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Abstract. We devise a �rst-order in time convex splitting scheme for a nonlocal Cahn�
Hilliard�Oono type equation with a transport term and subject to homogeneous Neu-
mann boundary conditions. The presence of the transport term is not a minor modi-
�cation, since, for instance, we lose the unconditional unique solvability and stability.
However, we prove the stability of our scheme when the time step is su�ciently small.
Furthermore, we prove the consistency of this scheme and the convergence to the exact
solution. Finally, we give some numerical simulations which con�rm our theoretical re-
sults and demonstrate the performance of our scheme not only for phase separation, but
also for crystal nucleation, for several choices of the interaction kernel.

1. Introduction

The authors in [8] proposed the following Ginzburg�Landau type free energy:

(1.1) ECH(ϕ) =

∫
Ω

(ε2

2
|∇ϕ|2 + F (ϕ)

)
dx

in order to describe the phase separation of a binary mixture, and, more precisely, the
so-called spinodal decomposition. Here, Ω ⊂ RN , N 6 3, is the domain occupied by the
mixture components A and B, with respective mass fractions ϕA and ϕB, and the order
parameter is de�ned by ϕ = ϕA−ϕB

ϕA+ϕB
. Furthermore, ε is the di�use interface thickness and

ε2

2
|∇ϕ|2 is a surface tension term which ensures a smooth transition between the two pure

states. Finally, F is a double-well potential which favors phase separation.
Once the free energy is de�ned, the phase separation can be described as a gradient

�ow (see, for instance, [25]),

∂ϕ

∂t
= ∆µ, µ :=

∂ECH
∂ϕ

= f(ϕ)− ε2∆ϕ,

where µ is the chemical potential and f(ϕ) = F ′(ϕ).
This corresponds to the well-known Cahn�Hilliard equation which plays an important

role in Materials Science. In particular, phase separation phenomena play an essential
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role in the mechanical properties of an alloy (for instance, its strength). We refer the
reader to, e.g., [7], [8], [14], [20], [41], [42], [44], [45], [50], [51], and [52] for more details.
It is worth recalling that Cahn�Hilliard type equations are also relevant in other con-

texts, namely, the ones in which phase separation and coarsening/clustering processes can
be observed or come into play. We can mention, for instance, population dynamics [16],
bacterial �lms [40], wound healing and tumor growth [15], [23], [24], [39], [48], and [49],
thin �lms [54] and [57], image processing and inpainting [6], [9], [10], [11], [12], [13], [19],
and [56], and even the rings of Saturn [58] and the clustering of mussels [43].
However, the purely phenomenological derivation of the Cahn�Hilliard equation is some-

how unsatisfactory from a physical point of view. This led G. Giacomin and J.L. Lebowitz
to consider the problem of phase separation from a microscopic point of view, using a sta-
tistical mechanics approach (see [28] and also [29] and [30]). Performing the hydrodynamic
limit, they deduced a continuum model which is a nonlocal version of the Cahn�Hilliard
equation. This model is characterized by the following Helmholtz free energy functional

(1.2) EnCH1(ϕ) = −1

2

∫
Ω

∫
Ω

J(x− y)ϕ(x)ϕ(y)dxdy +

∫
Ω

F (ϕ(x))dx,

where J : RN → R is a smooth convolution kernel such that J(x) = J(−x). Furthermore,
the convex potential F here is de�ned as follows:

F (s) = s ln(s) + (1− s) ln(1− s), 0 < s < 1.

This potential can be approximated by a convex polynomial. In that case, the nonlocal
version of the Cahn�Hilliard system reads

(1.3)
∂ϕ

∂t
= ∆µ, µ :=

∂EnCH1

∂ϕ
= f(ϕ)− J ? ϕ.

We refer the reader to the recent paper by [26] (see addition in the references) for a
rather complete theoretical picture.
On the other hand, P.W. Bates and J. Han in [4] and [5] proposed the following nonlocal

version of the Cahn�Hilliard energy

(1.4) EnCH2(ϕ) =
1

4

∫
Ω

∫
Ω

J(x− y)(ϕ(x)− ϕ(y))2dxdy +

∫
Ω

F (ϕ(x))dx,

where F is the double-well potential as in the classical Cahn�Hilliard model. On account
of (1.2) and (1.4), we introduce the following energy, for α > 0,

(1.5) EnCH(ϕ) =
1

4

∫
Ω

∫
Ω

J(x− y)(ϕ(x)− ϕ(y))2dxdy

+
α− 1

2

∫
Ω

∫
Ω

J(x− y)(ϕ(x))2dxdy +

∫
Ω

F (ϕ(x))dx,
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where, for α = 0, we recover the Giacomin�Lebowitz model (1.2) while for α = 1, we
recover the Bates�Han model (1.4). Therefore, we consider

(1.6)
∂ϕ

∂t
= ∆µ, µ :=

∂EnCH
∂ϕ

= α(J ? 1)ϕ+ f(ϕ)− J ? ϕ

which can be rewritten as the following convective nonlocal and nonlinear di�usion equa-
tion:

(1.7)
∂ϕ

∂t
= ∇ · ((f ′(ϕ) + α(J ? 1))∇ϕ) + α∇ · ((∇J ? 1)ϕ)−∇ · (∇J ? ϕ).

The term [f ′(ϕ) + αJ ? 1] is referred to as the di�usive mobility, or just the di�usivity.
We assume that (1.6) is strictly non-degenerate,

(1.8) f ′(ϕ) + α(J ? 1)(x) > β > 0, a.a. x ∈ Ω, α ∈ R+.

Note that, when α = 0, we do not need assumption (1.8) owing to the fact that F is
already strictly convex in that case.
A further example of a nonlocal Cahn�Hilliard equation is obtained by considering the

following Ohta-Kawasaki free energy

(1.9)

ECHO(ϕ) =
ε2

2

∫
Ω

|∇ϕ|2dx+

∫
Ω

F (ϕ)dx

+
σ

2

∫
Ω

∫
Ω

G(x− y)(ϕ(x)− 〈ϕ〉)(ϕ(y)− 〈ϕ〉)dxdy,

where G describes the long-range interactions and σ > 0. In particular, in Oono's model
(see [53], cf. also [59]), G is the Green function associated with the Laplace operator (up
to a multiplicative constant). If 〈ϕ〉 is equal to the spatial average of ϕ, that is,

〈ϕ〉 =
1

meas(Ω)

∫
Ω

ϕdx,

and no-�ux boundary conditions are considered, the gradient �ow for this energy can be
derived exactly as for the Cahn�Hilliard equation, namely,

∂ϕ

∂t
= ∆

∂ECHO
∂ϕ

,

which is equivalent to

∂ϕ

∂t
+ σ(ϕ−m) = ∆µ, µ = −ε2∆ϕ+ f(ϕ).

In that case, m = 〈ϕ〉 so the mass is still conserved. However, more generally, m can be a
constant which is not necessarily equal to the spatial average of the initial datum. This is
the so-called o�-critical case and the total mass is conserved only asymptotically. Indeed,
in that case we have, for all t ∈ [0, T ],

〈ϕ〉 = m+ e−σt(〈ϕ0〉 −m).

This equation is known as the Cahn�Hilliard�Oono equation and was introduced to model
long-range (nonlocal) interactions; actually, this equation was also proposed in order to
simplify numerical simulations (see [53]). Short-range interactions tend to homogenize
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the system, whereas long-range ones forbid the formation of too large structures; the
competition between these two e�ects translates into the formation of a micro-separated
state (also called super-crystal) with a spatially modulated order parameter, de�ning
structures with a uniform size (see [59] for more details and references). Note that the
long-range interactions are repulsive when ϕ(x) and ϕ(y) have opposite signs and thus
favor the formation of interfaces (see [59] and the references therein). For theoretical
results see [31], [47] and the references therein (see also [2] for numerical results in the
conserved case).
In this article, on account of the previous considerations, we consider a Cahn-Hilliard-

Oono type equation which accounts for both the nonlocal e�ects. More precisely we want
to analyse numerically the following initial and boundary value problem:

(1.10)



∂ϕ

∂t
+∇ · (uϕ) + σ(ϕ−m) = ∆µ+ g, in Ω× (0, T ),

µ = α(J ? 1)ϕ− J ? ϕ+ f(ϕ), in Ω× (0, T ),

∂µ

∂n
= 0, on ∂Ω× (0, T ),

ϕ(0) = ϕ0, in Ω.

More precisely, here we shall analyze the case α = 1 while the case α = 0 will be studied
elsewhere. Therefore our initial and boundary value problem can be written as follows

(1.11)



∂ϕ

∂t
+∇ · (uϕ) + σ(〈ϕ〉 −m) = ∆µ+ g, in Ω× (0, T ),

µ = (J ? 1)ϕ− J ? ϕ+ f(ϕ) + σG ? (ϕ− 〈ϕ〉), in Ω× (0, T ),

∂µ

∂n
= 0, on ∂Ω× (0, T ),

ϕ(0) = ϕ0, in Ω,

where G is the Green function de�ned in (1.9). This equation is the fully nonlocal version
of the Cahn�Hilliard�Oono equation with a transport term which accounts for a possible
�ow of the mixture at a certain given velocity �eld u and an external source g. Further-
more, m is a real constant, that is the o�-critical case is included. This equation was
studied in [17] (see also its references). In particular, well-posedness and the existence of
the global attractor were established. Furthermore, well-posedness results for (1.10) with
singular potential and a degenerate mobility were obtained in [46].
As far as the classical nonlocal Cahn�Hilliard equation is concerned (i.e. u = 0, g = 0

and σ = 0), very few results dedicated to numerical simulations, or numerical methods,
are available. The authors in [1] consider an implicit-explicit time stepping framework
for a nonlocal system modeling turbulence, where, as in the present article, the nonlocal
term is treated explicitly. Furthermore, the �nite element approximation (in space) of
nonlocal peridynamic equations with various boundary conditions is addressed in [62] (cf.
[18] for a review). In addition, a �nite di�erence method for the nonlocal Allen�Cahn
equation with non-periodic boundary conditions is applied and analyzed in [3]. The work
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in [36] uses a spectral-Galerkin method to solve a nonlocal Allen�Cahn equation, but with
a stochastic noise term and an equation modeling heat �ow. For other articles dealing
with approximating solutions to the nonlocal Cahn�Hilliard equation, see [1], [27], [38],
and [55]. Finally, the authors in [33] and [34] study the nonlocal Cahn�Hilliard equation
with periodic boundary conditions and �nite di�erence discretizations in space. Recently,
stronger convergence results of convex splitting schemes for the periodic nonlocal Allen�
Cahn and Cahn�Hilliard equations have been obtained in [35].
Here we study the �nite element discretization in space for homogenous Neumann

boundary conditions. In that case, contrary to periodic boundary conditions, we lose the
symmetry property on the convolution kernel, i.e., the convolution product between the
interaction kernel and a constant is not a constant.
Our main aim is to propose a numerical approach for the continuous problem (1.10) with

a stable �nite element scheme. We use the convex splitting method proposed by Eyre
in [21] and [22] for gradient �ow-derived equations which results in an unconditionally
gradient stable time discretization scheme. In particular, the scheme is stable for any
arbitrarily large time step. The idea consists in dividing the energy functional into two
parts, a convex one and a concave one. Then, the convex part is treated implicitly,
while the concave one is treated explicitly. Unfortunately, in our scheme, we lose the
unconditionally gradient stable time discretization, due of the presence of the transport
term. Using the a priori stability, we then prove the time convergence of our scheme to
the exact solution.
We are also able, based on the structure of our implicit-explicit method and owing to

the fact that we can separate the nonlinear and nonlocal terms, to implement an e�cient
nonlinear solver (see Section 4).
It should be noted here that the numerical computations of the nonlocal terms are

particularly heavy: computing the nonlocal terms at every iteration thus becomes very
di�cult when the mesh discretization is small. To overcome this, we consider, in the
numerical simulations, a periodic domain Ω (e.g., Ω has a rectangular form in R2) and we
use the DFFT (Discrete Fast Fourier Transformation) function to compute the nonlocal
terms.
In particular, we give numerical simulations which con�rm our theoretical results and

demonstrate the e�ciency of our scheme.

2. Preliminaries

2.1. Notation. We denote by ((·, ·)) the usual L2-scalar product, with associated norm

‖·‖. We further set ‖·‖∗ = ‖(−∆)−
1
2 ·‖, where (−∆)−1 denotes the inverse minus Laplace

operator associated with Neumann boundary conditions and acting on functions with null
spatial average. More generally, ‖ · ‖X denotes the norm of the real Banach space X.
We further denote by 〈v〉 the spatial average of a function u ∈ L1(Ω),

〈v〉 =
1

meas(Ω)
〈v, 1〉(H1(Ω))∗,H1(Ω).

Therefore, the norm (
‖v − 〈v〉‖2

∗ + 〈v〉2
) 1

2
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is equivalent to the usual norm of (H1(Ω))∗.

2.2. Assumptions. We make the following assumptions:

(A1) Ω ⊂ RN , N ≤ 3, is a bounded domain with a smooth boundary.

(A2) J : RN → R satis�es J = J1 − J2, where J1, J2 are nonnegative functions in
W1,1(RN).

(A3) J1 and J2 are even, i.e., Ji(−x) = Ji(x), ∀x ∈ RN , i = 1, 2.

(A4) f ′(ϕ) + (J ? 1)(x) > β > 0, a.a. x ∈ Ω.

(A5) F (s) = 1
4
s4 +

γ1 − γ2

2
s2, where γi, i = 1, 2, are nonnegative constants.

(A6) G : RN → R is the Green function (cf. (1.9)).

(A7) σ is a nonnegative constant.

(A8) m is a given constant.

(A9) u ∈ (L∞(Ω) ∩H1
0 (Ω))N .

(A10) g ∈ (H1(Ω))∗.

We now state the existence and uniqueness of a weak solution (see [17]).

Proposition 2.1. Let ϕ0 ∈ L2(Ω) be such that F (ϕ0) ∈ L1(Ω) and assume that (A1)-
(A10) are satis�ed. Then, for every T > 0, there exists a unique weak solution ϕ to
problem (1.10) on [0, T ] such that

ϕ ∈ L∞(0, T ;L2(Ω)) ∩ L2(0, T ;H1(Ω)).

Remark 2.2. In the sequel for some results, we will require a higher regularity of the
solution. To achieve that, the initial datum should be more regular as well as the inter-
action kernel J . For details the reader is referred to [4] where the existence of a classical
solution is established (see also [26] for the singular potential case). The presence of an
additional linear reaction term does not a�ect the regularity results.

2.3. Convex energy splitting. We consider the following nonlocal energy:

(2.1)

E(ϕ) =
1

4

∫
Ω

∫
Ω

J(x− y)((ϕ(x)− ϕ(y))2dxdy +

∫
Ω

F (ϕ)dx

+
σ

2

∫
Ω

∫
Ω

G(x− y)(ϕ(x)− 〈ϕ〉)(ϕ(y)− 〈ϕ〉)dxdy.

For σ = 0 in (2.1), we obtain energy (1.5) which can be related to the (local) Ginzburg�
Landau energy (1.1). This relationship between the local and nonlocal energies can for-
mally be obtained by using a Taylor expansion. In particular, noting that (ϕ(x)−ϕ(y)) ≈
(x− y) · ∇ϕ(x), we �nd, for J2 = 0 (J = J1),

1

4

∫
Ω

∫
Ω

J(x− y)((ϕ(x)− ϕ(y))2dxdy ≈ 1

4

∫
Ω

∫
Ω

J(x− y)|x− y|2|∇ϕ|2dxdy

=
ε2

2

∫
Ω

|∇ϕ|2dx,
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for a suitable choice of J . Furthermore, the energy (1.5) can also be related to the phase
�eld crystal (PFC) energy (see, e.g. [32] and references therein)

(2.2) EPFC(ϕ) =

∫
Ω

[1

2
(∆ϕ)2 − |∇ϕ|2 +

1

4
ϕ4 +

1− ε
2

ϕ2
]
dx.

To obtain this relationship, we use once more the Taylor expansion. In particular, since

(ϕ(x)− ϕ(y)) ≈ (x− y) · ∇ϕ(x) +
|x− y|2

2
∆ϕ,

we get

1

4

∫
Ω

∫
Ω

J(x− y)((ϕ(x)− ϕ(y))2dxdy

=
1

4

∫
Ω

∫
Ω

J1(x− y)((ϕ(x)− ϕ(y))2dxdy − 1

4

∫
Ω

∫
Ω

J2(x− y)((ϕ(x)− ϕ(y))2dxdy

≈ 1

4

∫
Ω

∫
Ω

J1(x− y)
(

(x− y) · ∇ϕ(x) +
|x− y|2

2
∆ϕ
)2

dxdy

−1

4

∫
Ω

∫
Ω

J2(x− y)
(

(x− y) · ∇ϕ(x)
)2

dxdy

=
1

2

∫
Ω

(∆ϕ)2 − |∇ϕ|2dx,

for suitable choices of J1 and J2 and for γ1 = 1 and γ2 = ε. Thus we recover energy (2.2).
From assumptions (A3) and (A6), we can rewrite (2.1) in the following form:

(2.3) E(ϕ) =
1

2
(((J ? 1)ϕ, ϕ)) + ((F (ϕ), 1))− 1

2
((J ? ϕ, ϕ))

+
σ

2
((G ? (ϕ− 〈ϕ〉), (ϕ− 〈ϕ〉))).

