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a b s t r a c t

In data-driven control, a central question is how to handle noisy data. In this work, we consider
the problem of designing a stabilizing controller for an unknown linear system using only a finite
set of noisy data collected from the system. For this problem, many recent works have considered a
disturbance model based on energy-type bounds. Here, we consider an alternative more natural model
where the disturbance obeys instantaneous bounds. In this case, the existing approaches, which would
convert instantaneous bounds into energy-type bounds, can be overly conservative. In contrast, without
any conversion step, simple arguments based on the S-procedure lead to a very effective controller
design through a convex program. Specifically, the feasible set of the latter design problem is always
larger, and the set of system matrices consistent with data is always smaller and decreases significantly
with the number of data points. These findings and some computational aspects are examined in a
number of numerical examples.

© 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

Problem formulation and related work

In the last few years, there has been a renewed growing
nterest towards data-driven control. Data-driven control pro-
ides an alternative tool for control design whenever modeling
ased on first principles is difficult or impossible [1,2] and it
as been employed for robust and optimal control [3,4], predic-
ive control [5,6], and control of nonlinear [7] and time-varying
ystems [8].
In this paper, we start from a basic control problem, that is,

esigning a controller by a finite set of data with T samples
ollected from a system. Specifically, for state x ∈ Rn, input
∈ Rm and disturbance d ∈ Rn, we apply an input sequence

u(0), . . . , u(T − 1)} to a linear time-invariant discrete-time sys-
em and measure the state sequence {x(0), . . . , x(T )} generated as
esponse by

(i + 1) = A⋆x(i) + B⋆u(i) + d(i), i = 0, . . . , T − 1. (1)

he matrices A⋆ and B⋆ are unknown and we do not have access
o disturbance d, so data are noisy. The objective is to use the
nput and (noisy) state sequence to design a feedback control
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law u = Kx to solve a stabilization problem, that is, ensuring
that A⋆ + B⋆K has eigenvalues with magnitude strictly less than
1 (Schur stability).

Albeit basic, this problem poses many challenges. In fact,
since d in (1) affects the state sequence, it is impossible to
uniquely reconstruct the system matrices A⋆ and B⋆ from the
input and state sequences; instead, we have a set of consistent
system matrices that could have generated the state sequence.
Accordingly, the problem corresponds to a robust stabilization
problem in the face of the uncertainty introduced by d, en-
tailing a set of matrices to stabilize rather than a singleton. In
the literature, several works have considered problems of this
type: robust stabilization for noisy data with a signal-to-noise-
ratio constraint [4], robust stabilization and H∞ performance [9],
robust stabilization and H2/H∞ performance along with a matrix
S-procedure [10], robust stabilization and H∞/quadratic perfor-
mance [11], linear–quadratic-regulator design with [12,13] or
without [14] a noise model, robust set invariance [15], robust
stabilization of switched [16], bilinear [17] or nonlinear systems
[18,19]. In particular, [4,9–11] share our same setting, namely,
robust stabilization of a discrete-time linear systems.

In all aforementioned works, the starting point is to define
a model for the disturbance. Typical choices on opposite sides
of the spectrum are disturbances with known probability distri-
butions or statistics (e.g., d is assumed a white Gaussian noise
12,13]) or the so-called unknown-but-bounded models [20], as
we consider in this paper. In unknown-but-bounded models, d
may be a deterministic function of time or a stochastic process
and the only characteristic assumed to be known is that d is con-
tained in a given polyhedral [15,16] or ellipsoidal [4,9–11,14,19]
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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egion. In this setting, a natural way to describe the uncertainty
s to consider instantaneous constraints for d as

i := {d ∈ Rn: |d|2 ≤ ϵ} (2)

where ϵ ≥ 0 represents our prior knowledge on d. This model
naturally arises in many practical cases (e.g., with process load
disturbances), and it has a long history in set-constrained control
and set-membership identification [20–22]. As an alternative to
instantaneous constraints, one can consider energy constraints on
d as1

De :=
{
d0, d1, . . . , dT−1

∈ Rn:
T−1∑
i=0

di(di)⊤ ⪯ ϵeI
}

(3)

where d0, d1, . . . , dT−1 correspond to any disturbance sequence
and ϵe ≥ 0 represents our prior knowledge on the disturbance
sequence. This model (or similar ones involving quadratic bounds
on possible disturbance sequences) has been considered in many
recent works on data-driven control [4,9–11]. The reason for con-
sidering De is essentially technical. By using De, the uncertainty
set of consistent system matrices is given by a single quadratic
matrix inequality and this enables deriving simple stability con-
ditions [4, Thm. 5], or even necessary and sufficient conditions
under a mild regularity property on data as in [10, Thm. 14].
From a practical viewpoint, however, this disturbance model is
artificial. In fact, De is typically built starting from Di, i.e., by
setting ϵe = Tϵ; see [9, §IV], [10, Ex. 3] and [11, §VI]. Hence, the
bound ϵeI = TϵI in (3) increases with T and this may lead to a set
of consistent system matrices that grows with T (see Example 1)
so that using larger data sets may even be detrimental, which
is undesirable and counterintuitive. Among the aforementioned
recent works, few considered instantaneous bounds. They were
used in [16,18] for data-driven control of switched and polyno-
mial systems, where the problem was reduced to a nonconvex
quadratic program and then relaxed to a polynomial optimization
problem. Working directly with Di was also pursued in [11, §V]
as a secondary development, by using sum-of-squares relaxations.

