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Abstract
We study an XY model which consists of a spin chain coupled to heat baths.
We give a repeated quantum interaction Hamiltonian describing this model.
We compute the explicit form of the associated Lindblad generator in the case
of the spin chain coupled to one, two and several heat baths. We further study
the properties of the quantum master equation such as approach to equilibrium,
local equilibrium states, entropy production and quantum detailed balance
condition.

PACS numbers: 75.10.Pq, 03.65.Yz

1. Introduction

The object of the quantum theory of open systems is to study the interaction of a quantum
system with very large orders. There are two different approaches which have usually been
considered by physicists as well as mathematicians: the Hamiltonian and the Markovian
approaches.

The Hamiltonian approach consists in studying the reversible evolution of a small system
in interaction with an exterior system and its main tools are: modular theory, W ∗-dynamical
system, Liouvillean, etc.

The Markovian approach consists in studying the irreversible evolution of these systems
in interaction picture. The interaction between the two systems is described by a quantum
stochastic differential equation (quantum Langevin equation), a Lindblad generator (or
Lindbladian) which is the generator of quantum Markovian semigroup, etc.

It is well known that any quantum Markovian semigroup dilates a quantum stochastic
differential equation in the sense of Hudson–Parthasarathy (cf [HP]). Moreover, its Lindblad
generator allows us to guess the quantum master equation, which is used for studying the
physical properties of a quantum system in interaction with a quantum field: quantum
decoherence, approach to equilibrium, quantum detailed balance condition, etc (cf [L, Dav,
F], etc). In the literature, in order to explicit the form of a Lindblad generator, we use the weak
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coupling limit which describes the passage from the Hamiltonian approach to the Markovian
one.

Recently, in [AP] the authors considered the setup of a small system having repeated
interactions, for a short duration h, with elements of a sequence of identical quantum systems.
They prove that for a good choice of the repeated quantum interaction Hamiltonian, we get
the explicit form for the associated Lindblad generator.

Here, we study an XY model which consists of a spin chain coupled to several heat baths.
The heat bath is modeled by an infinite chain of identical spins. The full system is described
by the means of a repeated quantum interaction Hamiltonian H defined on the Hilbert space
HS ⊗η, where HS = ⊗N

k=1C
2 and η = C

2. After computing the Lindblad generator, we study
the properties of the associated master equation. We discuss the case of the spin chain coupled
to heat baths at the same inverse temperature β and the case of distinct temperatures.

This paper is organized as follows. In section 2, we compute the Lindblad generator
describing the spin chain coupled to one and two heat baths at inverse temperatures β and
β ′. In section 3, we study the Markovian properties of the spin chain coupled to two heat
baths. We give the explicit form of the stationary state ρβ of the associated master equation
in the case of β = β ′, this is proved in section 3.1. The property of approach to equilibrium
is studied in section 3.2. The explicit form of the local equilibrium states is treated in
section 3.3. In section 3.4, we compute the entropy production. If β = β ′, we show that a
quantum detailed balance condition is satisfied with respect to ρβ , this is given in section 3.5.
Finally, in section 4 we study the case of a spin chain coupled to r(2 � r � N) heat baths.

2. A Lindblad generator for a spin chain

In this section, we give a repeated quantum interaction model associated with a spin chain
coupled to one and two heat baths. We model the heat bath by an infinite chain of spins.
Further, we give the GNS representation associated with the spin chain coupled to one piece
(spin) of the heat bath (cf [AJ]). Finally, from [AP] we obtain the associated Lindblad
generator.

2.1. Repeated quantum interaction model

In this subsection,we present one of the main results of repeated quantum interaction models.
We refer the interested reader to [AP] for more details.

Let us consider a small system H0 coupled with a piece of environment H. The interaction
between the two systems is described by a Hamiltonian H which is defined on H0 ⊗ H and
depends oo time h. The associated unitary evolution during the interval [0, h] of time is

L = e−ihH .

After the first interaction, we repeat this time coupling the same H0 with a new copy of H.

Hence, the sequence of the repeated quantum interactions is described by the space

H0 ⊗
⊗
N

∗
H.

The unitary evolution of the small system in interaction picture with the nth copy of H,
denoted by Hn, is the operator Ln which acts as L on H0 ⊗ Hn and acts as the identity on
copy of H different to Hn. The discrete evolution equation describing this model is defined
on H0 ⊗⊗

N
∗ H as follows:{

Vn+1 = Ln+1Vn

V0 = I
(1)

2
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Let {Xi}ı∈�∪{0} be an orthonormal basis of H with X0 = � and let us consider the
coefficients

(
L

i
j

)
i,j∈�∪{0} which are operators on H0 of the matrix representation of L with

respect to the basis {Xi}i∈�∪{0}. Then, a natural basis of B(H) is given by the family of
operators

{
ai

j , i, j ∈ � ∪ {0}}, where

ai
j (Xk) = δikXj , for all i, j, k ∈ � ∪ {0}.

It is useful to note that

L =
∑

i,j∈�∪{0}
L

i
j ⊗ ai

j .

Put � = ⊗N
∗�. Then from [AP], we have

〈�,V ∗
n (X × I )Vn〉 = Ln(X), for all X ∈ B(H0),

where L(X) = ∑
i∈�∪{0} L

0∗
i XL

0
i is a completely positive map.

The following result is deduced from [AP].

