
This article was published in the above mentioned Springer issue.
The material, including all portions thereof, is protected by copyright;
all rights are held exclusively by Springer Science + Business Media.

The material is for personal use only;
commercial use is not permitted.

Unauthorized reproduction, transfer and/or use
may be a violation of criminal as well as civil law.

ISSN 0894-9840, Volume 23, Number 2



J Theor Probab (2010) 23: 345–361
DOI 10.1007/s10959-010-0281-z

Repeated Quantum Interactions and Unitary Random
Walks

Stéphane Attal · Ameur Dhahri

Received: 13 March 2008 / Revised: 25 September 2009 / Published online: 23 February 2010
© Springer Science+Business Media, LLC 2010

Abstract Among the discrete evolution equations describing a quantum system HS

undergoing repeated quantum interactions with a chain of exterior systems, we study
and characterize those which are directed by classical random variables in R

N . The
characterization we obtain is entirely algebraical in terms of the unitary operator
driving the elementary interaction. We show that the solutions of these equations
are then random walks on the group U(H0) of unitary operators on H0.

Keywords Repeated quantum interactions · Obtuse random walks · Classical and
quantum noises
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1 Introduction

In the article [5], Attal and Pautrat have explored the Hamiltonian description of a
quantum system undergoing repeated interactions with a chain of quantum systems.
They have shown that these “deterministic” dynamics give rise to quantum stochastic
differential equations in the continuous limit. Since that result, some interest has been
found in the repeated quantum interaction model in itself (cf. [3, 4, 6–8]), and several
physical works are in progress on that subject (for example, [10]). These repeated
interaction models are interesting for several reasons:

– They provide a quantum dynamic which is at the same time Hamiltonian and
Markovian.
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– They allow one to easily implement the dissipation for a quantum system; in par-
ticular they are practical models for simulation.

– They exactly correspond to actual physical situations, in which a particle, or a field,
is undergoing repeated interactions with another system (see, e.g., [9]).

– They are exactly the physical situations in which indirect measurements of a quan-
tum system are performed and that give rise to the so-called “quantum trajectories”
(see, e.g., [11]).

The probabilistic nature of the continuous limit found by Attal and Pautrat is not due
to the passage to the limit; it is already built in the Hamiltonian dynamics of repeated
quantum interactions (it is actually built in the axioms of quantum mechanics).

The evolution equations describing the repeated quantum interactions are purely
deterministic, but they already show up terms which can be interpreted as “discrete-
time quantum noises.” The point with these discrete quantum noises is that sometimes
they may give rise to classical noises. That is, some linear combinations of these
quantum noises happen to be mutually commuting families of Hermitian operators,
and hence they simultaneously diagonalize and they can be represented as classical
stochastic processes.

In the other cases, that is, with different combinations of the quantum noises, no
classical process emerges and the dynamics of repeated quantum interactions are
purely quantum.

The aim of the article is to characterize algebraically, on the Hamiltonian, the case
where the dynamics are classically driven.

The article is organized as follows. We first (Sect. 2) present the physical and
mathematical setups for the repeated quantum interactions. In Sect. 3 we introduce
the basic algebraic tool: the obtuse random walks which are an appropriate “basis”
of random walks adapted to this language. We then explore and characterize the uni-
tary random walks which emerge classically from the repeated quantum interactions
(Sect. 4). We specialize in Sect. 5 our result to the one-dimensional case which al-
ready shows up a nontrivial structure. Finally, the last section is devoted to physical
examples; we exhibit explicit Hamiltonians giving rise to classical dynamics.

2 Repeated Quantum Interactions

2.1 The Physical Model

Repeated quantum interaction models are physical models developed by Attal and
Pautrat in [5] which consist in describing the Hamiltonian dynamics of a quantum
system undergoing a sequence of interactions with an environment made of a chain
of identical systems. These models were developed for they furnish a toy model for
a quantum dissipative system, they are at the same time Hamiltonian and Markovian,
and they spontaneously give rise to quantum stochastic differential equations in the
continuous time limit. Let us describe precisely the physical and the mathematical
setup of these models.

We consider a reference quantum system with state space H0, which we shall
call the small system (even if it is not that small!). Another system HE , called the
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environment, is made up of a chain of identical copies of a quantum system H, that
is,

HE =
⊗

n∈N∗
H,

where the countable tensor product is understood in a sense that we shall make precise
later.

