.r�˝r��r�H˝r�H/ WrA�1v dx
ˇ̌̌
�
�
kr�kL1Ckr�HkL1

�
kr'kL2krA�1vkL2

�
1

6
kr'k2

L2
C C.K0/kvk2] ;

andˇ̌̌Z
�

�0.�/DA�1vr� � v dx
ˇ̌̌
� CkDA�1vkL2kr�kL1kvkL2 �

��

8
kvk2

L2
C C.K0/kvk2] ;ˇ̌̌̌

1

2

Z
�

�0.�/ .r� � v/… dx
ˇ̌̌̌
� Ckr�kL1kvkL2k…kL2 �

��

8
kvk2

L2
C C.K0/kvk2] ;ˇ̌̌̌Z

�

' u � rA�1' dx
ˇ̌̌̌
�
1

6
kr'k2

L2
C Ckuk2

H2.�/
k'k2�;ˇ̌̌̌Z

�

�H v � rA�1' dx
ˇ̌̌̌
�
��

8
kvk2

L2
C Ck'k2�:
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Collecting the above estimates together, we find the differential inequality

d
dt

���1 C �2
4

�
kvk2] C

1

2
k'k2�

�
� f1.t/

�
kvk2] C k'k

2
�

�
C f2.t/

�ˇ̌̌�1 � �2
2

ˇ̌̌2
C

ˇ̌̌�1 C �2
2

� �
ˇ̌̌2�
;

where

f1.t/ D C.K0/
�
1C kuHk2H2 C kuk2H2

�
;

f2.t/ D C.K0/
�
1C k@tuHk2L2 C kuHk

2
H2 C k@tuk2L2 C kuk

2
H2

�
:

Here, the positive constant C depends on the norm of the initial data and the time T0. By
using the Gronwall lemma, together with initial conditions (5.3)2, we infer that

kv.t/k2] C k'.t/k
2
� �

�ˇ̌
�1��2
2

ˇ̌2
C
ˇ̌
�1C�2
2
� �

ˇ̌2�
min

®
�1C�2
4

; 1
2

¯ Z t

0

e
R t
s f1.r/ drf2.s/ ds; 8 t 2 Œ0; T0�:

Thus, the above inequality implies that

ku.t/ � uH .t/k.H1� /0 C k�.t/ � �H .t/k.H1/0

�
C.K0/

min¹
p
��; 1º

�ˇ̌̌�1 � �2
2

ˇ̌̌
C

ˇ̌̌�1 C �2
2

� �
ˇ̌̌�
; 8 t 2 Œ0; T0�;

where the positive constant C.K0/ depends on the norm of the initial data, the time T0
and the parameters of the systems.

A. On the convective viscous Cahn–Hilliard system

Given ˛ > 0 and an incompressible velocity field u, we consider the convective viscous
Cahn–Hilliard (cvCH) system´

@t� C u � r� D ��
� D ˛@t� ��� C‰

0.�/
in � � .0; T /; (A.1)

with boundary and initial conditions

@n� D @n� D 0 on @� � .0; T /;

�.�; 0/ D �0 in �:
(A.2)

We observe that (A.1) can be rewritten as

@t .� � ˛��/C u � r� D �.��� C F 0.�/ � �0�/ in � � .0; T /:

We state well-posedness and regularity results for system (A.1). The aim of this appendix
is to extend the analysis performed in [32] to the convective case under minimal assump-
tions on the velocity field. In particular, we focus on the regularity of the chemical poten-
tial �.
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Theorem A.1. Let � be a bounded domain of class C 3 in R3. We assume that
u 2 L1.0; T I L2� .�/ \ L3.�//, �0 2 H 1.�/ \ L1.�/ such that k�0kL1 � 1 and
j�0j < 1. Then, there exists a unique weak solution to (A.1)–(A.2) such that

� 2 L1.0; T IH 1.�/ \ L1.�// with j�.x; t/j < 1 a.e. in � � .0; T /;