Theorem 2.1. Suppose that there exist operators L0
0, L

0
i , i ∈ �, such that

(i) L
0
0 = I + hL0

0 + o(h),
(ii) L

0
i = √

hL0
i + o(

√
h).

Then, there exists a self-adjoint operator H0 on H0 such that

lim
h→0

L(X) − X

h
= L(X), ∀X ∈ B(H0),

with

L(X) = i[H0, X] +
1

2

∑
i∈�

(
2L0∗

i XL0
i − XL0∗

i L0
i − L0∗

i L0
i X
)
.

Proof. Let X ∈ B(H0). Then, we have

L(X) =
∑

i∈�∪{0}
U 0∗

i XU 0
i

= X + h

(
L0∗

0 X + XL0
0 +
∑
i∈�

L0∗
i XLi

)
+ o(h). (2)

Note that the operator L is unitary. This gives

L
0∗
0 L

0
0 +
∑
i∈�

L
0∗
i L

0
i = I.

This implies that

I + h

(
L0∗

0 + L0
0 +
∑
i∈�

L0∗
i L0

i

)
+ o(h) = I.

Hence, we obtain

L0∗
0 + L0

0 = −
∑
i∈�

L0∗
i L0

i + o(1).

It follows that

L0
0 +

1

2

∑
i∈�

L0∗
i L0

i = −
(

L0
0 +

1

2

∑
i∈�

L0∗
i L0

i

)∗
+ o(1).

3
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Then, there exists a self-adjoint operator H0 on H0 such that

L0
0 +

1

2

∑
i∈�

L0∗
i L0

i = −iH0 + o(1). (3)

Thus, if we replace (3) with (2), then the operator L is written as

L(X) = X + h

{
i[H0, X] +

1

2

∑
i∈�

(
2L0∗

i XL0
i − XL0∗

i L0
i − L0∗

i L0
i X
)}

+ o(h). (4)

This proves the above theorem. �

2.2. Spin chains coupled to one heat bath

The system (S) we consider here consists of N spins, each of them is described by the
two-dimensional Hilbert space η = C

2. The Hilbert space of the system (spin chain) is
HS = ⊗N

k=1C
2 and its Hamiltonian is given by

HS = B

N∑
k=1

σ (k)
z +

N−1∑
k=1

(
Jxσ

(k)
x ⊗ σ (k+1)

x + Jyσ
(k)
y ⊗ σ (k+1)

y

)
,

where

σx =
(

0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
and B is a real number describing the influence of an external magnetic field in the z-direction,
while the interaction between nearest neighbors is described by Jx, Jy ∈ R.

LetB = {�,X} be the orthonormal basis of C
2 equipped with its canonical scalar product,

where

� =
(

1
0

)
, X =

(
0
1

)
.

The heat bath is modeled by a sequence of independent photons, where each of which is
described by a two-level atom C

2. Then, the Hilbert space of the heat bath is described by
⊗N

∗C2, where the infinite tensor product is defined with respect to the stabilizing sequence
(�)n. Therefore, the system (S) interacts with the photons one after another for the same short
time. For more details on the physical motivation of this approach, we refer the interested
reader to [EM].

The repeated quantum interaction Hamiltonian of the system coupled to the heat bath at
the first spin is written as

H = HS ⊗ I + I ⊗ HR + HI(h),

where HR = Bσz is the Hamiltonian of the ith copy of the infinite chain ⊗N
∗C2 and

HI(h) = 1√
h

(
σ (1)

x ⊗ σx + σ (1)
y ⊗ σy

)
is the interaction Hamiltonian between the first spin and one piece C

2.
Put

σ+ =
(

0 1
0 0

)
, σ− =

(
0 0
1 0

)
, n+ =

(
1 0
0 0

)
, n− =

(
0 0
0 1

)
.

In the following, we assume that Jx = Jy = 1 and without loss of generality we suppose
that B = 1. Note that with respect to the basis B, we have

H =
(

HS + I 2√
h
σ

(1)
−

2√
h
σ

(1)
+ HS − I

)
4
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and the unitary evolution during the interval [0, h] of times is given by

L =
(

I − ihI − ihHS − 2hσ
(1)
− σ

(1)
+ + o(h2) −2i

√
hσ

(1)
− + o(h3/2)

−2i
√

hσ
(1)
+ + o(h3/2) I + ihI − ihHS − 2hσ

(1)
+ σ

(1)
− + o(h2)

)
.

Let us define the scalar product on M2(C) by

〈A,B〉β = Tr(ρβA∗B), ∀A,B ∈ M2(C),

with

ρβ = e−βσz

Tr(e−βσz )
=
(

β0 0
0 β1

)
being the equilibrium state at inverse temperature β of a single spin.

Put

X0 = I, X1 = 1√
β0

(
0 0
1 0

)
, X2 = 1√

β1

(
0 1
0 0

)
, X3 = 1√

β0β1

(
β1 0
0 −β0

)
.

It is clear that {X0, X1, X2, X3} form an orthonormal basis of M2(C) equipped with the scalar
product 〈, 〉β.

The GNS representation of (C2, ρβ) is the triple (π, H̃,�R), where

• �R = I,

• H̃ = M2(C),

• π : M2(C) → B(H̃), such that π(M)A = MA,∀M,A ∈ M2(C).

Actually, we prove the following.

