
Efficient control representation
in Digital Twins: an imperative challenge

for declarative languages
Chiara Cimino,Member, IEEE , Federico Terraneo, Member, IEEE , Gianni Ferretti, Senior Member, IEEE , 

and Alberto Leva, Member, IEEE

Abstract— Digital Twins (DTs) are enablers for the fast 
optimisation processes required in the Industry 4.0 con-
text. Declarative equation-based modelling languages, in 
turn, enable the creation of large-scale simulation-based 
DTs, as they relieve the analyst from creating the solution 
code. However, most industrial assets are Cyber-Physical 
Systems (CPSs), the Cyber part being their digital controls. 
With the available technology, a precise representation of 
modulating and logic controls conflicts w ith D T simula-
tion performance. The result is a barrier to using DTs for 
system-level optimisation. We analyse the problem, pro-
pose a modelling paradigm to solve it and suggest how 
to integrate that paradigm into equation-based language 
compilers. We support our proposal by presenting a Mod-
elica/C++ library, that we release as free software, built 
according to the said paradigm.

Index Terms— Digital Twins; Cyber-Physical Systems; 
Modelling languages and compilers; Control system mod-
elling; Simulation performance.

I. INTRODUCTION

In the Industry 4.0 context, the role of digital technologies
is fundamental [1] and twofold. On the one hand, they give
intelligence (typically as controls) to processes and machines,
making them Cyber-Physical Systems (CPSs). On the other
hand, they provide Digital Twins (DTs) to help design, operate
and manage the said systems [2], [3].

The concept of DT is used in various scientific a nd indus-
trial domains, and as such has numerous interpretations [4].
These range from CAD (Computer Aided Design) documents
through dynamic models to data-based decision aids and
machine learning, from offline d esign t ools t o applications
connected in real time to their physical counterparts, and
more [5], [6]. Indeed, DTs are nowadays pervading the entire
life of manufacturing assets [7], [8].

This paper concentrates on dynamic simulation models that
include digital controls. Some interpretations consider such
models to be DTs, while others consider them parts of a

Manuscript received XXX XX, XXXX; revised XXX XX, XXXX, XXX 
XX, XXXX, and XXX XX, XXXX; accepted XXX XX, XXXX. Date of 
publication XXX XX, XXXX; date of current versionXXX XX, XXXX. 
This work was supported by the the Lombardia regional research and 
innovation project AD-COM, ID 214632.

C. Cimino, F. Terraneo, G. Ferretti and A. Leva are with the Politecnico 
di Milano, Italy (e-mail: {chiara.cimino, federico.terraneo, gianni.ferretti, 
alberto.leva}@polimi.it).

DT. But no matter which definition of DT one takes, and
particularly if a real-time connection with the physical twin
is required, an efficient simulation of controls is a must,
especially in large-scale applications.

In the past, human analysts wrote simulation code in imper-
ative languages, starting from the equations of the system to
simulate. With the complexity of modern applications, doing
so would require an effort incompatible with the time scale of
the decisions to take. Nowadays, DTs call for Equation-Based
Object-Oriented Modelling (EB-OOM) languages. These al-
low one to write the model equations, and feed these to a com-
piler that translates them into simulation code automatically.
Since the analyst does not write instructions, these languages
are termed declarative as opposite to imperative.

Our point is that the DT of a CPS has a seldom addressed
peculiarity: it has to simulate not only the process physics
but also something – as said, most typically controls – that
is already digital in nature. The replica of control code in a
simulator (e.g., by co-simulation) is the most natural idea but
is computationally inefficient. Abstracted, declarative control
models can recover efficiency, but also – as shown in the fol-
lowing – introduce subtle and highly undesired imprecisions.

An alternative solution to join precision and efficiency is
the subject of this paper. After the introductory example of
Section II, Section III introduces and motivates the mix of
technologies on which the proposed solution is based, coming
in Section IV to formalise the addressed research questions.
Section V presents the solution, namely a model library
– compatible with major industry standards – to simulate 
precisely and efficiently the Cyber part of a CPS, in turn 
enabling the creation of computationally efficient DTs for that 
CPS; the library is available at https://github.com/
looms-polimi/SFClib. Sections VI and VII discuss ap-
plication examples and related literature, while Section VIII 
draws some conclusions and outlines future research.

II. AN EXPLANATORY AND MOTIVATING EXAMPLE

Consider the nutshell-size CPS in Figure 1. The Physical
part (the process) and the modulating control in the Cyber part
– a Proportional-Integral (PI) controller – are described by the
Differential Algebraic Equation (DAE) system and the transfer
function in (1). The logic control in the Cyber part is made



2

of a relay with hysteresis having ∓Aw as output values and
∓ythr as switching thresholds. In Figure 1 the PI controller
acts on the control signal u(t) so that the controlled variable
y(t) tracks the reference signal w(t), that is set by the logic
control block based on the value of y(t). The example is just
meant to introduce the addressed problem, hence numbers are
inessential, but for completeness µ = 1, Ti = T = 2, K = 5,
umin = −2, umax = 2, Aw = 1, ythr = 0.95.

y(t) + T
dy(t)

dt
= u(t), C(s) = K

(
1 +

1

sTi

)
. (1)

ProcessModulating controlLogic control

PI 
controller+ _

Fig. 1: A minimalistic CPS.

 FSM

 ODE  FSM

M
od

. c
on

tro
l

Lo
gi

c 
co

nt
ro

l

Fig. 2: Declarative representation for modulating and logic
control in the CPS of Figure 1.

We assume that modulating and logic control are realised
digitally, adopting the IEC (International Electrotechnical
Commission) industry standards mentioned later on. Systems
not falling in this category (e.g., analogue control devices or
clockless logic) are a minimal minority and, in general, are
small-size, hence not of interest for our research.

When creating a DT of this CPS, both modulating and
logic control can be described in declarative form. Modulating
control becomes an Ordinary Differential Equation (ODE)
system of the type{

dxC

dt = f (xC(t), w(t), y(t))

u(t) = g (xC(t), w(t), y(t))
(2)

where xC , w, y and u are the controller state vector, the
reference signal, the controlled variable and the control sig-
nal; such an ODE is typically specified as a block diagram
made of transfer functions, coupled to a Finite State machine
(FSM) to realise antiwindup, automatic/manual switching, and
similar functionalities inessential to list herein. Logic control
is naturally specified as an FSM [9]. As for the process, this
is typically described [10] by a DAE in the form

F
(

dxP (t)
dt , u(t), z(t)

)
= 0

G (xP (t), u(t), z(t)) = 0

y(t) = H (xP (t), u(t), z(t))

(3)

where xP is the state vector and z a set of algebraic variables.
Numerous techniques are available for simulating a declar-
ative dynamic model composed of DAEs and ODEs; some

are discussed e.g. in [10], while a declarative semantics for
representing control-targeted FSMs is presented in [9] together
with a possible imperative interpretation. In our example,
the declarative representation of modulating and logic control
is illustrated in Figure 2, while their imperative realisation
corresponds to invoking periodically, at every control period
Ts, the code in Algorithm 1.

while control_is_active do
Modulating control (xC is the PI state);
u← max (umin,min (umax, xC +K(w − y)));
xC ← e−Ts/TixC +

(
1− e−Ts/Ti

)
u;

Logic control;
if w > 0 ∧ y ≥ ythr then w ← −Aw;
if w < 0 ∧ y ≤ ythr then w ← Aw;

ALGORITHM 1: Pseudo-code for modulating and logic control
in the CPS of Figure 1.

