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Abstract

Vibrations in rotorcraft result from the interaction between the rotors’ mechanical components and the airflow
on the blades. These vibrations can cause structural fatigue, reduce operational efficiency, and even impact
operational safety by affecting pilots and operators. The phenomena where pilot biomechanics interact with
vehicle vibrations, affecting flying qualities, are known as (Adverse) Rotorcraft-Pilot Couplings (RPCs). Pilot-
Assisted Oscillations (PAOs) are a specific type of RPC, occurring in the 2 Hz–8 Hz range, beyond the control
of human manual input, and often involve unintentional pilot inputs. For collective bounce analysis, the aircraft
heave motion and collective flap dynamics are crucial for stability analysis. Pilot models range from simple
linear models to detailed multibody models of the human upper body. The analysis of PAOs involves modeling
and testing the BioDynamic FeedThrough (BDFT), which describes the input-output relationship in the Pilot
Control Device System. The objectives of this modeling are to identify the contributions influencing BDFT,
physically represent the components of the block scheme, verify results from different applications, and develop
a simplified model for control synthesis.

Keywords: Pilot Biomechanics, Rotorcraft Pilot Coupling, BioDynamic FeedThrough, Pilot Assisted Oscilla-
tions, Collective Bounce

1. Introduction
Vibrations in rotorcraft are inherent, arising from the interaction between the rotors’ mechanical com-
ponents and the airflow on the blades. Their effects range from structural fatigue to reduced oper-
ational efficiency and even, in extreme cases, operational safety. The latter is generally caused by
their effects on pilots and operators, which can include fatigue and discomfort, reduced situational
awareness, task performance degradation, increased workload, and the potential reduction of flying
qualities and safety caused by vibration feedthrough at the control inceptors, mediated by the pilots’
biomechanics.
Phenomena arising from the interaction between the pilot biomechanics and the vehicle vibrations
affecting the flying qualities are referred to under the comprehensive term of (Adverse) Rotorcraf-Pilot
Couplings, or RPCs[1]. In particular, phenomena involving pilot inputs that are not control-related
typically occur in the 2 Hz–8 Hz range, a frequency range that is well beyond the intentional manual
control of human beings, thus only attributable to biomechanical filtering of vibratory inputs. They are
often referred to as Pilot-Assisted Oscillations, or PAOs, and are the focus of the present work [1].
A typical PAO problem, often taken as a reference for its simplicity and relevance, is the vertical (or
collective, in the case of helicopters) bounce. It is characterized by the feedback loop created by the
interaction between the vehicle’s vertical motion – controlled by the vertical component of the main
rotor thrust in helicopters – and the rotation of the collective inceptor, mediated through the pilot’s
biomechanical response. Since the collective lever rotation ultimately controls the main rotor thrust
magnitude, vertical cockpit vibrations induced by periodic variations of thrust are transferred to the
pilot body, and fed through it to the collective inceptor, potentially augmenting the thrust oscillations.
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The analysis of PAOs, necessary to understand and prevent their occurrence, especially in new de-
signs, involves the modeling and testing of the relevant vehicle dynamics and of the biomechanical
response of the pilot that is excited by the vehicle motion. In the case of collective bounce, the aircraft
heave motion and collective flap dynamics have proven to be sufficient to accurately represent the
vehicle behavior for stability analysis [2]. The input-output relationship between the vehicle acceler-
ations and either the control device deflections or total force applied to it through the pilot’s hand. It
is often referred to as the BioDynamic FeedThrough, or BDFT, of the Pilot Control Device System
(PCDS). Adopting the naming conventions of [3], when the output is the rotation of the collective
lever, the BDFT takes the name of B2P, or BDFT to Positions.

Regarding the pilot model, research focus has been placed on simple one degree of freedom, linear
models [2] and on detailed, multibody models of the human upper body [4]. The PAOs analysis is a
combination of modeling and testing the so-called BioDynamic FeedThrough (BDFT) [5]. The pilot
can be described from different approaches, via a physical multibody point of view, or through a more
black box scheme, like in McRuer’s works [6]. The latter choice is often employed to fit experimental
data [7] (Cf. Figure 2).
This work represents an attempt at bridging the gap between the two model schematics: the devel-
opment of several medium-complexity models of the pilot biomechanics is presented. The modeling
effort has the following objectives:

• provide a clear identification of the contributions, in terms of generalized forces, that influence
the B2P;

• physically represent the components of the scheme and decomposition proposed by Venrooij
in [3] (Cf. Figure1);

• verify the results of Venrooij’s works, considering a different application;

• develop a simplified model for control synthesis.

Figure 1 illustrates the conceptual model of the BDFT system proposed by Venrooij in [3], which
maps the relationships among its various components. This diagram includes all the elements typi-
cally found in a BDFT system. Each block within the model is linked to a transfer function (denoted
by H) that describes the dynamics of the respective system components. This research introduces
a cohesive framework for tackling the BDFT problem, addressing the inconsistencies in definitions,
nomenclature, and mathematical descriptions prevalent in previous studies. The fragmented nature
of BDFT literature has hindered the comparison of results and the advancement of a comprehensive
understanding of BDFT phenomena. The work in [3] makes a substantial contribution by creating
a detailed framework for BDFT analysis, which includes a standardized set of definitions, nomen-
clature, and mathematical notations. This unified approach facilitates the study, discussion, and
comprehension of BDFT and its related issues.
To best achieve the aforementioned objectives, the modeling follows an incremental path in the de-
velopment of several realizations of different complexities. The elements are always rigid bodies,
holonomic constraints, and linear viscoelastic elements, but their number increases. In all cases,
the rigid bodies describe the motion of the arm, forearm, and collective lever; the system is always
simplified as planar, its motion being confined in a vertical plane.
The adopted approaches are the following:

1. 1 Degree of Freedom (DoF): the system has a prescribed Degree of Freedom, the vertical
movement of the base, and a degree of freedom associated with the rotation of the collective
lever. A single rigid body is used to represent the pilot body;

2. 2 degrees of freedom, with only rigid bodies: like the 1 DoF but with the arm divided into hand
and shoulder, constrained by an equivalent spring-damper system;

3. 2 degrees of freedom, with only rigid bodies: like the 1 DoF but with the arm divided into forearm
and arm, hinged at the elbow. The system’s kinematics is more adherent to reality;
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(a) Block scheme for BDFT system, overall (courtesy of Joost Venrooij)

(b) Block scheme for BDFT in details

Figure 1 – Pilot-vehicle interface block decomposition (from [3])

Figure 2 – BDFT fitting, given the black-box model
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The goal of this investigation is to understand if it is possible to obtain simple, physics-based models
for which identifying and managing the contribution of each element is easy.
The objectives are to provide a clear explanation of the physics and geometry of each contribution and
how this influences the parameters that characterize the system’s frequency response, in particular:
the static gain, the resonance frequencies, and their corresponding damping.
This paper intends to provide these quantities in an analytically clear manner, where "clear" means
the symbolic representation of the relationships that constitute the characteristic parameters of the
system, allowing an informed reader to attribute meaning and significance to the expression.
Even a second-order system with two degrees of freedom involves a state-space realization matrix A
of dimension 4×4, thereby immediately complicating the objective of explicitly showing the algebraic
relationships that compose the expressions of the parameters.
Nonetheless, there remains the possibility of directly extrapolating the matrix expressions from the
model, thereby allowing the numerical quantities to be physically parameterized. This enables the
individual components of the BDFT to be obtained directly, without the need to execute ad-hoc virtual
or real experiments [7].
Attributing a physical parameterization to the characterization of the system allows for the hypothe-
sizing of good initial guesses for the measurable quantities. This is possible because the geometric
relationships are maintained, unlike in [3]. Moreover, it should allow for tuning the system with a
smaller set of variables compared to the parameterization of the equivalent state space model.
Another opportunity provided by this approach is the possibility to study the behavior as a function of
different equilibrium points without having to rely on time-marching simulations. Additionally, it allows
the formulation of an LPV (Linear Parameter-Varying) system dependent on the configuration, thus
enabling this type of approach for potential control.
Alongside this objective, another fundamental issue is understanding the level of complexity required
to faithfully reconstruct the phenomenon under investigation, as well as the ability to attribute physical
meaning to each component. To achieve this, one can proceed in various directions, for example, by
evaluating the eigenvalues of a sophisticated model as in [4] or by attempting to obtain them from
experiments through an SVD decomposition of the data or their transformation into the frequency
domain. This approach can be described as top-down. The approach followed in this paper is
bottom-up, where a model is incrementally built to be more complex and compared with experimental
or simulation data.

2. Methods and Models

Figure 3 – Physical model of the system

To best elucidate the physical relationships governing the system and immediately formulate the
equations of motion, a virtual work approach has been used rather than using a Lagrangian ap-
proach or the cardinal equations of dynamics. It is believed that this method makes the attribution
of contributions more easily understandable even in this initial phase of modeling. After all, one can
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imagine infinitesimal work as the quantification of the effect of force on the variation of infinitesimal
displacement.
As previously presented, the modeling begins with the single-degree-of-freedom model found in [2],
which is reformulated here to allow for comparison with the subsequently developed models. From
this model, all explicit symbolic expressions can be derived. Briefly, the model involves a single body
composed of a point mass attached to the end of a rod. This rod represents the collective control
lever of the helicopter, while the point mass represents the pilot assembly, including the torso, arms,
and hand. The rod is not modeled as uniform to account for the presence of the grip and the inertia
properties of the control chain. The pilot’s body is modeled as a spring-damper system constrained
to the ground via a skid, while the collective lever rod has a rotational spring and damper applied to it
to simulate the effects of the balancing spring and the friction in the control chain. The rod is hinged
to the ground. The system is excited by a base acceleration.
In the second modeling approach, the pilot assembly is divided into two bodies: one mass represent-
ing part of the arm plus the hand welded to the control rod, and another mass representing the torso,
shoulder, and part of the arm constrained with a vertical skid to the base, allowing movement along
the direction of external acceleration. The two masses are connected via a spring-damper couple to
allow the arm’s flexibility to move while still maintaining relative dependence and the ability to repre-
sent and manage muscle activation. The shoulder position is maintained by another spring-damper
couple, allowing the introduction of the mode associated with the torso/spinal column/seat system.
This model is considered the clearest and sufficiently complex to best capture the dynamics of the
human body; for this reason, it will be extensively described in the paper. It has a total of two degrees
of freedom.
The third model involves replacing the spring-damper between the two masses representing the hu-
man body with a system of two non-uniform rods, representing the forearm and arm, hinged together
at the ends like an elbow joint. This system is connected at the two free ends with the shoulder mass
and the hand mass via two hinges. To represent the muscles of the body, three spring-damper cou-
ples are applied: at the hinge that describes the hand, acting on the forearm and control lever, at the
elbow hinge acting on the arm and forearm, and at the shoulder hinge acting on the arm, grounded
via a skid constraint allowing the spring to follow the vertical movement of the shoulder.
The system has two degrees of freedom but does not allow for the explicit reading of the symbolic
equation of motion. However, this model effectively incorporates all the main components of the hu-
man body involved in this phenomenon. Therefore, it was decided to complete its analysis, also to
verify how this geometric complexity increment develops. This model is useful for the rapid evalu-
ation of any nonlinearities caused by large displacements while maintaining fundamental geometric
relationships.
Having a reliable model still allows for the numerical decomposition of the block diagram and the
evaluation of the system’s characteristic parameters without virtual experiments and ad-hoc tests.
Moreover, the incremental approach leverages knowledge from the simpler model to expedite the
parameter identification of this one. Finally, if this model allows for good identification, it can be utilized
for more detailed parametric analyses compared to the previous model, thanks to its computational
efficiency. This enables both thorough and rapid analysis.