Theorem 2.2. The Lindblad generator of the repeated quantum interaction model associated
with the spin chain coupled to one heat bath at positive temperature β−1 is given by

L1(X) = i[HS,X] + 2β0
[
2σ

(1)
− Xσ(1)

+ − {
n

(1)
− , X

}]
+ 2β1

[
2σ (1)

+ Xσ
(1)
− − {

n(1)
+ , X

}]
,

for all X ∈ B(HS).

Proof. Set L̃ = π(L). With respect to the basis {X0, X1, X2, X3}, we have

L̃
0
0 = I − ihHS + ih(β1 − β0)I − 2hβ0σ

(1)
− σ

(1)
+ − 2hβ1σ

(1)
+ σ

(1)
− + o(h2),

L̃
0
1 = −2i

√
β0

√
hσ

(1)
+ + o(h3/2),

L̃
0
2 = −2i

√
β1

√
hσ

(1)
− + o(h3/2),

L̃
0
3 = o(h).

Set

H0 = HS + (β0 − β1)I,

L0
0 = −iH0 − 2β0σ

(1)
+ σ

(1)
− − 2β1σ

(1)
− σ

(1)
+ ,

L0
1 = −2i

√
β0σ

(1)
− ,

L0
2 = −2i

√
β1σ

(1)
+ .

Then, it is clear that

L0
0 = −iH0 − 1

2

2∑
i=1

L0
i L

0∗
i .

Hence, by using theorem 2.1, the result of the above theorem holds. �

5
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Remark. Note that if N = 1, then the Lindblad generator is written as

L1(X) = i[HS,X] + 2β0[2σ−Xσ+ − {n−, X}] + 2β1[2σ+Xσ− − {n+, X}],
for all X ∈ M2(C). This Lindbladian describes a two-level atom in interaction with a heat
bath. It is easy to show that the associated master equation has the properties of approach
to equilibrium and the quantum detailed balance condition with respect to thermodynamical
state of the spin at inverse temperature β is satisfied. We refer the interested reader to [D] for
more details. Moreover at zero temperature, that is β = ∞, we can prove in the same way at
[D] that the associated quantum dynamical semigroup converges towards the equilibrium.

2.3. Spin chains coupled to two heat baths

Here, we suppose that the spin chain is coupled to two heat baths respectively at the first
and the nth spin. Moreover, the two heat baths are supposed to be respectively at inverse
temperatures β and β ′. The associated repeated quantum interaction Hamiltonian is

H = HS ⊗ I + I ⊗ HR + HI(h),

where

HI(h) = 1√
h

(
σ (1)

x ⊗ σ (L)
x + σ (1)

y ⊗ σ (L)
y + σ (N)

x ⊗ σ (R)
x + σ (N)

y ⊗ σ (R)
y

)
,

which describes the the left heat bath in interaction with the first spin and the right heat bath
in interaction with the nth spin.

The proof of the following theorem is similar as the one of theorem 2.2.

Theorem 2.3. The Lindblad generator associated with the spin chain coupled to two heat
baths at inverse temperatures β and β ′ is given by

L(X) = i[HS,X] + 2β0
[
2σ

(1)
− Xσ(1)

+ − {n(1)
− , X}] + 2β1

[
2σ (1)

+ Xσ
(1)
− − {

n(1)
+ , X

}]
+ 2β ′

0

[
2σ

(N)
− Xσ(N)

+ − {n(N)
− , X}] + 2β ′

1

[
2σ (N)

+ Xσ
(N)
− − {

n(N)
+ , X

}]
,

for all X ∈ B(HS).

3. Markovian properties of a spin chain coupled to two heat baths

In this section, we describe the Markovian properties of the spin chain coupled to two heat
baths at inverse temperatures β and β ′. We start by giving the associated quantum master
equation. Moreover, we study the property of approach to equilibrium and we compute the
local states. Finally for β = β ′, we compute the entropy production and we study the quantum
detailed balance condition.

Note that, in order to study the two last physical properties, we need to know explicitly
the stationary state which is complicated to compute in the case where β �= β ′.

3.1. Quantum master equation

For all density matrix ρ ∈ B(HS), the quantum master equation of the spin chain coupled to
two heat baths at inverse temperatures β and β ′ is defined as

L∗(ρ) = −i[HS, ρ] + 2β0
[
2σ (1)

+ ρσ
(1)
− − {n(1)

− , ρ}] + 2β1
[
2σ

(1)
− ρσ (1)

+ − {
n(1)

+ , ρ
}]

+ 2β ′
0

[
2σ (N)

+ ρσ
(N)
− − {n(N)

− , ρ}] + 2β ′
1

[
2σ

(N)
− ρσ (N)

+ − {
n(N)

+ , ρ
}]

.

6
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Note that dimHS < ∞. Then, there exists a stationary state for the above master equation.
Hence, in order to prove the uniqueness of the equilibrium state we need the following theorem
(cf [F]).

Theorem 3.1. Let (
t)t be a norm continuous quantum dynamical semigroup on B(K) for
some separable Hilbert space K whose generator L is given by

L(A) =
∑

j

V ∗
j AVj + KA + AK∗, (5)

where Vj ∈ B(H) and K = iH − 1
2

∑
j V ∗

j Vj ,H = H ∗ ∈ B(K)(L(I) = 0). Suppose that
(
∗

t )t has a stationary faithful state ρ. Then, ρ is the unique stationary state for (
∗
t )t if and

only if

{H,V ∗
j , Vj }′ = CI.