The dynamics in between H0 and HE is driven as follows. The small system
H0 interacts with the first copy H of the chain during an interval [0, h] of time and
following a Hamiltonian H on H0 ⊗ H. That is, the two systems evolve together
following the unitary operator

U = e−ihH .

After this first interaction, the small system H0 stops interacting with the first copy
and starts an interaction with the second copy which was left unchanged until then.
This second interaction follows the same unitary operator U ; and so on, the small
system H0 interacts repeatedly with the elements of the chain one after the other,
following the same unitary evolution U .

Let us give a mathematical setup to this repeated quantum interaction model.

2.2 The Mathematical Setup

Let H0 and H be two separable Hilbert spaces (in the following, for our probabilistic
interpretations, the space H will be chosen to be finite-dimensional). We choose a
fixed orthonormal basis {Xn;n ∈ N ∪ {0}}, where N = N

∗ or {1, . . . ,N} depending
on wether H is infinite-dimensional or not (note the particular role played by the
vector X0 in our notation). We consider the Hilbert space

T Φ =
⊗

n∈N∗
H,

where this countable tensor product is understood with respect to the stabilizing se-
quence (X0)n∈N∗ . This is to say that an orthonormal basis of T Φ is made of the
vectors

Xσ =
⊗

n∈N∗
Xin

n ,

where σ = (in)n∈N∗ runs over the set P of all sequences in N ∩ {0} with only a finite
number of terms different from 0.

Let U be a fixed unitary operator on H0 ⊗ H. We denote by Un the natural ampli-
ation of U to H0 ⊗ T Φ , where Un acts as U on the tensor product of H0 and the nth
copy of H and U act as the identity of the other copies of H. In our physical model,
the operator Un is the unitary operator expressing the result of the nth interaction. We
also define

Vn = Un Un−1 · · ·U1,

with the convention V0 = I . Physically, Vn clearly is the unitary operator expressing
the transformation of the whole system after the n first interactions.
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Define the elementary operators ai
j , i, j ∈ N ∩ {0}, on H by

ai
jX

k = δi,k Xj .

We denote by ai
j (n) their natural ampliation to T Φ acting on the nth copy of H only.

That is, if σ = (in)n∈N∗ ,

ai
j (n)Xσ = δi,in Xσ\{in}∪{j}.

One can easily prove (in the finite-dimensional case this is obvious, in the infinite-
dimensional case it is an exercise) that U can always be written as

U =
∑

i,j∈N ∪{0}
Ui

j ⊗ ai
j

for some bounded operators Ui
j on H0 such that:

– the series above is strongly convergent
–

∑
k∈N ∪{0}(Uk

i )∗Uk
j = ∑

k∈N ∪{0} Uk
j (Uk

i )∗ = δi,j I

With this representation for U , it is clear that the operator Un, representing the nth
interaction, is given by

Un =
∑

i,j∈N ∪{0}
Ui

j ⊗ ai
j (n).

With this notation, the sequence (Vn) of unitary operators describing the n first re-
peated interactions can be represented as follows:

Vn+1 = Un+1 Vn =
∑

i,j∈N ∪{0}
Ui

j ⊗ ai
j (n + 1)Vn.

However, inductively, the operator Vn acts only on the n first sites of the chain T Φ ,
whereas the operators ai

j (n + 1) act on the (n + 1)th site only. Hence they commute.

In the following, we shall drop the ⊗ symbols, identifying operators like ai
j (n + 1)

with IH0 ⊗ ai
j (n + 1). This finally gives

Vn+1 =
∑

i,j∈N ∪{0}
Ui

jVna
i
j (n + 1). (1)

In Quantum Probability Theory, the operators ai
j (n) have a particular interpreta-

tion, they are discrete-time quantum noises, and they describe the different types of
basic innovations that can be brought by the environment when interacting with the
small system. See [1] for complete details on that theory, the understanding of which
is not necessary here.

The only important point to understand at that stage is the following. In some cases
the above (1) corresponds to an equation driven by a classical noise, i.e., driven by a
random walk. This is what we shall describe in the next section.
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3 Classical Random Walks

In order to understand the link that may exist between the discrete-time quantum
noises ai

j and classical random walks, one needs to pass through a particular fam-
ily of random walks, the obtuse random walks. Defined by Attal and Emery in [2],
these random walks constitute a kind of basis of all the random walks in R

N . Let us
describe them.

