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Abstract: We consider the problem of coordinating multiple Distributed Energy Resources
(DERS) so as to supply energy to the grid while minimizing its variability around a reference
profile that must also be optimized. We focus on the case when each DER is equipped with solar
panels and a battery storage device, and jointly design the disturbance compensation strategies
for charging and discharging the batteries on a one-day time horizon. To this purpose, we linearly
parameterize the strategies and search for a solution minimizing the fluctuations of the energy
exchange with the grid in steady-state, with a bound on their extent that holds in probability
given the stochastic nature of the solar energy. Interestingly, the probability measure of the
resulting chance-constrained optimization problem depends on the parameters of the disturbance
compensation strategies, which makes the application of the scenario approach not standard.
The proposed scenario-based solution is feasible for the original steady-state chance-constrained

optimization problem and proves effective in numerical simulations.
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1. INTRODUCTION

Despite the efforts undertaken by countries all around
the globe, the world energy demand keeps rising. Conse-
quently, in the last few years the interest in renewable
source of energies has grown and it is predicted to in-
crease in the next years. The main factors responsible
for this fast development are identified in The secretariat
and Van de Graaf (2019). First, the reduction of the
cost of renewables is to be considered: today renewable
technologies have competitive costs. For example, since
2010, the average cost of electricity from photovoltaics
and wind has decreased by 73% and 22%, respectively.
Then, the effect of climate change and pollution must be
taken into account. Indeed, pollution contributes to the
global warming, hence decarbonisation has gained more
importance for governments, which elaborate their policies
also in order to be environmentally friendly. In fact, the
use of renewable energy combined with a more efficient
energy management could be an effective way to achieve
the Paris Agreement goal. As renewable sources of energy
spread in the grid, it is necessary to combine them with
innovative energy management strategies that make them
work efficiently and suitably integrate them into the grid.

In recent years, Distributed Energy Resources (DERs)
systems have attracted much interest, becoming a valid
alternative to traditional power plants for many econom-
ical and social reasons (see Pepermans et al. (2005)).
DERs are small energy generation units situated close
to energy consumers, rather than connected to the bulk
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power transmission systems, Kari and Arto (2006). They
produce energy directly in the point of usage avoiding the
use of large power plants and transmission lines. They can
be used for self-consumption purposes thus allowing con-
sumers to become independent of the grid energy supply.
An aggregation of DERs can create a so-called Virtual
Power Plant, with a great advantage in terms of scalability
and flexibility: since each unit is independent from the
others, it is easy to add new ones or remove them if needed
(see Kari and Arto (2006)).

DERs systems can integrate different energy sources, in-
cluding renewable ones (e.g., rooftop solar panels or wind
microturbines), and can then drive the transition to a
greener electric grid (see Akorede et al. (2010) and Peper-
mans et al. (2005)). The penetration of DERs systems
with renewables is currently a growing phenomenon, that
challenges the traditional energy supplier, which are forced
to question their service, and eventually adapt it to these
new technologies, Tolmasquima et al. (2020).

Unfortunately, DERs exploiting renewable energy sources
like photovoltaic panels presents the drawback of being not
controllable: they generate electricity only for some hours
a day and the energy produced is highly uncertain since
it depends on the weather conditions. Generally speaking,
intermittency is the main disadvantage of most distributed
generation resources. However, it can be mitigated thanks
to the usage of Electrical Energy Storage (EES) systems.

EES systems are able to convert energy from one form
(mainly electrical energy) to a storable form (mainly chem-
ical energy). When needed, the stored energy is then con-
verted back into electrical energy, Luo et al. (2015). EESs
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can be very helpful in power network operation as they
allow to compensate time variability in energy production
and, hence, alleviate the intermittence of renewable source
power generation, ensuring a higher quality and reliabil-
ity of the energy. In particular, one of the most widely
used EES technologies are rechargeable batteries, which
are appreciable for their long lifetime, reduced charging
time, higher energy density, and shorter response time,
da Silva Lima et al. (2021).