Put

ρβ = ρβ ⊗ · · · ⊗ ρβ = ⊗N
i=1ρβ.

Now, we prove the following.

Theorem 3.2. If β = β ′, then ρβ is the unique faithful stationary state for the quantum
dynamical semigroup (etL∗

)t�0.

Proof. Note that it is straightforward to show that

[σx ⊗ σx + σy ⊗ σy, ρβ ⊗ ρβ] = 0.

Hence, we get [HS, ρ
β ] = 0. Moreover, if we note by L∗

d the dissipative part of L∗, then it is
easy to show that L∗

d(ρ
β) = 0. Therefore, we have L∗(ρβ) = 0. Thus, ρβ is a stationary state

for the above master equation.
Consider an operator A such that

A ∈ {HS, σ
(1)
+ , σ

(1)
− , σ

(N)
− , σ (N)

+

}′
.

In particular, we have

A ∈ {σ (1)
+ , σ

(1)
− , σ

(N)
− , σ (N)

+

}′
.

This gives

A = I (1) ⊗ A1 ⊗ I (N),

where A1 is an operator defined on ⊗N−1
k=2 C

2. On the other hand, we have A that commutes
with HS . Hence, we get

σ (1)
x ⊗ [

A1, σ
(2)
x

]⊗ I (N) + σ (1)
y ⊗ [

A1, σ
(2)
y

]⊗ I (N)

+ I (1) ⊗ [
A1, σ

(N−1)
x

]⊗ σ (N)
x + I (1) ⊗ [

A1, σ
(N−1)
y

]⊗ σ (N)
y

+ I (1) ⊗
[
A1,

N−1∑
k=2

σ (k)
z +

N−2∑
k=2

(
σ (k)

x ⊗ σ (k+1)
x + σ (k)

y ⊗ σ (k+1)
y

)]⊗ I (N) = 0.

Hence, we obtain the following:[
A1, σ

(2)
x

] = [
A1, σ

(2)
y

] = [
A1, σ

(N−1)
x

] = [
A1, σ

(N−1)
y

] = 0.

This implies that

A1 = I (2) ⊗ A2 ⊗ I (N−1),

where A2 is an operator on ⊗N−2
k=3 C

2.
Repeating this argument until one arrives at A = λI . Thus, we obtain{

HS, σ
(1)
+ , σ

(1)
− , σ (N)

+ , σ
(N)
−
}′ = CI.

Finally, by theorem 3.1 we can conclude. �

7
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3.2. Approach to equilibrium

The aim of this section is to prove that the quantum dynamical semigroup associated with the
spin chain coupled to two heat baths has the property of approach to equilibrium.

The following theorem is introduced in [B].

Theorem 3.3. Let L be a generator of a norm continuous quantum dynamical semigroup
(
t)t on B(K) which has the form given in (3.1) and where the number of induces j is finite.
Assume that the following hypothesis holds:

(i) There exists a stationary state ρ for the quantum dynamical semigroup (
∗
t )t ,

(ii) The linear span of all Vj is self-adjoint,
(iii) If A ∈ B(K) such that 
t(A

∗A) = (
tA
∗)(
tA), for all t � 0, then A = CI.

Then, the state ρ is faithful and the quantum dynamical semigroup (
∗
t )t has the property of

approach to equilibrium, that is

lim
t→∞ Tr(
∗

t ξA) = Tr(ρA), for all normal state ξ and for all A ∈ B(K).

Under the hypothesis of the above theorem, ρ is the unique stationary state for the
quantum dynamical semigroup (
∗

t )t . In fact, let us consider an element A in B(K) such that
[H,A] = [Vj ,A] = [V ∗

j , A] = 0 for all j . Thus, from hypothesis (ii), [Vj ,A] = 0 implies
that [V ∗

j , A] = 0. Hence, we obtain

L(A) = L(A∗) = L(A∗A) = 0.

It follows that 
tA
∗ = A∗,
tA = A and 
t(A

∗A) = A∗A for all t � 0. Then, we get

t(A

∗A) = (
tA
∗)(
tA), for all t � 0. Finally, from hypothesis (iii), we have A = λI .

Note that ρ is a faithful state. Therefore, by theorem 3.1 we can conclude.
As a corollary of theorem 3.3, we prove the following.

Theorem 3.4. The quantum dynamical semigroup {T ∗
t = etL∗

, t ∈ R+} associated with the
spin chain coupled to two heat baths at inverse temperatures β and β ′ has the property of
approach to equilibrium to a unique stationary faithful state ρβ,β ′

.

Proof. Note that dimHS < ∞. Then, there exists a stationary state for the quantum dynamical
semigroup (T ∗

t )t . This implies that assumption (i) of the above theorem is satisfied. Moreover,
it is clear that the linear span

{
σ

(1)
− , σ

(1)
+ , σ

(N)
− , σ

(N)
+

}
is self-adjoint.

Let A ∈ B(HS) such that

Tt (A
∗A) = (TtA

∗)(TtA), ∀ t � 0. (6)

By using the properties of semigroup we deduce that for all s � 0,

Ts((TtA)∗(TtA)) = Ts((TtA
∗)(TtA))

= Ts(Tt (A
∗A))

= Ts+t (A
∗A)

= (Ts+tA
∗)(Ts+tA)

= (Ts(TtA)∗)(Ts(TtA)).