We further have, also owing to assumptions (A3) and (A6),

1

4

∫
Ω

∫
Ω

J(x− y)(ϕ(x)− ϕ(y))2dxdy +
σ

2

∫
Ω

∫
Ω

G(x− y)(ϕ(x)− 〈ϕ〉)(ϕ(y)− 〈ϕ〉)dxdy

=
1

2

∫
Ω

∫
Ω

J1(x− y)(ϕ(x))2dxdy − 1

2

∫
Ω

∫
Ω

J1(x− y)ϕ(x)ϕ(y)dxdy

−1

4

∫
Ω

∫
Ω

J2(x− y)(ϕ(x)− ϕ(y))2dxdy − σ

4

∫
Ω

∫
Ω

G(x− y)(ϕ(x)− ϕ(y))2dxdy

+
σ

2

∫
Ω

∫
Ω

G(x− y)(ϕ(x)− 〈ϕ〉)2dxdy = −1

4

∫
Ω

∫
Ω

J1(x− y)(ϕ(x) + ϕ(y))2dxdy

−1

4

∫
Ω

∫
Ω

J2(x− y)(ϕ(x)− ϕ(y))2dxdy +

∫
Ω

∫
Ω

J1(x− y)(ϕ(x))2dxdy

−σ
4

∫
Ω

∫
Ω

G(x− y)(ϕ(x)− ϕ(y))2dxdy +
σ

2

∫
Ω

∫
Ω

G(x− y)(ϕ(x)− 〈ϕ〉)2dxdy
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= −1

4

∫
Ω

∫
Ω

[
J1(x− y)(ϕ(x) + ϕ(y))2 + (J2(x− y) + σG(x− y))(ϕ(x)− ϕ(y))2

]
dxdy

+

∫
Ω

∫
Ω

J1(x− y)(ϕ(x))2dxdy +
σ

2

∫
Ω

∫
Ω

G(x− y)(ϕ(x)− 〈ϕ〉)2dxdy.

Consequently, the convex splitting of E is given by

E(ϕ) = E1(ϕ)− E2(ϕ), where

(2.4)

E1(ϕ) =

∫
Ω

∫
Ω

J1(x− y)(ϕ(x))2dxdy +
σ

2

∫
Ω

∫
Ω

G(x− y)(ϕ(x)− 〈ϕ〉)2dxdy

+
c1

2

∫
Ω

(ϕ(x))2dx

and

(2.5) E2(ϕ) =
1

4

∫
Ω

∫
Ω

[
J1(x− y)(ϕ(x) + ϕ(y))2

+(J2(x− y) + σG(x− y))(ϕ(x)− ϕ(y))2
]
dxdy

+
c1

2

∫
Ω

(ϕ(x))2dx−
∫

Ω

F (ϕ(x))dx.

Remark 2.3. If c1 is large enough, it is easy to show that E1 and E2 are convex (for more
details, see [63]).

3. Numerical scheme: definitions and properties

As far as the Euler time discretization for this problem is concerned, the time step
δt > 0 is �xed. The resulting time-stepping scheme reads

ϕn+1 − ϕn

δt
= ∆µn+1, µn+1 :=

∂E1

∂ϕ
(ϕn+1)− ∂E2

∂ϕ
(ϕn).

This translates into a numerical scheme of the form ((1.11)1-(1.11)2)

1

δt
(ϕn+1 − ϕn) = ∆µn+1,

µn+1 = 2(J1 ? 1)ϕn+1 + c1(ϕn+1 − ϕn) + f(ϕn)

−(J1 ? 1 + J2 ? 1)ϕn + σ(G ? 1)(ϕn+1 − ϕn) + σG ? (ϕn − 〈ϕn〉)− J ? ϕn.
where f(ϕn) = F ′(ϕn). Using the properties of the Green function G when the problem
is endowed with no-�ux boundary conditions, the scheme can be rewritten as follows

1

δt
(ϕn+1 − ϕn) + σ(ϕn − 〈ϕn〉) = ∆µn+1,
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µn+1 = 2(J1 ? 1)ϕn+1 + c1(ϕn+1 − ϕn) + f(ϕn)

−(J1 ? 1 + J2 ? 1)ϕn + σ(G ? 1)(ϕn+1 − ϕn)− J ? ϕn.
More generally, we replace 〈ϕ〉 by a real constant m which is not necessarily equal to the
spatial average of the initial datum since we are interested to take the o�-critical case into
account. So we have the following numerical scheme:

1

δt
(ϕn+1 − ϕn) + σ(ϕn −m) = ∆µn+1,

µn+1 = 2(J1 ? 1)ϕn+1 + c1(ϕn+1 − ϕn) + f(ϕn)

−(J1 ? 1 + J2 ? 1)ϕn + σ(G ? 1)(ϕn+1 − ϕn)− J ? ϕn,
where we have used that

−∆G(x, y) = δ(x− y),

and δ is the Dirac mass at 0.
Finally, we add a transport term which models a possible �ow of the mixture at a

certain given velocity �eld u, that is, the scheme reads

(3.1)
1

δt
(ϕn+1 − ϕn) + σ(ϕn −m) +∇ · (uϕn+1) = ∆µn+1 + g,

(3.2) µn+1 = 2(J1 ? 1)ϕn+1 + c1(ϕn+1 − ϕn) + f(ϕn)

−(J1 ? 1 + J2 ? 1)ϕn + σ(G ? 1)(ϕn+1 − ϕn)− J ? ϕn.
for a given external source g.

3.1. Consistency of the scheme. Let ϕn = ϕ(x, nδt) be the exact solution of (1.10) at
time nδt, where ϕ is the exact solution. Then we have the following.

Proposition 3.1. Let ϕ(x, 0) ∈ H3(Ω) be an initial datum for (1.10) which satis�es the

compatibility condition ∂µ
∂ν

= 0 a.e. on ∂Ω. We assume that ‖∂2ϕ
∂t2

(·)‖ and ‖∂ϕ
∂t

(·)‖H1(Ω)

are continuous with respect to time. Then, the numerical scheme (3.1)�(3.2) is consistent
with the continuous equation (1.10) and is of order one in time. This yields that the local
truncation error of the scheme, de�ned as (see [56] for instance):

(3.3)

τn(δt) =
1

δt
(ϕn+1 − ϕn)− c1∆(ϕn+1 − ϕn)− 2∆((J1 ? 1)ϕn+1)

− σ∆((G ? 1)(ϕn+1 − ϕn))−∆(f(ϕn)) + σ(ϕn −m)

+ ∆((J1 ? 1 + J2 ? 1)ϕn) + ∆(J ? ϕn) +∇ · (uϕn+1)− g,
satis�es

‖τn‖(H1(Ω))∗ = O(δt), as δt→ 0.

Furthermore, the global truncation error of the scheme satis�es
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τ(δt) = max
n
‖τn‖(H1(Ω))∗ = O(δt), as δt→ 0.

Proof. First, observe (from (1.10), α = 1) that

−∂ϕ
∂t

(nδt) + 2∆((J1 ? 1)ϕn)−∇ · (uϕn)

= σ(ϕn −m)−∆((J ? 1)ϕn) + ∆(J ? ϕn)−∆f(ϕn) + 2∆((J1 ? 1)ϕn)− g
= σ(ϕn −m) + ∆(J ? ϕn) + ∆((J1 ? 1 + J2 ? 1)ϕn)−∆f(ϕn)− g.

Therefore, the local truncation error τn(δt) is given by

(3.4)
τn(δt) =

1

δt
(ϕn+1 − ϕn)− c1∆(ϕn+1 − ϕn)− 2∆((J1 ? 1)(ϕn+1 − ϕn))

− σ∆((G ? 1)(ϕn+1 − ϕn)) +∇ · (u(ϕn+1 − ϕn))− ∂ϕ

∂t
(nδt).

Integrating (3.4) over Ω, we obtain

〈τn(δt)〉 =
〈 1

δt
(ϕn+1 − ϕn)− ∂ϕ

∂t
(nδt)

〉
and by using standard Taylor expansion arguments and the boundedness of 〈∂2ϕ

∂t2
(·)〉, it is

easy to show that

(3.5) 〈τn(δt)〉 = O(δt).

On the other hand, we can rewrite the local truncation error τn(δt) as follows:

τn = τ 1
n(δt) + τ 2

n(δt), where

τ 1
n(δt) =

1

δt
(ϕn+1 − ϕn)− ∂ϕ

∂t
(nδt)

and

τ 2
n(δt) = −2∆((J1 ? 1)(ϕn+1 − ϕn)) +∇ · (u(ϕn+1 − ϕn))

−c1∆(ϕn+1 − ϕn)− σ∆((G ? 1)(ϕn+1 − ϕn)).

By using standard Taylor expansion arguments and the boundedness of ‖∂2ϕ
∂t2

(·)‖, it is
easy to show that

‖τ 1
n‖ = O(δt).

Owing to the last equality, (3.5), and the continuous embedding from (H1(Ω))∗ to L2(Ω),
we then have

‖τ 1
n‖(H1(Ω))∗ = O(δt).

Moreover, writing

ϕn+1 = ϕn + δt
∂ϕ

∂t
(t∗), t? ∈ (nδt, (n+ 1)δt),
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we have

τ 2
n = −δt

[
∆
(
2(J1 ? 1)

∂ϕ

∂t
(t∗)
)

+ σ∆
(
(G ? 1)

∂ϕ

∂t
(t∗)
)]

+δt∇.
(
u
∂ϕ

∂t
(t∗)
)
− c1δt∆

∂ϕ

∂t
(t∗)

and

(−∆)−
1
2 τ 2
n = −δt(−∆)

1
2

[
2(J1 ? 1)

∂ϕ

∂t
(t∗) + σ(G ? 1)

∂ϕ

∂t
(t∗)
]

−δt
(
u
∂ϕ

∂t
(t∗)
)
− c1δt(−∆)

1
2
∂ϕ

∂t
(t∗).

Thus, we get

‖τ 2
n‖∗ 6 c δt

[
‖∇
(
(J1 ? 1)

∂ϕ

∂t
(t∗)
)
‖+ ‖∇

(
(G ? 1)

∂ϕ

∂t
(t∗)
)
‖

+‖u∂ϕ
∂t

(t∗)‖+ c1‖∇
∂ϕ

∂t
(t∗)‖

]
.

Hence we have

‖τ 2
n(δt)‖∗ 6 c δt

(
‖∂ϕ
∂t

(t∗)‖2 + ‖∇∂ϕ
∂t

(t∗)‖2 + ‖∂ϕ
∂t

(t∗)‖2
H1(Ω)

)
,

which yields, owing to (3.5),

‖τ 2
n(δt)‖(H1(Ω))∗ = O(δt), as δt→ 0,

and
τ = max

n
‖τn‖(H1(Ω))∗ = O(δt), as δt→ 0.

�

3.2. Solvability and stability of the scheme. Assume that u ≡ g ≡ 0 and σ =
0. Then, it can be shown that the convex splitting framework automatically confers
unconditional solvability and stability properties to our scheme (see [21] and [22]). We
now assume that u, g 6≡ 0 and σ > 0. The solvability follows immediately from the fact
that E2 is convex, see [2], [21], [22], [60], and [61].
Stability is given by the following

Theorem 3.2. Let ϕn be the n-th iterate of (3.1)�(3.2). We assume that there exists a
constant β such that

(3.6) 0 < β < J ? 1, a.e. in Ω,

and

(3.7) |f ′(ϕk)| 6 β, for all k 6 l − 1, ∀l ∈ N.
Then, provided that δt is su�ciently small, for all positive integers l, the sequence ϕl is
bounded in L2(Ω) on a �nite interval [0, T ], for lδt 6 T , T > 0 �xed, i.e.,
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‖ϕl‖2 + δt‖∇ϕl‖2 6 C,

where C is a nonnegative constant.

Proof. We have, owing to Young's inequality and multiplying (3.1) by ψ = 2δtϕn+1,

(3.8) ‖ϕn+1‖2 − ‖ϕn‖2 + 2δt((∇µn+1,∇ϕn+1))

6 2δt((uϕn+1,∇ϕn+1)) + 2δt((g, ϕn+1))− 2σδt((ϕn −m,ϕn+1)).

Now, multiply (3.2) by −2δt∆ϕn+1 to obtain

(3.9)

2δt((∇µn+1,∇ϕn+1)) = 4δt((∇[(J1 ? 1)ϕn+1],∇ϕn+1))

+2σδt((∇[(G ? 1)(ϕn+1 − ϕn)],∇ϕn+1)) + 2c1δt((∇ϕn+1 −∇ϕn,∇ϕn+1))

+2δt((f ′(ϕn)∇ϕn,∇ϕn+1))− 2δt((∇[(J1 ? 1 + J2 ? 1)ϕn],∇ϕn+1))

− 2δt((∇(J ? ϕn),∇ϕn+1)).

Collecting (3.9), on account of (3.8), we infer

(3.10) ‖ϕn+1‖2 − ‖ϕn‖2 6 −2c1δt((∇ϕn+1 −∇ϕn,∇ϕn+1))

−4δt((∇[(J1 ? 1)ϕn+1],∇ϕn+1))− 2σδt((∇[(G ? 1)(ϕn+1 − ϕn)],∇ϕn+1))

−2δt((f ′(ϕn)∇ϕn,∇ϕn+1)) + 2δt((∇[(J1 ? 1 + J2 ? 1)ϕn],∇ϕn+1))

−2σδt(((ϕn −m), ϕn+1)) + 2δt((∇(J ? ϕn),∇ϕn+1))

+2δt(((uϕn+1,∇ϕn+1)) + 2δt((g, ϕn+1)))

= I + II + III + IV + V + VI + VII + VIII + IX.

Applying Young's inequality, we have

(3.11) I 6 −c1δt‖∇ϕn+1‖2 + c1δt‖∇ϕn‖2,

(3.12) II = −4δt(((J1 ? 1)∇ϕn+1,∇ϕn+1))

−4δt((∇(J1 ? 1)ϕn+1,∇ϕn+1))

6 −4δt

∫
Ω

(J1 ? 1)|∇ϕn+1|2dx

+
4

κ
δt‖J1‖2

W 1,1‖ϕn+1‖2 + κδt‖∇ϕn+1‖2,

and

(3.13)

III 6− σδt
∫

Ω

(G ? 1)|∇ϕn+1|2dx+ σδt

∫
Ω

(G ? 1)|∇ϕn|2dx

+
2σ2

κ
δt‖G‖2

W 1,1(‖ϕn+1‖2 + ‖ϕn‖2) + κδt‖∇ϕn+1‖2,
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for all κ > 0. Furthermore, owing to assumption (3.7),

(3.14) IV 6βδt(‖∇ϕn+1‖2 + ‖∇ϕn‖2).

Observe now that

(3.15) V 6 δt

∫
Ω

(J1 ? 1 + J2 ? 1)|∇ϕn+1|2dx

+δt

∫
Ω

(J1 ? 1 + J2 ? 1)|∇ϕn|2dx

+
c

κ
δt(‖J1‖2

W 1,1 + ‖J2‖2
W 1,1)‖ϕn‖2 + κδt‖∇ϕn+1‖2,

for all κ > 0. Besides, we further have

(3.16) VI 6 σδt‖ϕn‖2 + 2σδt‖ϕn+1‖2 + σm2|Ω|δt

and

(3.17) VII 6 κδt‖∇ϕn+1‖2 +
‖J‖2

W 1,1

κ
δt‖ϕn‖2,

for all κ > 0. Finally, using assumptions (A9) and (A10), we �nd

(3.18) VIII 6 κδt‖∇ϕn+1‖2 +
‖u‖2

L∞

κ
δt‖ϕn+1‖2

and

(3.19) IX 6 κδt‖∇ϕn+1‖2 +
‖g − 〈g, 1〉(H1(Ω))∗,H1(Ω)‖2

∗

κ
δt

+2cδt〈g, 1〉(H1(Ω))∗,H1(Ω)〈ϕn+1〉 6 κδt‖∇ϕn+1‖2 + κδt‖ϕn+1‖2

+c
‖g − 〈g, 1〉(H1(Ω))∗,H1(Ω)‖2

∗ + 〈g, 1〉2(H1(Ω))∗,H1(Ω)

κ
δt,

for all κ > 0. Collecting (3.11)�(3.19), on account of (3.10), we infer
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(3.20)

‖ϕn+1‖2 − ‖ϕn‖2

+ δt

∫
Ω

[
c1 + 4(J1 ? 1) + σ(G ? 1)− (J1 ? 1 + J2 ? 1)− β − 6κ

]
|∇ϕn+1|2dx

6 δt

∫
Ω

[
c1 + σ(G ? 1) + (J1 ? 1 + J2 ? 1) + β

]
|∇ϕn|2dx

+ δt
(4‖J1‖2

W 1,1

κ
+

2σ2‖G‖2
W 1,1

κ
+
‖u‖2

L∞

κ
+ κ+ 2σ

)
‖ϕn+1‖2

+ δt
(2σ2‖G‖2

W 1,1

κ
+
c(‖J1‖2

W 1,1 + ‖J2‖2
W 1,1)

κ
+
‖J‖2

W 1,1

κ
+ σ
)
‖ϕn‖2

+
(
σm2|Ω|+

‖g‖2
(H1(Ω))∗

κ

)
δt.

Summing over n from n = 0 to n = l − 1, we have

(3.21) ‖ϕl‖2 − ‖ϕ0‖2 + δt

∫
Ω

(2ζ(x)− 6κ)
l−1∑
n=1

|∇ϕn|2dx

+δt

∫
Ω

(ζ(x) + 2(J1 ? 1) + σ(G ? 1) + c1 − 6κ)|∇ϕl|2dx

6
(4‖J1‖2

W 1,1

κ
+

2σ2‖G‖2
W 1,1

κ
+
‖u‖2

L∞

κ
+ κ+ 2σ

)
δt

l−1∑
n=0

‖ϕn+1‖2

+
(2σ2‖G‖2

W 1,1

κ
+
c(‖J1‖2

W 1,1 + ‖J2‖2
W 1,1)

κ
+
‖J‖2

W 1,1

κ
+ σ
)
δt

l−1∑
n=0

‖ϕn‖2

+
[ ∫

Ω

(
c1 + σ(G ? 1) + (J1 ? 1 + J2 ? 1) + β

)
|∇ϕ0|2dx

+σm2|Ω|+
‖g‖2

(H1(Ω))∗

κ

]
lδt,

with ζ(x) := (J ? 1)(x) − β > 0 for almost any x ∈ Ω according to (3.6). Hence, taking
3κ < ζ(x) for almost any x ∈ Ω, we obtain

(3.22) 2ζ(x)− 6κ > 0, for a.a. x ∈ Ω,

and

(3.23)

η(x) := c1 + 4(J ? 1) + σ(G ? 1)− (J1 ? 1 + J2 ? 1)− β − 6κ

= ζ(x) + 2(J1 ? 1) + σ(G ? 1) + c1 − 6κ

= 2ζ(x)− 6κ+ (J1 ? 1) + (J2 ? 1) + σ(G ? 1) + c1 + β > 1, for a.a. x ∈ Ω.

Setting
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C1 =
4‖J1‖2

W 1,1

κ
+

2σ2‖G‖2
W 1,1

κ
+
‖u‖2

L∞

κ
+ κ+ 2σ,

C2 =
2σ2‖G‖2

W 1,1

κ
+ c
(‖J1‖2

W 1,1

κ
+
‖J2‖2

W 1,1

κ

)
+
‖J‖2

W 1,1

κ
+ σ,

and

C3 = σm2|Ω|+
‖g‖2

(H1(Ω))∗

κ
+

∫
Ω

(
c1 + σ(G ? 1) + (J1 ? 1 + J2 ? 1) + β

)
|∇ϕ0|2dx,

it thus follows from (3.21)�(3.23) that

(3.24) ‖ϕl‖2 + δt‖∇ϕl‖2

6 C1δt
l−1∑
n=0

‖ϕn+1‖2 + C2δt
l−1∑
n=0

‖ϕn‖2 + C3lδt+ ‖ϕ0‖2,

whence, after some simpli�cations,

(3.25) ‖ϕl‖2 + δt‖∇ϕl‖2 6 C1δt‖ϕl‖2

+(C1 + C2)δt
l−1∑
n=1

‖ϕn‖2 + (C3 + C2‖ϕ0‖2)lδt+ ‖ϕ0‖2.

Assuming that δt < 1
2C1

and lδt 6 T , we arrive at

(3.26) ‖ϕl‖2 +
1

1− C1δt
δt‖∇ϕl‖2

6
C1 + C2

1− C1δt
δt

l−1∑
n=1

‖ϕn‖2 + T
C3 + C2‖ϕ0‖2

1− C1δt
+

1

1− C1δt
‖ϕ0‖2.

An application of the discrete Gronwall's inequality yields the desired result and the proof
is complete. �

3.3. Convergence to the exact solution. In this section, we establish the convergence
of the discrete solution to the continuous one as the time step δt→ 0.
Taking Remark 2.2 into account, we have

Theorem 3.3. Let ϕ(x, 0) ∈ H3(Ω) be an initial datum for (1.10) which satis�es the
compatibility condition ∂µ

∂ν
= 0 a.e. on ∂Ω. Then de�ne the discretization error en =

ϕn−ϕn, where ϕn = ϕ(nδt). Assume that the assumptions of Proposition 3.1 and Theorem
3.2 hold. Then, provided that δt is su�ciently small, for all positive integers l such that
lδt 6 T , we have

‖el‖2 + δt‖∇el‖2 ≤ C(δt)2

where C > 0 is independent of l and δt.
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Proof. It follows from (3.1), (3.2), (3.3) that

en+1 − en
δt

− c1∆en+1 − 2∆((J1 ? 1)en+1)− σ∆((G ? 1)en+1) +∇.(uen+1)

=
1

δt
(ϕn+1 − ϕn)− 1

δt
(ϕn+1 − ϕn)− c1∆ϕn+1 + c1∆ϕn+1 +∇.(uϕn+1)−∇.(uϕn+1)

−2∆((J1 ? 1)ϕn+1) + 2∆((J1 ? 1)ϕn+1)− σ∆((G ? 1)ϕn+1) + σ∆((G ? 1)ϕn+1)

=

(
∆(f(ϕn))− c1∆ϕn−∆((J1 ? 1 + J2 ? 1)ϕn)−∆(J ?ϕn)− σ∆((G? 1)ϕn)− σϕn

)
+ τn

−
(

∆(f(ϕn))− c1∆ϕn −∆((J1 ? 1 + J2 ? 1)ϕn)−∆(J ? ϕn)− σ∆((G ? 1)ϕn)− σϕn
)

= −
(

∆(f(ϕn)− f(ϕn))− c1∆(ϕn − ϕn)−∆((J1 ? 1 + J2 ? 1)(ϕn − ϕn))

−∆(J ? (ϕn − ϕn))− σ∆((G ? 1)(ϕn − ϕn))− σ(ϕn − ϕn)

)
+ τn.

Therefore, we �nd

(3.27)

en+1 − en = c1δt∆(en+1 − en) + 2δt∆((J1 ? 1)en+1)

+ σδt∆((G ? 1)(en+1 − en))− δt∇.(uen+1) + δt∆(f(ϕn)− f(ϕn))

− δt∆((J1 ? 1 + J2 ? 1)en)− δt∆(J ? en)− σδten + δtτn.

Integrating (3.27) over Ω, we get

(3.28)
1

δt
〈en+1 − en〉+ σ〈en〉 = 〈τn〉.

Using the fact that e0 ≡ 0, we have

〈e0〉 = 0

and, owing to (3.5), we obtain
1

δt
〈e1〉 = O(δt).

So by mathematical induction, assuming that the assertion is true for n = k, i.e.

1

δt
〈ek〉 = O(δt),

we �nd, thanks to (3.28) and (3.5),

1

δt
〈ek+1 − ek〉+ σ〈ek〉 = 〈τk〉.

Hence, we have that
1

δt
〈ek+1〉+ (σδt− 1)O(δt) = O(δt),

which yields
〈ek+1〉 = O((δt)2)
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and

(3.29) 〈en〉 = O((δt)2), ∀n > 1.

We multiply (3.27) by 2 en+1. This gives

(3.30)

‖en+1‖2 − ‖en‖2 + ‖en+1 − en‖2 = −2δt((∇(f(ϕn)− f(ϕn)),∇en+1))

− 4δt((∇((J1 ? 1)en+1),∇en+1))− 2c1δt((∇(en+1 − en),∇en+1))

− 2σδt((∇((G ? 1)(en+1 − en)),∇en+1)) + 2δt((uen+1,∇en+1))

+ 2δt((∇((J1 ? 1 + J2 ? 1)en),∇en+1)) + 2δt((∇(J ? en),∇en+1))

− 2σδt((en, en+1)) + 2δt((τn, en+1))

= I + II + III + IV + V + VI + VII + VIII + IX.

Note that, since f ′ is locally Lipschitz continuous, then

I = +2δt((−f ′(ϕn)∇en +∇ϕn(f ′(ϕn)− f ′(ϕn)),∇en+1))

6 2βδt‖∇en‖‖∇en+1‖+ 2cδt‖∇ϕn‖L∞(Ω)‖en‖‖∇en+1‖

6 βδt‖∇en‖2 +
c2‖∇ϕn‖2

L∞(Ω)

κ
δt‖en‖2 + (β + κ)δt‖∇en+1‖2,(3.31)

for all κ > 0. Arguing as for the estimates obtained above ((3.11)�(3.13) and (3.15)�
(3.19)) we �nd

(3.32) II 6 −4δt

∫
Ω

(J1 ? 1)|∇en+1|2dx

+
4

κ
δt‖J1‖2

W 1,1‖en+1‖2 + κδt‖∇en+1‖2,

(3.33) III 6 −c1δt‖∇en+1‖2 + c1δt‖∇en‖2,

(3.34)

IV 6− σδt
∫

Ω

(G ? 1)|∇en+1|2dx+ σδt

∫
Ω

(G ? 1)|∇en|2dx

+
2σ2

κ
δt‖G‖2

W 1,1(‖en+1‖2 + ‖en‖2) + κδt‖∇en+1‖2,

(3.35) V 6 κδt‖∇en+1‖2 +
‖u‖2

L∞(Ω)

κ
δt‖en+1‖2,

(3.36)
VI 6δt

∫
Ω

(J1 ? 1 + J2 ? 1)|∇en+1|2dx+ δt

∫
Ω

(J1 ? 1 + J2 ? 1)|∇en|2dx

+
c

κ
δt(‖J1‖2

W 1,1 + ‖J2‖2
W 1,1)‖en‖2 + κδt‖∇en+1‖2,
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(3.37) VII 6
‖J‖2

W 1,1

κ
δt‖en‖2 + κδt‖∇en+1‖2,

(3.38) VIII 6 σδt‖en‖2 + σδt‖en+1‖2,

for all κ > 0. From Proposition 3.1 and (3.29), we further have

(3.39)

IX 6 2c δt‖τn‖(H1(Ω))?‖en+1‖H1(Ω)

6 κδt‖en+1‖2
H1(Ω) + C(δt)2δt

6 κδt(‖∇en+1‖2 + 〈en+1〉2) + C(δt)2δt

6 κδt‖∇en+1‖2 + C(δt)3,

where C > 0. Combining the above results, we infer

(3.40) ‖en+1‖2 − ‖en‖2

+δt

∫
Ω

[
c1 + 4(J1 ? 1) + σ(G ? 1)− (J1 ? 1 + J2 ? 1)− β − 8κ

]
|∇en+1|2dx

6 δt

∫
Ω

[
c1 + σ(G ? 1) + (J1 ? 1 + J2 ? 1) + β

]
|∇en|2dx

+δt
(2σ2‖G‖2

W 1,1

κ
+
c(‖J1‖2

W 1,1 + ‖J2‖2
W 1,1)

κ
+
‖J‖2

W 1,1

κ
+
c2‖∇ϕn‖2

L∞(Ω)

κ
+ σ
)
‖en‖2

+δt
(4‖J1‖2

W 1,1

κ
+

2σ2‖G‖2
W 1,1

κ
+
‖u‖2

L∞(Ω)

κ
+ σ
)
‖en+1‖2 + C(δt)3,

with C independent of δt and l. Summing over n from n = 0 to n = l − 1 and using the
fact that e0 ≡ 0, we obtain

(3.41) ‖el‖2 + δt

∫
Ω

(2ζ(x)− 8κ)
l−1∑
n=1

|∇en|2dx

+δt

∫
Ω

(ζ(x) + 2(J1 ? 1) + σ(G ? 1) + c1 − 8κ)|∇el|2dx

≤
(2σ2‖G‖2

W 1,1

κ
+
c(‖J1‖2

W 1,1 + ‖J2‖2
W 1,1)

κ
+
‖J‖2

W 1,1

κ
+
c2‖∇ϕn‖2

L∞(Ω)

κ
+ σ
)
δt

l−1∑
n=0

‖en‖2

+
(4‖J1‖2

W 1,1

κ
+

2σ2‖G‖2
W 1,1

κ
+
‖u‖2

L∞(Ω)

κ
+ σ
)
δt

l−1∑
n=0

‖en+1‖2 + Cl(δt)3,

where we have used the fact that ζ(x) = (J ? 1)(x)− β > 0, for almost any x ∈ Ω. Since
(3.6) holds and taking 4κ < ζ(x), for almost any x ∈ Ω, we obtain

(3.42) 2ζ(x)− 8κ > 0, for a.a. x ∈ Ω,
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and

(3.43) ζ(x) + 2(J1 ? 1) + σ(G ? 1) + c1 − 8κ > 1, for a.a. x ∈ Ω.

Proceeding as in the proof of Theorem 3.2, we introduce the constants

C ′1 =
4‖J1‖2

W 1,1

κ
+

2σ2‖G‖2
W 1,1

κ
+
‖u‖2

L∞(Ω)

κ
+ σ

and

C ′2 =
2σ2‖G‖2

W 1,1

κ
+
c(‖J1‖2

W 1,1 + ‖J2‖2
W 1,1)

κ
+
‖J‖2

W 1,1

κ
+
c2‖∇ϕn‖2

L∞(Ω)

κ
+ σ

and obtain

‖el‖2(1− δtC ′1) + δt‖∇el‖2 ≤ δt(C ′1 + C ′2)
l−1∑
n=1

‖en‖2 + Cl(δt)3.

Then, dividing the last inequality by (1 − δtC ′1) and choosing δt < 1
2C′1

and lδt 6 T

yields

‖el‖2 + δt‖∇el‖2 ≤ 2δt(C ′1 + C ′2)
l−1∑
n=1

‖en‖2 + 2Cl(δt)3.

An application of the discrete Gronwall Lemma entails

‖el‖2 + δt‖∇el‖2 ≤ C(δt)2,

with C independent of δt and l.
�

4. Numerical simulations

In the time-stepping scheme (3.1)�(3.2), we use a P1-�nite element for the space dis-
cretization. The numerical simulations are performed with the software Freefem++ (see
[37]).
In the numerical results presented below, Ω is a (0, 10)× (0, 10)-square, so that we can

use the DFFT function to compute the nonlocal terms.
The numerical simulations presented below show the e�ciency of the model not only for

phase separation phenomena, but also for crystal nucleation. In particular, when σ = 0,
and u ≡ g ≡ 0, the results can be compared with the ones presented in [33] and [34]. The
simulations presented below illustrate, from the numerical point of view, the modi�ed
nonlocal model proposed by Bates and Han with di�erent value of σ (which allows to
change the convolution kernel), with di�erent value of m (which characterizes of the loss
of mass in the model) and di�erent value of u (corresponding to a transport term that
accounts for a possible �ow of the mixture at a certain given velocity �eld u). Note that
the numerical results show that the solution seems to converge to a homogeneous state
when σ and m are su�ciently large.
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4.1. Phase separation and coarsening: dynamics of the solutions of the non-
local Cahn�Hilliard�Oono equation with positive Gaussian kernel. Here, the
triangulation of Ω is obtained by dividing Ω into 128 × 128 rectangles and by dividing
each rectangle along the same diagonal.

Figure 1. u ≡ 0, f(s) = s3 − s, m = 〈ϕ0〉 ≈ 0. First row to �fth row :
solutions at T = 0.4, T = 1.2, and T = 2. First row : σ = 0, second row :
σ = 0.005, third row : σ = 0.05, fourth row : σ = 0.5, �fth row : σ = 2.

Dynamics of the solutions with a null transport term. In Figure 1, we consider a
random initial datum between −0.05 and 0.05, which leads to a spatial average close to
0. In that case, the interaction kernel J is given by a positive Gaussian function de�ned
as follows
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(4.1)
J(x, y) =

1

ε2
1

e
−

(x− 5)2 + (y − 5)2

ε2
1

and the long-ranged interaction kernelG in two space dimensions is the Green-like function
de�ned as

(4.2) G(x, y) = ln(
√

(x− y)2 + λ2),

where ε1 = 0.05 and λ = 10−2 (here, we have used the usual regularization |x − y| ≈√
(x− y)2 + λ2). Furthermore, we consider the typical choice of the nonlinear term f(s) =

s3 − s and take m = 〈ϕ0〉 ≈ 0. The parameters of the numerical simulations are h = 10
128

,
δt = 2.10−4, u ≡ (0, 0), and g = 0. The �nal time for the simulation is T = 2.
For σ = 0, we present the dynamics of the solution to the nonlocal Cahn�Hilliard

equation at T = 0.4, T = 1.2, and T = 2, respectively. Next, for σ = 0.005, we show that
the results obtained in [47] for the Cahn�Hilliard�Oono equation are also satis�ed for the
nonlocal Cahn�Hilliard�Oono equation. This means that, when σ is close to zero, the
dynamics of the nonlocal Cahn�Hilliard�Oono equation is close to that of the nonlocal
Cahn�Hilliard equation. Finally, we show the e�ects of the long-range interaction kernel
G on the nonlocal Cahn�Hilliard equation with σ = 0.05, σ = 0.5, and σ = 2 respectively.

E�ects of the transport term. We present in Figures 2 and 3 the evolution of the
nonlocal Cahn�Hilliard�Oono equation again, with the same parameters and functions as
in Figure 1 and a nonlinear term f(s) = s3−s, but we now take a non-vanishing transport
term. First, in Figure 2, we take a transport term u = (10, 0) and then, in Figure 3, we

take u = (−2 cos2(π(x−5)
10

) cos(π(y−5)
10

), 2 cos2(π(y−5)
10

) cos(π(x−5)
10

)).

O� critical case (i.e., m 6= 〈ϕ0〉). We present in Figures 4 and 5 the evolution of
the nonlocal Cahn�Hilliard�Oono equation, with the same parameters and functions as
in Figure 1 and a nonlinear term f(s) = s3 − s, but we now assume loss of mass (i.e.,
m 6= 〈ϕ0〉), where 〈ϕ0〉 ≈ 0 in Figure 4 and 〈ϕ0〉 ≈ 0.02 (ϕ0 randomly distributed between
−003 and 0.007) in Figure 5. First, in Figure 4 we take m = 1 and then in Figure 5 we
take m = −1.

4.2. Crystal nucleation. Here, the triangulation of Ω is obtained by dividing Ω into
300× 300 rectangles and by dividing each rectangle along the same diagonal.

Six-fold anisotropic shape. In Figures 6, we consider a random initial datum between
−0.3 and 0.7, which leads to a spatial average close to 0.2. In that case, the interaction
kernel Js (in view of [34]) is given by the di�erence of two positive Gaussian functions
de�ned as
we consider the interaction kernel Ja (in view of [34]) given by

(4.3) Ja(x, y) =
0.1

3ε2
1

e

(
− (x−5)2

ε21
− 4(y−5)2

ε21

)
+

0.1

3ε2
1

e

(
− (

(x−5)
2 −

√
3(y−5)

2 )2

ε21
− 4(

√
3(x−5)

2 +
(y−5)

2 )2

ε21

)
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Figure 2. J , u = (10, 0), f(s) = s3 − s, m = 〈ϕ0〉 ≈ 0. First row to �fth
row : solutions at T = 0.4, T = 1.2, and T = 2. First row : σ = 0, second
row : σ = 0.005, third row : σ = 0.05, fourth row : σ = 0.5, �fth row :
σ = 2.

+
0.1

3ε2
1

e

(
− (

(x−5)
2 −

√
3(y−5)

2 )2

ε21
− 4(

√
3(x−5)

2 − (y−5)
2 )2

ε21

)
− 0.08

3ε2
2

e

(
− (x−5)2

ε22
− 4(y−5)2

ε22

)

−0.08

3ε2
2

e

(
− (

(x−5)
2 −

√
3(y−5)

2 )2

ε22
− 4(

√
3(x−5)

2 +
(y−5)

2 )2

ε22

)
− 0.08

3ε2
2

e

(
− (

(x−5)
2 −

√
3(y−5)

2 )2

ε22
− 4(

√
3(x−5)

2 − (y−5)
2 )2

ε22

)
where ε1 = 0.08, ε2 = 0.2. The long-ranged interaction kernel G is de�ned by (4.2) with
λ = 10−6.
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Figure 3. J , u = (−2 cos2(π(x−5)
10

) cos(π(y−5)
10

), 2 cos2(π(y−5)
10

) cos(π(x−5)
10

)),
f(s) = s3 − s, m = 〈ϕ0〉 ≈ 0. First row to �fth row : solutions at T = 0.4,
T = 1.2, and T = 2. First row : σ = 0, second row : σ = 0.005, third row :
σ = 0.05, fourth row : σ = 0.5, �fth row : σ = 2.

Furthermore, we take f(s) = s3 − s. The parameters of the numerical simulations are
h = 10

300
, δt = 10−2, m = 〈ϕ0〉, u = (0, 0), and g = 0. The �nal time for the simulations is

T = 5. We present the results for the nonlocal Cahn�Hilliard equation (σ = 0) and the
nonlocal Cahn�Hilliard�Oono equation for σ = 0.05 at T = 0.5, T = 1, and T = 5.

Acknowledgments. The third author thanks the Laboratoire de Mathématiques et
Applications de L'Université de Poitiers for its kind hospitality which allowed all the
authors to exchange their ideas on this research subject. The third author is a member
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Figure 4. u ≡ 0, f(s) = s3− s, 〈ϕ0〉 ≈ 0, m = 1. First row to fourth row
: solutions at T = 0.4, T = 1.2, and T = 2. First row : σ = 0.005, second
row : σ = 0.05, third row : σ = 0.5, and fourth row : σ = 1.

of the Gruppo Nazionale per l'Analisi Matematica, la Probabilità e le loro applicazioni
(GNAMPA) of the Istituto Nazionale di Alta Matematica (INdAM).

References

[1] N. Abukhdeir, D. Vlachos, M. Katsoulakis, and M. Plexousakis, Long-time integration methods for

mesoscopic models of pattern-forming systems, J. Comp. Phys. 18 (2013), 2211�2238.
[2] A.C. Aristotelous, O. Karakashian, and S.M. Wise, A mixed discontinuous Galerkin, convex splitting

scheme for a modi�ed Cahn-Hilliard equation and an e�cient nonliniear multigrid solver, Discrete
Contin. Dyn. Systems B 20 (2015), 1529�1553.

[3] P.W. Bates, S. Brown, and J. Han, Numerical analysis for a nonlocal Allen�Cahn equation, Int. J.
Numer. Anal. Model. 6 (2009), 33�49.

[4] P.W. Bates and J. Han, The Neumann boundary problem for a nonlocal Cahn�Hilliard equation, J.
Di�. Eqns. 212 (2005), 235�277.

[5] P.W. Bates and J. Han, The Dirichlet boundary problem for a nonlocal Cahn�Hilliard equation, J.
Math. Anal. Appl. 311 (2005), 289�312.

[6] A. Bertozzi, S. Esedoglu, and A. Gillette, Analysis of a two-scale Cahn�Hilliard model for binary

image inpainting, Multiscale Model. Simul. 6 (2007), 913�936.



25

Figure 5. u ≡ 0, f(s) = s3− s, 〈ϕ0〉 ≈ 0.02, m = −1. First row to fourth
row : solutions at T = 0.4, T = 1.2, and T = 2. First row : σ = 0.05,
second row : σ = 0.2, third row : σ = 0.5, and fourth row : σ = 1.

[7] J.W. Cahn, On spinodal decomposition, Acta Metall. 9 (1961), 795�801.
[8] J.W. Cahn and J.E. Hilliard, Free energy of a nonuniform system I. Interfacial free energy, J. Chem.

Phys. 28 (1958), 258�267.
[9] V. Chalupeckí, Numerical studies of Cahn�Hilliard equations and applications in image processing,

in Proceedings of Czech-Japanese Seminar in Applied Mathematics 2004 (August 4-7, 2004), Czech
Technical University in Prague.

[10] L. Cher�ls, H. Fakih, and A. Miranville, Finite-dimensional attractors for the Bertozzi�Esedoglu�

Gillette�Cahn�Hilliard equation in image inpainting, Inv. Prob. Imag. 9 (2015), 105�125.
[11] L. Cher�ls, H. Fakih, and A. Miranville, On the Bertozzi�Esedoglu�Gillette�Cahn�Hilliard equation

with logarithmic nonlinear terms, SIAM J. Imag. Sci. 8 (2015), 1123�1140.
[12] L. Cher�ls, H. Fakih, and A. Miranville, A Cahn�Hilliard system with a �delity term for color image

inpainting, J. Math. Imag. Vision 54 (2016), 117�131.
[13] L. Cher�ls, H. Fakih, and A. Miranville, A complex version of the Cahn�Hilliard equation for

grayscale image inpainting, Multiscale Model. Simul. 15 (2017), 575�605.
[14] L. Cher�ls, A. Miranville, and S. Zelik, The Cahn�Hilliard equation with logarithmic potentials,

Milan J. Math. 79 (2011), 561�596.



26

Figure 6. Ja, u ≡ 0, f(s) = s3−s, m = 〈ϕ0〉 ≈ 0.2. First row and second
row : T = 0.5, T = 1, and T = 5. First row : σ = 0 and second row :
σ = 0.05.

[15] L. Cher�ls, A. Miranville, and S. Zelik, On a generalized Cahn�Hilliard equation with biological

applications, Discrete Contin. Dyn. Systems B 19 (2014), 2013�2026.
[16] D. Cohen and J.M. Murray, A generalized di�usion model for growth and dispersion in a population,

J. Math. Biol. 12 (1981), 237�248.
[17] F. Della Porta and M. Grasselli, Convective nonlocal Cahn�Hilliard equations with reaction terms,

Discrete Contin. Dyn. Systems B 20 (2015), 1529�1553.
[18] Q. Du, M. Gunzburger, R. LeHoucq, and K. Zhou, Analysis and approximation of nonlocal di�usion

problems with volume constraints, SIAM Rev. 54 (2012), 667�696.
[19] I.C. Dolcetta, S.F. Vita, and R. March, Area-preserving curve-shortening �ows: from phase separa-

tion to image processing, Interfaces Free Bound. 4 (2002), 325�343.
[20] C.M. Elliott, The Cahn�Hilliard model for the kinetics of phase separation, in Mathematical models

for phase change problems, J.F. Rodrigues ed., International Series of Numerical Mathematics, Vol.
88, Birkhäuser, Basel, 1989.

[21] D.J. Eyre, An unconditionally stable one-step scheme for gradient systems, Technical report, De-
partment of Mathematics, University of Utah, Salt Lake City, Utah, USA, 1997.

[22] D.J. Eyre, Unconditionally gradient stable time marching the Cahn�Hilliard equation, Mater. Res.
Soc. Proceedings, Vol. 529, J.W. Bullard, L.Q. Chen, R.K. Kalia, and A.M. Stoneham eds., Cam-
bridge University Press, 39�46, 1998.

[23] H. Fakih, A Cahn�Hilliard equation with a proliferation term for biological and chemical applications,
Asympt. Anal. 94 (2015), 71�104.

[24] H. Fakih, Asymptotic behavior of a generalized Cahn�Hilliard equation with a mass source, Appl.
Anal. 96 (2017), 324�348.

[25] P.C. Fife, Models for phase separation and their mathematics, Electron. J. Di�. Eqns. 13 (2002),
353�370.

[26] C.G. Gal, A. Giorgini, and M. Grasselli, The nonlocal Cahn�Hilliard equation with singular potential:

well-posedness, regularity and strict separation property, J. Di�erential Equations 263 (2017), 5253�
5297.

[27] H. Gajewski and K. Gärtner, On a nonlocal model of image segmentation, Z. Angew. Math. Phys.
56 (2005), 572�591.

[28] G. Giacomin and J.L. Lebowitz, Exact macroscopic description of phase segregation in model alloys

with long range interactions, Phys. Rev. Lett. 76 (1996), 1094�1097.



27

[29] G. Giacomin and J.L. Lebowitz, Phase segregation dynamics in particle systems with long range

interactions. I. Macroscopic limits, J. Stat. Phys. 87 (1997), 37�61.
[30] G. Giacomin and J.L. Lebowitz, Phase segregation dynamics in particle systems with long range

interaction II. Interface motion, SIAM J. Appl. Math. 58 (1998), 1707�1729.
[31] A. Giorgini, M. Grasselli, and A. Miranville, The Cahn�Hilliard�Oono equation with singular poten-

tial, Math. Models Methods Appl. Sci. 27 (2017), 2485�2510.
[32] M. Grasselli and H. Wu, Well-posedness and longtime behavior for the modi�ed phase-�eld crystal

equation, Math. Models Methods Appl. Sci. 24 (2014), 2743�2783.
[33] Z. Guan, C. Wang, and S.M. Wise, A Convergent convex splitting scheme for the periodic nonlocal

Cahn�Hilliard equation, Numer. Math. 128 (2014), 377�406.
[34] Z. Guan, J.S. Lowengrub, C. Wang, and S.M. Wise, Second-order convex splitting schemes for

periodic nonlocal Cahn�Hilliard and Allen-Cahn equations, J. Comput. Phys. 277 (2014), 48�71.
[35] Z. Guan, J.S. Lowengrub, and C. Wang, Convergence analysis for second order accurate convex

splitting schemes for the periodic nonlocal Allen-Cahn and Cahn�Hilliard equations, Math. Models
Methods Appl. Sci. 40 (2017), 6836�6863.

[36] T. Hartley and T. Wanner, A semi-implicit spectral method for stochastic nonlocal phase-�eld models,
Discrete Contin. Dyn. Systems 25 (2009), 399�429.

[37] F. Hecht, New development in FreeFem++, J. Numer. Math. 20 (2012), 251�265.
[38] D. Hornthrop, M. Katsoulakis, and D. Vlachos, Spectral methods for mesoscopic models of pattern

formation, J. Comp. Phys. 173 (2001), 364�390.
[39] E. Khain and L.M. Sander, A generalized Cahn�Hilliard equation for biological applications, Phys.

Rev. E 77 (2008), 051129.
[40] I. Klapper and J. Dockery, Role of cohesion in the material description of bio�lms, Phys. Rev. E 74

(2006), 0319021.
[41] R.V. Kohn and F. Otto, Upper bounds for coarsening rates, Commun. Math. Phys. 229 (2002),

375�395.
[42] J.S. Langer, Theory of spinodal decomposition in alloys, Ann. Phys. 65 (1975), 53�86.
[43] Q.-X. Liu, A. Doelman, V. Rottschäfer, M. de Jager, P.M.J. Herman, M. Rietkerk, and J. van de

Koppel, Phase separation explains a new class of self-organized spatial patterns in ecological systems,
Proc. Natl. Acad. Sci. 110 (2013), 11905�11910.

[44] S. Maier-Paape and T. Wanner, Spinodal decomposition for the Cahn�Hilliard equation in higher

dimensions. Part I: Probability and wavelength estimate, Commun. Math. Phys. 195 (1998), 435�
464.

[45] S. Maier-Paape and T. Wanner, Spinodal decomposition for the Cahn�Hilliard equation in higher

dimensions: Nonlinear dynamics, Arch. Ration. Mech. Anal. 151 (2000), 187�219.
[46] S. Melchionna and E. Rocca, On a nonlocal Cahn�Hilliard equation with a reaction term, Adv. Math.

Sci. Appl. 24 (2014), 461�497.
[47] A. Miranville, Asymptotic behavior of the Cahn�Hilliard-Oono equation, J. Appl. Anal. Comp. 1

(2011), 523�536.
[48] A. Miranville, Asymptotic behavior of a generalized Cahn�Hilliard equation with a proliferation term,

Appl. Anal. 92 (2013), 1308�1321.
[49] A. Miranville, A generalized Cahn�Hilliard equation with logarithmic potentials, in Continuous and

Distributed Systems II, Springer, 137�148, 2015.
[50] A. Miranville and S. Zelik, The Cahn�Hilliard equation with singular potentials and dynamic bound-

ary conditions, Discrete Contin. Dyn. Systems 28 (2010), 275�310.
[51] A. Novick-Cohen, The Cahn�Hilliard equation: Mathematical and modeling perspectives, Adv. Math.

Sci. Appl. 8 (1998), 965�985.
[52] A. Novick-Cohen, The Cahn�Hilliard equation, in Handbook of Di�erential Equations, Evolutionary

Partial Di�erential Equations, Vol. 4, C.M. Dafermos and M. Pokorny eds., Elsevier, Amsterdam,
201�228, 2008.

[53] Y. Oono and S. Puri, Computationally e�cient modeling of ordering of quenched phases, Phys. Rev.
Letters 58 (1987), 836�839.



28

[54] A. Oron, S.H. Davis, and S.G. Banko�, Long-scale evolution of thin liquid �lms, Rev. Mod. Phys.
69 (1997), 931�980.

[55] E.W. Sachs and A.K. Strauss, E�cient solution of a partial integro-di�erential equation in �nance,
Appl. Num. Math. 58 (2008), 1687�1703.

[56] C.-B. Schönlieb and A. Bertozzi, Unconditionally stable schemes for higher order inpainting, Com-
mun. Math. Sci. 9 (2011), 413�457.

[57] U. Thiele and E. Knobloch, Thin liquid �lms on a slightly inclined heated plate, Phys. D 190 (2004),
213�248.

[58] S. Tremaine, On the origin of irregular structure in Saturn's rings, Astron. J. 125 (2003), 894�901.
[59] S. Villain-Guillot, Phases modulées et dynamique de Cahn�Hilliard, Habilitation thesis, Université

Bordeaux I, 2010.
[60] C. Wang, S.M. Wise, and J.S. Lowengrub, An energy-stable and convergent �nite-di�erence scheme

for the phase �eld crystal equation, SIAM J. Numer. Anal. 47 (2009), 2269�2288.
[61] S.M. Wise, Unconditionally stable �nite di�erence, nonlinear multigrid simulation of the Cahn�

Hilliard�Hele�Shaw system of equations, J. Sci. Comput. 44 (2010), 38�68.
[62] K. Zhou and Q. Du, Mathematical and numerical analysis of linear peridynamic models with nonlocal

boundary conditions, SIAM J. Numer. Anal. 48 (2010), 1759�1780.
[63] Z. Guan, Numerical analysis of the �rst and second order unconditional energy stable schemes for

nonlocal Cahn�Hilliard and Allen�Cahn equations, PhD thesis, The University of Tennessee, 2012.

1Université de La Rochelle

Laboratoire des Sciences de l'Ingénieur pour l'Environnement

UMR CNRS 7356

Avenue Michel Crépeau

F-17042 La Rochelle Cedex, France

E-mail address: laurence.cherfils@univ-lr.fr

2 Lebanese International University

Department of Mathematics and Physics

Lebanon

E-mail address: hussein.fakih@liu.edu.lb

3 Lebanese University

Department of Mathematics

Lebanon

4Politecnico di Milano

Dipartimento di Matematica

I-20133 Milano, Italy

E-mail address: maurizio.grasselli@polimi.it

5Université de Poitiers

Laboratoire de Mathématiques et Applications

UMR CNRS 7348, SP2MI

Boulevard Marie et Pierre Curie - Téléport 2

F-86962 Chasseneuil Futuroscope Cedex, France

E-mail address: Alain.Miranville@math.univ-poitiers.fr

6Xiamen University

School of Mathematical Sciences

Fujian Provincial Key Laboratory of Mathematical Modeling and High Performance

Scientific Computing

Xiamen, Fujian, China