The adoption of systems including both EESs and DERs
allows to exploiting the advantages of both technologies.
One should however devise a suitable control strategy to
operate the EEs and compensate the intermittency of the
energy produced by renewables.

Contribution

In this paper, the problem of coordinating a Virtual
Power Plant resulting from the aggregation of many DERSs,
each one with solar panels and a battery, is considered.
We jointly design disturbance compensation strategies to
operate the batteries of the virtual power plant on a one-
day time horizon in order to supply energy to the grid
while minimizing its variability around a reference profile
that must also be optimized. Due to the stochastic nature
of the solar energy production, the problem is formulated
as a chance-constrained optimization program, where the
constraints are expressed in probabilistic terms.

The considered framework is similar to the one studied
in Tuissi (2020): the aggregation of multiple DERs is
considered and a disturbance compensator is used in
the batteries charging policy to cope with uncertainty
in the solar production affecting each DER. In this way,
the compensation acting on every DER contributes to
counteract the variability of the overall power exchange
with the grid. Differently from Tuissi (2020), the problem
is addressed with reference to stationary conditions so that
the obtained control law is guaranteed to be optimal, and
feasible, in the long run. This means that the optimization
problem must be solved only once, and then the obtained
control strategy can be applied day after day.

To overcome the complexity related to the chance-
constrained nature of the problem, we employ a random-
ized technique known as scenario approach, Campi et al.
(2009). In this way, the problem is reformulated in a deter-
ministic form and it is possible to find an approximated
solution to the original problem that still maintains the
desired probabilistic guarantees. Given that probabilistic
constraints are given in terms of the steady state prob-
ability distribution that depends on the applied control
strategy, we adopt the non-standard scenario solution in-
troduced in Falsone et al. (2022).

Interestingly, the resulting scenario optimization problem
is suitable to be solved both in a centralized and in a
distributed way, for example with the algorithm proposed
by Falsone et al. (2020). The most appreciable feature of a
distributed resolution strategy is that the computational
effort of the resolution is not managed by a unique cen-
tralized unit but is divided among all the DERs. This can
be helpful in case of systems constitutes by a large number
of DERs, where the dimension of the centralized problem
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can be a limit to the resolution of the posed optimization
problem.

2. PROBLEM FORMULATION

In this paper we consider the problem of coordinating a
system composed of m DERs, each one equipped with
solar panels and a battery storage device. Given the daily
periodicity of solar power production, it is convenient to
consider a one-day time horizon, discretized into k; time
slots. We first introduce the model of the single DER,
then we formulate a compensation-based optimal control
strategy for a one-day time horizon, and finally show
how to design the compensator to optimize steady-state
operations.

2.1 Modeling

Consider the i-th device. For all k € K = {0,...,kf — 1},
let E,;(k) > 0 denote the solar energy produced during
time slot k, & (k) the State Of Charge (SOC) of the battery
at the beginning of time slot k, and u;(k) the energy
entering (if u;(k) > 0) or leaving (if u;(k) < 0) the battery
during time slot k. The battery SOC evolves according to
the recursive equation

fz(k + 1) = ai&(k) + ’U,z(k), kek, (1)
where coefficient a; € (0,1) models self-discharging losses.
Clearly, it must hold

=8 < (k) < s ke Kk, (2)

p"inC; < &i(k) < p™tCy, keEK, (3)
where s7*** > 0 is the maximum energy that can be
exchanged with the battery in one time slot, C; > 0 is

the battery rated capacity, and 0 < p™™" < pme® < 1
are limits for safe battery operations and for the validity

of (1).
If E,;(k) denotes the energy injected (if E,;(k) > 0) or
drawn (if E,;(k) < 0) by DER i to/from the main grid
during time slot k, then

Eqi(k) = Epi(k) = ui(k) = nului(K)|, ke (4)
where the last term accounts for charging/discharging
losses through the coefficient 7,,. If we further denote with

E4(k) the energy exchanged by the aggregate of m DERs
(with the same sign convention), then

E,(k) = iEg,i(k), kek. (5)

