
Published in Transactions on Machine Learning Research (09/2023)

An Option-Dependent Analysis of Regret Minimization
Algorithms in Finite-Horizon Semi-MDP

Gianluca Drappo
Department of Electronics, Information and Bioengineering
Politecnico di Milano gianluca.drappo@polimi.it

Alberto Maria Metelli
Department of Electronics, Information and Bioengineering
Politecnico di Milano albertomaria.metelli@polimi.it

Marcello Restelli
Department of Electronics, Information and Bioengineering
Politecnico di Milano marcello.restelli@polimi.it

Reviewed on OpenReview: https: // openreview. net/ forum? id= VP9p4u9jAo

Abstract

A large variety of real-world Reinforcement Learning (RL) tasks are characterized by a
complex and heterogeneous structure that makes end-to-end (or flat) approaches hardly
applicable or even infeasible. Hierarchical Reinforcement Learning (HRL) provides general
solutions to address these problems thanks to a convenient multi-level decomposition of the
tasks, making their solution accessible. Although often used in practice, few works provide
theoretical guarantees to justify this outcome effectively. Thus, it is not yet clear when
to prefer such approaches compared to standard flat ones. In this work, we provide an
option-dependent upper bound to the regret suffered by regret minimization algorithms in
finite-horizon problems. We illustrate that the performance improvement derives from the
planning horizon reduction induced by the temporal abstraction enforced by the hierarchical
structure. Then, focusing on a sub-setting of HRL approaches, the options framework, we
highlight how the average duration of the available options affects the planning horizon
and, consequently, the regret itself. Finally, we relax the assumption of having pre-trained
options to show how, in particular situations, is still preferable a hierarchical approach over
a standard one.

1 Introduction

Hierarchical Reinforcement Learning (HRL, Pateria et al., 2021) is a learning paradigm that decomposes a
long-horizon Reinforcement Learning (RL, Sutton & Barto, 2018) task into a sequence of potentially shorter
and simpler sub-tasks. The sub-tasks could be further divided, generating a hierarchical structure organized
at arbitrary levels. Each of these defines a different problem, where the original action space is replaced
by the set of sub-tasks available on the lower level, and the same could be replicated for multiple levels.
Although, the actual state transition is induced only once the control reaches the leaf nodes, where the
policies choose among the primitive actions (i.e., actions of the original MDP on top of which the hierarchy
is constructed). For the higher levels, once a sub-task is selected, the control passes to the relative internal
policy until its termination. This introduces the concept of temporal abstraction (Precup & Sutton, 1997),
for what concerns the high-level policy, the action persists for a certain time, resulting in an actual reduction
of the original planning horizon.

Several algorithms demonstrate outstanding performance compared to standard RL approaches in several
long-horizon problems (Levy et al., 2019; Vezhnevets et al., 2017; Bacon et al., 2017; Nachum et al., 2018).
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However, such evidence is mainly emerging in practical applications, and the theoretical understanding
of the inherent reasons for these advantages is still underdeveloped. Only a few papers tried to justify
these advantages theoretically, focusing on different aspects. For instance, Mann et al. (2015) studies the
convergence of an algorithm that uses temporally extended actions instead of primitive ones. Fruit et al.
(2017) and the extension Fruit & Lazaric (2017) focus on the exploration benefit of using options in average
reward problems. Finally, more recently, Wen et al. (2020) show how the MDP structure affects regret.

In this paper, we seek to further bridge this theory-practice gap by analyzing the impact of temporal
abstraction on the complexity of finite-horizon problems, a class in which the influence of a hierarchical
structure naturally emerges. The complexity of solving a finite-horizon MDP depends on the length of the
planning horizon. Intuitively, the longer the planning horizon, the more complex the problem. Introducing
a hierarchy of sub-tasks temporally partitioned the problem into many different potentially shorter sub-
problems. As mentioned above, once a level policy selects an action, the control passes to the lower level
until the sub-task terminates. Typically, if the hierarchy is well constructed, a sub-task would execute for
more than one primitive step, during which the high-level has neither control over what is happening, and
often, nor visibility. Thus, concerning a policy that selects among sub-tasks, the number of actions (sub-tasks
in this case) played in one episode depends on the duration of the available sub-tasks and is smaller than the
original amount. This procedure produces an actual planning horizon reduction, scaled down by this term
proportional to the sub-tasks duration, resulting in a less complex problem than the original one.

Firstly, we extend the formalism of FH-MDP to include temporally extended actions, defining an FH-SMDP.
Then, we show that standard algorithms for FH-MDPs, can not be used to find a solution in this new setting,
being unable to treat temporally extended actions properly. Therefore, we propose an approach, FH-SMDP-
UCRL, to solve Finite-Horizon Semi-Markov Decision Processes when a set of fixed pre-trained sub-tasks
policies are given (options) to theoretically demonstrate this effective improvement in complexity compared
to a standard approach for Finite-Horizon MDPs. Moreover, to move toward a more realistic application
of Hierarchical methods, we provide insights to characterize problems in which the benefits above persist
even when no fixed policies are available. We present an Explore-Then-Commit approach (Lattimore &
Szepesvári, 2020), that first separately learns each sub-task policy and then exploits FH-SMDP-UCRL to
solve the SMDP with fixed policies. Afterward, we theoretically prove that this second approach would
also benefit performance in specific MDPs compared to a standard approach. Eventually, both these results
could help to discriminate among problems in which a hierarchical approach could be more effective than a
standard one.

Contributions The paper’s contributions can be summarized as follows. (1) We propose a new algorithm
for the finite-horizon setting that exploits a set of fixed options (Sutton et al., 1999) to solve the HRL
problem (Section 4). (2) We conducted a regret analysis of this algorithm, providing an option-dependent
upper bound, which, to the best of our knowledge, is the first in the Finite Horizon setting. This result could
be used to define new objective functions for options discovery methods to search for options minimizing
this regret (Section 4.1). (3) For the sake of our analysis, we formulate the notion of Finite Horizon SMDP
and a performance difference lemma for this setting (Section 3, 7). (4) We conducted a finer analysis to
bound the expected number of temporally extended actions selected in one episode, resorting to the renewal
process theory (Section 5). (5) Lastly, we extend our analysis to the options policies learning; we present
an Explore-Then-Commit approach and characterize a class of problems more efficiently solvable through
a Hierarchical approach, even when no set of pre-trained policies is available (Section 6). Therefore, we
demonstrate that there are problems for which better guarantees in terms of sample complexity are achieved
when solved by a hierarchical approach when both a set of fixed options are provided and not.

2 Preliminaries and Problem Definition

In this section, we provide the necessary background that will be employed in the remainder of the paper.

Finite-Horizon MDPs A Finite Horizon Markov Decision Process (MDP, Puterman, 2014) is defined as
a tuple M = (S, A, p, r, H), where S and A are the finite state and the primitive action spaces, respectively,
p(s′|s, a, h) is the transition probability function defining the probability of transitioning to state s′ ∈ S by
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taking action a ∈ A in state s ∈ S at stage h ∈ [H]. r(s, a, h) is the reward function that evaluates the
quality of action a ∈ A when taken in state s ∈ S at stage h ∈ [H], and H is the horizon, which defines
the duration of each episode of interaction with the environment. The behavior of an agent is modeled by a
deterministic policy π : S × [H] → A that maps states s ∈ S and stages h ∈ [H] to actions.

Semi-MDP A Semi-Markov Decision Process (SMDP, Baykal-Gürsoy, 2010; Cinlar, 2013) is a gener-
alization of the MDP formalism. It admits temporally extended actions, which, contrary to primitive ones
(i.e., actions that execute for a single time step), can execute for a certain time during which the agent has
no control over the decision process. A usual notion when treating SMDP is the duration or holding time,
τ(s, a, h), which is the number of primitive steps taken inside a temporally extended action.