� 2 L2.0; T IH 2.�// \W 1;2.0; T IL2.�//;

� 2 L2.0; T IH 2.�//; F 0.�/ 2 L2.0; T IL2.�//;

(A.3)

which satisfies (A.1) almost everywhere in � � .0; T /, (A.2) almost everywhere on
@� � .0; T / and �.�; 0/ D �0.�/ in �. In addition, the following regularity results hold:

(R1) If ���0 C F 0.�0/ 2 L2.�/ and @tu 2 L
4
3 .0; T IL1.�//, we have

@t� 2 L
1.0; T IL2.�// \ L2.0; T IH 1.�//;

� 2 L1.0; T IH 2.�//; � 2 L1.0; T IH 2.�//:

(R2) Let the assumptions of (R1) hold. Suppose that k�0kL1 � 1 � ı0, for some
ı0 2 .0; 1/. Then, there exists ı > 0 such that

max
.x;t/2��Œ0;T �

j�.x; t/j � 1 � ı; (A.4)

and
� 2 L2.0; T IH 3.�//:

(R3) Let the assumption of (R2) hold. Suppose that �0 2 H 3.�/ such that @n� D 0

on @�, and @tu 2 L2.0; T IL
6
5 .�//. Then, we have

� 2 L1.0; T IH 3.�//; @t� 2 L
1.0; T IH 1.�// \ L2.0; T IH 2.�//;

@2t � 2 L
2.0; T IL2.�//; @t� 2 L

2.0; T IL2.�//:

Proof. The proof is divided into several parts. We notify the reader that the estimates
proved herein are not independent of the viscous parameter ˛.

Existence. The existence of a weak solution satisfying (A.3) is proved in a classical way1.
We proceed here by proving the basic energy estimates. First, we observe that, by inte-
grating (A.1)1 over � and using the boundary conditions, we have

�.t/ D �0 and @t�.t/ D 0 8 t 2 Œ0; T �: (A.5)

Multiplying (A.1)1 by �, integrating over�, and using the boundary conditions (A.2) and
[34, Ch. IV, Lemma 4.3], we find

d
dt

�Z
�

1

2
jr�j2 C‰.�/ dx

�
C kr�k2

L2
C ˛k@t�k

2
L2
D

Z
�

� u � r� dx:

1The interested reader might exploit the combination of the Galerkin method with the approximation
of the logarithmic potential by smooth potentials (see, e.g., [32], or [13] for a different approach).
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By the Hölder inequality and the boundedness of �, we simply obtain

d
dt

�Z
�

1

2
jr�j2 C‰.�/ dx

�
C
1

2
kr�k2

L2
C ˛k@t�k

2
L2
�
1

2
kuk2

L2
:

Thus, integrating over Œ0; T � and using the continuity of ‰, we have

kr�kL1.0;T IL2.�// C kr�kL2.0;T IL2.�// C k@t�kL2.0;T IL2.�//

� C˛
�p
Efree.�0/C kukL2.0;T IL2.�//

�
: (A.6)

In light of (2.1) and (A.5), we infer that

k�kL1.0;T IH1.�// � C˛
�p
Efree.�0/C kukL2.0;T IL2.�// C j�0j

�
: (A.7)

Now, multiplying (A.1)2 by ��� and integrating over �, we get

˛

2

d
dt
kr�k2

L2
C k��k2

L2
C

Z
�

�F 0.�/�� dx D
Z
�

r� � r� dx C �0kr�k2L2 :

The third term on the left-hand side is clearly positive by monotonicity. Then, using (A.7)
we obtainZ T

0

k��.�/k2
L2

d� �
˛

2
kr�0k

2
L2
CC˛.1C T /

�p
Efree.�0/CkukL2.0;T IL2.�//

�2
; (A.8)

which entails that

k�kL2.0;T IH2.�// � C˛
�
1Ckr�0kL2 C

p
1CT

�p
Efree.�0/CkukL2.0;T IL2.�//

��
: (A.9)