Paper contribution

In this paper, we investigate pros and cons of using directly
an instantaneous bound instead of translating it into an energy
bound. We show that working with Di is indeed advantageous
since (i) the uncertainty set resulting from Di is never larger than
the one resulting from De with ϵe = Tϵ; (ii) there exist simple
design methods that work directly with Di and always return a
stabilizing solution whenever the methods based on De do. We
also show that the extra numerical cost due to working with
Di is quite modest up to large sets of data. Compared to [11],
this method rests on simpler arguments and uses design tools
purely based on linear matrix inequalities (instead of polynomial
constraint qualification conditions that may be hard to assess). As
an auxiliary contribution, we introduce a notion of size for matrix
ellipsoids to numerically measure the uncertainty induced by d.
This measure confirms that the uncertainty resulting from Di is
typically order of magnitudes smaller than that resulting from De.

Structure

Section 2 obtains a size notion for matrix ellipsoids. In
Section 3, we present the controller design problems for the
energy-bound and instantaneous-bound approach, and relate
them in terms of feasibility. In Section 4, we further compare the

1 Throughout the paper, ≺ (⪯) and ≻ (⪰) denote, respectively, negative
semi) definiteness and positive (semi) definiteness for matrices. I is the identity
atrix. ⊤ denotes transpose.
2

two approaches by examining the corresponding sets of dynami-
cal matrices consistent with data. The numerical investigation in
Section 5 completes the comparison, and leads to the conclusions
of Section 6.

2. Preliminaries

In this section, we set up the notation and introduce a notion
of size for matrix ellipsoids, which will be used in the numerical
simulations of Section 5.

2.1. Notation

For a matrix A, |A| denotes its induced 2-norm. Given two
matrices A and B, A ⊗ B denotes their Kronecker product. For
a matrix A =

[
a1 · · · an

]
∈ Rm×n partitioned according to

its columns, vec(A) := [a⊤

1 . . . a⊤
n ]

⊤ denotes its vectorization.
A property of vectorization is that, for matrices A, X, B and C
of compatible dimensions, the matrix equation AXB = C is
equivalent to (B⊤

⊗ A) vec(X) = vec(C) [23, Lemma 4.3.1]. For
fixed natural numbers m and n, the inverse of the vectorization
operator takes as input a vector a = [a⊤

1 . . . a⊤
n ]

⊤
∈ Rmn

partitioned in components a1, . . . , an ∈ Rm and returns

vec−1
m,n(a) :=

[
a1 . . . an

]
∈ Rm×n. (4)

For matrices A, B and C of compatible dimensions, we abbreviate
ABC(AB)⊤ to AB·C[⋆]⊤, where the dot in the second expression
clarifies unambiguously that AB are the terms to be transposed.

2.2. A size notion for matrix ellipsoids

For symmetric matrices P ∈ Rp×p, Q ∈ Rq×q, A ∈ Rp×p,
C ∈ Rq×q and matrices Zc ∈ Rp×q, B ∈ Rp×q, we term matrix
ellipsoid a set in one of the next two forms:

Emat := {Z ∈ Rp×q: (Z − Zc)⊤P−2(Z − Zc) ⪯ Q}, (5a)

E ′

mat := {Z ∈ Rp×q: Z⊤AZ + Z⊤B + B⊤Z + C ⪯ 0} (5b)

where

P ≻ 0,Q ≻ 0 and A ≻ 0,B⊤A−1B − C ≻ 0. (6)

The constraints Q ≻ 0 and B⊤A−1B − C ≻ 0 ensure that Emat
and E ′

mat are not empty or do not reduce to a singleton; the
constraints P ≻ 0 and A ≻ 0 ensure then that the matrix
ellipsoid is a bounded set. We stress that many sets considered
in the sequel (e.g., C in Section 3.1 and I in Section 5.1) have to
e expressed in terms of these matrix ellipsoids, and that (5a)
nd (5b) are natural extensions of the classical ellipsoids in the
uclidean space, cf. [24, Eqs. (3.8)–(3.9)].
Standard computations reformulate E ′

mat in (5b) as
′

mat = {Z ∈ Rp×q: (Z + A−1B)⊤A(Z + A−1B)

− (B⊤A−1B − C) ⪯ 0}. (7)

Hence, Emat and E ′
mat are the same set for

Zc = −A−1B, P−2
= A, Q = B⊤A−1B − C. (8)

Establishing the correspondence in (8) is useful since in this
paper matrix ellipsoids appear more naturally in the form (5b)
than (5a). On the other hand, our goal is to define a size for matrix
ellipsoids, and this is easier to do by Emat in (5a). By Q ≻ 0, Emat
is equivalently written as

Emat ={Z∈ Rp×q:Q−1/2(Z − Zc)⊤P−2(Z − Zc)Q−1/2
⪯ I}

={Zc + PYQ1/2:Y ∈ Rp×q,Y⊤Y ⪯ I}
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here Y⊤Y ⪯ I is equivalent to |Y| ≤ 1. We can adopt a
igorous notion of size of Emat by specifying the measure space
n question and the adopted measure. Given natural numbers p
nd q, vec:Rp×q

→ Rpq is a bijection between Rp×q and Rpq with
inverse vec−1

p,q:R
pq

→ Rp×q. With P(T ) denoting the power set of
a set T , we define the bijection V:P(Rp×q) → P(Rpq) as

(S) := {vec(s): s ∈ S}

or S ⊆ Rp×q. Then, its inverse V−1 satisfies V−1(Sv) =

vec−1
p,q(sv): sv ∈ Sv} for Sv ⊆ Rpq. By using standard notions in

easure theory [25, §1.2, §1.4], we consider in Rpq the standard
ollection Bv of Lebesgue measurable sets as σ -algebra and for
v ∈ Bv, m(βv) is the Lebesgue measure of the set βv. With Bv and
, we can define a σ -algebra B in Rp×q as B := {V−1(βv):βv ∈ Bv}

nd then, for each β ∈ B, a measure µ as µ(β) := m(V(β)). This
akes (Rp×q,B, µ) a measure space [25, Def. 1.4.27].
As an important by-product, we can now determine the mea-

ure of Emat based on the (easier-to-find) measure of V(Emat).
ndeed, for zc := vec Zc, let

Evec := V(Emat)

= {zc + (Q1/2
⊗ P)y: y ∈ Rpq, |vec−1

p,q(y)| ≤ 1},

hich is closed, and thus Lebesgue measurable [25, Lemma
.2.13]. Accordingly, Emat belongs to B and its measure is

(Emat) = m(Evec) =: vol (Evec) (9)

here it is standard to identify the volume of Evec with its
ebesgue measure (see, e.g., [26, p. 105]). To have µ(Emat), we
etermine vol (Evec) in the next lemma.

emma 1. Let p and q be given natural numbers, and let Q ∈ Rq×q

and P ∈ Rp×p be symmetric positive definite matrices. Then,

vol (Evec) = β(detQ)
p
2 (det P)q

here β is a constant that depends only on p and q.

roof. Let

Evec := {(Q1/2
⊗ P)y: y ∈ Rpq, |vec−1

p,q(y)| ≤ 1}.

y translation invariance [25, Exercise 1.2.20], m(Evec) = m(Evec).
he set {y ∈ Rpq: |vec−1

p,q(y)| ≤ 1} is closed, thus Lebesgue
easurable. By [25, Exercise 1.2.21],

(Evec) = det(Q1/2
⊗ P)m

(
{y ∈ Rpq: |vec−1

p,q(y)| ≤ 1}
)
.

he last term in this expression depends only on p and q and
et(Q1/2

⊗ P) = (detQ)
p
2 (det P)q by Kronecker-product proper-

ies [23, §4.2, Problem 1]. □

In view of (9) and Lemma 1, the set Emat has measure µ(Emat) =

(detQ)
p
2 (det P)q. The constant β is analogous to the propor-

ionality constant in [24, p. 42], which is the volume of the
-norm unit ball. The precise expression of β is irrelevant for our
evelopments because we will compare only matrix ellipsoids
ith same p and q. Hence, we disregard β and define the size
f Emat simply as

detQ)
p
2 (det P)q.

Since the sets Emat and E ′
mat are the same when the correspon-

dences in (8) hold, their size is in that case

detQ)
p
2 (det P)q = (det(B⊤A−1B − C))

p
2 (det(A−1))

q
2 . (10)

oth terms in this expression reduce to classical volume formulae
or Z ∈ Rp×1 [24, p. 42]. Eq. (10) has a key role in obtaining
quantitative comparisons in Section 5.
3

3. Data-consistent dynamics and controller design problems

In this section we return to our original problem of designing
a stabilizing controller for x+

= A⋆x+B⋆u from a finite set of noisy
ata. We first determine the set of system matrices consistent
ith the data points when the disturbance model is given by
i or De, and then formulate the corresponding control design
roblems. From (2), (3) and ϵe = ϵT as discussed in Section 1, we

have

i = {d ∈ Rn: |d|2 ≤ ϵ} = {d ∈ Rn: dd⊤
⪯ ϵI} (11a)

e =

{
d0, . . . , dT−1

∈ Rn: TϵI −

T−1∑
i=0

di(di)⊤

=
[
I d0 . . . dT−1

]
·

[
TϵI 0
0 −I

]
[⋆]⊤ ⪰ 0

}
. (11b)

For notational convenience, all data points are grouped as

X1 :=
[
x(1) x(2) · · · x(T )

]
X0 :=

[
x(0) x(1) · · · x(T − 1)

]
U0 :=

[
u(0) u(1) · · · u(T − 1)

]
and the set of their relevant indices i is I := {0, . . . , T − 1}.

3.1. Dynamics consistent with the data

We call consistent with data all the matrices (A, B) that, for
the selected input sequence, could have generated the measured
state sequence while keeping d in the bound Di in (11a) or De
in (11b), and we characterize the corresponding two sets in this
section.

Based on the bound in (11b), the matrices (A, B) consistent
with the data points are in

C :=

{
(A, B):D ∈ Rn×T , X1 = AX0 + BU0 + D,[

I D
] [

TϵI 0
0 −I

][
I
D⊤

]
⪰ 0

}
,

(12)

i.e., all those matrices for which some disturbance sequence sat-
isfying the bound in (11b) could have generated the measured
data. By eliminating D in (12), C rewrites as

=

{
(A, B):

[
I A B

] [ I X1
0 −X0
0 −U0

]
·

[
TϵI 0
0 −I

]
[⋆]⊤ ⪰ 0

}
. (13)

nalogously, based on the bound in (11a), the matrices (A, B)
onsistent with a data point i ∈ I are in

Ci :=

{
(A, B): d ∈ Rn,

x(i + 1) = Ax(i) + Bu(i) + d, dd⊤
⪯ ϵI

}
,

(14)

.e., all those matrices for which some disturbance d satisfying the
ound in (11a) could have generated the measured data point i.
y eliminating d in (14), Ci rewrites as

i =

{
(A, B):

[
I A B

] [ I x(i + 1)
0 −x(i)
0 −u(i)

]
·

[
ϵI 0
0 −I

]
[⋆]⊤ ⪰0

}
. (15)

he expression of Ci in (15) mirrors that of C in (13), which was
he reason to write dd⊤

⪯ ϵI in (14) instead of the equivalent but
ore immediate |d|2 ≤ ϵ. The set of matrices (A, B) consistent
ith all data points is then

:=

T−1⋂
Ci. (16)
i=0
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f we disregard the constraint A ≻ 0 in (6), both the sets C and
i can be expressed in the form (5b) of matrix ellipsoids. Indeed,

the inequalities constituting the sets C in (13) and Ci in (15) can
e equivalently written as[
A B

]
Aj

[
A⊤

B⊤

]
+

[
A B

]
Bj + B⊤

j

[
A⊤

B⊤

]
+ Cj ⪯ 0 (17a)

here the matrices Aj,Bj, Cj with j = I for C and j = i for Ci are
efined as

CI := −TϵI + X1X⊤

1 , BI := −

[
X0
U0

]
X⊤

1 , AI :=

[
X0
U0

][
X0
U0

]⊤

,

Ci := −ϵI + x(i + 1)x(i + 1)⊤, Bi := −

[
x(i)
u(i)

]
x(i + 1)⊤,

Ai :=

[
x(i)
u(i)

][
x(i)
u(i)

]⊤

.

(17b)

q. (17a) corresponds to (5b) with Z⊤
=

[
A B

]
. We note two

acts. The set C is not necessarily bounded. It is bounded if AI ≻

or, equivalently, the matrix
[

X0
U0

]
has full row rank. On the

ther hand, condition Ai ≻ 0 for Ci is never satisfied. However,
his is irrelevant since the set of interest when dealing with
nstantaneous bounds is I, formed by the intersection of all Ci as
n (16). We will prove below in Proposition 3 that I ⊆ C, which
uarantees that I is bounded whenever C is.

.2. Controller design methods

We now formulate the control design problems relative to
he two sets C and I, i.e., to the energy bound De and to the
nstantaneous bound Di.

The energy-bound approach solves:

ind P ≻ 0, K

.t. (A + BK )P(A + BK )⊤ − P ≺ 0 for all (A, B) ∈ C (18)

here the negative-definiteness condition expresses discrete-
ime asymptotic stability. The instantaneous-bound approach
olves:

ind P ≻ 0, K

.t. (A + BK )P(A + BK )⊤ − P ≺ 0 for all (A, B) ∈ I. (19)

oth the feasibility problems (18) and (19) correspond to robust
tabilization in the face of the uncertainty introduced by d, which
nduces a set of matrices to stabilize rather than a singleton. We
tress that we consider here a stabilization problem as a proto-
ypical control problem, but our main conclusions would apply
nchanged to other control problems like L2-gain minimization
r H∞ control.
By the lossless matrix S-procedure [10, Thm. 12] and Schur

omplement, the result [10, Thm. 13] shows that, under a gener-
lized Slater condition on data, feasibility of (18) is equivalent to
easibility of

ind P, Y , β, α

.t.

⎡⎢⎣ P − βI 0 0 0
0 −P −Y⊤ 0
0 −Y 0 Y
0 0 Y⊤ P

⎤⎥⎦ (20)

− α

⎡⎢⎣ I X1
0 −X0
0 −U0

⎤⎥⎦[
TϵI 0
0 −I

]⎡⎢⎣ I X1
0 −X0
0 −U0

⎤⎥⎦
⊤

⪰ 0
0 0 0 0 w

4

α ≥ 0, β > 0, P ≻ 0

here the decision variables appear linearly. If (20) has a solution,
= YP−1 is a stabilizing controller for x+

= A⋆x + B⋆u.
On the other hand, a tractable equivalent reformulation of (19)

ased on matrix ellipsoids cannot be obtained. Indeed, even in
he simplest case where n = m = 1, the set I is an intersection
of ellipsoids and finding the ellipsoid with minimum volume
containing I is NP-complete [24, p. 44]. Hence, finding such an
ellipsoid and applying then the necessary and sufficient condi-
tion in [10, Thm. 12] are impractical. To pursue an alternative
approach, we need the next lemma, which is an immediate ex-
tension to matrices of the classic lossy S-procedure [24, §2.6.3].

Lemma 2. Let T0, . . . , Tℓ ∈ R(q+p)×(q+p) be symmetric matrices. If
there exist nonnegative scalars τ1, . . . , τℓ such that T0−

∑ℓ

i=1 τiTi ⪰

, then
[

I
Z

]⊤ T0
[

I
Z

]
⪰ 0 for all Z ∈ Rp×q such that

[
I
Z

]⊤ Ti
[

I
Z

]
⪰ 0

for each i = 1, . . . , ℓ.

Proof. For an arbitrary Z satisfying
[

I
Z

]⊤ Ti
[

I
Z

]
⪰ 0 for each

i = 1, . . . , ℓ, use the condition T0 −
∑ℓ

i=1 τiTi ⪰ 0 to obtain[
I
Z

]⊤ T0
[

I
Z

]
⪰ 0. □

We use the lossy matrix S-procedure in Lemma 2 and obtain
a sufficient condition to guarantee feasibility of (19) in the next
proposition.

Proposition 1. Feasibility of

find P, Y , β, τ0, . . . , τT−1

s.t.

⎡⎢⎣P − βI 0 0 0
0 −P −Y⊤ 0
0 −Y 0 Y
0 0 Y⊤ P

⎤⎥⎦ (21)

−

T−1∑
i=0

τi

⎡⎢⎣ I x(i + 1)
0 −x(i)
0 −u(i)
0 0

⎤⎥⎦[
ϵI 0
0 −I

]⎡⎢⎣ I x(i + 1)
0 −x(i)
0 −u(i)
0 0

⎤⎥⎦
⊤

⪰ 0

τ0 ≥ 0, . . . , τT−1 ≥ 0, β > 0, P ≻ 0,

implies feasibility of (19).

roof. Condition (A+BK )P(A+BK )⊤ −P ≺ 0 in (19) is equivalent
o the existence of a positive scalar β such that (A + BK )P(A +

K )⊤ − P ⪯ −βI , i.e.,

I A B
]
·

⎡⎣P − βI 0 0
0 −P −PK⊤

0 −KP −KPK⊤

⎤⎦ [⋆]⊤ ⪰ 0.

y Schur complement and change of variable Y = KP , (21) is
quivalent to

ind P, K , β, τ0, . . . , τT−1

.t.

⎡⎣P − βI 0 0
0 −P −PK⊤

0 −KP −KPK⊤

⎤⎦
−

T−1∑
i=0

τi

[ I x(i + 1)
0 −x(i)
0 −u(i)

][
ϵI 0
0 −I

][ I x(i + 1)
0 −x(i)
0 −u(i)

]⊤

⪰ 0

β > 0, τ0 ≥ 0, . . . , τT−1 ≥ 0, P ≻ 0.

y Lemma 2, feasibility of this problem implies feasibility of (19),

hich proves the statement. □
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As in (20), the decision variables appear linearly in (21) and
solving (21) yields the controller gain K = YP−1. With respect
to (20), solving (21) involves T scalar variables τi instead of a
single one α. Having as many decision variables as the number
of data points may be computationally demanding with (very)
large data sets. We will further elaborate on this point later in
Section 5.3.

The feasibility properties of (20) and (21) are related. In par-
ticular, the next proposition shows that solving (21) is as easy or
easier than solving (20).

Proposition 2. If (20) is feasible, (21) is feasible.

roof. Consider a feasible solution to (20) for some variables P ,
Y , β , α, and note that⎡⎢⎣ I X1

0 −X0
0 −U0
0 0

⎤⎥⎦·

[
TϵI 0
0 −I

]
[⋆]⊤

=

T−1∑
i=0

⎡⎢⎣ I x(i + 1)
0 −x(i)
0 −u(i)
0 0

⎤⎥⎦ ·

[
ϵI 0
0 −I

]
[⋆]⊤.

Thus, the same variables P , Y , β with τ0 = · · · = τT−1 = α ≥ 0
rovide a feasible solution to (21). □

In the next section, we aim at quantifying the gap in terms
f feasibility. To this end, we shift the focus from the design
roblems (18) and (19) to the corresponding sets C and I because
18) and (19) impose the very same stability condition on C and
, respectively. Hence, the smaller the C or I is, the larger the
easible set [26, §4.1.1] of the design problems (18) or (19) is. Next
ection will actually show that I ⊆ C.

. Comparison between energy and instantaneous bounds:
heoretical evidence

In this section, we show a monotonicity property of the set
with respect to the number T of data points, and a relation

etween the sets C and I.
Firstly, to illustrate monotonicity properties, we would like to

ighlight the dependence of C and I on the number T of data
oints. With some notation abuse, we then write equivalently C
r C(T ), and I or I(T ). It is immediate that

(T + 1) ⊆ I(T ) (22)

ecause I(T + 1) contains precisely the same constraints as I(T )
lus an additional one. This is a desirable property because we
xpect more data to reduce the uncertainty by providing addi-
ional information, or, in the worst case, to keep the uncertainty
t the same level. On the other hand, we build the next example
o show that C(T + 1) ⊆ C(T ) does not hold in general.

xample 1. Consider in (1) A⋆ = 1/2 and B⋆ = 1/2 as the
nknown dynamical matrices. Assume that x(0) = 1, u(0) = 1,
(1) = −1, u(2) = 0, d(0) = d(1) = d(2) = 0, and that the
isturbance bound is ϵ = 1. These sequences give x(1) = 1,
(2) = x(3) = 0. Define for brevity Ã := A − A⋆ and B̃ := B − B⋆.
ith some computations, (13) yields for T = 1, 2, 3

(1) = {(A, B): 1 − Ã2
− B̃2

− 2ÃB̃ ≥ 0}

(2) = {(A, B): 2 − 2B̃2
− 2Ã2

≥ 0}

(3) = {(A, B): 3 − 2B̃2
− 2Ã2

≥ 0},

which are depicted in Fig. 1. The ellipsoid corresponding to C(T )
does not always shrink with larger T , but more data (such as
5

Fig. 1. The sets C(1), C(2), C(3) defined in Example 1 correspond respectively
to light, medium, dark gray.

when T goes from 2 to 3) can actually induce larger bounds in
an undesirable way.

Secondly, the next proposition provides a relation between C
and I, which corroborates Proposition 2.

Proposition 3. The relation I ⊆ C holds.

Proof. We assume that (A, B) belongs to I =
⋂T−1

i=0 Ci, and
show that, then, (A, B) belongs to C. Let us then manipulate the
left-hand side of the inequality in (13) as

[
I A B

] [ I X1
0 −X0
0 −U0

]
·

[
TϵI 0
0 −I

]
[⋆]⊤

=
[
I A B

] [ I x(1) . . . x(T )
0 −x(0) . . . −x(T − 1)
0 −u(0) . . . −u(T − 1)

]
·

[
TϵI 0
0 −I

]
[⋆]⊤

=

T−1∑
i=0

(
ϵI − (x(i + 1) − Ax(i) − Bu(i))·[⋆]⊤

)
.

ach term of the sum is positive semidefinite since (A, B) is
ssumed to belong to

⋂T−1
i=0 Ci, hence the whole sum is positive

emidefinite. This proves that (A, B) ∈ C. □

Proposition 3 establishes that the set I is contained in, or
s at most equal to, the set C. In the next section we show
hrough numerical experiments that the former set actually has
ize significantly smaller than the latter. With Proposition 3 in
lace, the next remark discusses the benefit of a full-row-rank
X0
U0

]
and its relation to persistence of excitation.

emark 1. We noted after (17a) that
[

X0
U0

]
having full row rank,

hich is immediately checked from data, yields a bounded C,
nd thus a bounded I by Proposition 3. In particular, when C
ransitions from unbounded to bounded, an unbounded I is also
orced to become bounded; due to (22), this makes it easier to
olve (19). The full row rank of

[
X0
U0

]
is related to persistence of

xcitation. Indeed, [27, Cor. 2] establishes that for a controllable
air (A⋆, B⋆) in x+

= A⋆x + B⋆u and a persistently exciting (of
rder n+ 1) input sequence u(0), . . . , u(T − 1),

[
X0
U0

]
has full row

ank. The rank condition on
[

X0
U0

]
is mild also in the presence

f disturbances, which (unless adversarial) typically cooperate
n generating excitation, see the discussion in [14, Sect. 4.2 and
qs. (23)–(24)].
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Fig. 2. The ellipsoids inside the dashed lines correspond to C for T =

3, 250, 500, 750, 1000, as the labels indicate. The larger the T , the darker the
dashed line.

5. Comparison between energy and instantaneous bounds:
Numerical evidence

In this section, we complement the theoretical results in
Propositions 2 and 3 with numerical evidence showing the actual
relation between I and C, their dependence on T , and the impact
of these two aspects on feasibility of the control design problems.
For this comparison, we preliminarily obtain in Section 5.1 an
over-approximation of I. We note that this over-approximation,
although providing insights on this comparison, does not play any
role in controller design.

5.1. Overapproximation I of the set I

Whereas the size of C can be obtained as in Section 2.2, a
Lebesgue measure of I :=

⋂T−1
i=0 Ci is difficult to obtain exactly. In

fact, I is an intersection of matrix ellipsoids, and for n = m = 1,
even finding the ellipsoid of minimum volume containing I is
NP-complete [24, p. 44]. We thus set up a convex optimization
problem to obtain a computable over-approximation I of I. Con-
sidering I for the comparison with C is relevant because, despite
eing an over-approximation, its size is still (significantly) smaller
han the size of C in all the subsequent numerical examples.

We assume that the set I is bounded, cf. Section 3.1. Using the
pproach in [24, §3.7.2] for classical ellipsoids, we find a matrix
llipsoid I that includes all Ci’s through the lossy S-procedure in
emma 2, and we minimize the size of I, defined in Section 2.2.
e take I as

I := {(A, B):
[
I A B

] [
C B

⊤

B A

]⎡⎣ I
A⊤

B⊤

⎤⎦ ⪯ 0}

= {(A, B):C + B
⊤

[
A⊤

B⊤

]
+

[
A B

]
B +

[
A B

]
A

[
A⊤

B⊤

]
⪯ 0}

where we set C = B
⊤
A

−1
B− I (otherwise the representation of I

is homogeneous) and require A ≻ 0 so that (6) holds. We impose
I =

⋂T−1
i=0 Ci ⊆ I via the lossy matrix S-procedure in Lemma 2,

nd obtain

B
⊤
A

−1
B−I B

⊤

B A

]
−

T−1∑
τi

[
Ci B⊤

i
Bi Ai

]
⪯ 0, τi ≥ 0 for i ∈ I
i=0

6

Fig. 3. The shaded areas correspond to I and are barely visible for T ≥ 250, as
an be appreciated in the inset. The ellipsoids inside the dashed lines correspond
o I (we omit some labels for readability). Increasingly darker color for the areas
and lines correspond to T = 3, 250, 500, 750, 1000.

with Ci, Bi, Ai defined in (17b). Since the first inequality is non-
linear in the decision variables B and A, we rewrite it by Schur
complement as⎡⎢⎣−I −

∑T−1
i=0 τiCi B

⊤
−

∑T−1
i=0 τiB⊤

i B
⊤

B −
∑T−1

i=0 τiBi A −
∑T−1

i=0 τiAi 0
B 0 −A

⎤⎥⎦ ⪯ 0. (23)

y (10), the size of I is given by (detA)−
n
2 thanks to the adopted

normalization. These constraints and objective function result in
the optimization problem

minimize − log detA
subject to (23), A ≻ 0, τi ≥ 0 for i ∈ I.

(24)

hen n = m = 1, this optimization problem boils down to
hat in [24, Eq. (3.15)], but (24) also captures the case of generic
imensions n and m, as we need in the following.

.2. A visualizable example

In this section we examine more thoroughly the system of
xample 1 and show how the sizes of C and I depend on T and
ow they compare with each other.
We prolong the data sequences of Example 1 by using as input

nd disturbance the realizations of random variables uniformly
istributed in [−2, 2] and [−ϵ, ϵ] = [−1, 1], respectively. The

resulting set C, depicted for T = 3 in Fig. 1, is now depicted
for some values of T up to 1000 in Fig. 2. Fig. 2 shows that the
energy-based ellipsoids C shrink very slowly as T increases, and
stay approximately constant from T = 250 on. The resulting set
I is depicted for the same values of T in Fig. 3 together with its
over-approximation I, determined as in Section 5.1. Fig. 3 shows
that the ellipsoids I shrink very quickly with T and, albeit only
over-approximations of I, they are significantly smaller than the
ellipsoids C. The actual sets I, which are depicted by shaded areas,
shrink even faster to the point that they are barely visible already
for T = 250.

For a clearer visualization, Fig. 4 depicts the ratio between the
sizes of C and I, both computed with (10). I is smaller than C by
more than 30 times already with approximately 200 data points.
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Fig. 4. Ratio between the sizes of C and I, Section 5.2.

Fig. 5. Ratio between the sizes of C and I, Section 5.3.

Fig. 6. Computation times for controller design in (20) and (21).

5.3. Example with third order dynamics

In this section, we delve into the considerations of Section 5.2
through a more complex example with matrices

A⋆ =

[0.1274 0.1431 0.1974
0.3619 0.6292 0.4153
0.6972 0.1574 0.4111

]
, B⋆ =

[0.6901 0.9047
0.4809 0.6030
0.8913 0.1478

]
.

data set is obtained by applying the realization of a Gaussian
andom variable (zero mean and unit standard deviation) as
nput, and as disturbance the realization of a random variable
istributed uniformly in {d: |d|2 ≤ ϵ} with different values for
.
As in the previous example, we compare the sizes of C and

f I for ϵ = 0.1. Their ratio is plotted in Fig. 5 for increasingly
arger portions of data from T = 20 up to T = 1000. The size
f I is smaller than C by approximately two orders of magnitude
lready with 100 data points. We commented after Proposition 1
hat the energy-based approach (20) requires T−1 scalar decision
ariables less than the formulation in (21). We show numerically
hat the impact of these extra variables is modest even with a
7

Fig. 7. Energy-bound approach (20): the color represents, for each disturbance
bound ϵ and data length T , the ratio of feasible controller design problems in a
batch of 100. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)

Fig. 8. Instantaneous-bound approach (21), see caption of Fig. 7.

arge number of data. The computations times2 to solve (20) or
21) are depicted in Fig. 6. The controller design in (20) has the
ppealing feature that the associated computation time barely
hanges with the number of data points whereas (21) exhibits
dependence on T that results in a computation time growing

inearly with T . This is the case since, for the same dimension of
he linear matrix inequality, (20) has n(n+1)/2+mn+1+1 scalar
ecision variables (corresponding respectively to the independent
oefficients of P , Y , β , α) whereas (21) has n(n + 1)/2 + mn +

+ T scalar decision variables (corresponding respectively to the
ndependent coefficients of P , Y , β , τ0, . . . , τT−1).

Finally, we examine the joint effect of the disturbance bound
and of the length T on both the approaches. For each value
f ϵ and T , we solve a batch of 100 feasibility problems (20) or
21), count the number nfeas of feasible ones in that batch and
isplay the ratio nfeas/100 ∈ [0, 1] in Figs. 7–8 through a color

code. Yellow areas are the good ones in terms of feasibility. Fig. 7

2 These wall-clock times are obtained through the MATLAB R⃝ R2019b
function timeit, which automatically executes the program multiple times and
computes a median, on a machine with processor Intel R⃝ CoreTM i7 with 4 cores
and 1.80 GHz.
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epicts this ratio for the energy-bound approach and shows that
bove a threshold ϵ of approximately 0.7, the problem (20) has no
olutions regardless of the number of data. This behavior seems
onsistent with what we observed in Fig. 2 about the fact that
he set of consistent matrices is not reduced by larger amounts
f data. Fig. 8 depicts the ratio nfeas/100 for the instantaneous-
ound approach, and shows its appealing feature of being able
o withstand increasingly larger disturbance magnitudes as long
s an increasingly number of data points is collected to reduce
ncertainty. Comparing Figs. 5–6 with Figs. 7–8, we can conclude
hat the price paid in terms of computation time is negligible
ompared with the gain in terms of robustness.

. Conclusions

In this paper, we compared two different disturbance models
or data-driven control design: a model De considering energy
ounds on the entire disturbance sequence and a model Di con-
idering instantaneous bounds on the disturbance. The model De
eads to elegant necessary and sufficient condition for stability,
nd results in a design program whose number of variables de-
ends only on the dimensions of the system to be controlled and
ot on the number of data points. On the other hand, the model
i reflects a much more natural way of describing disturbances.
We analyzed pros and cons of working directly with Di, in-

tead of converting it into De. The analysis shows that, com-
utational considerations aside, it is in fact always preferable
o work with Di. First, Di results in a design program that is
lways feasible whenever the one associated with De is feasible.
econd, numerical evidence shows that the feasibility gap can be
xtremely large. This latter aspect has been analyzed by intro-
ucing a notion of size for the uncertainty set induced by the
isturbance. Simulations show that whereas the uncertainty set
ssociated with De does not necessarily shrink with more data
oints, the one associated with Di often shrinks very quickly,
nd is many order of magnitudes smaller. As for computational
onsiderations, working with Di is less advantageous because it
esults in a design program whose number of variables depends
n the number of data points. With the exception of extremely
arge data sets, however, the price paid in terms of computation
ime appears negligible compared with the advantages offered in
erms of robustness.
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