HRL builds upon the theory of Semi-MDPs, characterizing the concept of temporally extended action with
basically two main formalisms (Pateria et al., 2021): sub-tasks (Dietterich, 2000) and options (Sutton et al.,
1999). For the sake of this paper, we focus on the options framework.

Options An option (Sutton et al., 1999) is a possible formalization of a temporally extended action, which
generalize the standard primitive ones. It can be seen as a fixed policy that acts on its own when selected
until its termination. It consists of three components o = (Io, βo, πo). Io ⊆ S × [H] is the subset of states
and stages pairs (s, h) in which the option can start, βo : S × [H] → [0, 1] defines the probability that an
option terminates in a specific state-stage pair, πo : S × [H] → A is the policy executed until its termination.
An example of an option could be a policy that, in a control problem, executes just a specific task, such as
picking up an object.

Problem Definition Exactly as stated by Sutton et al. (1999, Theorem 1) an MDP in which primitive
actions A are replaced by options O, becomes an SMDP. This paper considers a hierarchical approach for
problems with two-level of temporal abstractions. At the high level, the problem is seen as divided into
different sub-tasks, the options, and at the low level, each sub-task is considered a problem on its own.
More formally, on the top, the goal is to find the optimal policy µ : S × [H] → O, which determines the
optimal option for each state-instant pair, and thus defines the optimal sequence of sub-task to execute. On
the other hand, at the bottom, the problem is to find the optimal option’s policy to execute the respective
sub-task individually. In this work, we first consider a situation in which the latter has already been solved,
and a set of fixed policies are given. Then, we discuss a solution when this assumption fails. Regarding the
former situation, an assumption is needed on the set of options (Fruit et al., 2017) to reach a proper optimal
solution.
Assumption 2.1 (Admissible options). The set of options O is assumed admissible, i.e. {∀o ∈ O, s ∈
S, and h ∈ [H], ∃o′ ∈ O : βo(s, h) > 0 and (s, h) ∈ Io′}.

Average per-episode duration In the following analysis, we will refer to d as the average per-episode
number of decisions taken in an episode of length H.

d = 1
K

K∑
k=1

∑
o∈O

∑
s∈S

∑
h∈[H]

dk(s, o, h) (1)

where dk(s, o, h) is the number of times a temporally extended action (or option) o has been selected in state
s, in step h, in the episode k of interaction with the environment. This quantity is a random variable, being
dependent on the duration of the options, which is a random variable in turn.

2.1 Notation

In the following, we will use Õ(·) to indicate quantities that depend on (·) up to logarithmic terms. 1(x = a)
defines the indicator function

1(x = a) def=
{

0, if x ̸= a

1, if x = a

In the analysis, we denote optimistic terms with ∼ and empirical ones with ∧, e.g., p̃ and r̂ are, respectively,
the optimistic transition model and the estimated reward function.
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3 Finite Horizon SMDP

In this section, we present a new formalism, Finite-Horizon Semi-Markov Decision Processes, that combines
the notion used in FH-MDP with the concept of temporal abstraction.

A finite-horizon semi-MDP is defined as a tuple SM = (S, O, p, r, H), where S and O are the finite state
and the temporally extended action spaces, respectively, p(s′, h′|s, o, h) is the probability of ending to state
s′ ∈ S, after (h′ − h) steps, by playing the temporally extended action o ∈ O in state s ∈ S at stage h ∈ [H].
On the other hand, r(s, o, h) is the expected reward accumulated until the termination of the temporally
extended action o ∈ O played in state s ∈ S at stage h ∈ [H] of the episode. Finally, H is the horizon of
interaction, and we define as τ(s, o, h) the random number of primitive steps taken when playing a temporally
extended action o. The agent’s behavior is modeled by a deterministic policy µ : S × [H] → O mapping a
state s ∈ S and a stage h ∈ [H] to a temporally extended action. The goal of the agent is to find a policy
µ∗ that maximizes the value function, defined as the expected sum of the rewards collected over the horizon
of interaction and recursively defined as:

V µ(s, h) = E(s′,h′)∼p(·|s,µ(s,h),h)

[
r(s, µ(s, h), h) + V µ(s′, h′)

]
,

with the convention that V µ(s, H) = 0. The value function of any optimal policy is denoted by V ∗(s, h) :=
V µ∗(s, h).

To evaluate the performance of an algorithm in this setting, as commonly used in the provably efficient RL
literature Auer et al. (2008); Azar et al. (2017); Zanette & Brunskill (2018); Fruit & Lazaric (2017), we
define the regret in FH-SMDP as:

Regret For any starting state s ∈ S, and up to the episode K:

Regret(K) def=
K∑

k=1
V ∗(s, 1) − V µk (s, 1) (2)

evaluates the performance of the policy learned until episode k, V µk compared to the value of an optimal
policy V ∗, with µ∗ the optimal policy selecting among options.

Even if this formalism is an extension of FH-MDP, it is impossible to apply the same algorithms used to
solve FH-MDPs directly. The main complication, which will also appear in the analysis, is the uncertainty
over the duration of the temporally extended actions. The number of decision steps taken in one episode is
unknown because it depends on the random number of steps for which each selected temporally extended
action executes.

For this reason, in the next section, we propose a novel algorithm for this setting.

4 FH-SMDP-UCRL

FH-SMDP-UCRL is a variant of the algorithm presented in Fruit & Lazaric (2017), which in turn is inspired
by UCRL2 (Auer et al., 2008) and adapted for FH-SMDPs. This family of algorithms implements the princi-
ple of "optimism in the face of uncertainty", which states that when interacting in unknown environments—
with an unknown model—the decisions have to be guided by a trade-off between what we believe is the best
option and by a term representing the uncertainty on our estimates. More formally, the so-called exploration
bonus is introduced, which quantifies the uncertainty level on our estimations of the model, computed from
the observed samples. This exploration bonus is used to regulate the exploration-exploitation dilemma, in-
ducing the algorithm to explore regions of the space with high uncertainty instead of sticking to what seems
to be the optimal solution and to overcome situations in which the optimal solution resides in a region not
yet discovered.

However, directly applying these algorithms in our setting is unfeasible, as they are designed for infinite-
horizon average reward settings. Due to the lack of methods operating in these settings, we must design a
new algorithm for finite-horizon SMDPs following the same paradigm.
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Algorithm 1: UCRL-FH-SMDP
Input: S, O with fixed policies, H, K
Initialize µ0 at random and Q1(s, o, h) = 0 for all (s, o, h) ∈ S × O × [H]
Execute µ0 for H steps and collect tuples (s, o, h, s′, h′) and r(s, o, h) to store in D1 ;
for k = 1, . . . , K do

Compute nk(s, o, h);
Estimate empirical SMDP ŜMk = (S, O, p̂k, r̂k) with equation 3, equation 4.;
Compute the confidence sets Br

k(s, o, h) and Bp
k(s, o, h) using the confidence interval (equation 5,

equation 6);
Planning with Backward Induction for µk, using an adaptation to finite horizon of Extended Value
Iteration (Auer et al., 2008) (Algorithm 2);

for h = 1, . . . , H do
Execute o = µk(s, h) until it terminates;
Observe (s′, h′) and r(s, o, h);
Add the tuple (s, o, h, s′, h′)k and rk(s, o, h) to Dk+1;
Set h = h′;

end
end

As displayed by Algorithm 1, at each episode k, we compute an estimate of the SMDP model, by computing,
from the collected samples up to episode k, the empirical transition probability p̂k and the reward function
r̂k.

p̂k(s′, h′|s, o, h) =
∑k−1

i=1 1((s, o, h, s′, h′)i = (s, o, h, s′, h′))
nk(s, o, h) (3)

r̂k(s, o, h) =
∑k−1

i=1 ri(s, o, h)
nk(s, o, h) (4)

We then redefine the confidence intervals of these two quantities, βp
k and βr

k, respectively as

βr
k(s, o, h) ∝

√
2V̂ar(r) ln 2/δ

nk(s, o, h) + 7 ln 2/δ

3(nk(s, o, h − 1) , (5)

βp
k(s, o, h) ∝

√
S log

(nk(s,o,h)
δ

)
nk(s, o, h) , (6)

where V̂ar(r) is the sample variance of the reward function. From the estimates and the confidence intervals
just defined, we can build the confidence sets Bp

k and Br
k, which contain, with high probability, the true

model. Then, we define SMk, the set of plausible SMDPs, characterized by rewards and transition models
within the confidence sets. Given SMk we can compute the optimistic policy µ̃k and the relative optimistic
value function Ṽ µk . We use an adaptation of extended value iteration (Auer et al., 2008) for FH-SMDP,
Algorithm 2, which admits multi-step transitions and, thus, temporally extended actions.