3.1 Obtuse Random Walks in R
N

Let X be a random variable in R
N taking N + 1 values v0, . . . , vN with respective

probabilities p0, . . . , pN such that pi > 0, i ∈ {0,1, . . . ,N}. The canonical space
of X is the triple (A, A,P ), where A = {0,1, . . . ,N}, A is the σ -field of subsets
of A, and P is the probability measure given by P({i}) = pi . Hence, for all i ∈
{0,1, . . . ,N}, we have X(i) = vi and P(X = vi) = P({i}) = pi .

We say that such a random variable X is centered if E(X) = 0 (as a vector of R
N ).

We say that X is normalized if Cov(X) = I (as an N × N -matrix).
Let us denote by X1, . . . ,XN the coordinates of X in the canonical basis of R

N

and define the random variable X0 on (A, A,P ) given by X0(i) = 1, i ∈ A. Let us
introduce the random variables X̃i defined by

X̃i(j) = √
pjX

i(j)

for all i, j ∈ {0,1, . . . ,N}. We then have the following easy characterization (cf. [2]).

Proposition 3.1 The following assertions are equivalent:

(1) The random variable X is centered and normalized.
(2) The family v0, . . . , vN of values of X satisfies 〈vi, vj 〉 = −1 for all i 
= j , and the

probabilities pi are given by

pi = 1

1 + ‖vi‖2
for all i ∈ {0,1, . . . ,N}.

(3) The matrix (X̃0, X̃1, . . . , X̃N ) is unitary.

A family of N + 1 vectors in R
N satisfying the above condition

〈vi, vj 〉 = −1

for all i 
= j is called an obtuse system in [2]. Hence, a random variable X satisfying
one of the above conditions is called an obtuse random variable.

Note that, as a corollary of the above proposition, the random variables X0,X1,

. . . ,XN are linearly independent, and hence they form an orthonormal basis of
L2(A, A,P ). In particular, for every i, j ∈ {1, . . . ,N}, the random variable XiXj

can be decomposed into

XiXj =
N∑

k=0

T
ij
k Xk (2)
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for some real coefficients T
ij
k . The family of such coefficients forms a so-called

3-tensor, that is, they are the coordinates of a linear mapping T from R
N to MN(R).

We say that a 3-tensor T is sesqui-symmetric if the two following assumptions are
satisfied:

(i) (i, j, k) �−→ T
ij
k is symmetric

(ii) (i, j, l,m) �−→ ∑N
k=1 T

ij
k T lm

k + δij δlm is symmetric

Using the commutativity and the associativity of the product XiXj , it is easy to
prove the following (cf. [2]).

Theorem 3.2 If X is a centered and normalized random variable in R
N taking ex-

actly N + 1 values, then there exists a sesqui-symmetric 3-tensor T such that

X ⊗ X = I + T (X).

In the following, by an obtuse random walk we mean a sequence (Xp)
p∈N

of inde-
pendent copies of a given obtuse random variable X. Actually, the random walk is the
sequence made of the partial sums

∑
p≤n Xp , but we shall not make any distinction

between the two processes in the terminology.

3.2 More General Random Variables

We claimed above that obtuse random variables are a kind of basis for the random
variables in R

N in general. Let us make precise here what we mean by that.
First of all, a remark on the number N + 1 of values attached to X in R

N . If one
had asked that X takes less than N + 1 values in R

N (k, say) and be centered and
normalized too, it is not difficult to show that X is actually taking values on a proper
subspace of R

N , with dimension k − 1. For example, a centered, normalized random
variable in R

2 taking only two different values is living on a line.
Now, if Y is a random variable in R

N taking k different possible values w1, . . . ,wk

with probabilities p1, . . . , pk and k > n+1, consider an obtuse random variable X in
R

k−1 taking values v1, . . . , vk with the same probabilities p1, . . . , pk as those of Y .
We have seen that the coordinate random variables X1, . . . ,Xk−1, together with the
deterministic random variable X0, form an orthonormal basis of L2(A, A,P ). As a
consequence, we can represent each of the coordinates of Y as

Y i =
k−1∑

j=0

αi
jX

j .

Hence we have a simple representation of Y in terms of a given obtuse random vari-
able X.