The simulation accuracy and performance depend consid-
erably on the used control representation. To show this, with
the entities just defined we construct three DTs:

• a fully declarative one, that we call “CT” (Continuous
Time) as it is a continuous-time dynamic system;

• one that we call “CaA” (Control as Algorithms), where
the process is modelled in the continuous time while all
controls are described by algorithms;

• one that we call “LCaA” (Logic Control as Algorithms),
where only logic controls are represented as algorithms.

We then simulate the three DTs with Ts = 0.2: the resulting
behaviours of y(t) and u(t) are in Figure 3. Recall that the
maximum-fidelity model is CaA (red), as in reality all controls
are digital. Though plots almost overlap, we can observe that
LCaA (blue) is a good approximation of CaA, while the relay
toggling times in CT (green, see the u step-like variations in
the bottom plot) diverge from CaA and LCaA as the simula-
tion progresses, and consequently so do y(t) and u(t). This
happens because as long as Ts is properly selected, modulating
digital controls are well represented by their continuous-time
counterparts, and an imprecise evaluation of when modulating
control signal change their value has hardly any relevance.

A fundamental point to observe, however, is that the above
is not the case with logic controls. In reality, logic control
components change state at clock instants only. If their rep-
resentations in a simulation model are conversely allowed to
change state at any time, as happens here in the CT case,
divergences as that just noticed are the inevitable consequence.

−1

0

1

−2

0

2

0 5 10 15 20

y(t)

LCaA CaA CT

u(t)

time (s)

Fig. 3: CT and LCaA to approximate CaA.



3

Number of steps Normalised
Tolerance CT CaA LCaA CT CaA LCaA
10−2 254 2500 2750 1.00 1.00 1.00
10−4 753 2977 3187 2.96 1.19 1.16
10−6 1585 5496 6042 6.24 2.20 2.20
10−8 2444 8853 9901 9.62 3.54 3.60
10−10 4136 12810 14442 16.28 5.12 5.25
10−12 7306 19491 20867 28.76 7.80 7.59

TABLE I: Simulation results – solver steps for the three DTs.

We now examine the computational burden entailed by
the three DTs, looking at how many steps it takes to run
the simulations in Figure 3 with the DASSL variable-step
solver [11]. We chose to use DASSL throughout the paper
for two reasons. First, despite its age, it is still a workhorse
in dynamic simulation. Second, it is a general-purpose solver:
comparisons made with it are not keen to be biased by the
particular simulation problem one considers.

For simple models like this, the number of steps is more
informative than the simulation time, as the latter is invariantly
so small that, e.g., operating system artefacts have a visible
influence; with more complex models, the effect pointed out
below would also appear on the simulation time. To trade
simulation speed versus accuracy, we sweep the solver relative
tolerance from 10−2 down to 10−12.

Table I shows the results. One can see that stopping the
solver every Ts not only significantly increases the required
steps, but also reduces the effectiveness of tolerance as an
accuracy/speed trade-off knob. The DT that can be accelerated
the most by acting on the tolerance is CT, but as we just saw,
this is structurally and by far the least accurate.

In this paper, we propose an extension to EB-OOM lan-
guages and compilers to overcome the problem we just evi-
denced. We also demonstrate the proposal by turning it into a
C++ library that enhances the Modelica EB-OOM language.

III. THE INVOLVED TECHNOLOGY – RELEVANT ASPECTS

To fully understand the reason for the performance problem
just seen, we need to delve deeper into EB-OOM languages.
Since this is easier to do with a specific language as an exam-
ple, without loss of generality we focus on Modelica owing to
its prominent role in DTs [12], [13] and to the availability of
both open source and commercial implementations. For details
on the language that cannot fit herein, see [14].

The main reason to choose EB-OOM is that, over the years,
alternative approaches – most notably, block-oriented mod-
elling – have proven inadequate for industry-size, large-scale,
multi-domain cases [15]. Also, EB-OOM naturally lends itself
to hosting equation- and algorithm-based models jointly [16],
which is a fundamental enabler for our solution.

Furthermore, as our problem arises from logic controls, we
need a formalism to describe them. For adherence to industry
standards, here we stick to the languages defined in IEC
61131-3 [17], and specifically to Sequential Functional Chart
(SFC). When referring to a host architecture is convenient,
for the same reason we hereinafter talk about a Programmable
Logic Controller (PLC).

It is important to stress that adhering to the IEC standards
is not a limitation; on the contrary, it is a way to maximise the
industrial applicability of our proposal. Though IEC takes the
PLC as the reference architecture, our methodology applies
to any continuous-time plant model joined to a digital control
system made of processors that communicate over a network
and cooperatively execute a control strategy, accessing both
individual and shared resources, no matter how that control
system is realised.

A further argument in IEC standards’ favour comes from
the discussion in [9], based on which the SFC language can
be viewed as an imperative FSM descriptor independently of
how the declarative FSM model is specified, hence not limiting
the applicability of our proposal on this front either.

It is finally worth observing that owing to the way EB-
OOM allows one to create, manage and run simulation models,
the approach is already well accepted and is steadily gaining
importance in the industry.

An extensive discussion about this relevant matter would
be long and stray from the scope of this paper. However,
we believe that a tour of the web site of the Modelica
Association [18], looking in particular at the numerous appli-
cations presented and the large number of free and commercial
libraries developed by many academic and industrial institu-
tions, as well as a visit to the OpenModelica Consortium [19]
page, can quite easily convince the reader.

A. Management and effect of events
Modelica models have an equation and an algorithm

section. The first accepts DAE systems denoting time deriva-
tive with the der operator. Equation- and algorithm-based
modelling are combined by introducing events. This is done in
the algorithm section by when clauses. When the boolean
expression in such a clause becomes true, variables declared
discrete change as per the imperative code in the clause,
preserving their value at any other time. There exist time
events, where the condition depends only on time, and state
events, where it can also depend on any variable in the model.
A special case of time event is the sample(t0,Ts) clause,
that triggers events periodically every Ts, the first one at t0.
For example, Listing 1 simulates the DAE (1) subjected to
the sine input u(t) as per line 10, together with the periodic
sampling and zero-order holding of its output.