Then, by playing this policy for an entire episode, we collect new samples and restart the process for the
next episode k + 1.

4.1 Regret Analysis

In this section, we theoretically analyze the regret suffered by FH-SMDP-UCRL. In particular, we provide
an upper bound highlighting the options set’s dependency.
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Algorithm 2: Extended Value Iteration for FH-SMDP
Input: S, O, Br

k, Bp
k

Set QH+1(s, o) = 0 for all (s, o) ∈ S × O;
for h = H . . . 1 do

for (s, o) ∈ S × O do
for h′ = h + 1 . . . H + 1 do

Compute;

Qhk(s, o) = max
r∈Br

k
(s,o,h)

r(s, o, h) + max
p∈Bp

k
(s,o,h)

Es′,h′∼p(·,·|s,o,h)[Vh′,k(s′)]

Vh′k(s) = min{H − (h′ − 1), max
o∈O

Qh′k(s, o)}
end

end
end
Output: µk(s, h) = argmaxo∈O Qhk(s, o)

Theorem 4.1. Considering a non-stationary Finite Horizon SMDP SM and a set of options O, with
bounded primitive reward r(s, a) ∈ [0, 1]. The regret suffered by algorithm FH-SMDP-UCRL, in K episodes
of horizon H is bounded as:

Regret(K) ≤ Õ

((√
SOKd2

)(
T +

√
SH

))

with probability 1 − δ.
Where:

T = max
s,o,h

√
E[τ(s, o, h)2]

= max
s,o,h

√
E[τ(s, o, h)]2 + Var[τ(s, o, h)],

τ is the holding time, the random number of primitive steps taken when playing a temporally extended action
o, and d is the average per-episode number of played options.

This result introduces one of the main contributions, an option-dependent upper bound on the regret in FH-
MDP with options, not worst-case as in Fruit & Lazaric (2017). A dependency on the properties of an option
set is introduced, embodied into both T and d. The former gives the same interesting consideration already
underlined by Fruit & Lazaric (2017), whereby the extra cost of having actions with random duration is
only partially additive rather than multiplicative. On the other hand, the latter emphasizes the real benefit
of using a hierarchical approach over a flat one. Considering only the dominant term, the regret of FH-
SMDP-UCRL scales with Õ(HS

√
OKd2), where d is the average per-episode number of played options,

which directly depends on the average duration of each option selected. While the regret of UCRL2 adapted
to the finite-horizon setting scales with Õ(HS

√
AKH2) when considering non-stationary transitions. By

definition, d ≤ H, however, for specific classes of problems with a well-constructed hierarchy, d ≪ H, and
O ≤ A, which finally proves the gain in the complexity of using a hierarchical approach over a standard one,
clearly this is valid when a proper set of fixed options is given.

4.2 Derivation of FH-MDP and parallelism with AR-SMDP

To further strengthen the obtained result, we can show that considering some assumptions, we can derive
the upper bound by Auer et al. (2008) adapted to FH-MDPs (Ghavamzadeh et al., 2020), and, by doing
particular consideration, it is possible to underline some similarity between our result and the upper bound
on the regret of the algorithm designed for average reward settings.
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4.2.1 Finite Horizon MDP

Referring to the result provided by Auer et al. (2008) adapted to the finite horizon case (Ghavamzadeh
et al., 2020), the regret in Finite Horizon MDPs scales with Õ(HS

√
AT ), or with Õ(H 3

2 S
√

AT ) when the
MDP is non-stationary, in the sense that the transition kernel is different for each step h ∈ [H]. If, in our
upper bound, we substitute the cardinality of the option set O, with the primitive-action space A. This
leads to having T = 1 and d = H because the primitive actions, by definition, terminate after a single time
step. Thus, the average duration of these single-step options is 1, and the number of decisions taken in one
episode is exactly H. Then, having bounded primitive reward r(s, a) ∈ [0, 1], we can write our result as
Õ(H 3

2 S
√

AKH) and considering the definition of T = KH (Dann et al., 2017; Azar et al., 2017; Zanette &
Brunskill, 2018), we obtain the same equation.

Remark We are aware of the tighter upper bounds in the Finite Horizon literature by Azar et al. (2017),
that get rid of a

√
HS, by tightly bounding the estimation error (p̃ − p)Ṽ µk and their exploration bonus in

terms of the variance of V ∗ at the next state, and by using empirical Bernstein and Freedman’s inequalities
(Maurer & Pontil, 2009; Freedman, 1975). However, with this work, our primary focus is to emphasize the
role played by the options set’s composition instead of providing a very tight analysis. We still think the
same tricks could be used in our analysis to tighten the bound, but we leave that for future work.

4.2.2 Parallelism with Average Reward Setting

Fruit & Lazaric (2017) showed that the regret paid by their algorithm, designed for the Average Reward
setting when considering bounded holding times, and Rmax = 1 is upper bounded by with Õ(DOSO

√
On +

Tmax

√
SOOn). By doing the same, hence considering bounded holding times and Rmax = 1, our result

becomes of order Õ(HS
√

OKd2 + Tmax

√
SOKd2). It is clearly impossible to derive one setting from the

other. Nevertheless, we can spot some similarities between the two bounds. For finite-horizon problems, the
diameter D coincides with the horizon H (Ghavamzadeh et al., 2020). Besides, Kd equals n, the number of
decisions made up to episode K. Then, the state space S is the state space of the SMDP in our formalism,
which is the definition provided for SO in Fruit & Lazaric (2017). The only difference is the additional√

d, which is considered in our work contrary to what has been done in Fruit & Lazaric (2017) due to
non-stationary transitions.

Thus, we prove that our result is a generalization of the case of FH-MDP and closely relates to the result
presented for the Average Reward Setting.

5 Renewal Process

In this section, we provide a more accurate analysis of d, the average per-episode number of options that
are selected in an episode of Horizon H, which, as mentioned above, is a random variable. We resort to
the renewal processes theory Smith (1958) to provide an upper bound on this quantity, which turns out to
depend on both the horizon H and the options set.

The number of options selected in one episode clearly depends on the random duration of each option; hence,
it is a random variable, and we would like to bound it with some quantity. Resorting to the Renewal Theory
(Smith, 1958), this has an analogy with the Renewal Function m(t).
Definition 5.1 (Renewal Process). Let S1, S2 . . . be a sequence of i.i.d. random variables with finite and
non-zero mean, representing the random time elapsed between two consecutive events, defined as the holding
time. For each n > 0 we define Jn =

∑n
i=1 Si, as the time at which the nth event of the sequence terminates.

Then, the sequence of random variables Xt, characterized as

Xt =
∞∑
n

I{Jn≤t} = sup{n : Jn ≤ t} (7)

constitutes a Renewal Process (Xt)t≥0, representing the number of consecutive events that occurred up to
time t.