3.3 Connecting with the Discrete Quantum Noises

The obtuse random walks admit a very simple and natural representation in terms of
the operators ai

j (n) defined in Sect. 2.2.
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Let X be an obtuse random variable in R
N . On the product space (AN, A⊗N,P ⊗N)

we define a sequence (Xp)p∈N of independent identically distributed random vari-
ables, each with the same law as X.

Consider the space T Φ(X) = L2(AN, A⊗N,P ⊗N) and the random variables

XA =
∏

(p,i)∈A

Xi(p),

where A is any sequence in {0,1, . . . ,N} with only finitely many terms different
from 0.

The following result is also easy to prove (cf. [1]).

Proposition 3.3 The random variables XA, where A runs over the sequences in
{0,1, . . . ,N} with only finitely many terms different from 0, form an orthonormal
basis of T Φ(X).

In particular we see that there exists a very natural Hilbert space isomorphism
between the space T Φ(X) and the chain T Φ constructed in Sect. 2.2, over the space
H = C

N+1.
At this point we need to stop for a discussion. Consider the situation where

we have a probability space (Ω, F ,P ) and some random variables X,Y, . . . ∈
L2(Ω, F ,P ), together with a unitary isomorphism U from L2(Ω, F ,P ) to some
abstract Hilbert space H. One can wonder, when carrying L2(Ω, F ,P ) to H
through U , where the probabilistic information about the random variables (such as
laws, independence, . . .) appear in H.

Certainly not through the images UX, UY , . . . of the random variables X,Y, . . . ,
because, via a unitary isomorphism, they can be sent on any vector of H (with same
norm). Hence UX, as an element of H, contains no information at all about the
probabilistic properties of X.

Consider now the operator MX of multiplication by X on L2(Ω, F ,P ):

MX : DomMX ⊂ L2(Ω, F ,P ) → L2(Ω, F ,P )

F �→ XF.

This operator contains all the information about X. From it one can compute easily
all the probabilistic properties of X, for example, the law:

E
[
f (X)

] = 〈
1, f (MX)1

〉;
the independence:

E
[
f (X)g(Y )

] = E
[
f (X)

]
E

[
g(Y )

]

⇔ 〈
1, f (MX)g(MY )1

〉 = 〈
1, f (MX)1

〉〈
1, g(MY )1

〉;
and so on. Now, when transporting these operators through the isomorphism U , we
lose no information about X,Y, . . . . For example, put X = U MXU∗ and Ψ = U1;
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then X is a self-adjoint operator on H, hence it admits a bounded functional calculus,
and we have, for example,

〈
Ψ,f (X)Ψ

〉
H = E

[
f (X)

]
.

In the same way, we can translate all the probabilistic properties of X on H. Actually,
there is no way to differentiate the operator X from the actual random variable X.

Regarding this discussion back to our setup, one can consider the operator MXi(p)

of multiplication by the random variable Xi
p on T Φ(X). This self-adjoint operator

contains all the probabilistic information associated to the random variable Xi
p , it

admits the same functional calculus, etc., and it is the actual representative of the
random variable Xi

p in this Hilbert space setup.
As each of the probabilistic space T Φ(X) is made isomorphic to T Φ , we can

naturally wonder what happens to the operators MXi(p) through this identification.
The answer is surprisingly simple (cf. [1]).

Theorem 3.4 Let X be an obtuse random variable in R
N , and let (Xp)p∈N be the as-

sociated random walk on the canonical space T Φ(X). Let T be the sesqui-symmetric
3-tensor associated to X. If we denote by U the natural unitary isomorphism from
T Φ(X) to T Φ , then for all p ∈ N, i ∈ {1, . . . ,N}, we have

U MXi
p
U∗ = a0

i (p) + ai
0(p) +

N∑

j,l=1

T
jl
i a

j
l (p).

Here we are! By a simple linear combination of the basic matrices ai
j (p) one can

reproduce any random variable on R
N .

Coming back to the evolution (1), we see basically that two different cases may
appear.

First case: the coefficients Ui
j of the basic unitary matrix U are such that (1) reduces

to something like

Vn+1 = AVn +
N∑

i=1

BiVnMXi
p
.

This means that this operator-valued evolution equation, when transported back to
T Φ(X), is an operator-valued (actually unitary operator-valued) equation driven by
a random walk (Xp)

p∈N
. It is a random walk on U(N).

Second case: there is no such arrangement in (1); this means that it is purely quantum,
and it cannot be expressed via classical noises, only via quantum noises.

