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Abstract
Objective. The objective of the present study is to investigate the feasibility of using heart rate
characteristics to estimate atrial fibrillatory rate (AFR) in a cohort of atrial fibrillation (AF) patients
continuouslymonitoredwith an implantable cardiacmonitor.Wewill use amixedmodel approach
to investigate population effect and patient specific effects of heart rate characteristics onAFR, andwill
correct for the effect of previous ablations, episode duration, and onset date and time.Approach. The
f-wave signals, fromwhichAFR is estimated, were extracted using aQRST cancellation process of the
AF episodes in a cohort of 99 patients (67%male; 57± 12 years)monitored for 9.2(0.2–24.3)months
asmedian(min-max). TheAFR from2453 f-wave signals included in the analysis was estimated using
amodel-based approach. The association betweenAFR and heart rate characteristics, prior ablations,
and episode-related featuresweremodelled usingfixed-effect andmixed-effectmodelling approaches.
Main results. Themixed-effectmodels had a better fit to the data thanfixed-effectmodels showing h.c.
of determination (R2= 0.49 versusR2= 0.04)when relating the variations of AFR to the heart rate
features. However, when correcting for the other factors, themixed-effectmodel showed the bestfit
(R2= 0.04). AFRwas found to be significantly affected by previous catheter ablations (p< 0.05),
episode duration (p< 0.05), and irregularity of theRR interval series (p< 0.05). Significance.Mixed-
effectmodels aremore suitable for AFRmodelling. AFRwas shown to be faster in episodes with longer
duration, less organizedRR intervals and after several ablation procedures.

1. Introduction

As the general population ages, the incidence of atrialfibrillation (AF) rises (Murray et al 2016). Nowadays, AF
has become themost common arrhythmia encountered in clinical practices leading to increasedmortality.
However, the underlyingmechanisms are still under investigation and appropriate patient selection for
treatment still remains a challenge (Rottner et al 2020, Saglietto et al 2021). The opportunity tofind additional
ways of characterizing atrial electromechanical and anatomical properties andways of predicting subsequent
outcome after therapeutic interventionwould favour timely therapy selection.More specifically, AF is related to
a compromised atrial function caused by a fast and irregular atrial depolarizationwhich can be characterized
from the f-waves in the ECG. There have beenmany parameters introduced in the literature to characterize
f-waves including their amplitude, frequency,morphology (Stridh and Sörnmo 2001, Corino et al 2007) and,
atrial organization (Alcaraz and José 2007).

OPEN ACCESS

RECEIVED

3October 2022

REVISED

6 February 2023

ACCEPTED FOR PUBLICATION

14 February 2023

PUBLISHED

10March 2023

Original content from this
workmay be used under
the terms of the Creative
CommonsAttribution 4.0
licence.

Any further distribution of
this workmustmaintain
attribution to the
author(s) and the title of
thework, journal citation
andDOI.

© 2023TheAuthor(s). Published on behalf of Institute of Physics and Engineering inMedicine by IOPPublishing Ltd

https://doi.org/10.1088/1361-6579/acbc08
mailto:javier.saizvivo@medtronic.com
mailto:javier.saizvivo@medtronic.com
mailto:javier.saizvivo@medtronic.com
https://crossmark.crossref.org/dialog/?doi=10.1088/1361-6579/acbc08&domain=pdf&date_stamp=2023-03-10
https://crossmark.crossref.org/dialog/?doi=10.1088/1361-6579/acbc08&domain=pdf&date_stamp=2023-03-10
http://creativecommons.org/licenses/by/4.0
http://creativecommons.org/licenses/by/4.0
http://creativecommons.org/licenses/by/4.0


The f-wave frequency, often referred to as the atrialfibrillatory rate (AFR) is an AF characteristic which has
been subject to considerable clinical attention. It has been shown to be a useful tool formonitoring drug effects
(Platonov et al 2014) aswell as for predicting outcomes from clinical procedures such as successful AF
cardioversion (Bollmann et al 2003) and early AF recurrence (Bollmann et al 2008).

The correlation of AFR and several well-knownHRV features describing the variability and irregularity of
RR intervals duringAF has been previously explored.While the analysis showed that variability parameters were
independent fromAFR, the irregularity parameters were significantly correlatedwithAFR (Corino et al 2013).
However, the extrapolation of their findings for all clinical types of AF remains to be determined as the
population used in the study included only patients with underlying congestive heart failure. In addition, the
analysis did not account for variations onAFRdue to circadian cycles, episode duration or previous ablations.

Circadian variations in the AF frequency within a 24 h period have been studied usingHolter recordings in
pursuit of understanding the underlyingmechanisms of AF. It was concluded that AFRwas significantly lower
during night-time than during daytime (Bollmann et al 2000, Cosson et al 2000,Meurling et al 2001). These
studies, however, have a drawback as AFRwas computed from sparsemeasurements with several hours in
between estimates. In addition, in one of the studies, two different sets of patients were identified: onewhich
showed an increase (minority)while the other showed a decrease (majority) in nocturnal AFR (Bollmann et al
2000). A later study usedmore advanced signal processing techniques and obtained amore robust estiamates
and a continuous AF frequency trend (Sandberg et al 2010). This study found that circadian variationswere
present inmost of the patients with long-standing persistent AF analysed (13/18). However, the former and the
latter studies have the drawback of having their insight on atrial electrophysiological characteristics duringAF
constrained to 24 h longHolter registrations, limited datasets of up to 30 patients andwere all based on
persistent and chronic AF patients.

Other studies have shown a positive correlation between episode duration andAFR (R= 0.53, p< 0.05)
(Bollmann et al 1999). However, this studywas conducted in a small dataset with only 31 episodes from11
paroxysmal AF patients.

Implantable cardiacmonitors (ICMs)with highly sensitive AF detection algorithms showing detection rates
up to 96% (Hindricks et al 2010) are widely used in the clinical practice for the diagnosis andmonitoring of AF.
Clinical applications of thesemonitors includeAF diagnosis after catheter ablation (Kapa et al 2013, Verma et al
2013) and cryptogenic stroke (Etgen et al 2013). These devices offer the advantage of long-termmonitoring
which can lead to amore detailed characterization of theAFR behaviour. These longmonitoring periods
spanning severalmonths, thus including several episodes per patient, allow an analysis of the joint effects of
HRVderived features and, circadian variation, episode duration and previous ablations onAFR.