7



Published in Transactions on Machine Learning Research (09/2023)

Definition 5.2 (Renewal Function). Considering a renewal process (Xt)t≥0, the renewal function m(t) is
the expected number of consecutive events that occurred by time t.

m(t) = E[Xt]

Hence, it is possible to take inspiration from a bound of the renewal function to bound d for a single episode
of length H.
Lemma 5.3. [Bound on number of options played in one episode] Considering a Finite Horizon SMDP SM
with horizon H and, O options with duration τmin ≤ τ ≤ τmax and mino(E[τo]) the expected duration of the
shorter option. The expected number of options played in one episode d̃ can be seen as the renewal function
m(t) of a renewal process up to the instant H. With probability 1 − δ, this quantity is bounded by

d̃ <

√
32(τmax − τmin)H(ln 2 − ln δ)

(mino(E[τo]))3 + H

mino(E[τo])

This bound can also be considered a bound for d, being worst-case, because the denominator is lower bounded
by mino(E[τo]), which is the expected duration of the shorter option. Refer to the appendix for detailed
proof of this result.

6 Option Learning

Clearly, having a set of pre-trained options does not properly characterizes a realistic scenario. It would be
more interesting to study situations in which we relax the assumption of having a set of pre-trained options
and consider known just their initial state set and termination conditions. We can highlight characteristics
of problems more suited to be solved with a hierarchical approach rather than standard ones.

To address this analysis, we decide to present a model-based two-phase approach, Algorithm 4, which uses
Algorithm 3 to learn each option policy individually and subsequently exploits them to solve the SMDP with
FH-SMDP-UCRL. As Algorithm 3 shows, each option is considered as a single FH-MDP, defined based on
its initial-state set and termination probability, as Mo = (So, Ao, p, ro, Ho) where So ⊆ S, Ao ⊆ A, Ho ≤ H,
which means that each option operates on a restricted portion of the original problem, for a specific fixed
horizon Ho. The option’s optimal policy is the policy of the relative sub-FH-MDP computed until episode
Ko, which is the number of episodes assigned to each option.

Nevertheless, if no assumption on the reward function is defined, the options’ optimal policies could be
sub-optimal regarding the optimal policy computed by a standard approach for that portion of the MDP,
being the option’s scope limited to a certain part of the MDP with the impossibility of having feedback on
what happens after its termination.
Therefore we need to state:
Assumption 6.1. Given an MDP M = (S, A, p, r, H) and a set of options o ∈ O, which define a Semi-
MDP SM. Define π∗

o as the optimal policy of the option o learned individually on the sub-MDP Mo =
(So, Ao, p, ro, Ho) with So ⊆ S, Ao ⊆ A, and Ho ≤ H. The reward function ro of the sub-MDP Mo, which
could differ from r, ensure that

π∗(s) = π∗
o(s) ∀s ∈ So , ∀o ∈ µ∗(s)

with π∗(s) the optimal policy on M, and µ∗(s) the optimal policy on SM.

This assumption guarantees that the computed option’s optimal policy equals the optimal policy of the
entire problem in the option’s region for all the options selected by the optimal SMDP policy µ∗.

This assumption is required to highlight the convenience of a hierarchical solution compared to a standard
(flat) one. There exist several problems in which this condition is verified. For instance, let us consider
a manipulation task in which a robot has to pick a die that shows a number, and place it in a differently
defined location, changing the displayed number. This problem could be divided into four different individual
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problems, the object pick-up, the rotation of the die, the movement of an object from a specific position to
a second one, and the drop of the object. When considering all these problems individually, each optimal
policy learned separately for each skill would equal an optimal policy learned when considering the problem
as a whole for the same states. Indeed, the best possible policy to pick up an object would be similar if we
consider the problem as a whole or restricted to a particular region of the state-action space, which is crucial
just for this specific task.

With the result presented in the following section, this assumption characterizes class problems in which
such an approach should be preferred to a standard one.

Algorithm 3: Option Learning
Input: the option o and Ko

Compute Ho for the option o;
Set QHo+1(s, a) = 0 for all (s, a) ∈ (So ⊆ S) × (Ao ⊆ A);
for k = 1, . . . , Ko do

Sample randomly (s, h) in Io;
Compute nk(s, a, h);
Estimate empirical MDP M̂k = (So, Ao, p̂k, r̂k), with an adaptation of eq. 3 and 4 for the flat
model.;

Compute the confidence sets Br
k(s, a, h) and Bp

k(s, a, h) using adaptation of the confidence interval
(equation 5, equation 6) for the flat model;

Planning by backward induction for πohk
with Extended Value Iteration for FH-MDPs

(Ghavamzadeh et al., 2020), in the horizon Ho.;
Play πok

for an episode to collect new samples.;
end
Output: πKo

o .

Algorithm 4: Two-Phase Algorithm
Input: set of options O with random policies, Ko, and K
for o ∈ O do

πKo
o = Option − Learning(o, Ko) ;

end
Output: FH − SMDP − UCRL(S, O, H, K − KoHo)

6.1 Theoretical Analysis Option Learning

Let’s now analyze the regret suffered by the two-phase algorithm that first learns each option policy and then
subsequently solves the relative SMDP. This result is then used to characterize the problems in question.
Theorem 6.2. The regret paid by the two-phase learning algorithm until the episode K is:

Regret(K) ≤ Õ
(

K
2
3 3
√

H5
OS2

OAOO + HS
√

Od2K
)

with HO = maxo∈O Ho, and SO, and AO, respectively, the upper bounds on the cardinality of the state and
action space of the sub-FH-MDPs.

This result shows the regret paid by this two-phase approach for both option learning and the SMDP
resolution. The second term, the non-dominant in the K (number of episodes) dependency, is precisely the
regret paid by FH-SMDP-UCRL. On the other hand, the dominant one comes from the two-phase analysis
and encloses both the regret paid for the option learning and the bias paid for stopping this procedure at
a certain point before the convergence to the optimal options policies. We note that scales with K2/3, but
it was expected for the Explore-Then-Commit nature of the proposed algorithm (Lattimore & Szepesvári,
2020). However, studying a more efficient algorithm is left for future work.
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Given this result, it is now essential to understand if there are any situations in which such an approach
could produce more benefit compared to a standard one. This would lead to defining classes of problems in
which learning using a hierarchical approach almost from scratch should be preferred to a standard one.

In order to do so, we compare the regret paid by our method with the theoretical lower bound for flat FH-
MDPs with non-stationary transition probabilities, which is Ω(H

√
SAT ) (Auer et al., 2008; Ghavamzadeh

et al., 2020). If the comparison results in favor of the hierarchical approach, it would be theoretically possible
to define the characteristics of the problem that would discriminate the preferred framework.

Let R be the ratio between the regret upper bound of our approach and the regret theoretical lower bound.

R = RegretSMDP

Ω(H
√

SAT )
≤ K2/3(H5

OS2
OAOO)1/3

H3/2
√

SAK
(8)

By considering particular relations between the option-MDP and the original one, where AO = αA, SO = αS
and HO = αH, we can rewrite this ratio as:

R ≤ K1/6α8/3H1/6S1/6O1/3

A1/6 (9)

R ≤ 1 is the condition that determines that our approach is preferable over the standard one. Thus, by
imposing it, we can find the maximum number of episodes for which this constraint is satisfied.

K ≤ A

α16HSO2 (10)

The problems with characteristics compliant with this equation are the ones in which a hierarchical approach
should be preferred to a standard one, even when no fixed sub-tasks policies (fixed options) are provided.

Final Sub-Optimality Remark. In both Theorem 4.1, 6.2, we need to consider that, by using a defined
option set, we are introducing a bias. It could be that the optimal policy on the flat problem is irreproducible
by a concatenation of the policies of the options chosen by the optimal high-level policy µ∗. This is because
the structure introduced by the options can cause some states to become inaccessible for the high-level
SMDP. This issue is also treated by Fruit & Lazaric (2017) and produces an additional term on the regret
equal to V ∗(M) − V ∗(MO), where M is the primitive MDP and MO the same MDP with options.

7 Proofs sketch

In this section, we provide the sketch proofs of theorem 4.1 and theorem 6.2. Please refer to the appendix
for all the details.