Our aim in the rest of the article is to characterize completely those unitary oper-
ators U that give rise to a classically driven evolution (first case).
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4 Random Walks on U(H0)

In this section we work on the state space

T Φ =
⊗

n∈N∗
C

N+1.

We consider a fixed obtuse random variable X with values v1, . . . , vN and with asso-
ciated 3-tensor T . We identify the operator

a0
i (p) + ai

0(p) +
N∑

j,l=1

T
jl
i a

j
l (p)

with the random variable Xi
p , and we denote it by Xi

p , instead of MXi
p
. Recall that

X0
p is the constant random variable equal to 1; hence, as a multiplication operator

on T Φ , it coincides with the identity operator I .
In the following we extend the coefficients of the 3-tensor T to the set {0,1,

. . . ,N}. This extension is achieved by assigning the following values:

T
ij

0 = T i0
j = T 0i

j = δi,j .

With that extension, the second sesqui-symmetric relation for T is written simply

(ii) (i, j, l, m) �−→
N∑

k=0

T
ij
k T lm

k is symmetric.

Recall the discrete-time evolution (1) associated to the repeated quantum interac-
tions:

Vn+1 =
N∑

i,j=0

Ui
jVna

i
j (n + 1),

with the convention V0 = I .

Proposition 4.1 The discrete-time evolution (1) can be written as

Vn+1 =
N∑

i=0

BiVnX
i
n+1

for some operators Bk on H0, if and only if the coefficients Ui
j are of the form

Ui
j =

N∑

k=0

T
ij
k Bk. (3)
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Proof Let us prove first the sufficient direction. If U is of the form (3), then

Vn+1 =
N∑

i,j=0

Ui
jVna

i
j (n + 1)

= U0
0 Vna

0
0(n + 1) +

N∑

i=1

Ui
0Vna

i
0(n + 1) +

N∑

i=1

U0
i Vna

0
i (n + 1)

+
N∑

i,j=1

Ui
jVn ai

j (n + 1).

Relation (3) implies in particular that U0
0 = B0 and U0

i = Ui
0 = Bi . This gives

Vn+1 = B0Vna
0
0(n + 1) +

N∑

i=1

BiVn

(
ai

0(n + 1) + a0
i (n + 1)

)

+
N∑

k=1

N∑

i,j=1

T
ij
k BkVna

i
j (n + 1) +

N∑

i=0

B0Vna
i
i (n + 1)

= B0Vn +
N∑

k=1

BkVn

[
ak

0(n + 1) + a0
k (n + 1) +

N∑

i,j=1

T
ij
k ai

j (n + 1)

]

= B0Vn +
N∑

k=1

BkVnX
k
n+1

=
N∑

k=0

BkVnX
k
n+1.

This gives the required result in one direction. The converse is easy to prove by re-
versing all the arguments above. �

Now, consider the operators

Wl =
N∑

i=0

vi
l Bi,

with the convention v0
k = 1 for all k ∈ {0,1, . . . ,N}. Our purpose in the sequel is

to prove that these operators are unitary if and only if the evolution operator U is
unitary. Here is the first step.

Proposition 4.2 If U is a unitary operator, then for all l ∈ {0,1, . . . ,N}, the operator
Wl is unitary.
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Proof We have

WlW
∗
l =

N∑

i,j=0

vi
l v

j
l BiB

∗
j .

However, relation (2) immediately implies that

vi
l v

j
l =

N∑

m=0

T
ij
m vm

l .

Hence, we get

WlW
∗
l =

N∑

i,j,m=0

T
ij
m vm

l BiB
∗
j =

N∑

j,m=0

vm
l

(
N∑

i=0

T
ij
m Bi

)
B∗

j =
N∑

j,m=0

vm
l U

j
mU0∗

j

=
N∑

m=0

vm
l

(
N∑

j=0

U
j
mU0∗

j

)
=

N∑

m=0

vm
l

(
N∑

j=0

δm0I

)
= v0

l I = I.

This completes the proof. �

Now, our aim is to prove the converse of Proposition 4.2. In order to achieve this,
we need to express the coefficients Ui

j of U in terms of the operators Wl . This is the
aim of the following two lemmas.

Lemma 4.3 For all i ∈ {0,1, . . . ,N}, we have

Bi =
N∑

l=0

plv
i
l Wl.