If a variable-step solver is employed, events influence its
behaviour because integration must stop every time an event
is triggered. We omit further details, yet it is clear that a high
number of events slows down the simulation.

B. Connections and encapsulation
Modelica models are hierarchically composed of sub-

models (or components) that encapsulate their behaviour and
the associated data within their interfaces, and are tied to one
another by equations generated via connect clauses. This is
illustrated in Listing 2, that refers to a hypothetical electric
circuit model.

As such, connections are the only way for the components
of a model to communicate – in the broadest sense – with one
another. In the absence of these, focusing on logic control,



4

1 model DAE_sample_hold
2 parameter Real T = 1;
3 parameter Real omega = 1;
4 parameter Real t_sh = 0.1;
5 parameter Real ystart = 0;
6 Real u,y(start=ystart);
7 discrete Real y_sh;
8 equation
9 y + T*der(y) = u; // DAE

10 u = sin(omega*time); // Exogenous input
11 algorithm
12 when sample(0,t_sh) then
13 y_sh := y; // Sample and hold
14 end when;
15 end DAE_sample_hold;

Listing 1: Modelica model for the DAE (1).

1 connector Pin
2 Voltage v; // connects make these equal
3 flow Current i; // flow -> connects make these sum to 0
4 end Pin;
5

6 model Resistor
7 parameter Resistance R=1000;
8 Pin a,b;
9 equation

10 a.i+b.i = 0;
11 a.v-b.v = R*a.i;
12 end Resistor
13

14 model Circuit
15 ... // Declaration of components
16 Resistor R1(R=100);
17 Resistor R2(R=1500);
18 Resistor R3; // default, R=1kOhm
19 ...
20 equation
21 ... // Circuit connections
22 connect(R1.a,R2.a); // three pins connected:
23 connect(R1.a,R3.a); // all v’s equal, i’s sum to zero
24 ...
25 end Circuit;

Listing 2: Usage of the connect statement.

1) there is no means for a model component to instruct
others to trigger an event at some time point in the future
(think of a sensor event to be caught at the next PLC
cycle time),

2) and there is no means for a set of components to act on
a same entity (anticipating the content of Section V-B
later on, think of an SFC scheme where the same action
is referred to by several steps).

As a result, implementing many constructs of IEC languages 
with EB-OOM ones is currently very cumbersome — a further 
EB-OOM limitation that we implicitly address in this paper. 
More in general, with EB-OOM it is difficult t o realise 
fundamental logic primitives such as semaphores, mutexes and 
the like. A small example concerning the well-known “dining 
philosophers” problem is discussed in [20]: the reader can 
imagine the complexity of addressing a real-life case.

IV. RESEARCH QUESTION

Control engineers are used to designing controls in the con-
tinuous time domain, and then writing discrete-time algorithms 
in industry-standard languages to approximate their behaviour. 
Here we have a different, almost symmetric problem. First, 
we need to exploit continuous-time modelling to efficiently 
represent a ground truth part of which is physically digital (a

couple of words that now should not appear as an oxymoron
anymore). This exploitation is hindered by logic controls be-
cause, in their presence, preserving the time-quantised nature
of control actions is essential (just associating a time delay to
the firing of a transition, as done in the Modelica Standard
Library StateGraph package [21], is not a solution). Second,
we need to present to the analyst a control modelling interface
as similar as possible to industrial (here, IEC-compliant) devel-
opment environments. Doing so is hindered by the EB-OOM
paradigm itself, as the abstraction of connectors, together
with encapsulation, makes cross-component communication
and data access cumbersome to represent.

We can therefore express the idea of “efficient control
representation” more precisely than we did in the introductory
part of the paper and formulate the research questions below.
Q1 Can we have an EB-OOM compiler preserve the align-

ment of logic events to sampling and actuation instants
efficiently?

Q2 Can we allow analysts having experience with IEC and
EB-OOM languages (but not with the corresponding
tools’ internals) to describe cross-component communi-
cation and synchronisation in a way that feels natural to
them, while still obtaining efficient simulation code?

Answering these questions requires extending the semantics 
of EB-OOM languages and modifying compilers accordingly. 
In the following we present our solution, which consists of 
complementing the simulation code and data structures gen-
erated by an EB-OOM tool with an application-independent 
library of imperative code, plus the corresponding data struc-
tures, that take care of the logic part of a control scheme. 
Our solution can be employed as is with any Modelica tool, 
demonstrating the feasibility and efficiency of t he idea.

As a result of this work and some discussions with the 
OpenModelica developers, that tool will soon incorporate 
part of our proposal. A complete implementation requires 
modifications t o t he c ompiler t hat a re o utside t he s cope of 
this paper, and will be addressed by new-generation EB-OOM 
language compilers such as the one presented in [22].

V. OUR PROPOSAL

We now explain the proposal operation, articulated in an 
event time management (Section V-A), and an actions/connec-
tions management part, (Section V-B). Section V-A provides 
our answer to Q1, while Section V-B responds to Q2.

A. Efficient management of logic control events
We want to create an LCaA DT, with the logic control

specified as SFC, where events occur aligned to a periodic
clock, but only in the clock cycles when something happened
that would cause some SFC transition(s) to fire. By skipping
unnecessary events, we save on the computation time of
algorithmic blocks and also allow variable step solvers to
take longer integration steps. To this end, and to the benefit
of modularity, we introduce the concept of cyclic group to
denote a set of event-generating entities (in our case, SFC
diagrams) that must be executed with the same sampling
period Ts and with the first activation at the same instant t0.



5

With our abstraction multiple cyclic groups can co-exist in the
same simulation; this allows, for example, to simulate a set of
distributed systems, each operating with its own clock of a
different frequency and/or phase. We could also extend the
idea to non-periodic event sources, but this will be the subject
of future works.

Implementing this abstraction requires a mixed declara-
tive/imperative solution, that we realise using Modelica and
C++, as illustrated in Figure 4 and articulated below.

Step 2

Transition 
12

Transition 
21

condition 12

condition 12

Cyclic
Group

model CyclicGroup
parameter Real period=1;
parameter Real phase=0;
discrete Integer handle;

algorithm
when initial() then
handle :=
Functions.new_aligned_event();
end when;
end CyclicGroup;

Modelica Model

model Transition
...
algorithm
when condition 12 then
time_next_firing := 

schedule_next_aligned_event
(cyclicGroup.handle,
time,

cyclicGroup.period);
...
end when;

when time>=time_next_firing then
if condition 12 then
< do event >

end if;
end when;
end Transition;

Step 1 action 1

action 2

cyclicGroup.t0,

Functions.

Fig. 4: The proposed mixed declarative/imperative solution in
Modelica; boxes show the Modelica wrappers for the C++
code and their usage.