Next, we control the total mass of the chemical potential. Arguing as for the Cahn–Hilliard
equation, we multiply (A.1)2 by � � � and integrate over �. We findZ

�

jr�j2 dx C
Z
�

F 0.�/.� � �/ dx

D

Z
�

�.� � �/ dx C �0k� � �k2L2 � ˛
Z
�

@t�.� � �/ dx:

By using the Poincaré inequality and (A.3)1, we findZ
�

F 0.�/.� � �/ dx � C˛.1C kr�kL2 C k@t�kL2/;

for some C˛ depending on �, �0 and ˛. We are now in position to control a full Sobolev
norm of �. Thanks to [32, Proposition A.1], there exist two positive constants C1, C2
(depending only on �0/ such thatZ

�

jF 0.�/j dx � C1

Z
�

F 0.�/.� � �0/ dx C C2;
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thus we infer that

kF 0.�/kL1 � C˛.1C kr�kL2 C k@t�kL2/:

Since � D F 0.�/ � �0�0, the above control yields

j�j � C˛.1C kr�kL2 C k@t�kL2/: (A.10)

As a result, it immediately follows that

k�kL2.0;T IH1.�// � C˛
�p
T C

p
Efree.�0/C kukL2.0;T IL2.�//

�
: (A.11)

In addition, by using (A.1)1, we observe that

k��kL2 � k@t�kL2 C kukL3kr�kL6 :

Then, combining the elliptic regularity with (A.6) and (A.9), we find

k�kL2.0;T IH2.�// � C.˛;Efree.�0/; T /
�
.1C kukL1.0;T IL3.�///

� .1C kukL2.0;T IL2.�///
�
: (A.12)

By comparison with terms in (A.1)2, a similar estimate can be obtained for F 0.�/ in
L2.0; T IL2.�//.

Uniqueness. Let �1, �2 be two weak solutions. We define the solutions difference by
 D �1 � �2 which solves

@t C u � r D �
�
˛@t �� C‰

0.�1/ �‰
0.�2/

�
in � � .0; T /:

Since  .t/ D 0 for all t 2 Œ0; T �, multiplying by A�1 , where the operator A is the
Laplace operator �� with homogeneous Neumann boundary conditions, and integrating
over �, we obtain

1

2

d
dt

�
krA�1 k2

L2
C ˛k k2

L2

�
C kr k2

L2
�

Z
�

 u � rA�1 dx C �0k k2L2 :

Here, we have used that F 0 is a monotone function. Observing thatˇ̌̌Z
�

 u � rA�1 dx
ˇ̌̌
� k kL2kukL3krA�1 kL6 � CkukL3k k2L2 ;

it is easily seen that

1

2

d
dt

�
krA�1 k2

L2
C ˛k k2

L2

�
� C.1C kukL3/k k2L2 :

An application of the Gronwall lemma yields

krA�1 .t/k2
L2
C ˛k .t/k2

L2
�
�
krA�1 .0/k2

L2
C ˛k .0/k2

L2

�
eC˛

R t
0 .1Cku.�/kL3 / d�

for all t 2 Œ0; T �, which implies the uniqueness of the solution.
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Regularity 1. For h 2 .0; 1/, we define the notation @ht f .�; t / D
1
h
.f .�; t C h/� f .�; t //.