Hence, for all t � 0 the operator TtA satisfies relation (6).
Note that by taking the derivative in (6) with respect to t, we have

LTt (A
∗A) = (LTtA

∗)(TtA) + (TtA
∗)(LTtA).

8
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But we have TtA
∗ = (TtA)∗. Thus, we get

L((TtA
∗)(TtA)) = (L(TtA)∗)(TtA) + (TtA

∗)(LTtA), ∀ t � 0. (7)

In particular, for t = 0 we have

L(A∗A) = (LA∗)A + A∗(LA). (8)

On the other hand we have the following:

L(A∗A) − (LA∗)A − A∗(LA) = 4β0
[
σ (1)

+ , A
]∗[

σ (1)
+ , A

]
+ 4β1[σ (1)

− , A]∗[σ (1)
− , A]

+ 4β ′
0

[
σ (N)

+ , A
]∗[

σ (N)
+ , A

]
+ 4β ′

1

[
σ

(N)
− , A

]∗
[σ (N)

− , A].

Hence, if A satisfies relation (6), then the operator A satisfies

A ∈ {σ (1)
− , σ (1)

+ , σ
(N)
− , σ (N)

+

}′
.

This gives

A = I (1) ⊗ Ã ⊗ I (N),

where Ã is an operator on ⊗N−1
k=2 C

2. Besides, from relation (7), the operator T ∗
t A also satisfies

also (8). Therefore, TtA has to be of the same form as A, that is

TtA = I (1) ⊗ S̃t ⊗ I (N),

with S̃t being an operator on ⊗N−1
k=2 C

2. Furthermore, by taking the derivative of TtA with
respect to t at t = 0 we obtain

L(A) = i[HS,A] = iσ (1)
x ⊗ [

σ (2)
x , Ã

]⊗ I (N) + iσ (1)
y ⊗ [

σ (2)
y , Ã

]⊗ I (N)

+ iI (1) ⊗
[

N−2∑
k=2

(
σ (k)

x ⊗ σ (k+1)
x + σ (k)

y ⊗ σ (k+1)
y

)
, Ã

]
⊗ I (N)

+ iI (1) ⊗ [
σ (N−1)

x , Ã
]⊗ σ (N)

x + iI (1) ⊗ [
σ (N−1)

y , Ã
]⊗ σ (N)

y

= I (1) ⊗ B̃ ⊗ I (N), (9)

where B̃ = d
dt

S̃t

∣∣
t=0. Then, from equality (9) we have[

σ (2)
x , Ã

] = [
σ (2)

y , Ã
] = [

σ (N−1)
x , Ã

] = [
σ (N−1)

y , Ã
] = 0.

This implies that

Ã = I (2) ⊗ Ã1 ⊗ I (N−1)

and

A = I (1) ⊗ I (2) ⊗ Ã1 ⊗ I (N−1) ⊗ I (N).

Note that TtA satisfies relation (6) for all t � 0. Hence, by the same argument as before, TtA

is written as

TtA = I (1) ⊗ I (2) ⊗ R̃t ⊗ I (N−1) ⊗ I (N),

where R̃t is an operator on ⊗N−2
k=3 C

2. This reasoning is repeated until obtaining the result that
is only possible if A is a multiple of the identity. This ends the proof. �

9
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3.3. Local equilibrium states

Here we suppose that the spin chain is coupled to two heat baths at inverse temperatures β

and β ′. Let us recall that there exists a unique stationary state ρβ,β ′
of the associated quantum

dynamical semigroup. For i ∈ {1, . . . , N}, we denote by ρ(i) the local state associated with
the ith spin which is given by

Tr(ρ(i)A(i)) = Tr(ρβ,β ′
(I ⊗ A(i) ⊗ I )), (10)

where A(i) is an operator acting on the ith copy of C
2 in the chain ⊗N

k=1C
2 (

C
2
(i)

)
. On the other

hand, ρ(i) can be obtained by computing the trace on the other copies than C
2
(i).

In this section, we treat the cases of the spin chain when it is made up of 2, 3 and 4 spins.

(i) For N = 2, we have

ρβ,β ′ =
(ρβ + ρβ ′

2

)
⊗
(ρβ + ρβ ′

2

)
− 1

8
(β0 − β ′

0)
2σz ⊗ σz

+
(β0 − β ′

0)

4
[n+ ⊗ n− − n− ⊗ n+] + i

(β0 − β ′
0)

4
[σ+ ⊗ σ− − σ− ⊗ σ+].

Hence, from (10) the local states are given by

ρ(1) = 〈�(2), ρβ,β ′�(2)〉
C

2
(2)

+ 〈X(2), ρβ,β ′
X(2)〉

C
2
(2)

= ρβ + ρβ ′

2
+

1

2

(
ρβ − ρβ ′

2

)
,

ρ(2) = 〈�(1), ρβ,β ′�(1)〉
C

2
(1)

+ 〈X(1), ρβ,β ′
X(1)〉

C
2
(1)

= ρβ + ρβ ′

2
+

1

2

(
ρβ ′ − ρβ

2

)
,

where {�(i) = �,X(i) = X} is the orthonormal basis of the ith copy C
2
(i) of C

2 in the
atom chain ⊗N∗C2.

