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ABSTRACT 
The problem of computing efficiently and accurately the 
armor losses in three-core AC submarine cables has been 
of great interest to the offshore cable community for some 
years. Indeed, the efficiency of the computation method is 
crucial to allow comprehensive parametric analysis as 
might be needed in the design study. 

An algorithm based on integral equations for performing 
such calculations with an accuracy comparable (within 
acceptable tolerances) to state-of-the-art Finite Element 
Method (FEM) approaches is presented. 

In particular, we discuss how exploiting the cable structure 
periodicity and symmetry leads to huge computational cost 
reductions. 
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INTRODUCTION 
The installed capacity of offshore wind farms has steadily 
increased in recent years. This has led to a growing interest 
in the accurate rating of submarine power cables that 
connect offshore generators between themselves and the 
mainland. 
In particular, armored three-core AC submarine cables are 
quite difficult to model accurately. Both core conductors 
and armor wires are twisted, with different pitches, and 
armor wires are stranded either with opposite (contralay) or 
same (equilay) orientation as the phase cables. This 
intrinsically 3D geometry affects in a non-trivial way the 
magnetic behavior of the cable, rendering 2D models 
inaccurate. 
The first studies using 3D FEM revealed that 2D FEM 
simulations are not reliable for their limited accuracy. 
Recently there have been efforts toward the improvement 
of 3D computational models using FEM [1-3]. These 
models have the potential of being highly accurate so that 
they can be considered as a benchmark for validating 
alternative methods but are computationally demanding 
both in terms of computer memory (hundreds of GB of 
memory) and simulation time (hours of computation). 
To lower the computational requirements of these 3D FEM 
models, several recent works have proposed to exploit the 
symmetries which characterize a submarine cable. By 
means of progressively more sophisticated use of these 
symmetries, these approaches have allowed shortening 
the length of the cable model [1], [4]. 
In this article, we present an alternative 3D computational 
method, based on integral equations, which can be used to 
compute losses in armored three-core cables with good 
accuracy. 
The method considers the presence of both wire armor and 
conductor sheaths. For the armor, we use the formulation 
proposed in [5], while for the sheaths we employ a 

formulation for thin conducting surfaces [6]. These two 
formulations can be easily coupled to take into account the 
mutual interaction between armor and sheaths. Both the 
formulations are based on integral equations, thus, 
compared to FEM models, they have the advantage of 
requiring the discretization of the magnetically active 
regions only. 
The exploitation of cable symmetries is taken one step 
further with respect to [4]: symmetries are used not only for 
reducing the size of the computational domain but also to 
confer a block-circulant structure to the matrix of the linear 
system. This structure can be exploited for reducing 
computational time and memory requirements during the 
assembly and solution of the fully coupled linear system of 
equations arising from the discretization of the proposed 
integral method. 
The algorithm described in this paper has been 
implemented as part of a suite of simulation tools that are 
currently in use by industrial system designers in their real 
industrial activity. The required training for the use of the 
developed code is very low. 
 
THE SYMMETRY OF CABLE GEOMETRY 
The geometry of a submarine three-phase cable features a 
regularly repeating structure, arising from the helical 
twisting with pitch 𝑃𝑃𝑆𝑆 of the core conductors and sheaths 
and the helical twisting with a pitch 𝑃𝑃𝐴𝐴 of the external armor. 

This regularly repeating structure allows building the cable 
geometry by replicating, with appropriate geometrical 
transformations, a single elementary unit cell. This fact can 
be exploited to reduce the computational requirements of 
numerical simulations. 

To find the unit cell and the set of transformations that allow 
describing the entire geometry of the cable, we analyze the 
geometrical transformations which leave the cable armor 
Ω𝐴𝐴 and the metallic sheaths Ω𝑆𝑆 unchanged, at first 
separately and then jointly. 

We consider a 𝑥𝑥𝑥𝑥𝑥𝑥 cartesian frame whose 𝑧𝑧-axis coincides 
with the axis of the cable. Let 𝑅𝑅 (𝛩𝛩) denote the matrix 
associated to a rotation by an angle 𝛩𝛩 around the 𝑧𝑧-axis 

 𝑅𝑅(Θ) = �
𝑐𝑐𝑐𝑐𝑐𝑐(Θ) −𝑠𝑠𝑠𝑠𝑠𝑠(Θ) 0
𝑠𝑠𝑠𝑠𝑠𝑠(Θ) 𝑐𝑐𝑐𝑐𝑐𝑐(Θ) 0

0 0 1
� [1] 

and 𝒕𝒕(𝑙𝑙) denote the vector associated to a translation by a 
distance 𝑙𝑙 along the 𝑧𝑧-axis 

 𝒕𝒕(𝑙𝑙) = �
0
0
𝑙𝑙
� [2] 

If the number of armor wires is 𝑁𝑁, then the armor geometry 
is invariant by the transformations 

 𝜏𝜏𝑛𝑛
𝐴𝐴1(𝒙𝒙) = 𝑅𝑅𝑛𝑛

𝐴𝐴1𝒙𝒙,    𝑛𝑛 = 0, 1, … ,𝑁𝑁 − 1 [3] 
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 𝜏𝜏𝑛𝑛
𝐴𝐴2(𝒙𝒙) = 𝑅𝑅𝑛𝑛

𝐴𝐴2𝒙𝒙 + 𝒕𝒕𝑆𝑆
𝐴𝐴2 ,   𝑠𝑠 ∈ ℝ [4] 

where 𝒙𝒙 ∈ ℝ3 and  

 𝑅𝑅𝑛𝑛
𝐴𝐴1 = 𝑅𝑅 �2 𝜋𝜋 𝑛𝑛

𝑁𝑁
� [5] 

 𝑅𝑅𝑆𝑆
𝐴𝐴2 = 𝑅𝑅 �2 𝜋𝜋 𝑠𝑠

𝑃𝑃𝐴𝐴
� [6] 

 𝒕𝒕𝑆𝑆
𝐴𝐴2 = 𝒕𝒕(𝑠𝑠) [7] 

Transformations [3] form a finite cyclic group of order 𝑁𝑁, 
generated by the rotation along the cable axis which brings 
an armor wire to coincide with the next one. 
Transformations [4] form a continuous screw group. 
Geometrically they can be visualized as the armor wires 
sliding along themselves with a screw motion. These 
symmetries are shown in Fig. 1-2. 

 

 
Fig. 1: Discrete rotational symmetries 

 

 
Fig. 2: Continuous screw symmetry 

 

The composition of [3] and [4] is commutative and results 
in 

𝜏𝜏𝑛𝑛𝐴𝐴(𝒙𝒙) = 𝑅𝑅𝑛𝑛,𝑠𝑠
𝐴𝐴 𝒙𝒙+ 𝒕𝒕𝑛𝑛,𝑆𝑆

𝐴𝐴 ,   𝑛𝑛 = 0, 1, … ,𝑁𝑁 − 1,   𝑠𝑠 ∈ ℝ [8] 

where 

 𝑅𝑅𝑛𝑛,𝑠𝑠
𝐴𝐴 = 𝑅𝑅 �2 𝜋𝜋 � 𝑠𝑠

𝑃𝑃𝐴𝐴
+ 𝑛𝑛

𝑁𝑁
�� [9] 

 𝒕𝒕𝑛𝑛,𝑆𝑆
𝐴𝐴 = 𝒕𝒕(𝑠𝑠) [10] 

The three phase conductors and sheaths are characterized 
by symmetries which are analogous to the symmetries of 
the armor 

 𝜏𝜏𝑚𝑚
𝑆𝑆1(𝒙𝒙) = 𝑅𝑅𝑚𝑚

𝑆𝑆1𝒙𝒙,    𝑚𝑚 = 0, 1, 2 [11] 

 𝜏𝜏𝑞𝑞
𝑆𝑆2(𝒙𝒙) = 𝑅𝑅𝑞𝑞

𝑆𝑆2𝒙𝒙 + 𝒕𝒕𝑞𝑞
𝑆𝑆2 ,   𝑞𝑞 ∈ ℝ [12] 

where 

 𝑅𝑅𝑚𝑚
𝑆𝑆1 = 𝑅𝑅 �2 𝜋𝜋𝑚𝑚

3
� [13] 

 𝑅𝑅𝑞𝑞
𝑆𝑆2 = 𝑅𝑅 �2 𝜋𝜋 𝑞𝑞

𝑃𝑃𝑆𝑆
� [14] 

 𝒕𝒕𝑞𝑞
𝑆𝑆2 = 𝒕𝒕(𝑞𝑞) [15] 

Sheath symmetry [11] is shown for completeness, but for 
simplicity only symmetry [12] is considered in the rest of the 
article. Considering also [11] would decrease the size of the 
elementary unit cell by a factor three, but at the cost of a 
greater complexity in the implementation and exposition. 

For certain combinations of the parameters 𝑛𝑛, 𝑠𝑠, and 𝑞𝑞, [8] 
and [12] describe the same geometrical transformation. To 
systematically find such combinations of parameters it is 
necessary to verify when 

 𝑅𝑅𝑛𝑛,𝑠𝑠
𝐴𝐴 𝒙𝒙 + 𝒕𝒕𝑛𝑛,𝑆𝑆

𝐴𝐴 = 𝑅𝑅𝑞𝑞
𝑆𝑆2𝒙𝒙 + 𝒕𝒕𝑞𝑞

𝑆𝑆2  [16] 

for each 𝒙𝒙 ∈ ℝ3 . From the definitions of 𝑅𝑅𝑛𝑛,𝑠𝑠
𝐴𝐴 , 𝒕𝒕𝑛𝑛,𝑆𝑆

𝐴𝐴 , 𝑅𝑅𝑞𝑞
𝑆𝑆2 and 

𝒕𝒕𝑞𝑞
𝑆𝑆2, [16] is equivalent to 

 �2𝜋𝜋 � 𝑞𝑞
𝑃𝑃𝑆𝑆
� = 2𝜋𝜋 � 𝑠𝑠

𝑝𝑝𝐴𝐴
+ 𝑛𝑛

𝑁𝑁
+ 𝑘𝑘�

𝑞𝑞 = 𝑠𝑠
  [17] 

The set of solutions of [17] can be parametrized with 𝑛𝑛 ∈  ℤ 
as 

 𝑠𝑠 = 𝑞𝑞 = 𝑛𝑛
𝑁𝑁
𝑃𝑃𝑐𝑐𝑐𝑐 [18] 

where 

 𝑃𝑃𝑐𝑐𝑐𝑐 = � 1
𝑃𝑃𝑆𝑆
− 1

𝑃𝑃𝐴𝐴
�
−1

 [19] 

is the cross-pitch length, i.e. the length of cable after which 
an armor wire returns to the same relative position with 
respect to the phase conductors. 

From the previous discussion, we can conclude that the 
entire geometry of the cable is invariant by the following set 
of transformations 

 𝜏𝜏𝑛𝑛 (𝒙𝒙) = 𝑅𝑅𝑛𝑛 𝒙𝒙+ 𝒕𝒕𝑛𝑛 ,   𝑛𝑛 = 0, 1, … ,𝑁𝑁 − 1 [20] 

where 

 𝑅𝑅𝑛𝑛 = 𝑅𝑅 �2 𝜋𝜋 𝑛𝑛
𝑁𝑁
𝑃𝑃𝑐𝑐𝑐𝑐
𝑃𝑃𝑆𝑆
� [21] 

 𝒕𝒕𝑛𝑛 = 𝒕𝒕 �𝑛𝑛
𝑁𝑁
𝑃𝑃𝑐𝑐𝑐𝑐� [22] 

As a consequence, the entire geometry of the cable can be 
partitioned in the following way 

 Ω = ⋃ 𝜏𝜏𝑛𝑛(Ω0)𝑛𝑛∈ℤ  [23] 

where Ω0 is an elementary unit cell consisting of a slice of 
cable of length 𝑃𝑃𝑐𝑐𝑐𝑐 𝑁𝑁⁄ , as shown in Fig. 3. 
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Fig. 3: Partition of the cable geometry into unit cells 

 

FORMULATION 
Conductor sheaths in submarine cables are usually 
metallic, non-magnetic, and thin with respect to the skin 
depth at mains frequency. Therefore with good 
approximation the current density can be considered 
uniform across their thickness. Moreover their thickness is 
small with respect to other geometrical dimensions, and 
enables to represent the current as a surface distribution. 
With these hypotheses, it is possible to employ surface 
integral equation formulation [6] to compute the current 
density in the sheaths. 

Armor wires are usually made of ferromagnetic material, 
hence, when they are exposed to the magnetic field 
produced by the core conductors, they become 
magnetized. Moreover, since the magnetic field is time-
varying, eddy currents develop inside the wires. 

In the proposed formulation eddy currents are not directly 
and explicitly considered, but they are modeled as an 
additional contribution to the wire magnetization [5]. This 
can be done by modifying the actual value of complex 
relative magnetic permeability 𝜇𝜇𝑟𝑟 of the armor wires with a 
tensor-valued permeability coefficient which takes two 
different values 𝜇𝜇𝑟𝑟∥ and  𝜇𝜇𝑟𝑟⊥  in the axial and transversal 
direction of the wire respectively. The formulation is 
described in detail in [5]. 

It is well known that there is a mutual electromagnetic 
interaction between the armor and the sheaths. On the one 
hand the presence of the armor contributes to 
concentrating the magnetic field inside the cable, which 
leads to greater losses in the sheaths. On the other hand, 
the presence of the sheaths shields the magnetic field 
generated by the core conductors, leading to lower losses 
in the armor. To evaluate this effect it is necessary to 
introduce a bidirectional coupling between the sheaths 
formulation and the armor formulation, as explained in [7]. 

 

NUMERICAL RESULTS 
The cross-section of the geometry of the cable under 
analysis is shown in Fig. 4. 

 

 
Fig. 4: Geometry of cable section 

 

The geometrical dimensions reflect those of a typical high-
voltage submarine cable and physical parameters are 
consistent with internal measurements performed by 
Prysmian S.p.A. The magnetic behavior of the armor is 
modeled using a complex-valued permeability 𝜇𝜇𝑟𝑟 =
|𝜇𝜇𝑟𝑟|𝑒𝑒−𝑗𝑗 𝜙𝜙 . The physical and geometrical parameters used 
for the simulations of this section, unless otherwise stated, 
are those summarized in Table I. 

 

Quantity Value 

𝑅𝑅𝑐𝑐 57 mm 

𝑅𝑅𝑤𝑤 110 mm 

𝑅𝑅𝑠𝑠 43.3 mm 

r 3.5 mm 

t 2.9 mm 

𝑃𝑃𝐴𝐴 2000 mm 

𝑃𝑃𝑆𝑆 3000 mm 

|𝜇𝜇𝑟𝑟| 300 

𝜙𝜙 60° 

𝜌𝜌𝑎𝑎𝑎𝑎𝑎𝑎 2.8 × 10−7 Ω𝑚𝑚 

𝜌𝜌𝑠𝑠ℎ 2.14 × 10−7 Ω𝑚𝑚 

Table I: Cable geometrical and physical parameters 

 

The inherent simplicity of the algorithm described in the 
paper allowed to implement most of the code in the 
interpreted language of Octave (which is mostly compatible 
with that of Matlab), thus maximizing its maintainability and 
extensibility. Input and Output are given in the form of MS 
Excel spreadsheets to allow for simple integration in 
existing design workflows. 

Since the proposed method cannot be validated 
experimentally because it does not provide conductor 
losses as they are assumed like filaments, its results are 
compared to those obtained with FEM models developed 
using the software COMSOL Multiphysics [8]. Following [1], 
the employed FEM model exploits a rotated periodicity 
which ensures that field quantities have a periodic 
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repetition of a cross-pitch. Actually, the model length is 
three times the cross-pitch, i.e. 3600 mm for the contralay 
configuration and 6000 mm for the equilay configuration. 
Losses are then computed from the fields evaluated in the 
one-third in the middle, to drastically reduce the effects of 
the finite size of the computational domain. Magnetic 
insulation conditions are imposed at its boundaries, and 
sheaths are discretized using two layers of quadratic FEM 
elements. Second-order finite elements are used for a total 
number of 115.266.416 degrees-of-fredom. An extruded 
mesh is built inside the phase cables, the armor, and the 
surrounding domain. The length of the extruded finite 
elements is equal to 20 mm. Free tetrahedral elements are 
used in the remaining part of the model. Two finite elements 
are placed through the thickness of metallic sheaths and 
16 elements discretize the cross-section of each armor 
wire. 

Fig. 5 and Fig. 6 show the comparison between the losses 
computed with the proposed method and with the FEM 
models as a function of the number of armor wires, both in 
the sheaths and in the armor and for both the contralay and 
equilay configurations. 

 

 
(a) (b) 

Fig. 5: Sheaths losses for different numbers of armor 
wires in both contralay and equilay configurations. (a) 

Sheaths losses. (b) The relative difference between 
the proposed model and FEM. 

 

 
(a) (b) 

Fig. 6: Armor losses for different numbers of armor 
wires in both contralay and equilay configurations. (a) 
Armor losses. (b) The relative difference between the 

proposed model and FEM. 

 

The agreement between the two methods is generally 
good, with relative differences always below 4 % for sheath 
losses and 10 % for armor losses. It can be observed that 
the discrepancy gets larger when the number of armor 
wires increases, hence when wires are very close to each 
other. This has already been observed in [5]. 

The contralay configuration leads to higher losses both in 
the armor and in the conductor sheaths. Losses exhibit a 

nonlinear behavior with respect to the number of wires. 
This is particularly noticeable in contralay armor losses, 
which, exhibit a maximum when the number of wires is 
equal to 66 and then decrease slightly but non negligibly. 

In every configuration, the presence of the armor leads to 
higher losses in the sheaths. This effect is particularly 
marked for cables in equilay configuration with closely 
spaced armor wires: adding more wires leads to a steep 
increase in sheath losses. 

In Fig. 7 the behavior of armor and sheaths losses is 
investigated as the value of armor laying pitch 𝑃𝑃𝐴𝐴 is varied 
between 2.1 m and 6 m (parameter 𝑃𝑃𝐴𝐴 𝑃𝑃𝑆𝑆⁄  is of interest in 
the mechanical design phase), while the sheaths laying 
pitch is held fixed at 𝑃𝑃𝑆𝑆=3m. The values of losses (both for 
contralay and equilay cable configurations) are plotted both 
against the ratio 𝑃𝑃𝐴𝐴 𝑃𝑃𝑆𝑆⁄  and against the cross-pitch length 
𝑃𝑃𝑐𝑐𝑐𝑐 defined in [7]. From this figure it can be noted that the 
equilay configuration always guarantees lower losses both 
in the armour and in the sheaths. In case a contralay 
configuration is to be adopted, higher values for 𝑃𝑃𝐴𝐴 𝑃𝑃𝑆𝑆⁄  
provide lower losses. 

 

 
(a) (b) 

Fig. 7: Losses per unit length of cable for different 
values of armor pitch: on the left as a function of the 
ratio 𝑷𝑷𝑨𝑨 𝑷𝑷𝑺𝑺⁄ , on the right as a function of the cross-

pitch. 

 

Fig. 8 and Fig. 9 represent a validation of our results in a 
frequency range between 50 Hz and 1 KHz, which is the 
typical range of interest in the computation of armor and 
sheath losses to consider harmonics in the current 
waveforms. When frequency increases, conductive 
sheaths are more effective in shielding the magnetic field 
of the phase conductors so that armor losses decrease. 
This happens at the expenses of losses in the sheaths. As 
can be noted, the difference with FEM in the computation 
of armor losses does not show any monotonic behavior vs. 
frequency, showing that the assumptions at the basis of the 
proposed formulation for the armor are valid in a wide 
frequency range. On the other hand, the difference with 
FEM in the estimation of sheath losses increases with 
frequency, which can be attributed to the simplifying 
hypothesis of uniform current density in the sheaths, which 
is less valid at a higher frequency. Comparison with FEM 
at frequencies higher than 1 KHz would require expensive 
refining of the mesh. 
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(a) (b) 

Fig. 8: Armor losses in contralay configuration at 
various frequencies. (a) Armor losses. (b) The relative 

difference between the proposed model and FEM. 

 

 
(a) (b) 

Fig. 9: Sheaths losses in contralay configuration at 
various frequencies. (a) Sheaths losses. (b) The 

relative difference between the proposed model and 
FEM. 

 
CONCLUSION 
The new fully coupled formulation can be applied to 
estimate armor and sheath losses in actual submarine 
cables with a low computational burden. With the help of 
the new fast approach, extensive parametric numerical 
simulations needed in a design stage become affordable. 
They show how the equilay configuration of the armor wires 
is always characterized by lower armor and sheath losses. 
Furthermore, they also indicate that both armor and sheath 
losses increase with the increase of the absolute value of 
the complex relative permeability, for all the considered 
typical values of electrical resistivity. 

The efficiency of the proposed method is based on two 
main properties. The first one is its fully integral approach 
when modeling the armor and the sheaths, avoiding the 
need to mesh the air as required by FEM. The second one 
is exploiting the geometrical symmetries of the cable 
structure and their proposed theoretical analysis can be 
also applied to other numerical methods. 

It is true that since FEM-shortened models became 
available, one of the advantages of the proposed integral 
formulation, namely the reduction of the computational 
burden, became less apparent. However, the proposed 
formulation is  relevant for two reasons. Firstly, based on 
integral equations, it has some advantages compared to 
FEM simulation: simpler construction of the computational 
mesh, no need to discretize non-magnetic and non-
conductive domains, no need for a fine mesh to properly 
discretize skin effect in armor wires or thin airgaps between 
armor wires. Secondly, the integral formulation, in a setting 
dominated by FEM simulations, provides an additional, 
independent method that can be used to validate and 
increase confidence in the accuracy of results obtained 

using FEM simulations. 
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