The estimation of AFR fromRR series datawould enablewearable based assessment of AFR, e.g. wristband
PPG,whichwould lead to a better characterization of the patient’s condition. The aimof this study is tomodel
variations in AFRusingRR series features, by correcting for the effect of time of the day of episode onset, episode
duration and previous ablations onAFR, in a cohort of AF patients continuouslymonitoredwith an ICM. The
AFRwas estimated using amodel-based approach for f-wave analysis (section 2.2) that allowed for a robust
estimation of AFR from ICMdata. In a previous study regarding AFR andHRV, the analysis was conducted only
on patients with underlying congestive heart failure and did not account for the presence of confounding factors
(Corino et al 2013).We used a simplefixed-effect (FE)modelling approach usingRR series features and
compared it to twomore complexmixed-effect (ME)modelling approaches: one to study both the population
and patient specific effects ofRR series in AFR and another that allowed correction for the effect of episode
duration, previous ablations, and possible circadian variations. In addition,MEmodellingwill account for the
heterogeneity withinAF patients.

2.Materials andmethods

2.1. Patient population
The present study population consisted of a subset of the cohorts of patients with symptomatic AF enrolled in
the Reveal LINQUsability study, amulti-centre single-arm clinical study (ClinicalTrials.gov Identifier:
NCT01965899) (Sanders et al 2016), and a Slovak tertiary-care arrhythmia centre database (BouEzzeddine et al
2015). In both cohorts, the patients providedwritten informed consent, and the study protocols were reviewed
and approved by theHumanResearch Ethics Committee of each participating institution in accordancewith the
Declaration ofHelsinki. 99 patients (67%male, 33% female; 57± 12 years) had pre- and post-ablation
monitoring andwere included in the analysis. Nineteen patients had a previous failed ablation before the
ablation procedure considered in this study. The clinical baseline characteristics of the analysed patients are
shown in table 1.
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The devices used in theUsability and the Slovakia studies were the Reveal LINQandReveal XT (Medtronic
Inc.,Minneapolis,MN), respectively whichwere implantedwithin the fourth intercostal space (V2-V3 electrode
orientation)near the apex of the heart. The feasibility of extracting atrial activation from ICMdata has been
previously explored (Platonov et al 2012). Both devices record the signal with sampling frequency of 256Hz and
then sense and detect the rhythmby analysingRR interval patterns to compute anAF evidence score every 2 min.
Due tomemory restrictions, the devices store a single-lead ECG signal of 2 min of the AF episode detected aswell
as the ventricular sense, i.e. the positions of the R-peaks. In addition, the devices store the detected episode onset
date and time, and the total duration of the episode.

The 99 patients included in the study had the ICM implanted andwere followed-up for 9.2 (0.2–24.3)
months asmedian (min-max). The ablation procedure was performed 5.8 (1.0–14.4)months after the implant.
The ablation procedures were either pulmonary vein isolation (PVI) only (76 patients, 77%) or PVI plus extra
lesions, which included roof andmitral lines, and ablation of complex fractionated atrial electrograms (23
patients, 23%). AF recurrence was defined as anAF episode detected by the ICMafter a 3month blanking period
following catheter ablation and only those episodes outside the blanking periodwere considered in the analysis.
The blanking period is based on reports describing how early recurrences could be caused by post-ablation
inflammation or short-term autonomic imbalance rather than ablation failure (Hindricks et al 2021). In the
analysed cohort, 31 (31%) hadAF recurrence, 38 (38%)had noAF recurrence, and 30 patients (30%) left the
study before the ending of the 3months blanking period so there is no available information of their recurrence
status. To evaluate the variations of AFR, the episodes occurring during the fullmonitoring period, except the 3
months blanking period, of the 99 patients included in the studywere considered.

2.2. Estimation ofAFR
The atrial activity, fromwhich the AFR is computed, is extracted fromECG signals usingCardiolund ECG
Parser (www.cardiolund.com).

Once the atrial activity (x(n)) having a length ofN samples is obtained, a harmonic f-wavemodel
(Henriksson et al 2018) is used to estimate the local f-wave frequency. In thismodel, the f-waves aremodelled by
a complex signal s(n,θ), defined as the sumof two harmonically related, complex exponentials with
fundamental frequency f

( )
( ) ( )åq =

p f

=

+

s n A e, , 1
m

m

j mn

1

2 2 f
fs m

[ ] ( )q f f= f A A , 2T
1 1 2 2

whereAm andfm define the amplitude and phase, respectively, of them-th exponential (first and second), fs is
the sampling frequency and θ, the parameter vector.

The complex valued analytic representation xa(n) of the observed f-wave signal x(n), is assumed to be
composed of ( )qs n, andwhite, complexGaussian noise e

( ) ( ) ( ) ( ) ( )q qw= + = +x s e Z a en n, , 3a 0

Table 1.Baseline and clinical data of the study population (n= 99). PAF: Paroxysmal Atrial Fibrillation; CAD:Coronary ArteryDisease.

Patients (n= 99)

Age 57± 12

Male 66 (67%)

Female 33 (33%)

Coronary Risk Profile

PAF 73 (74%)

Hypertension 40 (40%)

Diabetes 13 (13%)

CAD 5 (5%)

Stroke 3 (3%)

Previous Ablation 19 (19%)
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( )qa is a 2× 1 vector containing the amplitude and phase information:
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Themodel is evaluated in 5 s windows by locally fitting themodel in K 0.5 s overlapping sub-segments
= ¼x k K, 1, ,a k, and estimating q̂ using amaximum likelihood approach. For each subsegment, the local

frequency estimate ŵ k0, is determined by:
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where ( )wºZ Z .k0, The local frequency estimates are then averaged over the 5 s windows and the AFRof the
segment is determined as:
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Themodel’sfit is then evaluated using themodel error ˆ ( ) ( ) ( ˆ )q= -e n x n s n;a to estimate the signal quality
index (SQI)

( )ˆs
s

= -SQI 1 , 8e

xa

where ˆse and sxa
are the standard deviation of ˆ ( )e n and ( )x n .a The SQI is confined between [0, 1]with larger

values associated to a betterfit. Afixed threshold is used to indicate whether f-waves have sufficient quality for
the analysis. For this study, the SQIwas estimated every 5 s windows and the thresholdwas set to 0.3 as suggested
byHenriksson et al (2018). Figure 1 shows the f-wave extraction process for theAFR estimation.