(ii) For N = 3, the equilibrium state ρβ,β ′
is given by

ρβ,β ′ =
(ρβ + ρβ ′

2

)
⊗
(ρβ + ρβ ′

2

)
⊗
(ρβ + ρβ ′

2

)
− 3

4

(
ρβ − ρβ ′

2

)
⊗
(ρβ + ρβ ′

2

)
⊗
(

ρβ − ρβ ′

2

)
+

3

4

[(
ρβ − ρβ ′

2

)
⊗
(

ρβ + ρβ ′

2

)
⊗
(ρβ + ρβ ′

2

)
−
(ρβ + ρβ ′

2

)
⊗
(ρβ + ρβ ′

2

)
⊗
(

ρβ − ρβ ′

2

)]
+

β0 − β ′
0

8
[(ρβ ⊗ n− ⊗ n+ − ρβ ⊗ n+ ⊗ n−)

+ (n− ⊗ n+ ⊗ ρβ ′ − n+ ⊗ n− ⊗ ρβ ′)]

+ i
β0 − β ′

0

8

[
σ+ ⊗ σ− ⊗

(ρβ + ρβ ′

2

)
− σ− ⊗ σ+ ⊗

(ρβ + ρβ ′

2

)]
+ i

β0 − β ′
0

8

[(ρβ + ρβ ′

2

)
⊗ σ+ ⊗ σ− −

(ρβ + ρβ ′

2

)
⊗ σ− ⊗ σ+

]
+ i

β0 − β ′
0

8
[ρβ ⊗ σ+ ⊗ σ− − ρβ ⊗ σ− ⊗ σ+]

+ i
β0 − β ′

0

8
[σ+ ⊗ σ− ⊗ ρβ ′ − σ− ⊗ σ+ ⊗ ρβ ′ ]

− (β0 − β ′
0)

2

16
[σ+ ⊗ I ⊗ σ− + σ− ⊗ I ⊗ σ+].

10
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In the same way as the case N = 2, we get

ρ(1) = ρβ + ρβ ′

2
+

1

2

(
ρβ − ρβ ′

2

)
,

ρ(2) = ρβ + ρβ ′

2
= ρ(1) + ρ(3)

2
,

ρ(3) = ρβ + ρβ ′

2
+

1

2

(
ρβ ′ − ρβ

2

)
.

(iii) For N = 4, after computing the stationary state ρβ,β ′
, we have obtained the following

ρ(1) = ρβ + ρβ ′

2
+

1

2

(
ρβ − ρβ ′

2

)
,

ρ(2) = ρ(3) = ρβ + ρβ ′

2
= ρ(1) + ρ(4)

2
,

ρ(4) = ρβ + ρβ ′

2
+

1

2

(
ρβ ′ − ρβ

2

)
.

Note that for N � 5, it is very hard to compute the stationary state ρβ,β ′
. Moreover,

from the computation done in the cases of the spin chain when it is made up of 2, 3 and 4
atoms, we see that when N increases, the number of the off-diagonal terms increases quickly
in the explicit form of the matrix of the state ρβ,β ′

in the canonical basis of HS . Besides, the
off-diagonal terms do not contribute to the calculation of the partial trace at any site. However,
the form of the diagonal terms given in the cases N = 2, 3 and 4 are similar enough that we
believe that the following conjecture is true: for N � 5, the local states are given by

ρ(1) = ρβ + ρβ ′

2
+

1

2

(
ρβ − ρβ ′

2

)
,

ρ(2) = · · · = ρ(N−1) = ρβ + ρβ ′

2
= ρ(1) + ρ(N)

2
,

ρ(N) = ρβ + ρβ ′

2
+

1

2

(
ρβ ′ − ρβ

2

)
.

3.4. Entropy production

In this section, we treat the case of the spin chain coupled to two heat baths at the same
temperature β−1. Let us recall that from theorem 3.2, there exists a unique stationary faithful
state ρβ for the associated quantum master equation in the case of the same temperature
β = β ′. The definition of entropy production, that we give here, is taken from [SL].

Let ρ be a state on HS and set ρ(t) = etL∗
(ρ). Then the relative entropy of ρ with respect

to ρβ is defined by

S(ρ(t)|ρβ) = Tr(ρ(t)(log ρβ − log ρ(t))).

Hence, the entropy production is given by

σ(ρ) = − d

dt
S(ρ(t)|ρβ)

∣∣∣∣
t=0

= Tr(L∗(ρ)(log ρβ − log ρ)),

11
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where Tr(L∗(ρ) log ρ) is given as

Tr(L∗(ρ) log ρ) =
∑

j

〈�j,L∗(ρ)�j 〉 log ρj ,

〈�j,L∗(ρ)�j 〉 log ρj =
{−∞ if 〈�j,L∗(ρ)�j 〉 �= 0 and ρj = 0

0 if 〈�j,L∗(ρ)�j 〉 = 0.

Theorem 3.5. The entropy production associated with the spin chain coupled to two heat
baths at the same inverse temperature β is written as

σ(ρ) = 4β0

⎡⎣∑
j,k

[∣∣〈�k, σ
(1)
+ �j

〉∣∣2 +
∣∣〈�k, σ

(N)
+ �j

〉∣∣2](e2βρk − ρj )(log ρk − log ρj + 2β)

⎤⎦ ,

where ρ = ∑
j ρj |�j 〉〈�j | is the spectral decomposition of ρ.