7.1 Sketch proof of theorem 4.1

We defined the regret in finite horizon problems as in eq. 2. Optimistic algorithms work by finding an
optimistic estimation of the model of the environment to compute the optimistic value function and the
optimistic policy. Considering how the confidence sets are constructed, we can state that p̃ ≥ p and r̃ ≥ r,
where terms without tilde are the real one, hence, V ∗(s, h) ≤ Ṽ µk (s, h) for all h. Thus, we can bound eq. 2
with

Regret(K)
opt
≤

K∑
k=1

Ṽ µk (s, 1) − V µk (s, 1) (11)

Let’s now introduce a Performance Difference Lemma for FH-SMDPs.

10
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Lemma 7.1. [Performance Difference Lemma for FH-SMDP] Given two FH-SMDPs M̂ and M̃ with horizon
H, and respectively rewards r̂, r̃ and transition probabilities p̂, p̃. The difference in the performance of a
policy µk is:

Ṽ µk (s, 1) − V̂ µk (s, 1)

= Ê
[ H∑

i=1

((
r̃(si, oi, hi) − r̂(si, oi, hi)

)
+
(
p̃(si+1, hi+1|si, oi, hi) − p̂(si+1, hi+1|si, oi, hi)

)
Ṽ µk (si+1, hi+1)

)
1{hi < H}

]
where Ê is the expectation taken w.r.t. p̂ and µk.

Note that the summation steps are not unitary but skip according to the length of the transitions h′ − h.
The derivation of this lemma follows the one provided by Dann et al. (2017) for FH-MDPS that is commonly
used in literature (Azar et al., 2017; Zanette & Brunskill, 2018). Check the appendix for further details.

Now we can use lemma 7.1 to substitute the difference of value function in eq. 11 and we can upper bound
both the difference of r and p, with 2 times their confidence intervals and the optimistic value Ṽ µk (si+1, hi+1)
with the horizon H - we consider bounded primitive reward r(s, a) ∈ [0, 1].

Regret(K) ≤
K∑

k=1
E
[ H∑

i=1

(
2βr

k + 2βp
kH
)
1{hi < H}

]
In the Finite-Horizon literature(Dann et al., 2017; Zanette & Brunskill, 2018), two terms are commonly used
in the proofs: (1) wk(s, o, h) that is the probability of taking the option o, in state s at time step h, which
depends on the policy µk and the transition probability of the real SMDP, (2) Lk, which defines the set of
episodes visited sufficiently often, and the set of (s, o, h) that were not visited often enough to cause high
regret. Therefore, for using the same approach to conduct the proof, we can substitute the expectation E,
which is taken w.r.t. the policy µk and the real transition probability p(s′, h′|s, o, h), with∑

(s,o,h)∈Lk

wk(s, o, h)

We defined the confidence intervals of r and p, as in the equations 5, 6, respectively using Empirical Bernstein
Inequality (Maurer & Pontil, 2009), Hoeffding (1963) and Weissman et al. (2003).

By substituting these definitions and the term just introduced, we get, up to numerical constants, that the
regret is bounded by

∑
k

∑
i∈[H]

∑
(s,o,h)∈Lk

wk(si, oi, hi)√
nk(si, oi, hi)

(√
V̂ar(r) +

√
SH + 1√

nk(s, o, h)

)

Lemma 7.2. Considering a non-stationary MDP M with a set of options as an SMDP MO (Sutton et al.,
1999). In MO the number of decisions taken in the kth-episode is a random variable d and∑

i∈H

∑
(s,o)∈Lk

wk(si, oi, hi)1{hi < H} = d with {∀k : d ≤ H}

Therefore, the following holds true:

∑
k

∑
i∈H

∑
(s,o)∈Lk

wk(si, oi, hi)
√

1
nk(si, oi, hi)

= Õ

(√
SOKd2

)

11



Published in Transactions on Machine Learning Research (09/2023)

Substituting the result of Lemma 7.2 in the equation of the regret, we get

Regret(K) ≤ Õ

((√
SOKd2

)(√
V̂ar(r) +

√
SH

)
+ dSO

)
(12)

where as mentioned above, d is the expected number of decision steps taken in one episode, n is the total
number of decisions taken up to episode k, and V̂ar(r) is the empirical variance of the reward that emerged
from the use of Empirical Bernstein inequality. A dependency on the variance of the reward is not that
explainable for what we want to show; hence we upper bound this term by the square root of the empirical
variance T of the duration of the options seen up to episode k, and this complete the proof.

Challenge The main challenge encountered during the analysis, which makes it different from the case of
FH-MDPs, resides under the fact that in a Finite Horizon SMDP, the policy takes a number of temporally
extended actions that are not defined, being the duration of a temporally extended action a random variable
itself. Thus, it is not possible to recursively apply the standard bellman operator to define the performance
difference lemma as in Dann et al. (2017) (Lemma E.5). More precisely, we have a summation of a number of
elements that is a random variable, and thus it is unknown. This, and the fact that we resort to the renewal
process theory (Smith, 1958), to upper bound this unknown variable (d, Section 5), describe the novelty in
our analysis with respect to the standard analysis followed in the FH-MDP literature.

7.2 Sketch proof of theorem 6.2

In order to prove the regret paid by the two-phase algorithm, we first consider that we can write the regret
as the sum of the regret paid in the first phase and the regret paid in the second one, plus an additional
bias term. In the first phase, we pay full regret for each option learning. Then, the bias is defined as the
maximum average regret considering the option learning as a finite horizon MDP with horizon Ho. Finally,
the last term equals the regret of the SMDP learning with fixed options for the remaining episodes.

Regret(K) ≤
∑
o∈O

KoHo︸ ︷︷ ︸
option learning

+ K2 max
o∈O

1
Ko

H2
o So

√
AoKo︸ ︷︷ ︸

bias

+ HS
√

Od2K2︸ ︷︷ ︸
F H−SMDP −UCRL regret

(13)

Where K2 are the episodes used for the SMDP learning and K =
∑

o∈O Ko + K2. Then considering that
we allocate Ko episodes for each option learning and upper bound K2 ≤ K, by bounding AO, SO, and HO

respectively, with the upper bounds on the action-space cardinality, state-space cardinality, and horizon of
the options set, we can get rid of the maxo∈O, and solve the equation in closed form to find the Ko which
minimizes the regret.

Ko = 3

√
K2S2

OH2
OAO

O24 (14)

Now, we conclude the proof by substituting equation 14 in equation 13.

8 Related Works

In the FH-MDP literature, several works analyze the regret of different algorithms. Osband & Van Roy
(2016) present a lower bound that scales with Ω(

√
HSAT ). On the other hand, many other works propose

various upper bounds for their algorithm. The most common upper bound is the adaptation of Auer et al.
(2008) proposed by Ghavamzadeh et al. (2020), which is of the order of O(HS

√
AT ). This result has then

been improved in the following papers. An example is Azar et al. (2017), which proposes a method with an
upper bound on the regret of O(

√
HSAT ) that successfully matches the lower bound.

Nevertheless, only some works focused on theoretically understanding the benefits of hierarchical reinforce-
ment learning approaches, and, to the best of our knowledge, this is the first to analyze these aspects in
FH-SMDPs. To conduct our analysis, we take inspiration from the paper by Fruit & Lazaric (2017), in
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which they propose an adaptation of UCRL2 (Auer et al., 2008) for SMDPs. They first study the regret
of the algorithm for general SMDPs and then focus on the case of MDP with options, providing both a
lower bound and a worst-case upper bound. This work was the first that theoretically compares the use
of options instead of primitive actions to learn in SMDPs. Nonetheless, it focuses on the average reward
setting to study how it is possible to induce a more efficient exploration by using options, and it assumes
fixed options. Differently, we aim to analyze the advantages of using options to reduce the sample complex-
ity of the problem, resorting to the intuition that temporally extended actions can intrinsically reduce the
planning horizon in FH-SMDPs. Furthermore, we provide an option-dependent upper bound, instead of a
worst-case one, that better quantifies the impact of the option duration on the regret. Other works providing
a theoretical analysis of hierarchical reinforcement learning approaches are Fruit et al. (2017), which is an
extension of the previous work in which the need for prior knowledge of the distribution of cumulative reward
and duration of each option is relaxed. Even in this case, they consider the average reward setting, and the
objective is identical.