We observe that � 2 C.Œ0; T �IH 1.�// and u 2 C.Œ0; T �IL1.�//; thereby, we can extend
both � and u on Œ0; T C 1� by �.t/D �.T / and u.t/D u.T / for t 2 .T;T C 1�. It follows
from (A.1) that

@t@
h
t � C @

h
t u � r�.� C h/C u � r@ht � D �."@t@

h
t � ��@

h
t � C @

h
t‰
0.�// (A.13)

in � � .0; T /. We multiply the above equation by A�1@ht � and integrate over �. Exploit-
ing the monotonicity of F 0, the boundary condition of u and the Agmon inequality (2.3),
we obtain

1

2

d
dt

�
krA�1@ht �k

2
L2
C ˛k@ht �k

2
L2

�
C kr@ht �k

2
L2

�

Z
�

�.� C h/@ht u � rA
�1@ht � dx C

Z
�

@ht � u � rA�1@ht � dx C �0k@ht �k
2
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� k@ht ukL1krA
�1@ht �kL1 C k@

h
t �kL2kukL3krA

�1@ht �kL6 C �0k@
h
t �k

2
L2

� Ck@ht ukL1k@
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t �k

1
2

L2
kr@ht �kL2 C C.1C kukL3/k@

h
t �k

2
L2

�
1

2
kr@ht �k

2
L2
C Ck@ht uk

4
3

L1

�
1C k@ht �k

2
L2

�
C C.1C kukL3/k@ht �k

2
L2
:

The Gronwall lemma entails

˛k@ht �.t/k
2
L2
C

Z t

0

kr@ht �.�/k
2
L2

d�

�

�
krA�1@ht �.0/k

2
L2
C ˛k@ht �.0/k

2
L2
C C

Z t

0

k@ht u.�/k
4
3

L1
d�
�

e
R t
0 g.�/ d� (A.14)

for all t 2 Œ0; T �, where g.�/ D C˛.1C kukL3 C k@ht uk
4
3

L1
/. In order to control the right-

hand side, we compute

1

2

d
dt

�
krA�1.� � �0/k

2
L2
C ˛k� � �0k

2
L2

�
D .˛@t� � �; � � �0/C .� u;rA�1.� � �0//
D .�� �‰0.�/; � � �0/C .� u;rA�1.� � �0//
D .�.� � �0/ � .F

0.� � F 0.�0//; � � �0/„ ƒ‚ …
�0

C.��0 � F
0.�0/; � � �0/

C �0.�; � � �0/C .� u;rA�1.� � �0//:

Therefore, we have

1

2

d
dt

�
krA�1.� � �0/k

2
L2
C ˛k� � �0k

2
L2

�
� C

�
1C k��0 � F

0.�0/kL2 C kukL2
�
k� � �0kL2 :
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Thanks to [34, Chap. IV, Lemma 4.1], we arrive at

krA�1.�.t/ � �0/k
2
L2
C ˛k�.t/ � �0k

2
L2

�

�
C˛.1C k��0 � F

0.�0/kL2/t C C˛

Z t

0

ku.�/kL2 d�
�2

for all t 2 Œ0; T �. By choosing t D h, we deduce that

krA�1@ht �.0/k
2
L2
C ˛k@ht �.0/k

2
L2
� C˛

�
1C k��0 � F

0.�0/k
2
L2
C kuk2

L1.0;T IL2.�//

�
:

(A.15)
Since

k@ht ukL 4
3 .0;T IL1.�//

� k@tuk
L
4
3 .0;T IL1.�//

;

by combining (A.14) and (A.15), we obtain

˛k@ht �.t/k
2
L2
C

Z t

0

kr@ht �.�/k
2
L2

d� � C˛D.T /eG.T /; (A.16)

for all t 2 Œ0; T �, where

D.T / D 1C k��0 � F
0.�0/k

2
L2
C kuk2

L1.0;T IL2.�//
C k@tuk

4
3

L
4
3 .0;T IL1.�//

;

G.T / D

Z T

0

C˛.1C ku.�/kL3/ d� C C˛

Z T

0

k@tu.�/k
4
3

L1
d�:

In light of the convergence @ht � ! @t� in L2.0; T IL2.�// as h! 0, we infer that

k@t�kL1.0;T IL2.�// C k@t�kL2.0;T IH1.�// � C
�
˛; T; k��0 � F

0.�0/kL2 ; kukXT
�
;