2.2 One-day optimal control

With reference to the one-day time horizon, for all ¢ =
1,...,m, let

& =[&(0) - &kp)]T,

i = [u;(0) -+ ui(ky — 1)]7,
Ep, = [Epi(0) -+ Epi(ky —1)]T,

Eq = [Eg(o) Eg(kf - 1)]T7
be the vectors containing the evolution of the correspond-
ing quantity along the horizon, with &;(ks) denoting the
SOC at the end of time slot k¢ — 1. To ease the notation,
let x; = &(0) and 1 be the vector containing all ones of
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suitable dimension. From (1), we obtain & = Fx; + Gu;
for suitable matrices F' and G, and, recalling (2)-(5), we
have

lu;] < s***1 Vi, (6)

pmincil < Fz; + Gu; < pmaaccfil Vi, (7)
m

Eg = Z(Ep,l — U; — 77u|ui|)a (8)
i=1

with |u;| denoting the component-wise absolute value of
vector u;.

Since the solar energy production is uncertain, E,; is
a random vector. Let us denote with p; = E[E,;] its
expected value and d; = E,; — p; its deviation from ;.
Given that the grid energy exchange profile £, depends
on the E,;’s (cf. (8)), and since we want to contain the
variability of F,, we select a battery control law of the
form

u; = y; + 9d;, Vi, 9)

which adapts the battery energy exchange u; based on
the actual variability d; of the solar energy production,
with 7; € R¥ and ¢; € R*/**s being the control policy
parameters to be optimized. Clearly, 1J; must have a lower-
triangular structure with zeros on the main diagonal, so
that u;(k) depends only on E, ;(0),...,E,(k—1) and is
thus implementable in practice. Under (9), (8) becomes

Ey = Z (i + ds) — (i + Vsdi) — nufus])

m

Z(M — i)+ Z (I = 95)di — nulusl),

where the first term do not depend on the uncertainty,
while the second one does. We can thus take E; =

S (i — ) as our reference profile and require E,
to belong to a tube centered in Ej and with half-width

col + c1, where @ = > p; and ¢y and ¢ are two

positive scalars parameterizing the tube. This is formalized
as

7(601 + Clﬁ) S Eg — E; S (CQ]_ + Clﬁ).

Unfortunately, due to the presence of |u;| in the expression
of E4, the upper constraint in the previous expression
is non-convex in «; and ;. We therefore approximate it
by simply neglecting! |u;| in the upper constraint, and
requiring

. =t (10)
Z(I —9;)d; < (col + e1fn),

i=1
which are both convex. Minimizing the variability in the
grid energy exchange profile £, thus simply amounts to
minimize the area of the tube. The optimal controller pa-
rameters ; and ¥; of each DER, along with the minimum-
tube parameters ¢y and ¢y can thus be obtained as the
solution of the following optimization problem

I Note that by neglecting |u;| we are being more conservative as the
resulting constraint is tighter than the original one.
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min
c0>0, ¢12>0,
{7i,9i}imy

subject to: JP’{(6) A(T) A (9) A (10)} >1-¢

17 (ol + 470 (1)

in which the constraints are imposed in probability as E,, ;,
and thus d;, are uncertain quantities.

Note that constraint (7) depends on the value of the
battery initial SOC z; = &(0), ¢ = 1,...,m. Thus,
problem (11) should be solved at the beginning of each day
after measuring the SOC of all batteries, which, however,
may be impractical.

2.8 Steady-state one-day optimal control

Suppose instead that we would like to compute the con-
troller parameters -y; and ¥; only once, and then use those
parameters every day. Given the daily periodicity of the
solar irradiation, we can think of the solar energy produc-
tion as a cyclostationary process with a one-day period.
If we denote with E;,i € R*’ the solar energy production
profile of day ¢, then the cyclostationary assumption im-
plies that E[E} ;] = u; for all t. Let 2} = £/(0) be the i-th
battery SOC at the beginning of day t, df = E! ; — y; the
energy production deviation during day ¢ (assumed to be
independent across days), and u! = v; + 9;d, according
to (9), the control law for day ¢. By iterating (1) within
day ¢ and noticing that & (ky) = ff“(O) = 2!t we can
write the following recursive equation

aitt = affx§ + b ul
= a;’ @l + bl i + b] Vi, (12)
with b = [al?ff1 --+ a; 1], relating the i-th battery SOC

at the begimiing of consecutive days. System (12) is an
asymptotically stable (a; € (0,1)) linear system fed by
the stationary process {d!}; and its state z! admits a
stationary distribution X;(;,?;), which depends on the

controller parameters ; and ¥;.