Proof. Note that

L∗ = L∗
h + L∗

d ,

where L∗
h is the Hamiltonian part of L∗ and L∗

d = L∗(1)
d + L∗(N)

d is its dissipative part with

L∗(1)
d (ρ) = 2β0

[
2σ (1)

+ ρσ
(1)
− − {

n
(1)
− , ρ

}]
+ 2β1

[
2σ

(1)
− ρσ (1)

+ − {
n(1)

+ , ρ
}]

,

L∗(N)
d (ρ) = 2β ′

0

[
2σ (N)

+ ρσ
(N)
− − {n(N)

− , ρ}] + 2β ′
1

[
2σ

(N)
− ρσ (N)

+ − {
n(N)

+ , ρ
}]

.

Put

H(S) =
N∑

k=1

σ (k)
z .

It is easy to show that the equilibrium state ρβ is given by

ρβ = 1

Z
e−βH(S)

,

where Z = Tr(e−βH(S)

). Thus, we obtain log ρβ = −βH(S) − log Z. On the other hand, a
straightforward computation shows that

Tr([HS, ρ] log ρ) = Tr(HS[ρ, log ρ]) = 0

and

Tr([HS, ρ] log ρβ) = −β Tr([H(S),HS]ρ) = 0.

Hence, we get

Tr(L∗
h(ρ(log ρβ − log ρ))) = 0.

This gives

σ(ρ) = σ1(ρ) + σN(ρ) = −Tr(L∗
d(ρ) log ρ) − β Tr(L∗

d(ρ)H (S)), (11)

where σi(ρ) = −Tr
(
L∗(i)

d (ρ) log ρ
)− β Tr

(
L∗(i)

d (ρ)H (S)
)

with i = 1, N.

Let us compute the terms of the second member in (11). We have

Tr
(
L∗(1)

d (ρ) log ρ
) = 4β0

[∑
j,k

〈�j, σ
(1)
− �k〉

〈
�k, σ

(1)
+ �j

〉
ρj log ρk −

∑
j

〈
�j, n

(1)
− �j

〉
ρj log ρj

]

+ 4β1

[∑
j,k

〈
�j, σ

(1)
+ �k

〉〈�k, σ
(1)
− �j 〉ρj log ρk −

∑
j

〈
�j, n

(1)
+ �j

〉
ρj log ρj

]
,

Tr
(
L∗(1)

d (ρ)H (S)
) = 8β0

∑
j

〈�j, n
(1)
− �j 〉ρj − 8β1

∑
j

〈
�j, n

(1)
+ �j

〉
ρj .

12
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Note that 〈
�j, n

(1)
+ �j

〉 = ∥∥σ (1)
+ �j

∥∥2 =
∑

k

∣∣〈�k, σ
(1)
+ �j

〉∣∣2,
〈�j, n

(1)
− �j 〉 = ∥∥σ (1)

− �j

∥∥2 =
∑

k

∣∣〈�j, σ
(1)
+ �k

〉∣∣2.
This gives

σ1(ρ) = 4β0

[∑
j,k

∣∣〈�k, σ
(1)
+ �j

〉∣∣2ρj (log ρj − log ρk − 2β)

]

+ 4β1

[∑
j,k

∣∣〈�j, σ
(1)
+ �k

〉∣∣2ρj (log ρj − log ρk + 2β)

]
. (12)

If we substitute β1 by e2ββ0 into (12), then we get

σ1(ρ) = 4β0

[∑
j,k

∣∣〈�k, σ
(1)
+ �j

〉∣∣2(e2βρk − ρj )(log ρk − log ρj + 2β)

]
.

In the same way, we prove that

σN(ρ) = 4β0

[∑
j,k

∣∣〈�k, σ
(N)
+ �j

〉∣∣2(e2βρk − ρj )(log ρk − log ρj + 2β)

]
.

This ends the proof of the above theorem. �

Remark. Note that as a corollary of the above theorem, we have σ(ρ) � 0 for any density
matrix ρ.

3.5. Quantum detailed balance condition

In this section, we suppose that the spin chain is coupled to two heat baths the at same inverse
temperature β. Let us recall that

ρβ = ⊗N
k=1ρβ

is the only stationary faithful state of the quantum dynamical semigroup (T ∗
t )t .

The following definition is introduced in [AL].

Definition 1. Let 
 be a generator of a quantum dynamical semigroup written as


 = −i[H, .] + 
0,

where H is a self-adjoint operator. We say that 
 satisfies a quantum detailed balance
condition with respect to a stationary state ρ if

(i) [H, ρ] = 0,

(ii) 〈
0(A), B〉ρ = 〈A,
0(B)〉ρ, for all A,B ∈ D(
0),

(iii) with 〈A,B〉ρ = Tr(ρA∗B).

Now, we prove the following.

Theorem 3.6. The generator L∗ of the quantum dynamical semigroup of the spin chain
coupled to two heat baths at the same inverse temperature β satisfies a quantum detailed
balance condition with respect to the stationary state ρβ .

13
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Proof. Note that

L∗ = −i[HS, .] + L∗
d ,

where L∗
d is the dissipative part. On the other hand, we have [HS, ρ

β ] = 0. This proves that
assumption (i) of the above definition is satisfied. Furthermore, it is easy to show that L∗

d is
a self-adjoint operator with respect to the scalar product 〈A,B〉ρβ . Thus, the above theorem
holds. �

4. Spin chain coupled to several heat baths

Consider a spin chain (N spins) coupled to r heat baths at inverse temperatures β(k1),

β(k2), . . . , β(kr ), where 2 � r � N for all j = 1, . . . , r and kj is the kj th site of the
chain ⊗N

i=1C
2. The quantum repeated interaction Hamiltonian is given by

H = HS ⊗ I + I ⊗ HR +
1√
h

r∑
j=1

(
σ

(kj )
x ⊗ σ

(kj )
x + σ

(kj )
y ⊗ σ

(kj )
y

)
.

In the same way as in section 2.2, we prove that the associated Lindblad generator has the
form

L(X) = i[HS,X] + 2β
(k1)
0

[
2σ

(k1)− Xσ(k1)
+ − {n(k1)− , X}] + 2β

(k1)
1

[
2σ (k1)

+ Xσ
(k1)− − {

n(k1)
+ , X

}]
+ 2β

(k2)
0

[
2σ

(k2)− Xσ(k2)
+ − {n(k2)− , X}] + 2β

(k2)
1

[
2σ (k2)

+ Xσ
(k2)− − {

n(k2)
+ , X

}]
.

.

+ 2β
(kr )
0

[
2σ

(kr )− Xσ(kr )
+ − {

n
(kr )− , X

}]
+ 2β

(kr )
1

[
2σ (kr )

+ Xσ
(kr )− − {

n(kr )
+ , X

}]
,

for all X ∈ B(HS).

The following theorem can be proved in the same way as theorem 3.4.

Theorem 4.1. The quantum dynamical semigroup T ∗
t = etL∗

associated with the spin chain
coupled to r heat baths at inverse temperatures β(k1), β(k2), . . . , β(kr ) has the property of
approach to equilibrium to a unique stationary state. Moreover, if β(k1) = β(k2) = · · · =
β(kr ) = β, this stationary state is given by ρβ = ⊗N

i=1ρβ .

Now, our purpose is to give the explicit form of the associated entropy production. Assume
that β(k1) = β(k2) = · · · = β(kr ) = β and put

σki
(ρ) = 4β0

[∑
j,m

[∣∣〈�m, σ (ki )
+ �j

〉∣∣2(e2βρm − ρj )(log ρm − log ρj + 2β)

]
.

From the proof of theorem 3.5, it is straightforward to show that σi(ρ) is the entropy
production of the spin chain coupled to the ith heat bath at the ki th spin.

Theorem 4.2. If β(k1) = β(k2) = · · · = β(kr ) = β, then the entropy production of the spin
chain coupled to r heat baths is given by

σ(ρ) =
r∑

i=1

σki
(ρ). (13)

Proof. Put

L∗(ki )
d (ρ) = 2β

(ki )
0

[
2σ

(ki )− Xσ(ki )
+ − {n(ki )− , X}] + 2β

(ki )
1

[
2σ (ki )

+ Xσ
(ki )− − {

n(ki )
+ , X

}]
.

14
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Then, in the same way as the proof of theorem 3.5, the entropy production of the spin chain
coupled to r heat baths is given by

σ(ρ) = −Tr(L∗
d(ρ) log ρ) − β Tr(L∗

d(ρ)H (S))

=
r∑

i=1

[−Tr
(
L∗(ki )

d (ρ) log ρ
)− β Tr

(
L∗(ki )

d (ρ)H (S)
)]

=
r∑

i=1

σki
(ρ).

�

It is worthwhile to note that σ(ρ) � 0 for any density matrix ρ. Moreover, σ(ρ) = 0 if
and only if σki

(ρ) = 0 for all i = 1, . . . , r . Finally, for β(k1) = β(k2) = · · · = β(kr ) = β, it is
easy to show that the quantum dynamical semigroup of the spin chain coupled to r heat baths
satisfies quantum detailed balance condition with respect to the stationary state ρβ .

Remark. The master equations introduced in this paper have been proposed on different
grounds in [MHWG]. The authors have studied the transport processes in open spin chains
coupled to heat baths of different temperatures and they have employed the Monte Carlo
wavefunction approach for the computation of the stationary state.

5. Conclusion

We have proposed a repeated quantum interaction model describing a finite spin chain ⊗N
n=1C

2

in interaction with one and r heat baths, where 2 � r � N , at inverse temperatures
β(k1), . . . , β(kr ): the ki th spin in the chain ⊗N

n=1C
2 is coupled to the ki th heat bath. The

Lindblad generator of this model is explicitly computed and the associated quantum master
equation is given. Further, we have proved that the spin chain ⊗N

n=1C
2 relaxes to a unique

faithful stationary state ρβ(k1),...,β(kr )

. Moreover, for N = 1, 2, 3, 4, r = 2, k1 = 1, k2 = N , we
have given the explicit form of ρβ,β ′

where β ′ = β(N) and we have computed the local states. A
conjecture on the local states is stated for N � 5. Finally, for β(k1) = β(k2) = · · · = β(kr ) = β,
the entropy production is computed and we have proved that the quantum dynamical semigroup
of the spin chain coupled to r heat baths satisfies the quantum detailed balance condition with
respect to the unique stationary state ρβ = ⊗N

i=1ρβ .
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(Phys.Théor.) 7 59–104
[AL] Alicki R and Lendi K 1987 Quantum Dynamical Semigroups and Applications (Lecture Notes in Physics

vol 286) (Berlin: Springer)
[B] Burmeister B 1999 Transport processes in quantum spin systems PhD Thesis Oldenburg

[Dav] Davies E B 1974 Markovian master equations Commun. Math. Phys. 39 91–110
[D] Dhahri A Markovian properties of the spin-boson model Séminaire de Probabilités at press
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