Proof We have

N∑

l=0

plv
i
l Wl =

N∑

l=0

plv
i
l

(
N∑

j=0

v
j
l Bj

)
=

N∑

j=0

Bj

(
N∑

l=0

plv
i
l v

j
l

)

=
N∑

j=0

BjE
(
XiXj

) =
N∑

j=0

Bjδij = Bi.

This ends the proof. �

Lemma 4.4 For all l, k ∈ {0,1, . . . ,N}, we have

Uk
l =

N∑

i=0

piv
k
i v

l
iWi.
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Proof Recall that we have

Uk
l =

N∑

j=0

T kl
j Bj

and

vl
iv

k
i =

N∑

j=0

T kl
j v

j
i . (4)

By using Lemma 4.3 and relation (4), we get

Uk
l =

N∑

i,j=0

piT
kl
j v

j
i Wi =

N∑

i=0

piWi

(
N∑

j=0

T kl
j v

j
i

)
=

N∑

i=0

piv
k
i v

l
iWi.

�

As a corollary of the two above lemmas, we prove the following.

Proposition 4.5 If all the operators Wi , i ∈ {0,1, . . . ,N}, are unitary, then the op-
erator U is unitary.

Proof We have

N∑

k=0

(
Ul

k

)(
Uk

m

)∗ =
∑

i,j,k=0

pipjv
k
i v

k
j v

l
iv

m
j WiW

∗
j

=
N∑

i,k=0

p2
i

(
vk
i

)2
vl
iv

m
i I +

N∑

i,j,k=0,i 
=j

pipj v
k
i v

k
j v

l
iv

m
j WiW

∗
j

=
N∑

i=0

pi

(
pi

(‖vi‖2 + 1
))

vl
iv

m
i I

+
N∑

i,j=0,i 
=j

pipj

(
N∑

k=0

vk
i v

k
j

)
vl
iv

m
j WiW

∗
j

=
N∑

i=0

pi

(
pi

(‖vi‖2 + 1
))

vl
iv

m
i I

+
N∑

i,j=0,i 
=j

pipj

(〈vi, vj 〉 + 1
)
vl
iv

m
j WiW

∗
j .
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But recall that, by Proposition 3.1, we have pi(‖vi‖2 + 1) = 1 and 〈vi, vj 〉 = −1 for
all i 
= j . Therefore we get

N∑

k=0

(
Ul

k

)(
Uk

m

)∗ = E
(
XlXm

)
I = δmlI.

We have proved the unitary character of U . �

Altogether, we have proved the following result, which resumes all the results
obtained above.

Theorem 4.6 Let X be an obtuse random walk in R
N with values v0, . . . , vN , with

probabilities p0, . . . , pN , and with associated 3-tensor T . Let (Xp)
p∈N

be its associ-
ated obtuse random walk. Then the repeated quantum interaction evolution equation

Vn+1 =
N∑

i,j=0

Ui
jVna

i
j (n + 1)

takes the form

Vn+1 =
N∑

k=0

BkVnX
k
n+1

if and only if there exists unitary operators Wi , i ∈ {0, . . . ,N}, on H0 such that the
coefficients Ui

j of U are of the form

Uk
l =

N∑

i=0

piv
k
i v

l
iWi.

In that case, the coefficients Bk above are given by

Bk =
N∑

l=0

plv
k
l Wl.

When the conditions above are satisfied, the evolution equation

Vn+1 =
N∑

k=0

BkVnX
k
n+1

is, when seen in the space T Φ(X), an operator-valued evolution equation driven by
a random walk. It is natural to wonder what kind of stochastic process it gives rise to.

Theorem 4.7 As a random sequence in U(H0), the solution of the equation

Vn+1 =
N∑

k=0

BkVnX
k
n+1
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is a homogeneous Markov chain on U(N) (actually a standard random walk), de-
scribed as follows: V0 = I almost surely, and Vn+1 takes one of the values WiVn,
i ∈ {0,1, . . . ,N}, with respective probabilities pi , independently of Vn.

Proof Assume Vn is given, depending on the random variables X1, . . . ,Xn only.
Then the random variable Xn+1 is independent, and Xi

n+1 = vi
l with probability pl .

Therefore, with probability pl we get

Vn+1 =
N∑

i=0

Biv
i
l Vn = WlVn.

This proves the result. �

5 The Case N = 1

In order to illustrate the results of the previous section, we detail here the situation in
the case N = 1.