If we want to compute a single value for ~; and 1; to be
used for all days, then it is intuitive to design them for a
generic day, with a battery initial SOC distribution equal
to the stationary distribution X;(~;, ¢;). We formulate this
problem as the following mathematical program

min 17 (col + 1)

c0=>0, c12>0,
{79,
subject to: IP{(G) A(T) A (9) A (10)} >1—e
rp ~ Xi(vi,0:) Vi,

which is equal to (11) apart from the fact that the initial
SOC z; is now uncertain and is distributed according to
the steady-state distribution X;(7;,?;) instead of being
deterministic like in (11).

(13)

The optimal solution to (13) results, by construction, into
a control law which, at steady-state, satisfies the con-
straints (up to a probability 1 — €) and minimizes the
variability in the grid energy exchange profile. Unfortu-
nately, (13) has three complexity aspects that need to be
accounted for:

(1) it contains probabilistic constraints;
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(2) the distribution of the battery initial SOC is para-
metric in the optimization variables;
(3) it is potentially large-scale if we consider many DERs.

3. SCENARIO-BASED SOLUTION

We now tackle each complexity issue separately.

3.1 Dealing with chance-constraints

Let us focus on how to handle the the probabilistic con-
) a™

straints first. Suppose N realizations dl(-1 ,...,d; 7 and

x§1)7...,xEN) of the uncertain quantities d; and z; are
available, for all ¢ = 1,...,m. According to the so-called
Scenario Theory (cf. Campi et al. (2009)), problem (13)
can be approximated substituting the probabilistic con-
straint with IV copies of the constraints inside the prob-
ability, where, in each copy, the uncertain quantities are

replaced with one realization, i.e.,
. T _
min 1 (cpl+
c0>0, 120, ( #)
{79 }ity

subject to: {(6) A (T) A (9) A (10) with

(14)

zi=al nd; =P vi)
j=1,...,N.

The main result of the scenario theory states that, if N is
selected to satisfy

n—1
N\ ;
> ( .)eJ<1 — N < B, (15)
=0 N/
where n is the total number of decision variables, then,
with confidence 1 — (3, the optimal solution of (14) is
feasible for the original chance-constrained problem (13).

Unfortunately, this approach requires to extract samples
x(1)7 ..,xz(-N) from a probability distribution X;(vy;, ;)

K]
which depends on the decision variables and is thus un-

known before solving the problem.

8.2 Dealing with steady-state distribution

Luckily, if we assume that d; has a (zero-mean) multi-
variate Gaussian distribution, then we know that also the
steady-state distribution X;(v;,?;) will be Gaussian, and,
according to Falsone et al. (2022), its mean and variance
can be expressed analytically as a function of ~; and ¥;.
Since the system in (12) is scalar, the expressions in Fal-
sone et al. (2022) greatly simplifies, leading to

b;r%'
E[Xl(’ylvﬁl)} - kyro (16)
1—a,
b 9:9;8;, 9] b;
var(Xi(yi, i) = ————, (17)
1—a;”’
where $;S] = E[d!d!'] is independent from ¢ since

E}; was assumed to be cyclostationary. Relations (16)
and (17) can be obtained computing the steady-state mean
and variance of (12). Given that X;(v;,v;) is Gaussian,
together with (16) and (17), x; distributed according to

X;(7i,9;) can be expressed as
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bl—-r’yi b;r 191‘ Si
Tr; =

= + e
k.f ok (2l
1 —a; \V1—a;”’

where e; is a ky-dimensional Gaussian variable with zero
mean and a covariance equal to the identity matrix. As
can be noticed from (18), a random sample 171(‘]) from
the steady-state distribution of the initial SOC can be

drawn in practice by extracting a sample egj ) from the
standard ky¢-dimensional Gaussian distribution, and is
linearly parameterized by the control parameters ~; and
;. Problem (14) can thus be solved ezactly via the
equivalent formulation

(18)

i 17 (col + 7 1
i, 1 (ol +aR) (19)
{9}y
subject to: {(6) A7) A (9) A (10) A (18)

with ¢; = et/ n d; = d? vi}
j=1,...,N.