Then, Mann et al. (2015) study the convergence property of Fitted Value Iteration (FVI) using temporally
extended actions, showing that a longer options duration and pessimistic value function estimates lead to
faster convergence. Finally, Wen et al. (2020) demonstrate how patterns and substructures in the MDP ben-
efit planning speed and statistical efficiency. They present a Bayesian approach exploiting this information
and analyze how sub-structure similarities and sub-problems’ complexity contribute to the regret of their
algorithm.

9 Conclusions

In conclusion, we propose a new algorithm for Finite Horizon Semi Markov decision processes called FH-
SMDP-UCRL, and we provide theoretical evidence that supports our original claim. Using hierarchical
reinforcement learning, it is provably possible to reduce the problem complexity of a Finite Horizon problem
when using a well-defined set of options. This analysis is the first for FH-SMDP and provides a form of
option-dependent analysis for the regret that could be used to define objectives for options discovery methods
better. Furthermore, by relaxing the assumption of having a set of fixed options policies, we were able to
provide insights on classes of problems in which a hierarchical approach from scratch would still be beneficial
compared to a flat one. In the future, it could be interesting to analyze the HRL problem by resorting to
the framework proposed in Foster et al. (2021), and the associated multi-purpose method, to provide an
alternative to our approach. Moreover, we would like to improve the algorithm proposed for options learning
to tighten the theoretical guarantees and further characterize this family of problems. Finally, following
the ideas of Wen et al. (2020), we would like to investigate how the structure of the MDP could appear
in our bound, which, in our opinion, is a fundamental point to put another brick in the direction of total
understanding on the promising power of HRL.
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A Detailed proof of Theorem 4.1

A.1 Notation and Setting

First, we need to define the value function of an SMDP. In Sutton et al. (1999) it is defined as a formalism
for MDP with options, that itself, by the demonstration presented in the same article, is an SMDP.
In our case, however, for the SMDP model, we are considering an additional dependency on h ∈ [0, H].
Notation used:

• H is the horizon

• µ policy over options {µ : S × O × H → [0, 1]}

• r(s, o, h) is the discounted cumulative reward gained by selecting the option o, in state s, in the
instant h of the horizon H

• p(s′, h′|s, o, h) is a new transition model that characterizes both the state dynamic and the time the
option executes.

• w(s, o, h) is the probability of playing option o being in state s at time-step h

The value function is defined as:

V µ(s, h) =
∑

o∈Os

µ(s, o, h)
[
r(s, o, h) +

∑
s′,h′>h

p(h′, s′|s, o, h)V µ(s′, h′)
]

(15)

with V µ(s, H) = 0.

A.2 Performance Difference Lemma

Lemma 7.1. [Performance Difference Lemma for FH-SMDP] Given two FH-SMDPs M̂ and M̃ with horizon
H, and respectively rewards r̂, r̃ and transition probabilities p̂, p̃. The difference in the performance of a
policy µk is:

Ṽ µk (s, 1) − V̂ µk (s, 1)

= Ê
[ H∑

i=1

((
r̃(si, oi, hi) − r̂(si, oi, hi)

)
+
(
p̃(si+1, hi+1|si, oi, hi) − p̂(si+1, hi+1|si, oi, hi)

)
Ṽ µk (si+1, hi+1)

)
1{hi < H}

]
where Ê is the expectation taken w.r.t. p̂ and µk.

Proof. Ê is the expectation taken w.r.t. the policy µ and the transition probability p̂(s′, h′|s, o, h), and can
be rewrite as:

H∏
i=1

µk(si, oi, hi)p̂k(si+1, hi+1|si, oi, hi)1{hi < H}

This quantity is the distribution of visits for the policy µk in the " ˆ " SMDP and it is equivalent to wtk

for the FH-MDP case. The result follows by unrolling equation 15. Lemma E.5 Dann et al. (2017) for an
example in FH-MDPs.
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A.3 Confidence Intervals

The confidence sets are defined as:

Br
k(s, o, h) := [r̂k(s, o, h) − βr

k(s, o, h), r̂k(s, o, h) + βr
k(s, o, h)]

Bp
k(s, o, h) :=

{
pk(·, ·|s, o, h) ∈ ∇(s) : ∥p̃k(·, ·|s, o, h) − p̂k(·, ·|s, o, h)∥1 ≤ βp

k(s, o, h)
}

and the relative confidence bounds βr
k(s, o, h) and βp

k(s, o, h) using Empirical Bernstein bound (Maurer &
Pontil, 2009), Hoeffding (1963) and Weissman et al. (2003).

βr
k(s, o, h) ∝

√
2V̂ar(r) ln 2/δ

n(s, o, h) + 7 ln 2/δ

3(n − 1) (16)

βp
k(s, o, h) ∝

√
S log

(nk(s,o,h)
δ

)
nk(s, o, h) (17)

with V̂ar(r) be the sample variance of r.

V̂ar(r) = 1
n(n − 1)

∑
1≤i≤j≤n

(ri − rj)2 (18)

A.4 Actual Proof

Theorem 4.1. Considering a non-stationary Finite Horizon SMDP SM and a set of options O, with
bounded primitive reward r(s, a) ∈ [0, 1]. The regret suffered by algorithm FH-SMDP-UCRL, in K episodes
of horizon H is bounded as:

Regret(K) ≤ Õ

((√
SOKd2

)(
T +

√
SH

))

with probability 1 − δ.
Where:

T = max
s,o,h

√
E[τ(s, o, h)2]

= max
s,o,h

√
E[τ(s, o, h)]2 + Var[τ(s, o, h)],

τ is the holding time, the random number of primitive steps taken when playing a temporally extended action
o, and d is the average per-episode number of played options.

Proof.

Regret(K) =
K∑

k=1
V ∗(s, 1) − V̄ µk (s, 1)

Opt.
≤

K∑
k=1

Ṽ µk (s, 1) − V̄ µk (s, 1)

=
K∑

k=1
Ē
[ H∑

i=1

((
r̃(si, oi, hi) − r̄(si, oi, hi)

)
+
(
p̃(si+1, hi+1|si, oi, hi) − p̄(si+1, hi+1|si, oi, hi)

)
Ṽ µk (si+1, hi+1)

)
1{hi < H}

]

17



Published in Transactions on Machine Learning Research (09/2023)

a=
∑

k

∑
i∈[H]

∑
(s,o,h)∈Lk

wk(si, oi, hi)
((

r̃(si, oi, hi) − r̄(si, oi, hi)
)

+
(
p̃(si+1, hi+1|si, oi, hi) − p̄(si+1, hi+1|si, oi, hi)

)T
Ṽ µk (si+1, hi+1)

)
b
≤
∑

k

∑
i∈[H]

∑
(s,o,h)∈Lk

wk(si, oi, hi)
(

2βr
k(si, oi, hi) + 2βp

k(si, oi, hi)T H
)

c∝
∑

k

∑
i∈[H]

∑
(s,o,h)∈Lk

wk(si, oi, hi)
(√

V̂ar(r)
nk(s, o, h) + 1

nk(s, o, h) − 1 +
√

S

nk(s, o, h)H

)

d
≤
∑

k

∑
i∈[H]

∑
(s,o,h)∈Lk

wk(si, oi, hi)√
nk(si, oi, hi)

(√
V̂ar(r) +

√
SH

)
+
∑

k

∑
i∈[H]

∑
(s,o,h)/∈Lk

wk(si, oi, hi)
nk(s, o, h)

e
≤ Õ

((√
dSOn

)(√
V̂ar(r) +

√
SH

)
+ dSO

)
f
≤ Õ

((√
dSOn

)(
RmaxT +

√
SH

)
+ dSO

)

with

T = max
s,o,h

√
E[τ(oi, si, hi)2] = max

s,o,h

√
E[τ(oi, si, hi)]2 + Var[τ(si, oi, hi)] (19)

with τ representing the average duration of the set of options seen so far.