For further details on the estimation of AFR and the SQI, the reader is referred toHenriksson et al (2018).
For each episode, the local f-wave frequency calculated for each 5 s segment is then averaged over the

estimates of sufficient signal quality, thus obtaining the AFR.

Figure 1. Illustration of f-wave extraction for AFR estimation. From top to bottom: ECG signal extracted from ICM,QRST-cancelled
signal (x(n)), signal quality index (solid line)with threshold for acceptable signal quality (dashed line) and, estimated frequency ( ˆ)f
and estimated f-wave signal ( ( ˆ)qs n; )with signal segment with signal quality below the acceptable thresholdmarked as light grey.

4

Physiol.Meas. 44 (2023) 035007 J Saiz-Vivo et al



ThemeanAFR of at least one acceptable 5 s segmentwas considered to be representative of the firstminutes
of the AF episode under the assumption that the AFRwas stable within 2 min of AF. The stability of AFRwithin
the episodeswas studied by selecting the episodes wheremore than 80%of the episode had acceptable levels of
SQI and iteratively computing themeanAFR for decreasing percentages of the signal. In each iteration, an
additional random5 s segment was left out and the relative absolute error between themeanAFR of the reduced
signal segments and themeanAFR of thewhole acceptable signal was evaluated.

2.3.Modelling
FEmodels are statisticalmodels which only containfixed effects. In contrast,MEmodels contain bothfixed
effects and randomeffects, and are useful when dealingwith data involvingmultiple sources of random error
such as repeatedmeasures within subjects (Stroup 2013).

In general terms, for theMEmodel in this analysis, we consider N patients, with the index i representing the
ith patient (  i N1 ). Each patient has ni measurements y ,ij with the index j representing the jth episode

(  j n1 i). P then is defined as the total number of episodes included in the analysis so that å=P n .
N

i1
There are M random effects considered, and the patient-specific random effect is represented by bim

(  m M1 ). The yij of each episode j in each patient i is assumed to follow aGaussian distribution:

( ∣ ) ( ∣ ) ( )m s¼ ~ ¼y b b b N b b b, , , , , , 9ij i i Mi ij i i Mi0 1 0 1
2

where ∣m ¼b b b, ,ij i i Mi0 1 is the conditional expectation of the observations, in this case the AFRof each episode

y ,ij given by randomvector b ,i containing the patient specific random effects [ ]¼b b b, , ,i i Mi0 1 and s2 is the
dispersion parameter of the distribution.

LinearMEmodels can be represented as:

( )b= + +y X Zb e, 10

where y is the set of y ,ij X is the designmatrix forfixed effects, i.e. not dependent on the patient, Z is the design

matrix for random effects, b is a vector offixed effect parameters [ ]b b b¼, , , ,M0 1 b contains the N sets of b ,i

and e contains the random errors associatedwith the ijth observation. The designmatrix ( )´ +X P M 1 is
defined by:

[ ] ( )= ¼b b b bX x x x x , 11
M0 1 2

where bx
0
is aP× 1 binary vector for patient independent intercept b ,0 and [ ]¼b b bx x x, , ,

M1 2 is a ´P M matrix
which contains the values for each of the M features describing the episodes considered in the analysis. Similarly,
the designmatrix for the random effects ( ⁎ ( ))´ +Z P N M 1 is defined by:

[ ] ( )= ¼Z Z Z Z Z , 12b b b bM0 1 2

where Zb0
is the ´P N binarymatrix for b ,0 the patient specific intercept vector containing [ ]¼b b b, , , N01 02 0

intercepts, and [ ]¼Z Z Zb b bM1 2
contains the values zbm

ij which represent the value of feature m describing the
jth episode of the ith patient.

Themaximumpseudo likelihoodmethod is employed for the parameter estimation. ForMEmodels with
observations ∣ ( ∣ )m~y b b RN , with ( )~b GN 0, , being R and G, variancematrices for distributions of ∣y b
and b respectively, the log-likelihood equation can bewritten as (Stroup 2013):

( ) ( ) ( ) ( )b b= - - - - - -- - y b y X Zb R y X Zb b G bln ,
1

2
’

1

2
’ . 131 1⎛

⎝
⎞
⎠

⎛
⎝

⎞
⎠

The estimator is then given by:

( ˆ ˆ) ( ( )) ( )
( )

= y b y barg, max ln , ; 14
y b,

see (Stroup 2013) for details on themaximumpseudo likelihoodmethod.
FEmodels can be represented as in equation (10) but with the random effects coefficient b being equal to 0.

Hence, the log-likelihood equation can bewritten as:

( ) ( ) ( ) ( )b b= - - -- y y X R y Xln
1

2
’ , 151⎛

⎝
⎞
⎠

and the estimator is given by:

( ˆ) ( ( )) ( )
( )

= y yargmax ln ; 16
y

In this study, a linear FEmodel is used to evaluate the effects of changes inRR series characteristics onAFR. In
addition, the results obtainedwill be compared to twoMEmodels whichwill evaluate both the fixed and random
effects of circadian variations, previous ablations, episode duration andRR series characteristics onAFR.
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Following the previous formulations, yij corresponds to the AFRij of the ijth episode, X and Z contain the
features comprised by time, number of ablations, duration of episode and heart rate characteristic features, and
b and b contain the fixed and randomeffects of themodel.

The FE andMEmodels (described bellow)werefitted and evaluated usingMatlabR2022a (TheMathworks
Inc., Natick,Massachusetts). TheAkaike InformationCriterion (AIC) (Akaike 1974) and the deviance residual,
i.e. an index ofmodel fit, where amodel with a higher deviance provides a poorermodel fit to the data than a
model with a lower deviance (Zeng et al 2014), are used to select themodel which fits best the dataset. In
addition, to check the goodness offit of themodels, thefitted values of AFR are compared to the observed values
of AFR, and the coefficients of determination (R2) (Wright 1921) are computed.