• On the Modelica side, each cyclic group holds its period
Ts and t0, making it known to all the contained SFCs
and thus to their transitions;

• at simulation startup, the cyclic group registers itself to
the C++ side by calling a Modelica wrapper function,
and receives a handle that is therefore known to all the
contained transitions;

• in Modelica, when a transition detects that its firing
condition has become true, it calls the C++ func-
tion schedule_next_aligned_event that executes Algo-
rithm 2.

– If the next firing time for the transition’s cyclic group
is in the past, that transition is the first to “book” a
firing at the next clock cycle: the C++ side computes
the next firing time as the next integer multiple of the
cyclic group period and returns it to the transition.

– If the next firing time is in the future, some transition
has already booked firing for the cyclic group: the
already calculated next firing time is returned to
the transition. This ensures event synchronisation,
and in the case of simultaneous firings also ensures
that no short-time event hauls occur — which could
conversely happen if each transition computed its
next firing time individually, potentially obtaining

slightly different values for numerical reasons.
• when the next firing time comes, the transition Modelica

code checks that the firing condition is still true, and if so
fires. This approach may trigger some unnecessary time
events when glitches in the firing condition shorter than
a clock period occur, but experiments show significant
performance gains compared to firing events periodically.

Function schedule_next_aligned_event
Input: handle, current_time, t0, period;
Output: next_event_time;
next_event_time← get_saved_time(handle);
if current_time > next_event_time then

next_event_time←
ceil((current_time− t0)/period) ∗ period+ t0;

set_saved_time(handle, next_event_time);

ALGORITHM 2: Pseudo-code of the C++ algorithm to schedule
the next event aligned to a sample period.

As said, we want the user to assemble an SFC model
in Modelica graphically, with a look and feel as similar as
possible to the typical IEC development environment. To this
end, we first created the connectors in Listing 3.

1 connector StepInput
2 input Boolean fire;
3 end StepInput;
4 connector StepOutput
5 input Boolean fire;
6 output Boolean active;
7 end StepOutput;

9 connector TransitionInput
10 input Boolean active;
11 output Boolean fire;
12 end TransitionInput;
13 connector TransitionOutput
14 output Boolean fire;
15 end TransitionOutput;

Listing 3: The defined connectors.

The boolean active serves for steps to enable downstream
transitions, while fire indicates an event by changing its
logic state. The above given, the Modelica code for a transition
is shown and commented in Listing 4. Analogously, the
Modelica code for a step is in Listing 5.

As the reader may notice, the SFC evolution we realise is
without stability search, i.e., when at a given control step the
transitions that need firing have fired, the state of the SFC is
not re-evaluated to identify possible further firings. Evolution
algorithms with stability search, on the contrary, proceed to
execute such further firings until a no-firings – i.e., ”stable” –
SFC state is reached. We motivate our choice first with strict
adherence to the SFC standard, and then with the fact that
the great majority of PLC tools stick to the same approach
for safety. It is hard – if ever possible – to guarantee that
an evolution algorithm with stability search eventually finds
a no-firings condition, and it is even harder to provide any
worst-case the computation time. In systems with real-time
constraints as controls, the problems above are best avoided.

A possible all-Modelica implementation of our solution is
shown in Listing 6. Incidentally we got in touch with the
OpenModelica developers, and this is the way OpenModelica
will soon interpret the semantics of the statement when
sample(t0,Ts) and <condition>. The integration in
Modelica of the cyclic group concept, that also provides
modularity by preventing numerical issues arising out of event
synchronisation, is on the roadmap.



6

1 model Transition
2 SFC.Interfaces.TransitionInput IN;
3 SFC.Interfaces.TransitionOutput OUT;
4 BooleanInput C; // logic condition input
5 // get cyclic group data from first CyclicGroup object
6 // found by traversing the model hierarchy upwards
7 outer SFC.SFCelements.CyclicGroup cyclicGroup;
8 discrete Real time_next_firing;
9 equation

10 OUT.fire = IN.fire;
11 algorithm
12 // upstream step(s) active & condition true: book

firing
13 when pre(IN.active) and pre(C) then
14 time_next_firing :=
15 Functions.schedule_next_aligned_event
16 (cyclicGroup.handle, time, cyclicGroup.t0,
17 cyclicGroup.period);
18 end when;
19 // booked time reached & condition still true: fire
20 when time>=time_next_firing then
21 if C then OUT.fire := not OUT.fire; end if;
22 end when;
23 initial algorithm
24 // set time_next_firing surely in the past
25 time_next_firing := -Modelica.Constants.inf;
26 IN.fire := false;
27 end Transition;

Listing 4: Modelica code for an SFC transition.

1 model Step
2 SFC.Interfaces.StepInput IN;
3 SFC.Interfaces.StepOutput OUT;
4 Boolean active;
5 Real t(start=0) "time since last activation";
6 BooleanOutput X "true if step active";
7 parameter Boolean initialStep = false;
8 discrete Real dur_last_activity(start=0,fixed=true);
9 protected

10 discrete Real t_last_activation(start=0,fixed=true);
11 equation
12 active = X;
13 t = if X then time - t_last_activation else 0;
14 OUT.active=X;
15 algorithm
16 when change(IN.fire) then // firing upstream
17 X:=true;
18 t_last_activation:= time;
19 end when;
20 when change(OUT.fire) then // firing downstream
21 X:=false;
22 dur_last_activity := t;
23 end when;
24 initial algorithm
25 X := initialStep;
26 end Step;

Listing 5: Modelica code for an SFC step.

B. Managing actions and inter-component connections
In SFC, each action has a qualifier that specifies the rela-

tionship between its execution and the activity of the step(s)
to which it is connected. There are many qualifiers, but all
of them can be obtained by combining the four fundamental
qualifiers N, S, R, P and convenient temporal predicates based
on the step activity times (variable t in Listing 5).

• N (Non-stored) makes the action active if the connected
step is; the activity state of an action connected to several
steps with the N qualifier only is the OR of the activity
states (X in Listing 5) of those steps.

• S (Set) sets an action active, and the action stays active
also after the citing step ceases to be.

• R (Reset) keeps the action inactive as long as the citing
step is active, overriding all other qualifiers.

1 model Cycle_all_Modelica_example
2 Real x(start=0,fixed=true);
3 Real z(start=1,fixed=true);
4 Real a(start=1,fixed=true);
5 equation
6 // sawtooth x (slope pi, period 0.5) for testing
7 der(x) = 0.1*Modelica.Constants.pi;
8 when x>Modelica.Constants.pi/2 then
9 reinit(x,0);

10 end when;
11 // fire a state event on integer multiple of 0.1
12 // if x>1, and update the next multiple
13 when time>pre(a)*0.1 and x>1 then
14 a = integer(div(time, 0.1) + 1);
15 if (a-1==pre(a) and x>1) then // event
16 z = pre(z)+1; // increment z to signify
17 else
18 z = pre(z);
19 end if;
20 end when;
21 end Cycle_all_Modelica_example;

Listing 6: All-Modelica cycle time management.

• P (Pulse) only applies to actions for which the idea
of “execute once” makes sense, such as incrementing
a counter; the action is performed when the citing step
becomes active.

Managing actions requires all the steps that influence the
activity of an action to be connected to that action. This cannot
be realised by Modelica connect statement, as doing so
would enormously complicate Modelica diagrams, requiring
connections that have nothing to do with the SFC syntax
(observe instead Figure 4, where all the seen connections
would also appear in an SFC tool). Hence, for this part of
the proposal, the use of external imperative code and data
structures is a necessity.

For N, S and R actions, the activation state is
managed by the methods on_step_activation and
on_step_deactivation of the C++ action class, re-
ported in Algorithm 3. On the Modelica side, N, S and R
actions extend the base class Base_action_NSR shown in
Listing 7 and redeclare the qualifier to call the C++ action
methods properly. For P actions things are a bit more complex,
as in IEC tools, these are typically specified employing some
61131-3 language other than SFC, most often Ladder Diagram
or Structured Text. It is not difficult to emulate Structured Text
in Modelica, but the user has to enter textual code directly
into his/her model, and for such activity, the ergonomics of
Modelica and IEC tools are very different. At present we
provide partial support for P actions in the form of “typical”
ones, i.e. setting, incrementing or decrementing a numeric
variable. For such P actions – the great majority, incidentally
– we provided ad hoc library components. For the general
case, to date the user has to enter algorithmic Modelica code:
we shall address the problem in future works. For details
on the presented library, as well as for a synthetic usage
manual and examples, the reader is referred to the repository
https://github.com/looms-polimi/SFClib.

To end this section, we spend a few words on the relevant
aspect of whether and how the created DTs for CPSs can
be subject to verification. In this respect we first notice
that, as proven in the literature [23], [24], imperative control
code realised in the SFC language can be subject to formal



7

Function on_step_activation
Input: qualifier;
Output: action_on;
if qualifier = N then

active_N_phases← active_N_phases+ 1;

if qualifier = S ∧ active_R_phases = 0 then
was_set← TRUE;

if qualifier = R ∧ active_R_phases = 0 then
active_R_phases← active_R_phases+ 1;
was_set← FALSE;

action_on← active_R_phases =
0 ∧ (active_N_phases > 0 ∨ was_set);

Function on_step_deactivation
Input: qualifier;
Output: action_on;
if qualifier = N then

active_N_phases← active_N_phases− 1;

if qualifier = R ∧ active_R_phases = 0 then
active_R_phases← active_R_phases− 1;

action_on← active_R_phases =
0 ∧ (active_N_phases > 0 ∨ was_set);

ALGORITHM 3: Pseudo-code for the C++ methods to manage
the state of N, S and R actions when steps become active or
inactive.

1 partial model Base_action_NSR
2 parameter String action_name = "action1";
3 BooleanInput phase_active;
4 protected
5 replaceable constant Integer qualifier;
6 Integer handle_bool, handle_act;
7 Boolean phase_active_neg;
8 equation
9 phase_active_neg = not phase_active;

10 algorithm
11 when initial() then
12 handle_bool :=register_boolean_variable(action_name);
13 handle_act := register_action("act_" + action_name);
14 if phase_active then
15 set_boolean_variable(handle_bool,
16 on_phase_activation(handle_act, qualifier));
17 end if;
18 end when;
19 when phase_active then
20 set_boolean_variable(handle_bool,
21 on_phase_activation(handle_act, qualifier));
22 end when;
23 when phase_active_neg then
24 set_boolean_variable(handle_bool,
25 on_phase_deactivation(handle_act, qualifier));
26 end when;
27 end Base_action_NSR;

Listing 7: Modelica base class for N, S and R actions.

verification. The quoted reference is just an example; in the
literature there are many that we do not review herein, as we
only need to show that such a verification is viable. Also, EB-
OOM tools structurally guarantee the correspondence between
the equations in a model and the code produced by their
translation [25], [15].

As a consequence of the above statements, for which there
is vast support in the literature, representing SFC -– and
prospectively any IEC language -– in EB-OOM paves the
way to formal verification for the DT of a CPS (not for the
contained control code alone, as per the present industrial
state of the art). A few and quite preliminary attempts in
this direction already exist, see e.g. [26], but a historical

obstacle to such developments is computational burden — an 
issue that our proposal can help mitigating from the model 
side. All of this matter is extremely interesting and promising 
but apparently not within the scope of this paper; it will be 
considered as the subject of future research work.

As a final note, most Modelica tools permit to synchronise 
the execution of a model to external events. This is a useful 
feature if a DT must run in parallel with its PT, and since in 
that case the real time pace must be kept, it also provides an-
other argument in favour of seeking computational efficiency 
like our proposal does.

VI. APPLICATION EXAMPLES

In this section, we present two application examples built 
along the proposed approach and implemented with the de-
veloped Modelica library. The first o ne r efers t o a  pro-
cess application and aims to illustrate the operation of the 
used Modelica/C++ compound. The second one refers to a 
manufacturing context and aims to show the flexibility and 
scalability of the devised modelling solution.

A. Example 1
The system addressed in this example is depicted as P&ID

– Piping & Instrumentation Diagram, see e.g. [27] for infor-
mation about this widely adopted industry standard that we
cannot include herein – in Figure 5.

The system is composed of a first tank, where a bulk
component is kept at a prescribed temperature, and of a second
tank, where an additive is mixed with the bulk; the obtained
product is then unloaded. After each sixth operation, the
second tank is cleaned by loading a dedicated fluid, activating
the mixer, and flushing.

LSH 
bulk

LSL 
bulk

LVL 
bulk

S TT 
bulk

Additive 
supply

S

M

SEQ 
recipe

Cleaner 
supply

S

S

S

Product 
storage

Cleaner 
exhaust

LSE 
prod

TC 
bulk

Plant

Sensing

Actuation

Modulating control

Logic control

H

Bulk 
tank

Mixing 
tank

S

Bulk 
supply

Fig. 5: Application example 1 – P&ID.

The level in the bulk tank is kept within a minimum and a
maximum value by operating the on/off “bulk supply” valve,
while a Proportional-Integral-Derivative (PID) controller acts
on a heater to govern the temperature of the contained fluid.

Figure 6 reports all the Modelica diagrams of the system
simulator. The top-level one is composed of Plant (P), Modu-
lating Control (MC) and Logic Control (LC), respectively. The



8

P scheme does resemble the P&ID of Figure 5; the MC scheme
holds the PID and its I/O blocks; the LC contains two schemes,
one for controlling the bulk level and one for the recipe
batch sequence. Observe the divergence/convergence structure
to manage the periodic cleaning (the library obviously contains
all the elements to represent such SFC constructs). As can be
seen, Figure 6 closely recalls the typical IEC development
environment despite containing declarative code.

Bulk T control diagram

Bulk level control SFC

Recipe & cleaning SFC

Bulk T control diagram

Recipe & cleaning SFC

Plant

Modulating control

Logic control

Complete system

Fig. 6: Application example 1 – Modelica diagrams.

To assess the obtained efficiency, we simulated 4 hours of
system operation with different cycle times for the two LC
components (the two SFC diagrams in Figure 6). Table II
shows simulation times and events, while Figure 7 reports the
bulk and mixing tank levels with the effect of the periodic
cleaning (top) and the bulk tank temperature with its set point
(bottom).

As can be seen, the number of events is practically indepen-
dent of the cycle times (that would trigger 28800 to 144000
events in the simulated time span) and is ruled (as desired)
by the number of transition firings. Besides yielding good
efficiency in general, this makes tolerance an effective knob

Fig. 7: Application example 1 – sample of simulation results
(tank levels, top, and bulk temperature vs. set point, bottom).

Cycle times [s]
Bulk level Recipe sequence Simulation time [s] No. of events
2.00 0.50 1.581 268
2.00 0.25 1.635 263
2.00 0.10 1.648 263
0.50 0.50 1.840 269
0.50 0.25 1.912 269
0.50 0.10 1.932 269

TABLE II: Application example – simulation times and events.

for the accuracy/speed trade-off, despite logic controls.

B. Example 2
The second example we present refers to an assembly

line, that is, to a very frequently encountered situation in
manufacturing assets.

Bay load position (left) Bay machining position (centre) Bay unload position (right)
Bay lock

Bidirectional belt

Machining tool

Fig. 8: Application example 2 – machining station.

The elementary component of the addressed system is a
machining station like those available at the Industry 4.0
Laboratory laboratory at the Politecnico di Milano. A synthetic
scheme for such a station is in Figure 8, and its operation can
be summarised as follows.

• When started up, the station first moves its bay to the
loading (left) side, and then starts waiting for a part to
come from upstream.

• When a part appears at the load position, the station
brings the bay to the machining (centre) position, locks
it, and signals that machining can be carried out.

• When machining is over, the station unlocks the bay and
moves it to the unloading (right) position, waiting for the
machined part to be taken by the downstream part of the
production line.

• Once the part is taken, the station brings the bay back to
the loading (left) side and starts over waiting for a new
part from upstream.



9

The bay position is controlled by a cascade structure with an 
inner velocity PI loop and an outer proportional position one. 
The Modelica model for a station, comprising the modulating 
block diagram and the SFC logic, is illustrated in Figure 9; the 
model also includes a random generator to pick a machining 
time in an assigned distribution.

Figure 10 shows an example plant model with 15 stations 
(plus split and join elements not described here for brevity) 
that totals 1739 equations. Figure 11 presents a sample of the 
obtained simulation results (bay position, top, and machining 
activity, bottom, at one of the machining stations).

Simulating 10 minutes of system operation took 24.7s, 
which is about 24.3× real time, notwithstanding the nontrivial 
size of the model. Most relevant, despite a quite significant 
presence of logic controls (18 SFC diagrams to govern 15 
stations plus 2 split and 1 join element) and a quite fast 
sampling rate owing to the mechatronic nature of the system 
(all SFCs were made to run at a 10ms cycle time), only 1183 
events were generated out of the possible 60000 — a saving 
of 98%. Needless to say, also in this case the cycle time 
used for the logic control part has hardly any influence on 
the simulation time.

VII. RELATED WORK

Besides being extensively applied as a fundamental pillar 
of Industry 4.0, the concept of DT has received enormous 
attention in the scientific l iterature; w e b riefly di scuss herein 
just a few samples of so vast a corpus, to evidence and 
collocate the contribution of our research. According to the 
recent survey reported in [28], about 1000 papers per year on 
DTs were published between 2019 and 2021, for a total of 
2934. The analysis in the paper just quoted focuses first on 
application field, hierarchy, discipline, dimension, universality 
and functionality, and then considers four model dimensions 
(geometry, physics, behaviour and rule).

The ultimate goal of DT taxonomy-oriented works, like the 
one just mentioned, is to deconstruct and investigate the idea 
and the process of DT modelling under several viewpoints, 
related to the nature and the intended use of the DT. In the 
quoted reference, for example, the said viewpoints are six: 
model construction, assembly, fusion, verification, modifica-
tion, and management. However, such analysis works appear 
to not set a strong enough focus on the intrinsically Cyber-
Physical nature of engineering systems — not even when 
discussing the model behaviour dimension, which is inherently 
dynamic, especially at the “system” and “system of systems” 
(SoS) levels [29]. It is interesting to observe, in addition, that 
surveys like [28] also highlight that to date no DT tool fosters 
the integration of the devised dimensions, in accordance with 
the idea of “DT multiverse” evidenced in [12] together with 
the advantages that would come from harmonising the various 
DT interpretations.

In the opinion of the authors, therefore, to date the literature 
– and even more the applications – somehow underestimate the 
need for integrating the various DT concepts available, and in 
particular the contribution that an EB-OOM approach can give 
in the direction just evidenced; as a consequence of the above

Plant

Modulating controlLogic control

Modulating control block diagram

Fig. 9: Application example 2 – Modelica model for a
machining station with control; the pin and pout connectors
represent the part inlet (bay load) and outlet (bay unload).

Station

sr
c1 sn
k1

Station

sn
k2

1to2

Station

Station

Station

2to1

sr
c2

1to2Station

Station
Station

Station Station Station Station

sr
c3

Station Station Station

sn
k3

sn
k4

Fig. 10: Application example 2 – 15-station plant model.

remark, this paper intends to show precisely how the EB-OOM
approach can be exploited to achieve a straightforward and
computationally efficient model fusion for the description of
the dynamic behaviour of a CPS.

As a support for the last statement, recent trends in CPS
simulation evidence the need for scalability [30], not only in
the model size but also concerning the level of detail [31],
of capability in addressing large-scale systems [32], complex
and distributed-parameters dynamics [33], and of integration/-
communication with control, for both design [2], [34] and
checking purposes [35], [36]. Moreover, in modern industrial
CPSs, also correct use of control architectures is becoming
crucial [37], making their choice itself a model-based problem,
where DT solutions based on co-simulation can be time-
critical [38]. It is finally important to remark that even if
one strictly assumes that a DT needs real-time connection
with its physical twin (thereby excluding its use for design,
incidentally), exploiting EB-OOM for simulation efficiency
still yields benefits. To mention just a notable example, it
facilitates what-if analysis [39], both in general and in the
CPS case [40] that we address.