Problem (19) is a standard convex program and can be
solved resorting to off-the-shelf algorithms. Unfortunately,
when the number m of DERs considered is very high,
finding the optimal solution to (19) can become a difficult
task for a single processing unit.

8.8 Dealing with large-scale DERs systems

In recent years, distributed optimization has emerged
as the paradigm to deal with large-scale optimization
problems. For a mathematical program to be solvable in a
distributed way, it must have a specific structure. Among
the different structures that have been considered in the
literature, we are interested in the so-called constraint-
coupled optimization problems:

M
Zfi(yi)
i=1

M
subject to: ZHiyi <L
i=1

min
M
{yz i=1

(20)

wey, 1=1,...,M,

where the decision variables are divided into M small
decision vectors y; € R™  each y; has its own constraint set
Y; CR™ and gives its own contribution f;(y;) to the cost
function. Clearly, the challenge in the solution of (20) is
the presence of the constraints Zf\il H;y; < L € R?, which
relates the different y;’s to each other, thus coupling their
optimization (hence the adjective constraint-coupled).

Next, we show that (19) can be slightly reformulated to
fit the structure of (20). First, let us set M = m + 1:
one decision vector for each DER control parameters ~;
and ¥; (m in total) and one for the tube parameters ¢
and c¢;. Consequently, y; = (v;,%;) for i = 1,...,m and
ym = (co,c1). Since the cost function of (19) depends on
co and c¢; only, then we set fi(y;)) = 0 for i = 1,...,m
and far(yar) = 17 (col + ¢177). Then, in Y; we gather all
constraints depending on ; and ¢; only:
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N
=N {Gi0): @ AT A©) A Q)

with e; = egj) ANd; = dgj)}.

Finally, as for the coupling constraint, it is easy to see
that (10) contains a summation over the v; and 9; pa-
rameters of all DERs plus the ¢y and ¢; parameters of
the tube. Clearly, H;y; must contain all constraints (10)

associated to all the N realizations dgj ) of d;. Since the
second constraint in (10) is linear, it is easy to see how it
can be expressed as H;y;, whereas for the first constraints,
which is nonlinear, we first need to convert it to a linear

form via an epigraphic reformulation of |u5j )\ = |y +
9;dY
Chat) |

Since, by the discussion above, (19) fits the structure
of (20), we can apply any distributed algorithm that is
able to handle problems in the form of (20).

4. NUMERICAL RESULTS

We next validate the proposed strategy and its advantages
via numerical simulations. The case of m = 10 users is
presented with the one-day time horizon discretized into
k; = 144 time slots of 10 minutes each.

All batteries are equal, with C' = 18.62 MJ, s™%* = 1.12
MJ, n, = 0.02, a = 0.9993, p™*" = 5% and p™** = 95%.

For each agent i, the policy parameters 7; and ¥; are
further parameterized to reduce the number of decision
variables. Specifically we set v; = ¢, p; with c,, € R, while
¥, is constrained to have only the first p = 3 sub-diagonals
different from zero and with the elements on the same
sub-diagonal being equal. This way the solar production
in the latest p time slots is weighted with time invariant
parameters and is used for compensation. This results 2 in
a control policy of the form

p
ui(k) = cy,pi(k) + Y ey, odi(k — 3),
s=1

with ¢y, 1, ¢y, 2, and cy, 3 being the coeflicients on the first,
second, and third sub-diagonal of ¥J; respectively.

The scenario approach is implemented setting 3 = 1074,
€ = 0.1 and the number of scenarios is set equal to N = 690
to satisfy (15). For all the agents, the randomly selected

realizations Ez(vjz) are extracted from a Gaussian model
estimated from a dataset of daily photovoltaic energy
production profile.

We then compute a solution to the resulting problem
(19) using the IBM ILOG CPLEX solver. To validate
the obtained results, the found optimal policy is applied
on 1000 new realizations of d; (validating scenarios),
different from the ones used for solving (19). In Figure 1
we report the obtained tube and the steady-state grid
energy exchange profiles corresponding to the validating
scenarios. As can be seen from the picture only a few
validating scenarios exit the tube. Indeed, an estimate

€ = 0.04 for the violation probability was computed

2 The expression is valid throughout the day except for border effects
at the beginning of the day.
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Fig. 1. Grid energy exchange profiles (blue), corresponding
mean (red) and minimum tube (light blue area).
Computed with validating scenarios.

as the percentage of validating scenarios that violates
the constraints and observed to be less than the chosen
threshold € = 0.1, thus confirming the guarantees provided
by the scenario theory.

Then, the evolution of the SOC over T' = 120 days is
tested. At day 1 all the m batteries are initialized at 50%
of the capacity and the recursive equation (12) with the
optimal 7y; and 1; obtained is applied until convergence. To
check whether convergence is reached or not the recursive
expressions of the mean and of the covariance of the initial
state of charge are found starting from equation (12). At
day t+ 1, the probability density distribution of the initial
SOC is analytically computed starting from its mean and
covariance at day ¢, then it is checked against the steady-
state one. In Figure 2 (top) it is visible that, as days go
by, the two distributions get closer, until they are exactly
equal, meaning that the initial SOC distribution tends to
the steady-state one.

As can be seen from the picture the left and right tails
of the distributions crosses the battery capacity limits.
Clearly, the limits in (3) cannot be violated in practice,
since they represent a physical limitation. Therefore, we
recomputed the evolution of the SOC distribution by
applying a saturated control strategy, which keeps the
battery SOC inside p™"C and p™**C for all validating
scenarios. The resulting histograms are reported in Fig-
ure 2 (bottom). By a visual comparison we can see that the
evolution of the SOC distribution is basically unaffected
and the probabilistic guarantees on constraint satisfaction
are preserved.

4.1 Advantages of the aggregation

The advantages of using a network made up of many
agents are identified via simulation.

In particular, some simulations are run, changing the value
of C; for some batteries. It is observed that the variation
of the single capacities does not influence the total energy
exchange with the grid (and the dimension of the tube) as
long as the total capacity of the aggregate is unchanged.
By modifying the total capacity, it is instead concluded
that from the aggregation of the agents derives the ability
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Fig. 2. Initial state of charge distribution (blue) compared
to the steady-state distribution (red) in some sig-
nificant days. Black dashed lines denotes the SOC
bounds. Actuation limits are allowed to be violated
(top) or not (bottom).

of the system to face the variability of the energy exchange
with the grid: the bigger is the total capacity of the
aggregate, the smaller are the fluctuations of the energy
exchange with the grid.

Besides, a decoupled implementation of problem (19) was
also tested, to evaluate the effect of the coupling constraint
on the optimization. In the decoupling implementation
each agent aims at maintaining its own energy variations
below a % portion of the tube. This results in an overall
exchange F, with the grid that is the same as in the
previous case, but in a tube that is 5 times bigger, proving
that the aggregation of the agents helps in the reduction
of the dimension of the tube.

5. CONCLUSION

In this work, we presented a solution to the problem of
limiting the fluctuations of the energy exchange with the
grid of an aggregation of many DERs, giving guarantees in
the long run. The most appealing feature of the proposed
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control policy is the fact that the optimal control action
must be computed only once and then it can be applied
day after day. This has a benefit in terms of energy man-
agement strategy since, when the DERs are deployed, the
control strategy is set, and then automatically repeated
every day, without the need of further intervention.

As for future developments, an alternative implementation
of the problem with a state feedback control law deserves
to be studied, so that the control action is set according to
the state of charge of the batteries instead of just reacting
to the measured solar energy production.
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