2.3.1. Fixed-effect model of AFR
From the ventricular sense of the AF episode stored in the ICM, heart rate characteristic features are computed
to represent the variability and irregularity of theRR intervals in each episode. For this study, the parameters
extractedwere themeanRR intervals (mean interval between ventricular senses inmilliseconds), themean
squared differences of successiveRR intervals (RMSSD) expressed inmilliseconds and calculated as:

( )
( )å

=
-

-
=
-

+RR RR

N
RMSSD

1
, 17i

N
i i1

1
1

2

where RRi is the ithRR interval, +RRi 1 the successive interval, andN is the total number ofRR intervals, and the
sample entropy (SampEn). SampEn estimates the irregularity of theRR series andwas computed as described in
(Richman andMoorman 2000). To compute SampEn, the length of the vectors to be compared in the
calculation (m) and the noise rejection level (r)must be selected. In this study, the chosen parameters were

=m 2 and s=r 0.2 ,where s is the standard deviation of theRR intervals.
The FE model assumesfixed (population) effects ofRRmean,RR variability andRR irregularity onAFR

(MeanRR, RMSSD and SampEn)hence an estimate of AFR ( ˆAFRij), for patient i and episode j, is given by:

ˆ ( )b b b b= + ´ + ´ + ´AFR MeanRR RMSSD SampEn , 18ij ij ij ij0 1 2 3

where b0 is the intercept estimate for thefixed effect. In a similar way, b ,1 b2 and b3 represent thefixed effects of
theMeanRR, RMSSD and SampEn respectively, inModel FE.

2.3.2.Mixed-effect model of AFR
In order to account for the heterogeneity between patients, anMEmodel is used. The ME model assumes both
thefixed and randomeffects of changes inRR series onAFR by introducing the patient-specific random effects
to equation (18):

ˆ ( ) ( ) ( ) ( )b b b b= + + + ´ + + ´ + + ´AFR b b MeanRR b RMSSD b SampEn , 19ij i i ij i ij i ij0 0 1 1 2 2 3 3

where b i0 represents the intercept estimate for the patient-specific random effect, and b ,i1 b i2 and b i3 represent
the patient-specific random effect ofMeanRR, RMSSD and SampEn respectively.

2.3.3.Mixed-effect model of AFR and correct for confounding factors
There are several variables that could affect AFR and need to be accounted for. In this study, the effect of
circadian variations quantified by the episode onset time, the effect ofmultiple ablations, the effect of the long
monitoring periods quantified by the time since ICM implant, and the effect of episode durationwill be used to
correct the ME model.

The circadian variations of AFRweremodelled by considering the time of the day of the onset of eachAF
episode. In order to relate AFRwith circadian variationwhich has a cyclical nature, the time onset parameter was
transformed into a sinusoidwhere−1 represents themiddle of the day (12:00) and 1 represents themiddle of the
night (00:00)using the following expression:

( )p=Time cos 2
Time

24
, 2024h⎛

⎝
⎞
⎠

where Time24h represents the 24 h basedAF onset and Time themodifiedAF onset used in the analysis.
Furthermore, the patients of this cohort have undergone one or two ablation procedures in their lifetimes.

The ‘nAblations’ parameter represents the number of ablations undergone by the patient at the time of the
episode onset. This parameter can either be 0 for patients with no previous ablations in episodes occurring
before their first ablation, 1 for patients after theirfirst ablation or before their second ablation, or 2 for patients
with a previously failed ablation and after their second ablation. This parameter will correct for the effect onAFR
of episodes occurring pre- and post-ablation aswell as for patients with previously failed ablation procedures
with compromised atria.
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In addition, the patients of this cohort have been followed up for longmonitoring periods, so the feature
‘DaysSinceImplant’ represents the period between the episode onset date and the date the patients were
implantedwith the ICM. This parameter will correct for the effects of the longmonitoring periods onAFR; the
change inDaysSinceImplant provides a common timescale for the episodes included in the analysis.

Lastly, in addition to the onset time and date, the Reveal LINQalso stores the total duration of the episode in
minutes, i.e. ‘Duration’.

The complete ME’model assumes thefixed and randomeffects of changes in theRR series, and corrects for
circadian variation, number of ablations and episode duration:

( )

ˆ ( ) ( ) ( ) ( )
( ) ( ) ( )

b b b b b

b b b

= ¢ + ¢ + ¢ + ¢ ´ + ¢ + ¢ ´ + ¢ + ¢ ´ + ¢ + ¢ ´

+ ¢ + ¢ ´ + ¢ + ¢ ´ + ¢ + ¢ ´

21

AFR b b MeanRR b RMSSD b SampEn b

b nAblations b DaysSinceImplant b

Time

Duration ,

ij i i ij i ij i ij i ij

i ij i ij i ij

0 0 1 1 2 2 3 3 4 4

5 5 6 6 7 7

where b¢ ,4 b¢ ,5 b¢6 and b¢7 represent thefixed effects of the circadian variations, number of ablations, period
between implant date and onset and episode duration respectively, and ¢b ,i4 ¢b ,i5 ¢b i6 and ¢b i7 represent the patient-
specific random effects. b¢ ,0 ¢b ,i0 b¢,1 ¢b ,i1 b¢ ,2 ¢b ,i2 b¢3 and ¢b i3 correspond to the fixed and patient-specific random
effects introduced in equations (18) and (19) but for the ¢ME model.

2.4.Model evaluation
To evaluate themodel’s performancewith unseen data, the episodes are partitioned into training and test sets. As
theME andME’models are patient-specific, the training set was comprised of the earliest 80%of the episodes
from each patient while the test set was comprised of the latest 20%of the episodes.

For comparison the FEmodel, that is patient-independent, was also evaluated using a training set comprised
of the episodes from80%of the patients and a test set comprised of the episodes from the remaining 20%
patients.