The first passage is a standard inequality when proving the regret in frameworks adopting optimism in face
of uncertainty.

(a) The expectation with respect to the policy µk and the transition model p̄ can be replaced with
a more common formulation used in the Finite Horizon literature (Dann et al., 2017; Zanette &
Brunskill, 2018),

∑
(s,o,h)∈Lk

.
Where, Lk is defined as the good set (Dann et al., 2017; Zanette & Brunskill, 2018), which is the
number of episodes in which the triple (s, o, h) is seen sufficiently often, and this equation is valid
for all the tuples (s, o, h) being part of this set.

(b) We upper bound the difference of rewards and transition probabilities with two times their relative
confidence intervals, and, the Value function at the next step with the horizon length H.

(c) We substitute the confidence intervals with their definitions (eq. 17) neglecting logarithmic terms.

(d) We divide the summation in two, to upper bound the terms separately

(e) Using the adaptation of lemma 16 of Zanette & Brunskill (2018) for SMDPs, lemma 7.2, for the first
term. Using passage (b) and (c) in the proof of lemma E.1

(f) Upperbounding the sample variance of r, with RmaxT . Where T is the sample variance of the
duration.
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B Special Case of fixed-length options

Let’s consider the same finite horizon MDP with options with fixed length M :=< S, O, Rh, Ph, H, τ̄ > where
each option o :=< I, πo, β > has a fixed initial set I and fixed termination condition β, Rh(s, o) ∈ [0, τ̄Rmax]
is the expectation of the reward function distribution, Ph(·|s, o) is the transition distribution, H is the
horizon, and τ̄ ≤ H is the options fixed length. The solution of the MDP will be a policy πH : S → O that
maximizes the cumulative return choosing among options’ optimal policies πoi . The reward function over
state − options pairs relates to the flat-MDP’s reward as:

Rh(s, o) = E s0=s
ai∼πo(·|si)

si+1∼ph+1(·|si,ai)

[τ̄−1∑
i=0

rh+i(ai, si)
]

Denote with V πH

n (s) the state value function associated with a hierarchical policy πH (with Hierarchical
policy we define a policy that chooses among options).

V πH

n (s) = E s0=s
oj∼πH (·|sj)

sj+1∼P (·|sj ,oj)h

[ N∑
j=0

Rh×τ̄ (sj , oj)
]

with N = H
τ̄ the number of decision steps that occurs during the Horizon.

In this way, we can exploit the same performance difference lemma of Dann (Dann et al., 2017) Lemma
E.15, where, instead of actions we have fixed length options, and we sum over N decision steps. Hence, we
can write:

Regret(K)
Opt.
≤

K∑
k=1

Ṽ
πH

k
1 (s) − V̄

πH
k

1 (s) (20)

a=
∑

k

∑
n∈[N ]

∑
(s,o)∈Lk

wnk(s, o)
((

R̃n(s, o) − R̄n(s, o)
)

+
(
P̃n(s, o) − P̄n(s, o)

)T
Ṽ πk

n+1

)
(21)

+ term considering the state-options pairs inside the failure event (22)

here wnk(s, o) is the probability of visiting state s and choosing option o there at the decision step n in the
k-th episode.

Then, we consider a new formulation of the confidence sets:

BR
nk(s, o) := [R̂nk(s, o) − βR

nk(s, o), R̂nk(s, o) + βR
nk(s, o)]

BP
nk(s, o) :=

{
Pnk(·|s, o) ∈ ∇(s) : ∥P̃nk(·|s, o) − P̂nk(·|s, o)∥1 ≤ βP

nk(s, o)
}

using Hoeffding (1963) and Weissman et al. (2003) the confidence bounds are:

βR
nk(s, o) ∝ Rmaxτ̄

√
log
(nnk(s,o)

δ

)
nnk(s, o) (23)

βP
nk(s, o) ∝

√
S log

(nnk(s,o)
δ

)
nnk(s, o) (24)
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After the definition of the confidence sets we can bound the previous equation as follow:

K∑
k=1

Ṽ
πH

k
1 (s) − V̄

πH
k

1 (s) =
∑

k

∑
n∈[N ]

∑
(s,o)∈Lk

wnk(s, o)
((

R̃nk(s, o) − R̄nk(s, o)
)

+
(
P̃nk(s, o) − P̄nk(s, o)

)T
Ṽ πk

h+1

)
+ term considering the state-options pairs inside the failure event
a
≤
∑

k

∑
n∈[N ]

∑
(s,o)∈Lk

wnk(s, o)
(

2βR
nk + 2βP

nk

T (H − τ̄)
)

b∝
∑

k

∑
n∈[N ]

∑
(s,o)∈Lk

wnk(s, o)
(

Rmaxτ̄
√

nnk
+
√

S

nnk
(H − τ̄)

)

=
∑

k

∑
n∈[N ]

∑
(s,o)∈Lk

wnk(s, o)
√

nnk

(
Rmaxτ̄ +

√
S(H − τ̄)

)
c
≤ Õ

(
N

√
SOK

(
Rmaxτ̄ +

√
SH −

√
Sτ̄
))

d
≤ Õ

(
N

√
SOK

(
Rmaxτ̄ +

√
SH)

)
(a) substituting the R̃n(s, o)−R̄n(s, o) and P̃n(s, o)−P̄n(s, o) with double the relative confidence interval

and considering Ṽ πk

h+1 ≤ (H − τ̄). The second term will be omitted for ease of notation.

(b) replacing the confidence intervals with their definition

(c) Lemma E.2

(d) considering the worst case, where there isn’t the negative term

comparing it with the bound of Fruit & Lazaric (2017) for bounded holding time:

Õ
((

Do

√
S + Tmax + (Tmax − Tmin)

)
Rmax

√
SOOn

)
that having options with fixed duration τ̄ , and considering Rmax = 1 reduces to:

Õ
(

DS
√

On + τ̄
√

SOn
)

we have the same bound where instead of the diameter we have the Horizon H, and where NK is exactly
equal to the number of the decisions up to episode k, which is n in their notation. We have:

Õ
(

HS
√

ON2K + τ̄
√

SON2K
)

Important: Note that we have an additional
√

N terms because we considered non-stationary MDP. This
is a well-known penalty term when considering non-stationarity in the process.

C Proof of Theorem 6.2

Theorem 6.2. The regret paid by the two-phase learning algorithm until the episode K is:

Regret(K) ≤ Õ
(

K
2
3 3
√

H5
OS2

OAOO + HS
√

Od2K
)

with HO = maxo∈O Ho, and SO, and AO, respectively, the upper bounds on the cardinality of the state and
action space of the sub-FH-MDPs.
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Proof. The regret of the two-phase algorithm can be written in this form

Regret(K) =
K1∑

k=1
V ∗

∗ (s, 1) − V µ
(πk)(s, 1) +

∑
k=k1

V ∗
∗ (s, 1) − V µk

πK1

=
K1∑

k=1
V ∗

∗ (s, 1) − V µ
(πk)(s, 1)︸ ︷︷ ︸

Options learning Regret

+
K∑

k=K1

V ∗
∗ (s, 1) − V ∗

(πK1 )︸ ︷︷ ︸
Bias

+ V ∗
(πK1 ) − V µk

(πK1 )︸ ︷︷ ︸
Regret SMDP with fixed options

The regret is the sum of the regret paid in the first phase and the regret paid in the second one, plus an
additional bias term.

By assuming to find the option’s policies by solving O different sub-FH-MDPs, and giving all options equal
samples Ko (K1 =

∑
o∈O Ko), we can write the regret paid in K =

∑
o∈O Ko + K2 episodes as

Regret(K) ≤
∑
o∈O

KoHo + K2 max
o∈O

1
Ko

H2
o So

√
AoKo + HS

√
Od2K2

where Ho is each sub-FH-MDP horizon, and Ao and So are the cardinality of the action and state spaces.

We consider paying full regret for each option learning, then the maximum average regret considering the
option learning as a finite horizon MDP with horizon Ho, and the regret of the SMDP learning with fixed
options. However, we can further simplify the regret if we assume SO, AO, HO to be the upper bounds of
the relative quantities, getting rid of the maximization in the second term, and the regret became

Regret(K) ≤ OKoHO + K2

Ko
H2

OSO

√
AOKo + HS

√
OK2d2

Now, by substituting K2 and upper bounding (K − OKo) ≤ K we can solve in closed form to find Ko to
minimize the regret.

Regret(K) ≤ OKoHO + K

Ko
H2

OSO

√
AOKo + HS

√
OKd2

Ko = 3

√
K2S2

OH2
OAO

O24

Therefore, by substituting Ko in the original equation, we have

Regret(K) ≤ Õ
(

K
2
3 (H5

OS2
OAOO) 1

3 + HS
√

OKd2
)

Now we can compare the regret of this algorithm compared to the regret of UCRL2 adapted for non-stationary
FH-MDPs (Ghavamzadeh et al., 2020).

Regret(UCRL2 − CH) ≤ Õ(H2S
√

AK)

RegretSMDP

RegretMDP
≤ K1/6α8/3O1/3

(HS)1/3A1/6 ≤ 1 (25)

K ≤ H2S2A

α16O2 (26)
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D Renewal Processes

Lemma D.1 (Renewal Function Bound). Considering a Renewal process, (Xt)t≥0, and a sequence S1, S2 . . .
of random variables, characterizing the random duration of an event, alternatively defined as holding time,
with supp(Si) ∈ {1, . . . , H}. We can bound, with probability 1 − δ, the expected number of random events
that occurred up to time t, Xt, with:

Xt <

√
ln 2 − ln δ

cK
+ t

µ

with c = µ3

32σ2T where µ is the mean of the r.v.s and σ2 the variance.

Proof. Based on the proof presented on Pinelis (2019), which apply DKW type inequalities to renewal
processes (Dvoretzky et al., 1956)

Pr
(

sup
0≤t≤T

∣∣∣∣Xnt

n
− t

µ

∣∣∣∣ ≥ ϵ

)
≤ 2e−cnϵ2

Now we can equal 2e−cnϵ2 to δ and find ϵ.

ϵ =
√

ln 2 − ln δ

cn

Thus with probability 1 − δ

Xt ≤
√

ln 2 − ln δ

cn
+ t

µ

that completes the proof

Lemma 5.3. [Bound on number of options played in one episode] Considering a Finite Horizon SMDP SM
with horizon H and, O options with duration τmin ≤ τ ≤ τmax and mino(E[τo]) the expected duration of the
shorter option. The expected number of options played in one episode d̃ can be seen as the renewal function
m(t) of a renewal process up to the instant H. With probability 1 − δ, this quantity is bounded by

d̃ <

√
32(τmax − τmin)H(ln 2 − ln δ)

(mino(E[τo]))3 + H

mino(E[τo])

Proof. The proof followed the one of lemma D.1 and the fact that we are considering T = H, n = 1, t = H,
µ = τ̄ , σ2 = (τmax − τmin), and Xt = d̃. Moreover, considering τ̄ , the average holding time of the option, we
can further state that τ̄ > mino(E[τo]), which is the expected duration of the shorter option, and complete
the proof.

E Useful Lemmas

Lemma E.1 (lemma 16 (Zanette & Brunskill, 2018) for non stationary MDPs). The following holds true:

∑
k

∑
h∈[H]

∑
(s,a)∈Lk

whk(s, a)
√

1
nk(s, a, h) = Õ(

√
HSAT )

where the extra
√

H is due to the non-stationarity of the environment
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Proof.

∑
k

∑
h∈[H]

∑
(s,a)∈Lk

whk(s, a)
√

1
nk(s, a, h)

a
≤
√∑

k

∑
h∈[H]

∑
(s,a)∈Lk

whk(s, a)
√√√√∑

k

∑
h∈[H]

∑
(s,a)∈Lk

whk(s, a) 1
nk(s, a, h)

b=
√

KH

√√√√∑
k

∑
h∈[H]

∑
(s,a)∈Lk

whk(s, a) 1
nk(s, a, h)

e
≤ Õ(

√
HSAT )

Then: ∑
k

∑
h∈[H]

∑
(s,a)∈Lk

whk(s, a)
nk(s, a, h)

c
≤
∑

h∈[H]

∑
(s,a)∈Lk

∑
k

whk(s, a)
1
4
∑

j≤k whj(s, a)

d
≤ 4HSA log

(
Ke

wmin

)
∼∝ HSA

(a) by Cauchy-Schwartz

(b)
∑

t∈[H]
∑

(s,a)∈Lk
wtk(s, a) = H lemma 17 (b) Zanette & Brunskill (2018)

(c) lemma 2 Zanette & Brunskill (2018) adapted to the non-stationary case

(d) lemma E.5 Dann et al. (2017) considering that being (s,a) part of the good set Lk, then we are
assuming (Appendix E.3 Dann et al. (2017)) that wk(s, a) ≥ wmin.

(e) substituting (f) we get the upper bound, and we conclude the proof.

Lemma 7.2. Considering a non-stationary MDP M with a set of options as an SMDP MO (Sutton et al.,
1999). In MO the number of decisions taken in the kth-episode is a random variable d and∑

i∈H

∑
(s,o)∈Lk

wk(si, oi, hi)1{hi < H} = d with {∀k : d ≤ H}

Therefore, the following holds true:

∑
k

∑
i∈H

∑
(s,o)∈Lk

wk(si, oi, hi)
√

1
nk(si, oi, hi)

= Õ

(√
SOKd2

)

Proof. Due to the stochasticity of the option’s duration, d is a random variable expressing the number
of decisions taken in a step. Thus, first, we can rewrite passage (b) of the proof of lemma 17 Zanette &
Brunskill (2018) then, we change lemma E.1 considering the same notion of good set considered in the
appendix of Zanette & Brunskill (2018) and the validity of lemma 2 of Zanette & Brunskill (2018), in the
options framework(replacing o with a). If all the aforementioned assumptions hold, thus the derivation of
the new lemma follows the derivation of lemma E.1
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Lemma E.2 (lemma 16 (Zanette & Brunskill, 2018) for MDPs with options of fixed lenght). For an MDP
with O options, with a fixed lenght τ̄ , where the horizon is divided in N = H

τ̄ decision steps, the following
holds true:

∑
k

∑
n∈N

∑
(s,o)∈Lk

wnk(s, o)
√

1
nk(s, o) = Õ

(
N

√
SOK

)

Proof. In this MDP the control returns to the hierarchical policy after exactly τ̄ time steps (the length of
an option), thus, we can have at most N = H

τ̄ actions in the horizon H. For this reason, passage (b) of the
proof of lemma E.1 become ∑

n∈N

∑
(s,o)∈Lk

wnk(s, o) = N

The rest results for the same passage of the proof of lemma E.1.

To have a more complete analysis we need also to consider the triples (s, o, h) which aren’t inside the good
set. To do that, we can adapt Lemma 3 of Zanette & Brunskill (2018), for the FH-SMDP setting.
Lemma E.3 (Outside the good set). It holds that:

K∑
k=1

d∑
h=1

∑
(s,o,h)/∈Lk

wk(s, o, h) = Õ(SOd)

The proof follows from the one of lemma 3 of Zanette & Brunskill (2018).
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