10

Fig. 11: Application example 2 – sample of simulation results 
(bay position and machining activity at station 3).

In such a scenario, summing up, the multi-domain [41] 
and declarative-imperative [12] capabilities of EB-OOM are 
gaining importance. However, as for CPS simulation, to date 
the developments in EB-OOM tools tend to focus either on 
integration with external applications [42] or on clock-based 
modelling [43], incurring costs that we proved relevant in 
terms of computational efficiency, and possibly also impacting 
the choice of numerical solvers [44]. As such, the proposal we 
formulate in this paper does fill a  performance gap relative to 
problems of undoubted engineering interest.

VIII. CONCLUSIONS AND FUTURE RESEARCH

We started by arguing that when creating simulation-centric 
DTs in the Industry 4.0 context, the presence of digital 
controls results in a harsh precision/performance trade-off. 
We also argued that an extension to declarative (EB-OOM) 
languages and compilers toward hosting imperative constructs 
in a user-transparent manner could mitigate the problem. 
After presenting our solution, we can say that our conjectures 
were correct. As a result, we can offer to the community 
a mixed imperative/declarative modelling paradigm, and a 
way to realise it in the form of a mixed-language library. In 
that library – that we are releasing as free software within 
a 3-clause BSD licence – we used Modelica and C++, but 
the underlying ideas are evidently general. We believe that 
making the creation of (logic) control models in declarative 
(EB-OOM) environments look similar to developing the same 
controls with industrial (IEC) tools strongly eases the work 
of analysts with control and simulation competence. We also 
hope that our proposal can help widen the set of people with 
the said joint competence beyond the domains where control 
is so mission-critical to make it a necessity — a cultural 
challenge already undertaken and discussed by the Model-
Based Systems Engineering community, see e.g. [45], [46].

Future work will aim to extend the control representation 
capabilities of our paradigm, addressing in the first p lace the 
other IEC 61131 languages. We also plan to extend our event 
handling core so as to model clock nonidealities like skew 
and jitter, as well as to support non-periodic system, thereby 
extending the coverage of our proposal to the wider IEC 61499 
context. Research is finally underway to integrate our proposal 
into new-generation Modelica compilers.

ACKNOWLEDGMENT

The authors would like to thank prof. Francesco Casella 
(Politecnico di Milano) for providing insightful comments, 
and prof. Bernhard Bachmann (Fachhochschule Bielefeld) for 
inspiring the all-Modelica cycle time solution.

REFERENCES

[1] G. Aceto, V. Persico, and A. Pescapé, “A survey on information
and communication technologies for Industry 4.0: state-of-the-art, tax-
onomies, perspectives, and challenges,” IEEE Communications Surveys
& Tutorials, vol. 21, no. 4, pp. 3467–3501, 2019.

[2] Q. Liu, H. Zhang, J. Leng, and X. Chen, “Digital Twin-driven rapid
individualised designing of automated flow-shop manufacturing system,”
International Journal of Production Research, vol. 57, no. 12, pp. 3903–
3919, 2019.

[3] F. Pires, A. Cachada, J. Barbosa, A. Moreira, and P. Leitão, “Digital
Twin in Industry 4.0: technologies, applications and challenges,” in Proc.
17th IEEE International Conference on Industrial Informatics, Helsinki,
Finland, 2019, pp. 721–726.

[4] E. Negri, L. Fumagalli, and M. Macchi, “A review of the roles of Dig-
ital Twin in CPS-based production systems,” Procedia Manufacturing,
vol. 11, pp. 939–948, 2017.

[5] W. Kritzinger, M. Karner, G. Traar, J. Henjes, and W. Sihn, “Digital
Twin in manufacturing: a categorical literature review and classification,”
IFAC-PapersOnLine, vol. 51, no. 11, pp. 1016–1022, 2018.

[6] M. Sjarov, T. Lechler, J. Fuchs, M. Brossog, A. Selmaier, F. Faltus,
T. Donhauser, and J. Franke, “The Digital Twin concept in industry
– a review and systematization,” in Proc. 25th IEEE International
Conference on Emerging Technologies and Factory Automation, Vienna,
Austria, 2020, pp. 1789–1796.

[7] F. Ocker, C. Urban, B. Vogel-Heuser, and C. Diedrich, “Leveraging the
asset administration shell for agent-based production systems,” IFAC-
PapersOnLine, vol. 54, no. 1, pp. 837–844, 2021.

[8] F. Ocker, B. Vogel-Heuser, H. Schon, and R. Mieth, “Leveraging Digital
Twins for compatibility checks in production systems engineering,” in
Proc. 28th IEEE International Conference on Industrial Engineering
and Engineering Management, Singapore, 2021, pp. 103–107.

[9] J. Provost, J. Roussel, and J. Faure, “A formal semantics for Grafcet
specifications,” in Proc. 7th IEEE International Conference on Automa-
tion Science and Engineering, Trieste, Italy, 2011, pp. 488–494.

[10] F. Cellier and E. Kofman, Continuous system simulation. Heidelberg,
Germany: Springer Science & Business Media, 2006.

[11] L. Petzold, “Description of DASSL: a differential/algebraic system
solver,” Sandia National Laboratories, Livermore, CA, USA, Tech. Rep.,
1982.

[12] C. Cimino, G. Ferretti, and A. Leva, “Harmonising and integrating the
Digital Twins multiverse: a paradigm and a toolset proposal,” Computers
in Industry, vol. 132, pp. 103 501:1–103 501:11, 2021.

[13] Y. Wu, K. Zhang, and Y. Zhang, “Digital twin networks: a survey,” IEEE
Internet of Things Journal, vol. 8, no. 18, pp. 13 789–13 804, 2021.

[14] P. Fritzson, Introduction to modeling and simulation of technical and
physical systems with Modelica. Hoboken, NJ, USA: John Wiley &
Sons, 2011.

[15] S. Mattsson, H. Elmqvist, and M. Otter, “Physical system modeling with
Modelica,” Control Engineering Practice, vol. 6, no. 4, pp. 501–510,
1998.

[16] H. Lundvall and P. Fritzson, “Event handling in the OpenModelica
compiler and run-time system,” in Proc. 46th Conference on Simulation
and Modelling of the Scandinavian Simulation Society, Trondheim,
Norway, 2005.

[17] International Electrotechnical Commission, “IEC 61131-3
Programmable controllers – part 3: programming languages, edition
3.0,” 2013.

[18] Modelica Association home page, https://modelica.org/.
[19] OpenModelica Consortium home page, https://openmodelica.org/.
[20] H. Lundvall and P. Fritzson, “Modelling concurrent activities and

resource sharing in Modelica,” in Proc. 44th Scandinavian Conference
on Simulation and Modeling, Västerås, Sweden, 2003.

[21] M. Otter, K. Årzén, and I. Dressler, “StateGraph–a Modelica library
for hierarchical state machines,” in Proc. 4th international Modelica
conference, Hamburg, Germany, 2005, pp. 569–578.



11

[22] G. Agosta, E. Baldino, F. Casella, S. Cherubin, A. Leva, and F. Terra-
neo, “Towards a high-performance Modelica compiler,” in Proc. 13th
International Modelica Conference, Regensburg, Germany, 2019, pp.
313–320.

[23] K. Fujino, K. Imafuku, Y. Yuh, and N. N. Hirokazu, “Design and
verification of the SFC program for sequential control,” Computers &
Chemical Engineering, vol. 24, no. 2-7, pp. 303–308, 2000.

[24] S. Shah, E. Endsley, M. Lucas, and D. Tilbury, “Reconfigurable logic
control using modular FSMs: Design, verification, implementation, and
integrated error handling,” in Proc. 2002 American Control Conference,
Anchorage, AK, USA, 2002, pp. 4153–4158.

[25] D. Kågedal and P. Fritzson, “Generating a Modelica compiler from
natural semantics specifications,” in Summer Computer Simulation Con-
ference, Reno, NV, USA, 1998, pp. 299–307.

[26] H. Lundvall, P. Bunus, and P. Fritzson, “Towards automatic generation
of model checkable code from Modelica,” in Proc. 45th Conference
on Simulation and Modelling of the Scandinavian Simulation Society,
Copenhagen, Denmark, 2004, pp. 23–24.

[27] M. Toghraei, Piping and Instrumentation Diagram development. Hobo-
ken, NJ, USA: John Wiley & Sons, 2019.

[28] F. Tao, B. Xiao, Q. Qi, J. Cheng, and P. Ji, “Digital Twin modeling,”
Journal of Manufacturing Systems, vol. 64, pp. 372–389, 2022.

[29] F. Tao, W. Liu, M. Zhang, T. Hu, Q. Qi, H. Zhang, F. Sui, T. Wang,
H. Xu, Z. Huang et al., “Five-dimension Digital Twin model and its
ten applications,” Computer Integrated Manufacturing Systems, vol. 25,
no. 1, pp. 1–18, 2019.

[30] C. Cimino, G. Ferretti, and A. Leva, “The role of dynamics in digi-
tal twins and its problem-tailored representation,” IFAC-PapersOnLine,
vol. 53, no. 2, pp. 10 556–10 561, 2020.

[31] T. Broenink and J. Broenink, “A variable detail model simulation
methodology for cyber-physical systems,” in Proc. 32nd European
Conference on Modelling and Simulation, Wilhelmshaven, Germany,
2018, pp. 219–225.

[32] M. Andreev, A. Gusev, N. Ruban, A. Suvorov, R. Ufa, A. Askarov,
J. Bemš, and T. T. Králík, “Hybrid real-time simulator of large-scale
power systems,” IEEE Transactions on Power Systems, vol. 34, no. 2,
pp. 1404–1415, 2018.

[33] B. Scaglioni and G. Ferretti, “Towards Digital Twins through object-
oriented modelling: a machine tool case study,” IFAC-PapersOnLine,
vol. 51, no. 2, pp. 613–618, 2018.

[34] G. Wan and P. Zeng, “Codesign of architecture, control, and scheduling
of modular cyber-physical production systems for design space explo-
ration,” IEEE Transactions on Industrial Informatics, vol. 18, no. 4, pp.
2287–2296, 2022.

[35] H. Carlsson, B. Svensson, F. Danielsson, and B. Lennartson, “Methods
for reliable simulation-based PLC code verification,” IEEE Transactions
on Industrial Informatics, vol. 8, no. 2, pp. 267–278, 2012.

[36] B. Fernández Adiego, D. Darvas, E. Blanco Viñuela, J. Tournier,
S. Bliudze, J. Blech, and V. González Suárez, “Applying model checking
to industrial-sized PLC programs,” IEEE Transactions on Industrial
Informatics, vol. 11, no. 6, pp. 1400–1410, 2015.

[37] M. Sehr, M. Lohstroh, M. Weber, I. Ugalde, M. Witte, J. Neidi,
S. Hoeme, M. Niknami, and E. Lee, “Programmable logic controllers
in the context of Industry 4.0,” IEEE Transactions on Industrial Infor-
matics, vol. 17, no. 5, pp. 3523–3533, 2020.

[38] G. Schweiger, C. Gomes, G. Engel, I. Hafner, J. Schoeggl, A. Posch, and
T. Nouidui, “An empirical survey on co-simulation: promising standards,
challenges and research needs,” Simulation Modelling Practice and
Theory, vol. 95, pp. 148–163, 2019.

[39] F. Pires, B. Ahmad, A. Moreira, and P. Leitão, “Recommendation system
using reinforcement learning for what-if simulation in Digital Twin,” in
Proc. 19th IEEE International Conference on Industrial Informatics,
Palma de Mallorca, Spain, 2021, pp. 1–6.

[40] J. Lee, B. Bagheri, and H. Kao, “A cyber-physical systems architecture
for Industry 4.0-based manufacturing systems,” Manufacturing Letters,
vol. 3, pp. 18–23, 2015.

[41] P. Fritzson, “Modelica: equation-based, object-oriented modelling of
physical systems,” in Foundations of Multi-Paradigm Modelling for
Cyber-Physical Systems, H. V. P. Carreira, V. Amaral, Ed. Heidelberg,
Germany: Springer, 2020, pp. 45–96.

[42] L. Hatledal, A. Styve, G. Hovland, and H. Zhang, “A language and
platform independent co-simulation framework based on the functional
mock-up interface,” IEEE Access, vol. 7, pp. 109 328–109 339, 2019.

[43] C. Chen, H. Cao, S. Su, H. Chen, Y. Gong, and G. Chen, “A unified
modelling method for cyber-physical systems based on Modelica,”
International Journal of Wireless and Mobile Computing, vol. 16, no. 4,
pp. 350–357, 2019.

[44] E. Kofman, F. Cellier, and G. Migoni, “Continuous system simulation
and control,” in Discrete-Event Modeling and Simulation, G. Wainer
and P. Mosterman, Eds. Boca Raton, FL, USA: CRC Press, 2018, pp.
75–107.

[45] S. Liscouet-Hanke, H. Jahanara, and J. Bauduin, “A Model-Based
Systems Engineering approach for the efficient specification of test
rig architectures for flight control computers,” IEEE Systems Journal,
vol. 14, no. 4, pp. 5441–5450, 2020.

[46] X. Zhang, B. Wu, X. Zhang, J. Duan, C. Wan, and Y. Hu, “An effective
MBSE approach for constructing industrial robot digital twin system,”
Robotics and Computer-Integrated Manufacturing, vol. 80, p. 102455,
2023.