In both cases, the accuracywas defined as the proportion of episodes where the estimatedAFRdeviated less
than a certain absolute value from the true AFR.

2.5. Statistical analysis
Continuous data are presented asmean± standard deviation if the null hypothesis H0 of theKolmogorov–
Smirnov test (H :0 data is normally distributed)was not rejected.Otherwise, continuous data are presented as
median (min-max). Categorical data are presented as absolute frequency (relative frequency in percentage). The
null hypothesis was rejectedwhen p< 0.05, then set as the level of significance. The relationship between the
features was studied using the patient-average of the features and Pearson’s linear pair-wise correlation between
themwas evaluated. This averagewas defined for each patient as themean feature extracted from their episodes
for those normally distributed features (such asAFR, MeanRR and SampEn) and themedian feature extracted
from their episodes for those not normally distributed features (such as Time and Duration). The normality of
the featurewas determined by analysing the complete set of episodes. In addition, to study themulticollinearity
among features, Belsley’s collinearity test was performed on the complete set of episodes. To check for
collinearity, the number of near dependencies wasfirst determined as the number of dependencies with
conditional index ( )hp for p dependencies over the threshold h = 30.* The features will be considered to have
collinearity if their variance-decomposition proportionwithin the near dependencies exceeds the threshold
p = 0.5* as suggested in Belsley (1991).

The statistical analysis was performed usingMatlab R2022a (TheMathworks Inc., Natick,Massachusetts).

3. Results

During themonitoring period, the ICMs stored 3739 episodes out of which 2908 (77%) episodes contained at
least one 5 s segment of sufficient signal quality for estimation of AFR.Only one segment of sufficient signal
quality was required as AFRwas assumed to be stable during thefirst 2 min of the AF episode. The stability
analysis showed amaximum relative error of 7.2 (4.4)%for the 24 episodeswheremore than 80%of the episode
had acceptable levels of SQI. Figure 2 shows the evolution of the relative error (%) for varying percentages of
signal.

Out of the 2908 included in the analysis, 1796 (62%) occurred before ablation, 657 (23%) occurred after
ablation and 455 (15%) occurred during the 3months blanking period andwere excluded from the analysis.

Each patient had amedian (min-max) of 20.5 (2–114) episodes with 16 (0–77) episodes pre-ablation, and for
the patients withAF recurrence, 10 (1–61) episodes post-ablation.

Figure 3(A) shows the histogramof theAFR extracted from the episodes with at least one acceptable 5 s
segment in thewhole population and (B) the distribution of AFR for each patient.
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The full dataset of AF episodes has amedian AFR (min-max) of ( )-5.3 4.0 9.7 Hz. A high proportion (85%)
of the AFR extracted from the episodes considered in the analysis were comprised between 4 and 6Hz. A
considerable variation inAFR between episodes is observed for some patients, whereas AFR remains similar
between episodes for others.

The scatter plots of the patient-average AFR,modified time of AF onset, duration of AF episode (in log scale),
andMeanRR, RMSSD and SampEn are shown infigure 4.

The patient-average AFR shows amild significant linear correlationwith the patient-average SampEn
(R= 0.27, p< 0.05). Regarding the threeHR characteristic features, the patient-averagemeanRR interval had a
strong correlationwith patient-average RMSSD (R= 0.677, p< 0.001) and amild correlationwith patient-
average SampEn (R= 0.312, p< 0.05). The patient-average time also shows amild correlationwith the partient-
averagemeanRR interval (R= 0.203, p< 0.05). In addition, the frequency distribution histograms of the
patient-averages of the features studied are also aligned diagonally on the subpanels offigure 4. This frequency
distribution histograms show that the average AF episode duration for each patient is predominantly short
episodeswith 54 patients (55%) having an average episode duration shorter than 20 min.Overall, the duration
of the episodes had amedian of 14 minwith theminimumduration being the detection threshold, i.e. 2 min,
and themaximumduration spanning 62.7 d.

Figure 2.Relative error evolutionwith percentage of signal analyzed for those episodes containingmore than 80%of acceptable
segments.

Figure 3. (A)Histogramof theAFRof the recorded episodes with at least one acceptable 5 s segment in thewhole population (B)
Distribution of AFR in each patient of the episodes included in the analysis displayed asmedian, interquartile range and 10/90th
percentiles. Data sorted in ascending order ofmedianAFR.
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The Belsley’s collinearity test shows that the scaled condition indeces hp are [1.00, 2.06, 2.15, 2.18, 3.26, 5.23,

9.59, 14.7]which are all bellow the defined threshold h = 30.* Therefore, the dataset exhibits no
multicollinearity.

Figure 4.Pair-wise linear correlation analysis between patient-average AFR, Time,Duration,MeanRR, RMSSD and SampEn. The
diagonal shows the histogramof the parameters while the lower triangular area displays the distribution of the parameter values by the
scatter plots with their title showing the correlation coefficient between parameters, and (*, p< 0.05) and (**, p< 0.001) representing
the statistical significance. For reasons of clarity, the duration is plotted in a log scale.

Table 2.Results comparison between the differentmodels; AIC: Akaike InformationCriterion; R :2 coefficient of determination; FE: Fixed-
effectmodel; ME:Mixed-effectmodel, ¢ME : CompleteMEmodel.

Model Input variable AIC deviance R2

FE MeanRR

RMSSD 5699 5689 0.04

SampEn

ME MeanRR

RMSSD 4424 4394 0.49

SampEn

¢ME MeanRR

RMSSD

SampEn
4298 4208 0.56

Time

nAblations

DaysSinceImplant

Duration
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The results of the differentmodels are summarized in table 2, and thefitted values of AFRwere plotted
against the true values and illustrated infigure 5.