2.1 Single DoF Model
The kinematics of this model is rather straightforward. Here, positions, velocities, and accelerations
are provided in both absolute and body-fixed reference frames. Where O is the origin of the absolute
reference frame (x̂, ŷ), OP is the position vector of the cyclic lever, where the equivalent pilot mass is
located at its end, OA and AP are its projections onto the absolute reference frame, θ is the angle
with respect to the x̂ axis, the output of the system subject to BDFT, S is the length of the lever, η is
the position relative to the length S of the center of mass of the lever. The relative system, fixed to
the lever, is defined by the pair of unit vectors (n̂S, t̂S), where n̂S exits from the control rod and t̂S is
orthogonal and right-handed in the plane.

OP = OA+AP (1)
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Figure 4 – Single model of the system

−→

{
OA = Scosθ

AP = S sinθ
(2)

−→
[
ȮA
ȦP

]
=

[
−S sinθ

Scosθ

]
θ̇ (3)

−→
[
ÖA
ÄP

]
=

[
−S sinθ

Scosθ

]
θ̈ −

[
Scos(θ)
S sin(θ)

]
θ̇

2 (4)

One can then derive the relationships for the accelerations aGP , aP of the important points (center of
gravity GS of the lever and pilot mass P) expressed in the reference frame fixed to the bodies and the
displacement θ . Similarly, the virtual displacements δpGS , δpP of the same points are defined.

aGS =
(
−ηSθ̇

2 + sin(θ)z̈
)

n̂S +
(
ηSθ̈ + cos(θ)z̈

)
t̂S (5)

aP =
(
−Sθ̇

2 + sin(θ)z̈
)

n̂S +
(
Sθ̈ + cos(θ)z̈

)
t̂S (6)

δpGS = ηSδθ t̂S
δpP = Sδθ t̂S

(7)

The forces acting on the system can now be identified to define, for each one, its virtual work with
respect to the virtual displacement, assemble the internal and external works, and thus obtain the
equation of motion. Fine

GS
,Cine

GS
,Fine

GP
are the inertia forces and moments of the control rod and equivalent

pilot mass. CO
v ,CO

el,F
P
v ,FP

el,F
P
P are the elastic and viscous forces and moments of the equivalent

springs and dampers acting at O on the lever and at P on the pilot mass. FGS
P ,Ccontrol are the weight

forces of the lever, the pilot, and the external control or disturbance torque. cO,kO, c̃P, c̃P, k̃P, k̃P are the
damping and elastic coefficients, while JS,mP,mGS ,g are their respective masses, inertia properties,
and gravitational accelerations. θ̃ , θ̄ are the rest lengths of the springs, related to the degree of
freedom θ .

Fine
GS

=

[
mSηSθ̇ 2 −mS sin(θ)z̈
−mSηSθ̈ −mS cos(θ)z̈

]
n̂S t̂S

Cine
GS

=−JSθ̈ k̂

Fine
GP

=

[
mPSθ̇ 2 −mP sin(θ)z̈
−mPSθ̈ −mP cos(θ)z̈

]
n̂S t̂S

(8)
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CO
v =−cOθ̇ k̂

CO
el =−kO(θ − θ̃)k̂

FP
v =−c̃P(θ̇ cosθ sinθ)n̂S − c̃P(θ̇ cos2

θ)t̂S

FP
el =−k̃PS(sinθ − sin θ̄)sinθ n̂S − k̃PS(sinθ − sin θ̄)cosθ t̂S

FP
P =−mPgsinθ n̂S −mPgcosθ t̂S

FGS
P =−mGSgsinθ n̂S −mGSgcosθ t̂S

Ccontrol =Ccontrol(t)k̂

(9)

From this, it is possible to derive the expression of their respective virtual works. Under the formulated
assumptions, the virtual work of the internal forces is null.

FGS ·δpS = (Fine
GS

+FPS)
⊤

δpS

=

[
ηSmSθ̇ 2 −mS sin(θ)z̈−mSgsin(θ)
−ηSmSθ̈ −mS cos(θ)z̈−mSgcos(θ)

]⊤[
0

ηSδθ

] (10)

FGP ·δpP = (Fine
P +FPP +FP

v +FP
el)

⊤
δpP

=

[
SmPθ̇ 2 −mP sin(θ)z̈−mPgsin(θ)− k̃P(S sin(θ)−S sin(θ̄))sin(θ)− c̃PScos(θ)sin(θ)θ̇
−SmPθ̈ −mP cos(θ)z̈−mPgcos(θ)− k̃P(S sin(θ)−S sin(θ̄))cos(θ)− c̃PScos2(θ)θ̇

]⊤[
0

δθ

]
(11)

Cθ ·δθ = (Cine
S +CO

v +CO
el +Ccontrol)

⊤
δθ

= (−JSθ̈ − cOθ̇ + kO(θ − θ̃)+Ccontrol))δθ
(12)

By summing these external virtual works and equating them to the null internal virtual work δWext =
δWext = 0, we obtain the equation of motion:

−→ [−S2(η2mS +mP)− JS]θ̈ +(−c̃PS2 cos2(θ)− cO)θ̇+

+[−Sg(ηmS −mP)+S2k̃P sin(θ̄)]cos(θ)−S2k̃P sin(θ)cos(θ)− kOθ + kOθ̃ =

= S(ηmS +mP)cos(θ)z̈−Ccont

(13)

The linearization of the equation of motion in the equilibrium condition is now demonstrated, for the
block decomposition in [3]. The equilibrium condition is as follows:

[−Sg(ηmS −mP)+S2k̃P sin(θ̄)]cos(θ)−S2k̃P sin(θ)cos(θ)− kOθ + kOθ̃ = 0 (14)

The linearization:

J⋆ =
∂

∂ θ̈
f |eq =−η

2S2mS −S2mP − JS

c⋆ =
∂

∂ θ̇
f |eq =−c̃PS2 cos2(θeq)− cO

k⋆ =
∂

∂θ
f |eq = [Sg(ηmS +mP)−S2k̃P sin(θ̄)]sin(θeq)−S2kP cos(2θeq)− kO

(15)

−→ J⋆δ θ̈ + c⋆δ θ̇ + k⋆δθ = Scos(θeq)(ηmS +mp)z̈−Ccont (16)

2.2 Two DoF Model - Arm Condensed
2.2.1 Kinematics
The second model involves two degrees of freedom q = [OD,θ ] (the vertical displacement of the
shoulder OD and the angular position of the collective lever θ ) Three bodies with mass (torso, arm,
lever) positioned at points D, B, GS.
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Figure 5 – Two DoF model of the system - arm condensed

AB is the vector corresponding to the control lever of length L, AO is the position of the pivot point
of the lever relative to the projection of the shoulder onto the absolute reference system, OD is the
vertical position of the shoulder relative to the absolute reference system, DB is the vector between
the shoulder and the hand with origin at D and angle relative to the absolute reference system φ .
The absolute reference system is centered at A and consists of the pair (x̂, ŷ), the system fixed to the
lever is defined by θ , is centered at A, and consists of the pair (n̂S, t̂S), the system fixed to the arm is
defined by φ , is centered at D, and consists of the pair (n̂DB, t̂DB). The length of the lever is S, and the
relative position of the center of mass is defined by ηS.
The vector relationship between the positions is as follows:

AB = AO+OD+DB (17)

It is possible to define the nonlinear relationships that link the physical variables to the minimal set of
coordinates: {

DBcos(φ) = Scosθ −AO
DBsin(φ) = S sinθ −OD

(18)

From which the relationships can be explicitly derived:

−→


DB =

√
(S sinθ −OD)2 +(Scosθ −AO)2

φ = tan−1
(

S sinθ −OD
Scosθ −AO

) (19)

With the relationships between the positions, it is possible to define the velocities with respect to the
free coordinates explicitly: {

ḊBcosφ −DBsinφφ̇ =−S sinθθ̇

ḊBsinφ +DBsinφφ̇ = Scosθθ̇ − ȮD
(20)

−→

ḊB =−S sin(θ −φ)θ̇ − sinφ ȮD

φ̇ =− S
DB

cos(θ +φ)θ̇ − cosφ

DB
ȮD

(21)

From the velocity relationships, it is possible to immediately derive the virtual displacements of each
relevant point with respect to the free coordinates:
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δpD = δODŷ

δpB = Sδθ t̂S
δpGS = ηSSδθ t̂S

δθ = δθ k̂

δpDB = (−S sin(θ −φ)δθ − sinφδOD) · n̂DB = (Sδθ t̂S −δODŷ) · n̂DB

(22)

2.2.2 Dynamics
The forces acting on the system are either inertial or produced by equivalent springs and dampers.
The only internal forces in the system are those due to the spring-damping system of the arm FDB

el ,FDB
vis

characterized by the coefficients kBD
el ,cBD

v .
With CA

el,C
A
vis as the external torques introduced at A by the spring-damping system characterized by

coefficients kA
el,c

A
v , CS

ine,FS
ine,FS

inez
,FS

P as the inertial forces and weight of the control rod characterized
by JS,mS, FB

ine,FB
inez

,FB
P as the inertia and weight of the mass mB at B, FD

ine,FD
inez

,FD
P as the inertia and

weight of the mass mD at D, FOD
el ,FOD

vis as the external forces introduced at D by the spring-damping
system present, characterized by coefficients kOD

el ,cOD
v .

Below are the relationships defining these forces:

CA
el =−kA

el(θ − θ̄)k̂; CA
vis =−cA

v θ̇ k̂; Ccont(t) =Ccont k̂; CS
ine =−JSθ̈ k̂; FS

ine =−ηSSmSθ̇
2n̂S +ηSSmSθ̈ t̂S;

FS
inez

=−mSz̈ŷ; FS
P =−mSgŷ; FDB

el =−kDB
el (DB− D̄B) ˆnDB; FDB

vis =−cDB
v ḊBn̂DB; FB

P =−mBgŷ;

FB
inez

=−mBz̈ŷ; FB
ine = SmBθ̇

2n̂S −SmBθ̈ t̂S; FOD
el =−kOD

el (OD− ŌD)ŷ; FOD
vis =−cOD

v ȮDŷ;

FBD
el = kDB

el (DB− D̄B)n̂DB; FBD
vis = cDB

v ḊBn̂DB; FD
P =−mDgŷ; FD

ine =−mDÖDŷ; FD
inez

=−mDz̈ŷ;
(23)

From this, it is possible to express the contribution of each force to its respective virtual displacement
and thus define its virtual work. All contributions of each force for its allowed virtual displacement
are shown here. It is considered important to quantify and better understand the phenomenon:
which degree of freedom is stimulated, which free variables are involved, and how much each term
contributes relative to the others. Therefore, the following are reported:

δW elB
int = FDB

el ·δpDB = kDB
el [(SAOsinθ −ScosθOD)δθ +(OD−S sinθ)δOD]

δW visB
int = FDB

vis ·δpDB = cDB
v [(S2

θ̇ −Scosθ ȮD)δθ +(ȮD−Scosθθ̇)δOD]

δW elA
ext = FA

el ·δpA =−kA
el(θ − θ̄)δθ

δW visA
ext = FA

vis ·δpA =−cA
v θ̇ δθ

δW
contGS
ext =Ccont(t)δθ

δW
PGS
ext = FGS

P ·δpGS =−mSgηSScosθδθ

δW
zGS
ext = FGS

inez
·δpGS =−mSz̈ηSScosθδθ

δW
inetr

GS
ext = FGS

ine ·δpGS =−mSη
2
S S2

θ̈ δθ

δW
inerot

GS
ext = CGS

ine ·δθ =−JSθ̈ δθ

δW PB
ext = FB

P ·δ pB =−mBgScosθδθ

δW zB
ext = FB

z ·δ pB =−mBz̈Scosθδθ

δW ineB
ext = FB

ine ·δ pB =−mBS2
θ̈ cosθδθ

δW PD
ext = FD

P ·δ pD =−mDgδOD

δW zD
ext = FD

inez
·δ pD =−mDz̈δOD

δW ineD
ext = FD

ine ·δ pD =−mDÖDδOD

δW elD
ext = FD

el ·δ pD =−kD
el(OD− ŌD)δOD

δW visD
ext = FD

vis ·δ pD =−cD
v ȮDδOD

(24)
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The nonlinear equation of motion can be derived using the principle of virtual work: ΣiδW i
ext = Σ jδW j

int :

−→ δθ : [S2(mSη
2
S +mB)]θ̈ +[cA +S2cDB]θ̇ −ScDB cosθȮD+

kAθ +gS(ηSmS +mB)cos(θ)+SAOkDB sinθ +SkDB cosθAOkDB sinθ +SkDB cosθOD− kAθ̄ =

=Ccont(q, t)− (mSηS +mB)Scosθ z̈

−→ δOD : mDÖD+[cD + cDB]ȮD−ScDB cosθθ̇ +[kD + kDB]OD−SkDB sinθ − kDŌD+mDg =

=−mDz̈

(25)

At this point, it is possible to linearize around the equilibrium point defined by the equation:{
kAθeq +gS(ηSmS +mB)cosθeq +SAOkDB sinθeq −SkDB cosθeqODeq − kAθ̄ = 0

(kA + kDB)ODeq −SkDB sinθeq − kDŌD+mDg = 0
(26)

The partial derivatives of the equation of motion are defined as follows with f = [ f1, f2]
⊤:

∂

∂ θ̈
f1 = S2(η2

S mS +mB)+ JS = mθθ ;
∂

∂ θ̇
f1 = cA +S2cDB = cθθ ;

∂

∂ ȮD
f1 =−ScDB cosθeq = cθD;

∂

∂θ
f1 = kA −gS(ηSmS +mB)sinθeq +SAOkDB cosθeq +SkDBODeq sinθeq = kθθ ;

∂

∂OD
f1 =−SkDB cosθeq = kθD;

∂

∂ θ̈
f2 = mD = mDD;

∂

∂ θ̇
f2 = cD + cDB = cDD;

∂

∂ ȮD
f2 =−ScDB cosθeq = cDθ ;

∂

∂θ
f2 = kD + kDB = kDD;

∂

∂OD
f2 =−SkDB cosθeq = kDθ

(27)
Therefore, the linear equation is:

−→



[S2(η2
S mS +mB)+ JS]∆θ̈ +(cA +S2cDB)∆θ̇ −ScDB cosθeq∆ȮD+

+[kA −gS(ηSmS +mB)sinθeq +SAOkDB cosθeq +SkDBODeq sinθeq]∆θ −SkDB cosθeq∆OD =

=−(mSηS +mB)Scosθeqz̈+Ccont

mD∆ÖD−ScDB cosθeq∆θ̇ +(cD + cDB)∆ȮD−SkDB cosθeq∆θ +(kD + kDB)∆OD =

=−mDz̈

(28)

In compact form:

−→
[

mθθ 0
0 mDD

][
∆θ̈

∆ÖD

]
+

[
cθθ cθD
cDθ cDD

][
∆θ̇

∆ȮD

]
+

[
kθθ kθD
kDθ kDD

][
∆θ

∆OD

]
=

[
f1z

f2z

]
z̈+

[
C1(q, t)

C2

]
(29)

It is possible to define the matrices of the state-space system:

A =

[
0 I

−M−1K −M−1C

]
; B = [0,0, f1z, f2z]

⊤

C = [1,0,0,0]; D = 0
(30)

From which it is possible to derive the transfer function using the classical approach with the state
space realization:

H(s) =C(sI −A)−1B+D (31)

This leads to the definition of the standard results for two degrees of freedom mechanical system,
with coupling terms:

H(s) =
f1zmDs2 +(cDD f1z − cθD f2z)s+ f1zkDD − f2zkDD

mDmθ s4 +(cθθ mD + cDDmθ )s3 +(cDDcθθ − c2
Dθ

+ kθθ mD + kDDmθ )s2 +(cDDkθθ −2cθDkDθ cθθ kDD)s+ kDDkθθ − k2
Dθ

(32)
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Therefore, it is possible to derive some of the system characteristics symbolically, including the static
gain of the system SG = H(0):

SG =
f1zkDD − f2zkθD

kDDkθθ − k2
dθ

=
Scosθeq[kDBmB +(kD + kDB)(mB +ηSmS)]

S[(ODeqkDBg(mB +ηSmS))sinθeq +(AO−SkDBcosθeq)kDB cosθeq]− kA

(33)

Although algebraically deriving the other quantities might be quite difficult, numerically it becomes
straightforward, without the need to formulate ad hoc virtual experiments. In the following are re-
ported the torques used in the Venrooij’s decomposition to define the transfer functions in the blocks
themselves.

Carm

[
1
0

]
=

[
mBS2 cosθθ̈ + cDBS2θ̇ − cDBScosθ ȮD+mBgScosθ + kDBSAOsin(θ)− kDBScos(θ)OD

mDÖD+(cDB + cD)ȮD− cDBScos(θ)θ +mDg+ kD(OD− ŌD)+ kDB(OD−S sinθ)

]
−→Clin

arm

[
1
0

]
=

[
mBS2 0

0 mD

][
∆θ̈

∆ÖD

]
+

[
cDBS2 −cDBScosθeq

−cDBScosθeq cDB + cD

][
∆θ̇

∆ȮD

]
+

+

[
−mBgS sinθeq + kDBSAOcosθeq + kDBS sinθeqODeq −kDBScosθeq

−kDBScosθeq kD + kDB

][
∆θ

∆OD

]
= Marm∆q̈+Carm∆q̇+Karm∆q

(34)

Cb2 f ol

[
1
0

]
=

[
mBScosθeq

mD

]
z̈ (35)

Ccd = (−JS −η
2S2mS)θ̈ − cOθ̇ −ηSmSgcos(θ)− kOθ + kOθ̃

−−→
lin.

Clin
cd = (−JS −η

2S2mS)δ θ̈ − cOδ θ̇ +(ηSmSgsin(θ)eq − kO)δθ −ηSmS cos(θeq)z̈+Ccont
(36)

Ccd f t = ηSmS cos(θ)z̈

−−→
lin.

Clin
cd f t = ηSmS cos(θeq)z̈

(37)

Cdist

[
1
0

]
=

[
S2(η2

S mS +mB)+ JS 0
0 mD

][
∆θ̈

∆ÖD

]
+

[
(cA +S2cDB) −ScDB cosθeq

−ScDB cosθeq (cD + cDB)

][
∆θ̇

∆ȮD

]
+

+

[
[kA −gS(ηSmS +mB)sinθeq +SAOkDB cosθeq +SkDBODeq sinθeq] −SkDB cosθeq

−SkDB cosθeq (kD + kDB)

][
∆θ

∆OD

]
= M f d f t∆q̈+C f d f t∆q̇+K f d f t∆q

(38)
For the Control Device and the Biodynamic feedthrough to forces in open loop (B2FOL) contributions
it is simple to obtain the symbolic transfer functions stated below. For the Admittance and Force
disturbance feedthrough the solution is a bit more involved and it required to exploit the 32 equation
with the torques definition presented in 38, 34.

Hcd :=
θcd

Ccd
tot

=
1

(−JS −η2S2mS)s2 − cOs+(ηSmSgsin(θeq)− kO)

Hcd f t :=
Ccd f t

z̈
= mSηSScosθeq

Hb f ol :=
Carm

z̈
= mBScosθeq

H−1
adm :=

Carm

θ
=

[
(s2Marm + sCarm +Karm)

−1
[

1
0

]]−1

H f d f t :=
θcd

Cdist
= (s2M f d f t + sC f d f t +K f d f t)

−1
[

1
0

]
(39)
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2.3 2 DoF Model - Geometrically Correct Arm

A

B

C

D

O

GL1

mD

kC, cC

kB, cB

k̃Dc̃D GS

FPS

FPL2

GL2

kB, cB

kD, cD

FPL1

z̈z̈

mL1 JL1

mL2

JL2

mS

JS

mD

Figure 6 – 2 DoF model of the system - geometrically correct arm

Now the results of the most geometrically representative modeling are provided through only the
equations of motion and the kinematic relationships; the decomposition into virtual works is not
explicitly provided, although it is an important investigative tool. First, the fundamental kinematic
relationships are shown:

Seiθ(t) = OAeiπ +OD(t)ei π

2 +L1eiα(t)++L2eiβ (t) (40)

Da cui: {
L2 cos(β (t)) = Scos(θ(t))−L1 cos(α(t))−OA

L2 sin(β (t))+OD(t) = S sin(θ(t))−L1 sin(α(t))
(41)

Which admits an explicit solution of the form:

β (t) = arccos
(

Scos(θ(t))−L1 cos(α(t))−OA
L2

)
OD(t) = S sin(θ(t))−L1 sin(α(t))−

√
L2

2 − (Scos(θ(t))−L1 cos(α(t))−OA)2

(42)

The equation of motion is expressed implicitly through the following parametric relationship:

[(F n̂
GL1

+F n̂
PL1

)ξL1 +(F n̂
GL1

+F n̂
PL1

)ζL1 +(F n̂
GL2

+F n̂
PL2

)ξL2 +(F n̂
GL2

+F n̂
PL2

)ζL2 +(FD
v +FD

el +F ine
D +FPD)]δOD+

[(F t̂
GL1

+F t̂
PL1

)ηL1 +(F n̂
GL2

+F n̂
PL2

)µL2 +(F t̂
GL2

+F t̂
PL2

)ηL2 +(Cine
L1

+CD
v +CD

el +CC
v +CC

el)]δα+

[(F t̂
GL2

+F t̂
PL2

)ρL2 +(Cine
S −CC

v −CC
el +CB

v +CB
el)]δβ+

[(F t̂
GS

+F t̂
PS
)λS +(Cine

S +CA
v +CA

el −CB
v −CB

el +Ccont)]δθ = 0
(43)

Where the projection and transport formulas are:

ξL1 = sin(α); ζL1 = cos(α); ξL2 = sin(β ); ζL2 = cos(β );

µL2 = L1 sin(β −α); ηL2 = L1 cos(β −α); ηL1 =
L1

2
; ρL2 =

L2

2
; λS =

S
2

(44)

The contributions due to inertial forces are reported:
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F n̂
GL1

=
L1

2
mL1α̇

2 −mL1 sin(α)ÖD−mL1 sin(α)z̈; FPD =−mDg; F ine
D =−mDÖD−mDz̈; F n̂

PL1
=−mL1gsin(α)

F n̂
PL1

=−mL1gcos(α); F t̂
GL1

=−L1

2
mL1α̈ −mL1 cos(α)ÖD−mL1 cos(α)z̈; F n̂

PL2
=−mL2gsin(β );

F n̂
GL2

=−mL2 sin(β )ÖD−mL2L1 sin(β −α)α̈ +mL2L1 cos(β −α)α̇2 +mL2

L2

2
β̇

2 −mL2 sin(β )z̈

F t̂
GL2

=−mL2 cos(β )ÖD−mL2L1 cos(β −α)α̈ −mL2L1 sin(β −α)α̇2 −mL2

L2

2
β̈ −mL2 cos(α)z̈; F n̂

PS
=−mSgcos(θ);

F n̂
PL2

=−mL2gcos(β ); F n̂
GS

=
S
2

mSθ̇
2 −mS sin(θ)z̈; F n̂

PS
=−mSgsin(θ); F t̂

GS
=−S

2
mSθ̈ −mS cos(θ)z̈;

(45)
The other active contributions are defined as:

Cine
GL1

=−JL1α̈; Cine
GL2

=−JL2 β̈ ; Cine
GS

=−JSθ̈ ; CD
v =−cDα̇; CD

el =−kD∆α;

FD
v =−c̃D(ȮD+ ż); FD

el =−k̃D(∆OD+ z); CA
v =−cAθ̇ ; CA

el =−kA∆θ ; CB
v =−cB(β̇ − θ̇);

CB
el =−kB(β −θ); CC

v =−cC(α̇ − β̇ ); CC
el =−kC(π +α −β ); Ccont =Cext

cont(t)

(46)

The following quantities are now defined:

F̃OD = (F n̂
GL1

+F n̂
PL1

)ξL1 +(F n̂
GL1

+F n̂
PL1

)ζL1 +(F n̂
GL2

+F n̂
PL2

)ξL2 +(F n̂
GL2

+F n̂
PL2

)ζL2 +(FD
v +FD

el +F ine
D +FPD)

C̃α = (F t̂
GL1

+F t̂
PL1

)ηL1 +(F n̂
GL2

+F n̂
PL2

)µL2 +(F t̂
GL2

+F t̂
PL2

)ηL2 +(Cine
L1

+CD
v +CD

el +CC
v +CC

el

C̃β = (F t̂
GL2

+F t̂
PL2

)ρL2 +(Cine
S −CC

v −CC
el +CB

v +CB
el)

C̃θ = (F t̂
GS

+F t̂
PS
)λS +(Cine

S +CA
v +CA

el −CB
v −CB

el +Ccontrol)
(47)

Therefore:

−→ F̃ODδOD+C̃αδα +C̃β δβ +C̃θ δθ = 0 (48)

With the relationships between virtual displacements known:

δβ =
S sin(θ)
L2 sin(β )

δθ +
L1 sin(α)

L2 sin(β )
δα

δOD = (−Scot(β )sin(θ)+Scos(θ))δθ +(L1 cot(β )sin(α)−L1 cos(α))δα

(49)

From which:

F̃OD((−Scot(β )sin(θ)+Scos(θ))δθ +(L1 cot(β )sin(α)−L1 cos(α))δα)+

C̃αδα +C̃β

(
S sin(θ)
L2 sin(β )

δθ +
L1 sin(α)

L2 sin(β )
δα

)
+C̃θ δθ = 0

(50)

Therefore, an extremely compact formulation in terms of the unique free coordinates can be obtained,
suitable for numerical implementation, of which a preliminary simulation is provided in the following
image: (

F̃OD(−Scot(β )sin(θ)+Scos(θ))+C̃β

(
S sin(θ)
L2 sin(β )

)
+C̃θ

)
δθ = 0(

F̃OD((L1 cot(β )sin(α)−L1 cos(α)+C̃β

(
L1 sin(α)

L2 sin(β )

)
+C̃α

)
δα = 0

(51)
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Figure 7 – Simulation for the third nonlinear model, with two degrees of freedom and geometrically
correct

3. Results
The posterior results of the identification via the Greyest algorithm in Matlab are shown here. The
analytical model used is the second model presented. The frequency response is simulated using
the multibody model written in MBDyn and shown in the cited papers. The response is simulated at
different collective angles.

(a) 50% collective transfer function identified with
educated guess

(b) 10% collective transfer function, identified with
educated guess

Figure 8 – Matlab greyest results

The following transfer functions HBDFT for the figures 8, 9 are found:

HBDFT1 =
2.45s2 +36.6s+4694

s4 +24.91s3 +1878s2 +1.623 ·104s+2.522 ·105

HBDFT2 =
6292s2 −1.244 ·108s+4.055 ·1010

s4 +3.415 ·105s3 +1.247 ·1010s2 +1.267 ·1011s+3.257 ·1012

HBDFT3 =
−1.165s2 −71.46s−5638

s4 +59.27s3 +2552s2 +3.059 ·104s+4.646 ·105

(52)

The first two transfer functions exhibit a similarity of 95.4% and 95.2%. It is easy to notice from
the numerical values of its matrices that the second identification provides a system with a pair of
negative real roots without an imaginary part.
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Figure 9 – Transfer function with explicit parameters identification for 10% collective

The identified values of the physical parameters, obtained without the use of Matlab’s greyest func-
tion, for the system with the collective set at 10 degrees are presented in Figure 9. The val-
ues are identified only for the non-measurable quantities of the biomechanics of the human body:
cDB,cD,kDB,kD,mB,mD to represent the equivalent viscosity, elasticity, and mass of the torso and arm.

cDB = 27.986 kg/s2 kDB = 1.3748×104 kg/s mB = 2.9295 kg

cD = 2.2614×103 kg/s2 kD = 6.4431×104 kg/s mD = 41.366 kg
(53)

The values not identified, considered directly measurable, are the equilibrium conditions and the
characteristics of the collective control stick system:

θeq = 0.3321318 rad ODeq = 0.596344 m JS = 0.93 kg×m2

mS = 9.94 kg S = 0.35148 m ηS = 0.174

AO =−0.077 m cA = 1.76 kg/s kA = 11. kg/s2

(54)

The state-space matrices A and B are as follows:

A = 103


0 0 0.001 0
0 0 0 0.001

−0.4467 3.4371 −0.0039 0.006996
0.11047 −1.88993 0.000225 −0.0553

 ; B =


0
0

−1.1648
−1

 ; (55)

It is considered necessary to further develop methods for identification to avoid identifying false posi-
tives, as well as to make the identification of physical parameters more automatic and rapid.
Furthermore, numerical relationships for the remaining relations defining the decomposition of [3]
are shown, they are referred to the second model, following equation 39.

H−1
nms =

0.82736s2 +4.579×102s+1.5636×104

2.9941s4 +1.9431×102s3 +1.2115×104s2 +3.0774×105s+5.0694×106

H f d f t =
6.5548s2 +3.6278×102s+1.2388×104

8.7718s4 +5.1635×102s3 +2.2234×104s2 +2.6654×105s+4.4076×106

(56)

Now, symbolic relationships are explicitly presented for the first model.
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Ctot =[−JS −S2(η2mS +mP)]θ̈ +(−cO − c̃PS2 cos2(θ))θ̇+

+[−Sg(ηmS +mP)−S2k̃P sin(θ)]cos(θ)−S2kP sin(θ)cos(θ)− kOθ − kOθ̃+

−S(ηmS +mP)cos(θ)z̈+Ccont

−−→
lin.

Clin
tot =[−JS −S2(η2mS +mP)]δ θ̈ +(−cO − c̃PS2 cos2(θeq))δ θ̇+

+[Sg(ηmS +mP)+S2k̃P sin(θ̄)]sin(θeq)−S2k̃P cos(2θeq)− kO]δθ+

−S(ηmS +mP)cos(θeq)z̈+Ccont

(57)

Farm =−SmPθ̈ − c̃PScos( θ)θ̇ +(−mPg−Sk̃P sin(θ̄))cos(θ)−Sk̃P sin(θ)cos(θ)−mPcos(θ)z̈

−−→
lin.

F lin
arm =−SmPδ θ̈ − c̃PScos2(θeq)δ θ̇ +[(mPg+Sk̃P sin(θ̄))sin(θeq)−Sk̃P cos(2θeq)]δθ −mP cos(θeq)z̈

(58)

Fnms =−SmPθ̈ − c̃PScos( θ)θ̇ +(−mPg−Sk̃P sin(θ̄))cos(θ)−Sk̃P sin(θ)cos(θ)

−−→
lin.

F lin
nms =−SmPδ θ̈ − c̃PScos2(θeq)δ θ̇ +[(mPg+Sk̃P sin(θ̄))sin(θeq)−Sk̃P cos(2θeq)]δθ

(59)

Fb2 f ol =−mP cos(θ)z̈

−−→
lin.

F lin
b2 f ol =−mP cos(θeq)z̈

(60)

Ccd = (−JS −η
2S2mS)θ̈ − cOθ̇ −ηSmSgcos(θ)− kOθ + kOθ̃

−−→
lin.

Clin
cd = (−JS −η

2S2mS)δ θ̈ − cOδ θ̇ +(ηSmSgsin(θ)eq − kO)δθ
(61)

Ccd f t = ηSmS cos(θ)z̈

−−→
lin.

Clin
cd f t = ηSmS cos(θeq)z̈

(62)

Cdist =Ccont (63)

Therefore, it is possible to obtain the transfer functions around the equilibrium point. Please refer to
the chapter on the first modeling for conventions and nomenclature.

HCD :=
θcd

Ccd
tot

=
1

(−JS −η2S2mS)s2 − cOs+(ηSmSgsin(θeq)− kO)

Hcd f t :=
Ccd f t

z̈
= ηSmS cos(θeq)

Hb2 f ol :=
Carm

z̈
=−SmP cos(θeq)

H−1
adm :=

Carm

θ
=−S2mPs2 −S2c̃P cos(θeq)s+[S(mPg+Sk̃ sin(θeq))−S2k̃P cos(2θeq)]

H f d f t :=
θcd

Cdist
=

1
J⋆s2 + c⋆s+ k⋆

(64)

3.1 Conclusions
In this work, we have endeavored to provide detailed explanations and relationships leading to the
definition of the models, considering it extremely important to enable future researchers or teams to
reuse this exposition.
The presented models provide an excellent approximation of the multibody models developed by [4].
The number of parameters is reduced to 9 in its implicit form or 6 in its explicit nonlinear form for the
simplest two-degree-of-freedom model.
The increasing complexity approach allows for a gradual analysis of the phenomenon in its various
aspects, gradually improving the predictive capacity of the models.
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Symbolically and numerically, the components of a possible block decomposition of the phenomenon
have been presented. This allows for leveraging the results obtained in the literature that have differ-
ent approaches, not based on the first principles of mechanics.
This work on reduced and simplified models continues by first identifying the best method to identify
the parameters with the present nonlinear relationships. Secondly, it analyzes the nonlinearities
described by the models, attempting to evaluate how faithful they remain to the results and, in this
case, determining what contributes the most and how much these nonlinearities affect the behavior
of the phenomenon. The nonlinearities may arise from the large displacements that are sometimes
necessary for helicopter control.
Furthermore, there is the intention to validate the model directly using experimental data from the
FRAME Sim laboratory at the Politecnico di Milano, or from flight tests, despite the somewhat com-
plicated data collection process.
These validated models, using both synthetic and experimental data, will be employed for parametric
analysis of system components where there is an interest in modifying the design of certain ele-
ments and evaluating their effects. Furthermore, it will be intriguing to understand how variations in
biomechanical parameters alter the system response and how to manage the associated uncertainty.
Integrating these models into those describing the overall and detailed dynamics of the helicopter will
be interesting, allowing for coupling analysis.
Lastly, these models will be used to begin studying the feasibility of applying robust and LPV (Linear
Parameter-Varying) control to the phenomenon, leveraging the computational speed of the model.
In summary, the work presented lays a strong foundation for further exploration and development
in helicopter control system dynamics, offering a robust platform for both theoretical and practical
advancements in the field.
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