(A.17)
where XT D L1.0; T IL3.�// \W 1; 43 .0; T IL1.�//. Next, we derive further regularity
properties on � and �. By the incompressibility constraint, we recall that kr�kL2 �
C.k@t�kL2 C kukL2/. Then, thanks to (A.10) and (A.17), we easily have

k�kL1.0;T IH1.�// � C
�
˛; T; k��0 � F

0.�0/kL2.�/; kukXT
�
: (A.18)

As a consequence, by [25, Theorem A.1], we get

k�kL1.0;T IH2.�// C kF
0.�/kL1.0;T IL2.�// � C

�
˛; T; k��0 � F

0.�0/kL2.�/; kukXT
�
:

(A.19)
Finally, since we have u 2 L1.0; T IL3.�// and r� 2 L1.0; T IL6.�//, by comparison
with terms in (A.1)1, we also find

k�kL1.0;T IH2.�// � C
�
˛; T; k��0 � F

0.�0/kL2.�/; kukXT
�
: (A.20)

Regularity 2. Let us now write (A.1)2 as follows:

˛@t� ��� C F
0.�/ D h in � � .0; T /; (A.21)

where h D � C �0�. Thanks to (A.20), h 2 L1.0; T IL1.�//. Next, we consider the
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ODE problems´
˛@tU C F

0.U / D H;

U.0/ D 1 � ı0;

´
˛@tV C F

0.V / D H;

V.0/ D �1C ı0
in .0; T /; (A.22)

where H D khkL1 and H D �khkL1 . It is not difficult to show that there exist two
unique solutions U; V 2 C.Œ0; T �/ with Ut ; Vt 2 L1.0; T /. In particular, since we have
lims!˙1F

0.s/D˙1 andH;H 2 L1.0; T /, a simple comparison argument entails that
there exists ı > 0 such that

�1C ı � V.t/ � U.t/ � 1 � ı; 8 t 2 Œ0; T �:

More precisely, it can be checked that 1� ı �max¹1� ı0; .F 0/�1.kHkL1.0;T //º. We are
left to show that V.t/� �.x; t/� U.t/ in�� Œ0; T �. To this aim, we use the Stampacchia
method. We define w D � � U and we consider the problem´

˛@tw C u � r� ��� C F 0.�/ � F 0.U / D h �H in � � .0; T /;

w.0/ D �0 � 1C ı0 in �:
(A.23)

Multiplying the equation by wC D max¹� � U; 0º and integrating over �, and using that
r� D rwC on the set ¹x 2 � W � � U º, we find

˛

2

d
dt
kwCk2

L2
C

Z
�

.u � rwC/wC dx C krwCk2
L2
C

Z
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.F 0.�/ � F 0.U //wC dx
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Z
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.h �H/wC dx:

By the monotonicity of F 0, it follows that

d
dt
kwCk2

L2
� 0 H) kwC.t/k2

L2
� kwC.0/k2

L2
D 0; 8 t 2 Œ0; T �;

which in turn gives the desired result, namely, �.x; t/ � U.t/ in � � Œ0; T �. A similar
argument entails that V.t/ � �.x; t/ in�� Œ0; T �. Therefore, we obtain by continuity the
so-called separation property

max
.x;t/2��Œ0;T �

j�.x; t/j � 1 � ı: (A.24)

As a consequence, it follows from (A.19) that ‰0.�/ 2 L1.0; T IH 1.�//. Then, we
deduce by comparison with terms in (A.1)2 and by elliptic regularity that

k�kL2.0;T IH3.�// � C
�
˛; T; ı; k��0 � F

0.�0/kL2 ; kukXT
�
:
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Regularity 3. Thanks to the above regularity, we rewrite (A.13) as followsZ
�

@t@
h
t � v C ˛r@t@

h
t � � rv dx C

Z
�

@ht .u � r�/v dx

D

Z
�

.r�@ht � � r@
h
t‰
0.�// � rv dx (A.25)

for all v 2 H 1.�/. Taking v D @ht � and exploiting the boundary conditions of � and u,
we find
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:

Here, we used separation property (A.24) and the inequality k@ht �kH2 � Ck�@ht �kL2 .
Then, we infer from the Gronwall lemma that
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for all t 2 Œ0; T �, where

zG.T / D C˛

Z T

0

.1C ku.�/kL3/ d�:

Since @n�0 D 0 on @� by assumption, we observe that
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Thus, we obtain
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By using [34, Chap. IV, Lemma 4.1] and taking t D h, we arrive at
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H3 C kuk2L1.0;T IL2.�//

�
: (A.27)

Combining the above inequality with (A.26), we are led to
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for all t 2 Œ0; T �, which, in turn, implies

k@t�kL1.0;T IH1.�// C k@t�kL2.0;T IH2.�// � C.˛; T; ı; k�0kH3 ; kukYT /; (A.28)

where YT D L1.0; T IL3.�// \W 1;2.0; T IL
6
5 .�//. As an immediate consequence, in

light of (A.19), (A.20) and (A.24), we infer by comparison with terms in (A.1)2 and by
elliptic regularity (cf. the fact that � is C 3) that

k�kL1.0;T IH3.�// � C.˛; T; ı; k�0kH3.�/; kukYT /: (A.29)

Next, we take v D A�1@ht @t� in (A.25). Exploiting (A.24) and (A.28), we obtain
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By recalling (A.27), the Gronwall lemma entailsZ T

0

k@ht @t�k
2
L2

d� � C.˛; T; ı; k�0kH3 ; kukYT /; (A.30)

which, in turn, gives that there exists @2t � 2 L
2.0; T IL2.�// such that

k@2t �kL2.0;T IL2.�// � C.˛; T; ı; k�0kH3 ; kukYT /:

Thus, by comparison with terms in (A.1), we conclude that there exists @t� 2 L2.0; T I
L2.�// such that

k@t�kL2.0;T IL2.�// � C.˛; T; ı; k�0kH3.�/; kukYT /:

The proof is complete.
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[33] M. Shokrpour Roudbari, G. Şimşek, E. H. van Brummelen, and K. G. van der Zee, Diffuse-
interface two-phase flow models with different densities: a new quasi-incompressible form and
a linear energy-stable method. Math. Models Methods Appl. Sci. 28 (2018), no. 4, 733–770
Zbl 1390.76047 MR 3786793

[34] R. E. Showalter, Monotone operators in Banach space and nonlinear partial differential equa-
tions. Math. Surv. Monogr. 49, American Mathematical Society, Providence, RI, 1997
Zbl 0870.35004 MR 1422252

[35] X. Zhao, Strong solutions to the density-dependent incompressible Cahn-Hilliard-Navier-
Stokes system. J. Hyperbolic Differ. Equ. 16 (2019), no. 4, 701–742 Zbl 1441.35205
MR 4070940

Received 28 October 2021; revised 19 April 2022.

Andrea Giorgini
Department of Mathematics, Huxley Building, Imperial College London, 180 Queen’s Gate,
South Kensington, London SW7 2AZ, United Kingdom; a.giorgini@imperial.ac.uk

https://zbmath.org/?q=an:1390.76047&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=3786793
https://zbmath.org/?q=an:0870.35004&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=1422252
https://zbmath.org/?q=an:1441.35205&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=4070940
mailto:a.giorgini@imperial.ac.uk

	1. Introduction
	2. Notation and functional spaces
	3. Proof of Theorem 1.1. Part one: Existence of solutions
	3.1. Approximation of the initial datum
	3.2. Definition of the approximated problem
	3.3. Existence of approximate solutions
	3.4. Uniform estimates independent of the approximation parameters
	3.5. Passage to the limit and existence of strong solutions

	4. Proof of Theorem 1.1. Part two: Uniqueness
	5. Proof of Theorem 1.2: Stability
	A. On the convective viscous Cahn–Hilliard system
	References