The FE model, which only included the fixed effect of changes inRR series had the lowest complexity but
had also the largest AIC value.When also considering the random effects in the ME model, the values of AIC and
the deviance decreased. Lastly, when accounting for the circadian variation, the duration of the episode, the
number of ablations before the episode and correcting for themonitoring period as in the ¢ME model, the
deviance andAIC value isminimum. This suggests that the ¢ME model outweighs the othermodels alsowhen
accounting for the increasedmodel complexity. The coefficients of determination (R2) also corroborate that the

¢ME model has the better fit as its coefficient is the highest ( =R 0.562 ).
The patient-wise rootmean square error (RMSE)was computed for the ME’model and amedian (min-

max)RMSEof 0.35 (0.04–1.19)was found. This shows that for a subset of patients, themodel is capable of
estimating theAFR. In contrast, the othermodels had a patient-wise RMSEof 0.55 (0.24–1.74) in the case of the
fixedmodel (FE) and 0.43 (0.02–1.39)when introducing the random effects (ME), which indicate aworsefit to
the data. In addition, the Bland-Altman test (Altman andBland 1983) is illustrated infigure 6, fromwhich the
limits of agreement can be seen to lie between 0.82 and−0.82 Hz (mean difference of 0Hz and standard
deviation of 0.42Hz).

The estimation and the results for the fixed effect coefficients for the ¢ME model are summarized in table 3.
The parameter associated to the intercept (b¢ = <4.979, p 0.0010 ) is comparable to the average AFR, see

figures 3 and 4.
The irregularity inRR intervals has a significant effect on the AFR (b¢3 = 0.105, p< 0.05)with higher AFR for

higher irregularity. The number of prior ablations also has a significant effect on theAFR
(b¢ = <p0.168, 0.055 )with higher AFR aftermultiple ablations, and so does the episode duration
(b¢ = ´ -1.182 10 ,7

5 p< 0.05)withAFR being higher for longer episodes.
Themodels performance in unseen data, evaluated as described in section 2.4, is illustrated infigure 7. In

(A), the training set consists of the first 80%of episodes for each patient and the test set consist of the remaining
20%of the episodes. From the available 2884 episodes, 2346 (81.3%)were included in the training set and the
remaining 538 (18.7%)were included in the test set. The accuracy of themodels was then computed for varying
absolute differences between the estimatedAFR and the true AFR. As before, the results show thatMEmodelsfit
the training set better than the FEmodel. However, bothmodels overfit the data and the accuracies for the test
set are lowerwith fewer than 50%of the estimated episodes within0.3 Hz of the true AFR.

Figure 5.True (AFRij) versus estimated ( ˆAFRij) values for the differentmodels with their coefficient of determination (R2). The
dashed line represents the perfect fit.

10

Physiol.Meas. 44 (2023) 035007 J Saiz-Vivo et al



In (B), the patients were divided into training and test sets. As FEmodels do not rely on patient-specific
estimates, the episodes of these patients were stratified into one of the two sets. From the available 98 patients, 78
(79.5%)were selected for the training set including 2349 episodes and the remaining 20 (20.5%)were selected
for the test set including 547 episodes. In this case the accuracy of the training set and the test set were similar,
however, the accuracy of both is relatively low.

Figure 6.Bland-Altman test forME’model illustrating the difference between true and estimatedAFR values (Δ) versus themean of
the true and estimatedAFR values, with the representation of the limits of agreement (dotted line), from−1.96SD (standard deviation)
to+1.96SD.

Figure 7.Accuracy ofmodels for varying AFRdifferences (Hz) for (A)Training: 80%of early episodes; Test: 20%of latest episodes,
and (B)Training: 80%of patients; Test: 20%of patients. FEtrain: Fixed effect training set; FEtest: Fixed effect test set;MEtrain:Mixed
effect training set;MEtest:Mixed effect test set;ME’train:ME’ training set;ME’test:ME’ test set.

Table 3. Fixed effect coefficients for the ¢ME model. (*, p< 0.05) and (**, p< 0.001) representing statistical significance. SE: Standard Error
of the estimate.

Parameter Associated to: Estimate SE p-value

b¢0 Intercept 4.979 0.100 <0.001**

b¢1 MeanRR 8.853× 10−5 2.289× 10−4 0.698

b¢2 RMSSD 5.453× 10−4 4.040× 10−4 0.177

b¢3 SampEn 0.105 0.047 0.031*

b¢4 Time −0.021 0.034 0.521

b¢5 Number of Ablations 0.168 0.073 0.022*

b¢6 Days Since Implant −5.323× 10−5 2.440× 10−4 0.827

b¢7 Duration 1.182× 10−5 3.721× 10−6 0.002*
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4.Discussion

The rapidly increasing use of continuousmonitoring devices for patients diagnosedwith AF (Lee and
Mittal 2018) offers the chance of amore detailed characterization and a better understanding of the patients’
condition in order to select themost appropriate therapy but above all, the right timing in order to avoid disease
deterioration. Continuous assessment of AFR extracted fromECG strips is a non-trivialmatter. However, the
estimation of AFR fromRR series data would enablewearable based assessment of AFR, e.g. wristband PPG. The
aimof the studywas tomodel variations inAFR based on changes ofRR series characteristics (meanRR interval,
RMSSD and sample entropy). After afirst attempt using FEmodelling approach (FE model), the results were
compared tomore complexMEmodelling approaches: considering both population and specific effects ofRR
series (ME model) and allowing correction for the effect of episode duration, previous ablations, and possible
circadian variations ( ¢ME model). In addition,MEmodelling would account for the heterogeneity withinAF
patients. In order to apply the differentmodels, theAFR stability within 2 min of AF episodes was evaluated. In
the 24 episodes with enough data to run the analysis we found that for different percentages of signal, the error
between themeanAFR of the signal and themeanAFRon the remaining segments was 7.2 (4.4)%.With this
result inmind, AFRwas considered stable and themeanAFR calculated on a single segment (5 s)was considered
representative of thewhole signal.

We conclude from this initial analysis that there are no strong linear correlations betweenAFR andRR series
characteristics in the present dataset and that the relationship betweenRR characteristics andAFR ismore
complex. It should be noted that the aimof the present study is to investigate the feasibility of estimating AFR
fromRR series data and not to develop anAFR estimator. The small size of the present dataset prevents us from
usingmore complexmodelling approaches due to the risk of overfitting. In the study of themulticollinearity
among the variables, the dataset exhibited nomulticollinearity in the Belsley’s collinearity test. In addition, when
evaluating themodel performancewith unseen data, the results show that while theMEmodels are able tofit the
data better than the FEmodel, they overfit the data and produce low accuracies in the test set. This points out the
difficulties and unreliability of estimating AFRusing such simple regressionmodels such asMEor FE and calls
for further investigationwith larger datasets andmore complexmodels to be able to reach clinically acceptable
accuracies.

The correlation betweenAFR andHRV features describing the variability and irregularity ofRR intervals has
been explored before in a cohort of patients with underlying congestive heart failure (Corino et al 2013).
However, to the best of our knowledge, this is the first study to assess the variation of AFR inAF patients without
congestive heart failure whichwere continuouslymonitored over severalmonths. It is also the first study to
model AFR variations usingMEmodels which account for the heterogeneity of the patient population and
confounding factors.

Themodel’s parameters showed a significant effect ofRR irregularity quantified by SampEn (b¢=3 0.105,
p< 0.05), number of ablations (b¢ = <p0.168, 0.055 ), and episode duration (b¢ = ´ -1.182 10 ,7

5 p< 0.05)
onAFR.Due to the heterogeneity between patients, theMEmodel developedwith correction for the
confounding factors ( ¢ME model)was able to betterfit the data compared to the FE model, the FEmodelling
approach, (R2= 0.56 versusR2= 0.04).

The fact that average SampEn is correlatedwith average AFR ( = <R p0.27, 0.05) and that it has a
significant effect onAFRwhen evaluating the ¢ME model, is in linewith a previous study (Corino et al 2013)
which evaluated the relationship betweenAFR andHRVderived features. In the aforementioned study, the
regularity statistic quantifying the unpredictability offluctuations in a time series usedwas the approximate
entropy (ApEn) andwas shown to have a Pearson’s correlation of = <R p0.26, 0.05, indicating that the
higher the AFR, the less organized theRR series. In our study, the effect the regularity of theRR series has in
modelling AFRwas further evaluated in the ¢ME model showing a significant effect (b¢3 = 0.105, p< 0.05).
Previous studies have shown that theRR irregularity duringAF change in response to changes in autonomic tone
induced by drugs (Platonov et al 2012, Corino et al 2015, Cygankiewicz et al 2015) and tilt-test (Patel et al 2018).
However, it should be noted that increasedRR irregularitymay also be a direct effect of changes in atrial
electrical activity as quantified by an increasedAFR or variations in the atrioventricular node conduction
(Plappert et al 2021). Out of the threeHRVparameters considered, only SampEnwas correlatedwith average
AFR and had significant effect onAFRwhen considering theMEmodel. However, SampEn alone does not
convey asmuch information on theRR characteristics as when combinedwith themeanRR andRMSSD. A
comparison between the ¢ME model and amodel excluding themeanRR andRMSSD showed that the full
model had a better fit to the data (R2= 0.56, AIC= 4298 versusR2= 0.51, AIC= 4408).

Out of the 99 patients included, 19 (19%) had a previous ablation. Evidence of negative correlation between
the percentage offibrotic tissue in the left atria with the fibrillatory frequency have been reported (Swartz et al
2009). However, our study suggests that the number of ablations has a positive significant effect onAFR
(b¢ = <0.168, p 0.055 )with patients having gone through a higher number of ablations, having higher AFR.
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Though further investigationwithmapping and electrogram recordings is needed, this result suggests that
creating lesions in the atria reducesmacro-reentrant pathways but at the same time, promotesmicro-reentrant
circuits and/or faster, smaller rotors whichwould increase the fibrillatory rate of the atria.

Trying to understandAF behaviour, the link betweenAF episode duration andAFRhad been previously
studied showing a positive correlation between them ( = <R p0.53, 0.05) (Bollmann et al 1999). The study
showed that having a higher AFR at the start of the AF episode could predict longer episodes. However, this study
was conducted in a small dataset with only 31 episodes from11 paroxysmal AF patients and the correlationwas
describing thewhole databasewithout explicitly considering intra- and inter-patient effects. The results of the
present study confirmBollmann’s results as the episode duration had a significant effect on the AFR in the ¢ME
model (b¢ = ´ -1.182 10 ,7

5 <p 0.05). Finding of longer episodes of AF having higher AFR could be explained
by an increase of sympathetic drivewith longer duration of arrhythmia (Carnagarin et al 2019). The Reveal
LINQdetects AF episodes of 2 min duration and longer, and hence AF episodes of 30 s to 2 min remain
undetected. However, ‘Duration’ is still considered a necessary variable in themodel due to the large spread of
episode durations on the data: with theminimumduration being the detection threshold, i.e. 2 min, and the
maximumduration spanning 62.7 d.With these large duration ranges, even if the episodes are evaluated in bins
of 2 min, the effect of long versus short durations onAFR can be evaluated accurately.

In several studies, circadian dynamics of AFRwere observed in patients usingHoltermonitoring (Bollmann
et al 2000, Cosson et al 2000,Meurling et al 2001). In these studies, AFR showed a decrease at night and an
increase during themorning hours, with a peak during the afternoon. In one of those studies, two different sets
of patients were identified: onewhich showed an increase (minority)while the other showed a decrease
(majority) in nocturnal AFR (Bollmann et al 2000). However, the insight in circadian behaviour of atrial
electrophysiological characteristics during AFwas constrained to 24 h longHolter registrations and limited
datasets of up to 30 patients. The present study is based on a larger study population (99 patients) and longer
monitoring periods (0.2−24.3months), and no significant fixed effect of the onset timewas observedwhen
modelling the AFR. Circadian variation in the AFR is caused by autonomicmodulation in the atrial electrical
activity and could potentially be used to guide clinical strategies such as time of the daymedication should be
administered, or which patient would benefit themost from a catheter ablation procedure.

Currently, there is still uncertainty about the optimal selection for catheter ablation and overall, the
challenges to define clear patients’ phenotypes for appropriate AFmanagement are still prominent
(Karamichalakis et al 2015,Heijman et al 2018). Our study suggests that continuous assessment of AFRhas the
potential to estimate the impact of therapies and therefore, to help the stratification of patients towards AF
ablation especially when it can help the physician decidewhether or not to recommend ablation therapy and
persist in drug treatment.

To assess the importance of including patient specific dependencies onRR series characteristics in the
model, the results were compared to anMEmodel that only considered b .0 Thismodel had a better performance
compared to the FE model ( =R 0.37;2 =AIC 4727 versus =R 0.05;2 =AIC 5699) but had aworsefit to
the data than the ME model ( =R 0.49;2 =AIC 4424). This shows that the patients still have a high
heterogeneity not being addressed by themodel but some of it can be found in theirRR characteristics.

Detailed results for the estimated random effects of the ME’model can be found in the supplementary
material. Formost patients, the random effects coefficients were non-significant. However, for a subset of
patients, theHR variables had negative significant effect on the AFR (meanRR: 6, RMSSD: 5, and SampEn: 3
patients)while for another subset, they had a positive significant effect (meanRR: 8, RMSSD: 6, and SampEn: 8
patients). The rest of the random effect coefficients had a negative significant effect on the AFR of a subset of
patients (Time: 5, number of Ablations: 2, Days from Implant: 5, andDuration: 1 patient)while for another
subset of patients, they had a positive significant effect (Time: 3, number of Ablations: 2, Days from Implant: 4,
andDuration: 4 patients). For the rest of the patients, therewere no significant random effect coefficients. This
shows the heterogeneity in the dataset and proves the rationale of needingMEmodels to analyze such cohort.

This retrospective study combining 2 different cohorts with limited clinical baseline data, is selected froma
patient population implantedwith the Reveal LINQbased on clinical indications including suspectedAF, AF
ablationmonitoring or AFmanagement. Although this unique database offers the advantage of longmonitoring
periods and a completemonitorization of patients suffering AF, some limitations should be noted. The patient
population included in the study is relatively young (57± 12 years) compared to the general AF population and
with a low degree of cardiovascular risk. Due to the retrospective nature of the study, themedication
administered to each patient during themonitoring period and the ablation technique in those patients with a
previous failed ablationwere not available. In a similarmanner, the gender of the patient was not available and
its influence onAFR could not be assessed. In any case, possible influence ofmedication, scar tissue from
previous ablations and gender onAFR ismodelled as a patient specific random effect. Furthermore, due to the
limitedmemory of the device, ECGdatawas only stored for a subset of the detected episodes; 57 840 episodes
were detected by the device out of which ECGdata from3739 (6.5%)were stored. The number of episodes
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detected but not stored is not only linked to the number of episodes suffered by the patient but also to the
frequency of visits to the hospital as the datawas downloaded and saved each time the patient had a check-up.
Overall, the patients had amedian (min-max) of 130 (1–4564) episodes detected pre-ablation out of which 43.4
(1.9–100)%were stored. Post-ablation, the device detected 1 (0–4245) episodes out of which 60.2 (2.9–100)%
were stored. The aimof this study involves analyzing the relationship betweenAFR andHRV features during the
initial 2 min of the episodes while also accounting for various confounding factors. However, these first 2 min
may not be representative of thewhole episode; results from a previous study suggest that AFRmay accelerate
during the first 3–4 h (Platonov et al 2012). Therefore, the relationship betweenAFR and theHRV features
might be different in other instances of the episode.

The extraction of atrial activity has been a difficult problem since the atrial and ventricular activities overlap
spectrally and there is no uniform standard. There are twomain approaches that exploit the property that atrial
and ventricular activities arise fromdifferent bioelectrical sources: principal component analysis (PCA) (Raine
et al 2004) and independent component analysis (ICA) (Rieta et al 2004). However, these approaches derive a
global atrial signal with contributions from all the leadswhile theQRST cancellation technique used in this study
(Stridh and Sörnmo 2001), extracts the atrial signal in a specific lead and strives at notmodifying the original
f-wavemorphology. Despite their differences, in a comparative study between these three algorithms applied to
the same surface ECG recordings, the dominant rate of the atrial signals extracted by each of the algorithmswas
within 1Hz (Langley et al 2002). The performance of theQRST cancellation techniquewas explored in bothAF
simulated signals and ECGdatawithAF and it was showed to bewell-suited for atrial activation extraction
(Stridh and Sörnmo 2001). In addition, there have been direct comparisons between endocardial signals and
surface ECG signals subjected to theQRST cancellation technique used, summarized in (Bollmann et al 2006).
The feasibility of extracting atrial activation from ICMdata has been previously explored (Platonov et al 2012)
where patients with paroxysmal AF received an implantable loop recorder (same one used in this study) and the
AFRwas extracted from episodes longer than 1 h also using the AFR tracker software provided byCardioLund.
Conversely, in this studyAFRwas extracted from any episode longer than 2 min detected by the ICMand from
both paroxysmal and persistent patients. The harmonic f-wavemodel used for AFR estimationwas originally
developed for surface ECG, and the characteristics of the f-waves in the ECG recorded by the ICMmay differ
from these since the electrodes are placed next to the apex of the heart (withV2-V3 electrode orientation).
However, our results indicate that themodel fit was sufficient inmost cases; 2908 of the 3739 detected AF
episodes in our 99-patient cohort had sufficient signal quality to be analysed.

5. Conclusion

Fixed andmixed effectsmodelling approaches were used to investigate the effect of changes inRR series
characteristics corrected for episode onset and duration, previous ablations, and onset date, on variations inAFR
in a study population of 99 patientsmonitored for 9.2 (0.2–24.3)months asmedian (min-max). TheME
modelling approachwas shown to be superior to the FEmodelling approach due to the heterogeneity of the
patient population and the presence of confounding factors. Thefixed effects extracted from the ¢ME model
showed that AFR is slightly higher in episodeswith less organizedRR series and of longer duration and is affected
by catheter ablations. The use ofMEmodels combinedwith long termmonitoring of patients offers the chance
of continuously estimating the AFR fromRR series and episode-based characteristic andwill lead to amore
detailed characterization and a better understanding of the patients’ conditionwhich could potentially aid the
clinicians in their decision-making process. However, the results obtained point out the difficulties and
unreliability of estimatingAFRusing such simple regressionmodels. Further researchwith larger datasets that
would allow formore complexmodels is warranted.
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