Consider the set Ω = {0,1}N equipped with the σ -field F generated by finite
cylinders. We denote by νn the coordinate mappings for all n ∈ N, that is, νn(ω) =
ω(n).

For p ∈]0,1[ and q = 1 − p, we define the probability measure μp on (Ω, F )

which makes (νn)n∈N to be a sequence of independent identically distributed
Bernoulli random variables with law pδ1 + qδ0. We denote by Ep the expectation
with respect to μp .

Define the random variables

Xn = νn − p√
pq

.

They satisfy Ep[Xn] = 0 and Ep[X2
n] = 1; hence they are obtuse random variables

in R. They take the two values v0 = √
q/p and v1 = −√

p/q with respective proba-
bilities p and q .

The 3-tensor T associated to X is easy to determine. Indeed, one can easily check
the following multiplication formula.

Proposition 5.1 We have

X2
n = 1 + cpXn,

where cp = q−p√
pq

.

This means that the 3-tensor in this context, which is a constant, is T = cp .
In this context also, note that the space T Φ(X) is the space L2(Ω, F ,μp),

whereas the space T Φ is
⊗

i∈N
C

2. As an application of Theorem 3.4, the opera-
tor of multiplication by Xn on T Φ(X) is represented on T Φ as

M
p
Xn

= a0
1(n) + a1

0(n) + cpa1
1(n).
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Here we are, we have put all the corresponding notation. We can apply Theo-
rem 4.6 to this particular case.

Theorem 5.2 Consider the obtuse random walk (Xn)n∈N on R, as described above.
Then the repeated quantum interaction evolution equation

Vn+1 =
N∑

i,j=0

Ui
jVna

i
j (n + 1)

takes the form

Vn+1 = B0Vn + B1VnXn+1

if and only if there exist 2 unitary operators W0 and W1 on H0 such that

U =
(

pW0 + qW1
√

pq(W0 − W1)√
pq(W0 − W1) qW0 + pW1

)
. (5)

In that case, the coefficients Bi above are given by

B0 = U0
0 , B1 = U0

1 = U1
0 .

The random sequence (Vn)n∈N is defined by V0 = I and

Vn+1 =
{
W0Vn with probability p,

W1Vn with probability q.

6 Some Physical Examples

We end up this article with a few physical examples in order to illustrate our re-
sults. For simplicity, we stick to the case N = 1, that is, we are dealing with two-
dimensional pieces of environment.

For a total Hamiltonian between the small system HS and one piece H of the
environment, we are considering typical Hamiltonians of the form

Htot = HS ⊗ I + I ⊗ H +
∑

i

(
Vi ⊗ a0

i + V ∗
i ⊗ ai

0

) +
∑

i,j

Di,j ⊗ ai
j ,

where D∗
i,j = Dj,i .

In our two-dimensional setup we consider a Hamiltonian of the form

Htot = HS ⊗ I + V ⊗ a0
1 + V ∗ ⊗ a1

0 + D ⊗ a1
1 .

Let p ∈ (0,1) and put cp = (q − p)/
√

pq; then in the case

V = V ∗, D = cpV,
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the Hamiltonian is the block-matrix
(

HS V

V HS + cpV

)
.

If furthermore we assume that HS and V commute, then, by an easy computation, we
get

U = e−ihHtot =
(

pW0 + qW1
√

pq(W0 − W1)√
pq(W0 − W1) qW0 + pW1

)

with

W0 = e
−ih(HS+

√
q
p

V )
and W1 = e

−ih(HS−
√

p
q
V )

.

That is to say, U is of the form (5). The repeated interaction dynamics associated
to this Hamiltonian are driven by a classical sequence of Bernoulli random variables
with parameter p. In particular the repeated interaction unitary operators Vn follow a
Bernoulli random walk on U(2) with jumps W0 and W1 as described above.

In other words, let (εn)n∈N∗ be a sequence of independent identically distributed
Bernoulli random variables taking the values

√
q/p with probability p and −√

p/q

with probability q = 1 − p. Let Xn = ∑n
k=1 εk be the associated random walk. Then

Vn = e−ih(nHS+XnV ).

