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Abstract. Local resonant metamaterials are a class of microstructured man-made material which 
attenuate the propagation of waves in certain frequency ranges, known as band gaps. In this work, 
we study through asymptotic homogenization the anti-plane shear wave propagation in 
metamaterial with a stiff matrix and soft inclusions, periodically distributed, which present a 
hierarchical geometry. Band gaps of the metamaterial are then analytically predicted by the 
intervals of frequency in which the effective mass becomes negative. 
Introduction 
     Metamaterials have attracted a lot of interest in dynamic problems due to their peculiar and 
unusual properties related to wave propagation. A particular class of these materials are the locally 
resonant metamaterials (LRMs), which are specifically designed to trap the energy of propagating 
waves by employing the mechanism of local resonance. The frequency intervals in which waves 
are attenuated are known as band gaps. 
     Typically, LRMs have a periodic structure, made of one or several phases, hence the Bloch 
theorem [1,2] can be employed to reconstruct their band structure, including band gaps, in the 
linear-elastic regime.  
     In recent years, several researchers propose hierarchical geometries for LRMs to obtain wider 
band gaps [3,4]. Numerical simulations of a continuum system exhibiting a hierarchical geometry 
may represent a huge computational burden and analytical predictions of their dynamical 
properties are mainly restricted to discrete systems of lumped masses and springs.  
     Two-scale asymptotic homogenization is a promising technique which can be used to study the 
dynamic effective behaviour of metamaterials [5,6]. This method has been employed to study a 
periodic LRM made of a connected stiff matrix and soft inclusion in two- and three-phase solids 
[7,8], and in thin plates [9], allowing the identification of band gaps as the intervals of negative 
effective dynamic mass.  
     In this work, we extend the results obtained in [8], to study the anti-plane shear wave 
propagation in a three-phase hierarchical LRM constituted by a connected matrix with a periodic 
repetition of coated inclusions which are in turn microstructured, thus realizing a hierarchical 
LRM. In particular, we consider the presence of several concentrical annular rings of rigid masses, 
with interposed soft coatings, in each inclusion. The effective mass of the metamaterial, which is 
frequency-dependent, is derived up to the solution of a tridiagonal linear system. The analytical 
predictions of band gaps are validated by comparison with those obtained by numerical Bloch-
Floquet analyses. Finally, some parametric studies are performed to show the potentiality of the 
proposed approach for the design and optimization of hierarchical LRMs. 
 

 

mailto:david.faraci@polimi.it
mailto:claudia.comi@polimi.it
mailto:jean-jacques.marigo@polytechinque.edu


 
 2 

 

 
Figure 1: (a) Geometry of the hierarchical metamaterial with its (b) unit cell composed by the 
matrix (red), coatings (yellow) and rigid masses (blue) in the case 3N = . (c) First and Irreducible 
Brillouin zone of the square lattice. 
 
Two-scale asymptotic homogenization 
     We consider a three-dimensional heterogeneous linear-elastic media which is characterized by 
a two-dimensional periodicity. The cross-section Ω  of the body, shown in Fig. 1a and having 
characteristic size L , is made of a connected stiff matrix (m) and several inclusions periodically 
distributed. Each inclusion presents a hierarchical geometry consisting of N concentric annular 
rigid masses (f) with interposed soft coatings (c). The unit cell Y   of the periodic media, depicted 
in Fig. 1b with its characteristic size  , shows the domains ,fY α

  and ,cY α
  of each rigid mass and 

coating, which are numbered from the innermost to the matrix mY   by 1, , Nα = … .  
     Under the hypothesis of separation of scales, i.e., when / 1L=   , the effective behaviour of 
the metamaterial can be described through asymptotic homogenization. 

The anti-plane shear wave propagation problem is governed by the scalar Helmholtz equation 

2div( ) 0 inw wµ ρ ω∇ + = Ω    , (1) 

where w is the out of plane displacement andω  is the angular frequency of the propagating wave. 
The terms µ  and ρ   in Eq. 1 are the periodically varying shear modulus and mass density of the 
materials, which are assumed to be ,m mµ ρ  for the matrix, 2 ,c cµ ρ for the coatings and fρ  for the 
rigid masses, with mµ  and mρ  of the same order of magnitude of cµ  and ,c fρ ρ . 
     According to the two-scale homogenization technique, introducing the fast variable /=y x 
and the re-scaled unit cell /Y Y=   , the solution of Eq. 1 is searched in the form 

0 1( ) ( , / ) ( , / ) ...w w w= + +x x x x x    , (2) 

where the functions ( , )iw x y  are defined on YΩ× and are periodic with respect to y . Substituting 
Eq. (2) into Eq. (1) it is possible to prove that the 0-th order displacement in the matrix depend 
only on x , i.e., 0 0( , ) ( )mw W=x y x  in mYΩ× , see [7] for the full derivation.  
     Moreover, due to the radial symmetry of coatings and inclusions the masses rigidly translate 
within the unit cell. That means that 0 0( , ) ( )mw Wαψ=x y x  in ,fY αΩ×  with 1, ..., αψ ψ  unknown 
coefficients. 
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 Figure 2: Detail of the circular sector of 
(a) the α -th coating surrounded by 
two rigid masses, and (b) the α -th 
rigid mass surrounded by two 
coatings. 
 
 
 
 
 
 

Motion of the coatings. Restricting Eq. 1 at order 0  in the α -th coating, one obtains 

0 2 0
,0 inc c cYw w αµ ρ ω∆ Ω×+ =y , (3) 

with proper boundary conditions to guarantee the continuity of the solution at interfaces. For 
Nα ≠ , as shown in Fig. 2a, these BCs read 0 0

mw Wαψ=  on , ,c fY Yα α∂ ∩∂  and 0 0
1 mw Wαψ +=  on 

, , 1c fYY α α+∂ ∩∂ . Due to linearity the solution of Eq. 3 is given by 0 0( , ) ( ) ( )mw W αη=x y x y  in ,cY αΩ×
. Using polar coordinates, one obtains a solution depending on the radial coordinate r only, in the 
form 

0 , 0 0 0 ,0 0 , 0 , 0

1

0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ,

( ( ) (( ( ) ) ) ( )) ) ( )
( )

) ) ( ) ) )

(

( ( ) ( ( ( ( )) (
f fc c

f c c f f c c f

R J Rr R J R r

R R J R R R R J R

J Y r r YJ Y Y
r

J Y Y J Y Y R
α αα α

α α α

α α α α α α α α

λ λ λ λλ λ λ λ
η ψ ψ

λ λ λ λ λ λ λ λ +

−−

− −
= + . (4) 

In Eq. 4 pJ  and pY  are the p-order Bessel’s functions of first and second kind, 2 2 /c cλ ρ ω µ= , 
while , ,,c fR Rα α  are the external radius of the α -th coating and inclusion, see Fig. 2a. Note that 
this solution can be extended also for the N -th coating by setting 1 1Nψ + = . 
 
Motion of the masses of the inclusions. Up to now, the 0-th order displacement 0w  is determined 
up to the knowledge of the matrix displacement 0

mW  and of the N  constants αψ . The latter can be 
determined by enforcing the global dynamic equilibrium of each rigid mass. For the α -th mass 
the equilibrium reads 

,

0
2 0

,| | 0
f

c f f mY r
Y Ww ds

α
α αµ ρ ω ψ

∂
=

∂
+

∂∫ . (5) 

  If 1α ≠ , i.e., we are not considering the innermost mass (see Fig. 2b), Eq. 5 can be rewritten as 

2
2 2

1 , 1 1 1 , 1 , , , 1 , 1( ) ( ) ( ) ( ( ) 0
2

)f
c c f f c f

c

f g R gR R f R R Rα α α α α α α α α α α α α

λ ρ
ψ ψ ψ

ρ− − − − − − +

 
+ − − 
 

+


− =


, (6) 

where we have introduced the functions 
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0 , 1 1 0 ,1 0 , 0 , 1

0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ,)

)( ( ) ( ) ( )( ) ( ) ( )
,

) ) (

( )
( ) ( )

( ( ( )( (( () ) ) )
f fc c

f c c f f c c f

Y J Yr Y R J R Y r
r r r r

J R r r RJ
f g

J R Y J YR R R R R RJ R Y J Y
α αα α

α α

α α α α α α α α

λ λ λ λλ λ λ λ
λ λ

λ λ λ λ λ λ λ λ−
=

−

−−
= .(7) 

     The dynamic equilibrium of the innermost mass ( 1α = ) is expressed again by Eq. 6 with 
0 0 ,0 ,0 0c ff g R R= = = = . The system given by Eq. 6 written for 1, ..., Nα =  is a tridiagonal system 

which allows to compute the unknowns αψ  for each value of λ , i.e., of ω . 
 
 Dispersion relation. Taking the average of Eq. 1 at order 0  over the unit cell, one obtains the 
effective equation of motion of the hierarchical metamaterial 

0 0 0 2 0div ( ) i( ) 0 nm mW Wρ ω ω⋅∇ Ω+ =x xμ , (8) 

where 0μ  is the positive definite effective stiffness tensor (see [7] for the detail of its derivation) 
and 0 ( )ρ ω  is the frequency-dependent effective dynamic mass density, which expression is 

0
, , 1

1 1

( ) | ( 1| | | ( 1)
| | |

)
|

N N
f c

st f cY Y F G
Y Yα α α α α α α

α α

ρ ρρ ω ρ ψ ψ ψ +
= =

+ + += − −∑ ∑ . (9) 

In Eq. 9, ρst  is the static mass density and , α αF G  are constants defined by  

, , , ,
2 2 2 2 2 2

, , , ,

|| | ,
| | | | |

(
|

( ) (
 

|| |

) ) (2 2 )
, 

fm c
st m f c

c f c f

c f c f

Y Y Y
R

YY Y

f R f g R g
F G

R R R
R

R
α α α α α α α α

α α
α α α α

ρ ρ ρ ρ

λ λ λ λ
λ λ

+ +

=

=

− −
=

− −

. (10) 

Substituting into Eq. 8 the monochromatic wave 0 ( ) exp( )mW i= ⋅x k x , where i  is the imaginary 
unit and k  is the wavevector, one obtains the dispersion relation 0 2 0( ) : 0ρ ω ω − =μ k k .  
     As it can be seen, no real wavevector can satisfy the dispersion relation if the effective mass is 
negative. This means that the band gaps of the hierarchical metamaterial are identified as the 
intervals of frequency in which 0 ( ) 0ρ ω < . 
 
Example 
    The design of hierarchical LRM requires, besides the choice of the material and of the shape of 
the unit cell, also the selection of the number of masses and their distribution. As an example, we 
will consider a square unit cell, made of an epoxy matrix, rubber coatings and lead masses, see 
Fig. 1b. Typical values of the materials parameters are reported in Table 1. 
 

Table1: Properties of the constituent materials 
 

 E  [MPa] ν  [-] ρ  [kg/m3] 
Matrix (epoxy) 3600 0.370 1180 
Coatings (rubber) 0.118 0.469 1300 
Rigid masses (lead) 14000 0.420 11340 
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     We keep constant the total mass of coatings and resonant masses and we discuss the effect of 
changing the inclusions microstructure. Assuming 2| 0 5| . 0fY =   and 2| 0 1| . 3cY =  , we obtain 
different unit cells (Fig. 3) by changing N and assuming that each sub-inclusion has the same 
mass. In the case of one, two and three rigid masses the effective mass density given by Eq. 9 is 
plotted against frequency in the left plates of Fig. 4a, 4b and 4c, respectively. Frequencies are 
normalized with respect * 2/c cω µ ρ=  . The dispersion curves, along the irreducible Brillouin 
zone of the unit cell (see Fig. 1c), are obtained by the numerical solution of Bloch-Floquet 
problems and are reported in the right plates of the same figures. The comparison shows the 
accuracy of the proposed homogenization approach for the prediction of the lowest band gaps 
(shaded in the figures) in the low-frequency regime. 

 

 
 

Figure 3: First five hierarchy level considered. 
 

 
 

Figure 4: Effective mass density against frequency (left) and numerical dispersion curves (right) 
in the case of one (a), two (b) and three (c) rigid masses. (d) Band gaps width as a function of the 
number of rigid masses.  
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     Figure 4d shows the width of band gaps for the first five hierarchical geometries with the 
corresponding gap mid-gap ratio %] 200( ) )[ / (c o c oBG ω ω ω ω= − + , where oω  and cω  are the 
opening and closing frequency of the band gap. It can be observed that an additional band gap 
appears for each rigid mass considered, while the opening frequency of the first one is almost 
constant. 
 
Conclusions 
     In this work, we studied the propagation of anti-plane shear waves in a continuous ternary 
locally resonant metamaterials, exhibiting a hierarchical mass-in-mass geometry, through 
asymptotic homogenization. In the simple case of concentric annular coatings and rigid masses we 
provide the expression of the effective dynamic mass density of the metamaterial up to the solution 
of a tridiagonal system, which has the same dimension of the number of sub-masses inside the 
inclusions.  
     The homogenized mass, which turns out to be frequency-dependent, allows for the prediction 
of the band gaps as intervals of frequency in which it becomes negative. This result has been 
validated by comparison with the band gaps obtained through numerical Bloch-Floquet analyses. 
This allow to perform parametric studies on the hierarchical metamaterial considered, which could 
be useful in their design phase. 
     The results obtained in this work can be easily generalized to wave propagation problems in 
plane strain conditions and for thin plates. 

 
References 
[1] C. Kittel. Introduction to Solid State Physics 7th Ed. Wiley, 1996. 
[2] A. S. Phani, J. Woodhouse,N. A. Fleck. Wave propagation in two-dimensional periodic 

lattices. J. Acoust. Soc. Am., 119(4):1995-2005, 2006. 
[3] C. Liu, C. Reina. Broadband locally resonant metamaterials with graded hierarchical 

architecture. Journal of Applied Physics, 123, 095108:1-10, 2018. 
[4] A. O. Oyelade, T. T. Akano. Graded hierarchical architecture metamaterial in vibration 

suppression. UPB Scientific Bulletin, Series D: Mechanical Engineering, 82(3):41-50, 2020. 
[5] J. L. Auriault, G. Bonnet. Dynamique des composites élastiques périodiques. Arch. Mech., 

37:269-284, 1985. 
[6] R. V. Craster, J. Kaplunov, A. V. Pichugin. High frequency homogenization for periodic 

media. Proc. R. Soc. A Math. Phys. Eng. Sci., 466(2120):2341-2362, 2010. 
[7] C. Comi, J. J. Marigo. Homogenization Approach and Bloch-Floquet Theory for Band-Gap 

Prediction in 2D Locally Resonant Metamaterials. Journal of Elasticity, 139(1):61-90, 2020. 
[8] C. Comi, M. Moscatelli, J. J. Marigo. Two scale homogenization in ternary locally resonant 

metamaterials. Materials Physics and Mechanics, 44(1):8-18, 2020. 
[9] D. Faraci, C. Comi, J. J. Marigo. Band Gaps in Metamaterial Plates: Asymptotic 

Homogenization and Bloch-Floquet Approaches. Journal of Elasticity, 148(1):55-79, 2022. 


	Two-scale asymptotic homogenization of hierarchical locally resonant metamaterials in anti-plane shear conditions
	Two-scale asymptotic homogenization of hierarchical locally resonant metamaterials in anti-plane shear conditions