In more general situations, for example, when HS does not commute with V , the
computations are in general very difficult to handle, at least explicitly. One case can
be computed with great generality; it is the case of small time interactions, that is, for
h very small. Assume, for example, that we have a total Hamiltonian of the form

Htot = HS ⊗ I + 1√
h

(
V ⊗ a0

1 + V ⊗ a1
0

)

with V = V ∗.
Note that Htot depends on h too. Indeed, when considering the limit h → 0, that

is, passing from repeated interactions to continuous interactions, we have to reinforce
the strength of the interactions between the two systems. This is achieved by renor-
malizing the field operators a1

0 and a0
1 by a factor 1/

√
h. For a complete discussion

on this limit and renormalization, see [5].
The following discussion is written in a “nonrigorous” style, but all the arguments

below can be easily justified (same reference).
Up to terms which are all o(h), we then have

U = e−ihHtot =
(

I − ihHS − 1
2hV 2 −i

√
hV

−i
√

hV I − ihHS − 1
2hV 2

)
.

Putting

W0 = I − ihHS − 1

2
hV 2 − i

√
hV and W1 = I − ihHS − 1

2
hV 2 + i

√
hV,

 Author's personal copy 



J Theor Probab (2010) 23: 345–361 361

we see that U is under the form (5) for a symmetric Bernoulli random walk (i.e.,
p = 1/2). Note that W0 and W1 here are unitary up to o(h) again, that is, W ∗

i Wi =
I + o(h).

Let (εn) be a sequence of independent symmetric Bernoulli random variables;
then the sequence (Vn) of unitary operators implementing the repeated interactions
associated to the above Hamiltonian is given by

Vn =
n∏

k=1

(
I − ihHS − 1

2
hV 2 + i

√
hεkV

)

or else, by the evolution equation

Vn+1 − Vn =
(

−iHS − 1

2
V 2

)
hVn + i

√
hV Vnεn+1,

which, in the continuous limit h → 0 converges to a Schrödinger equation perturbed
by a Brownian motion term

dVt =
(

−iHS − 1

2
V 2

)
Vt dt + iV Vt dWt .

References

1. Attal, S.: Quantum noises. In: Quantum Open Systems. Vol II: The Markovian approach. Lecture
Notes in Mathematics, vol. 1881, pp. 79–148. Springer, Berlin (2006)

2. Attal, S., Emery, M.: Equations de structure pour des martingales vectorielles. In: Séminaire de Prob-
abilités XXVIII. Lecture Notes in Mathematics, vol. 1583, pp. 256–278. Springer, Berlin (1994)

3. Attal, S., Joye, A.: Weak coupling and continuous limits for repeated quantum interactions. J. Stat.
Phys. 126, 1241–1283 (2007)

4. Attal, S., Joye, A.: The Langevin equation for a quantum heat bath. J. Funct. Anal. 247, 253–288
(2007)

5. Attal, S., Pautrat, Y.: From repeated to continuous quantum interactions. Ann. Henri Poincaré, Phys.
Théor. 7, 59–104 (2006)

6. Bruneau, L., Pillet, C.-A.: Thermal relaxation of a QED cavity. J. Stat. Phys. 134(5–6), 1071–1095
(2009)

7. Bruneau, L., Joye, A., Merkli, M.: Asymptotics of repeated interaction quantum systems. J. Funct.
Anal. 239, 310–344 (2006)

8. Bruneau, L., Joye, A., Merkli, M.: Infinite products of random matrices and repeated interaction dy-
namics. Ann. Inst. Henri Poincaré Probab. Stat. (to appear)

9. Haroche, S., Nogues, G., Rauschenbeutel, A., Osnaghi, S., Brune, M., Raimond, J.M.: Seeing a single
photon without destroying it. Nature 400, 239–242 (1999)

10. Karevski, D., Platini, T.: Quantum non-equilibrium steady states induced by repeated interactions.
Phys. Rev. Lett. (to appear)

11. Pellegrini, C.: Existence, uniqueness and approximation of stochastic Schrödinger equations: the dif-
fusive case. Ann. Probab. 36(6), 2332–2353 (2008)

 Author's personal copy 


	Repeated Quantum Interactions and Unitary Random Walks
	Abstract
	Introduction
	Repeated Quantum Interactions
	The Physical Model
	The Mathematical Setup

	Classical Random Walks
	Obtuse Random Walks in RN
	More General Random Variables
	Connecting with the Discrete Quantum Noises

	Random Walks on U(H0)
	The Case N=1
	Some Physical Examples
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /PTB <>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <>
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice


