
ODIN AD: a framework supporting the life-cycle
of time series anomaly detection applications

Niccolò Zangrando[0000−0002−4796−5649], Piero Fraternali[00000−0002−6945−2625],
Rocio Nahime Torres[0000−0003−2865−0278], Marco Petri[0000−0001−5368−9196],

Nicolò Oreste Pinciroli Vago[0000−0001−7906−4987], and Sergio
Herrera[0000−0002−8903−0622]

Department of Electronics, Information, and Bioengineering, Politecnico di Milano,
20133 Milan, Italy

{niccolo.zangrando, piero.fraternali, rocionahime.torres,
nicolooreste.pinciroli, sergioluis.herrera}@polimi.it,

marco.petri@mail.polimi.it

Abstract. Anomaly detection (AD) in numerical temporal data series
is a prominent task in many domains, including the analysis of indus-
trial equipment operation, the processing of IoT data streams, and the
monitoring of appliance energy consumption. The life-cycle of an AD
application with a Machine Learning (ML) approach requires data col-
lection and preparation, algorithm design and selection, training, and
evaluation. All these activities contain repetitive tasks which could be
supported by tools. This paper describes ODIN AD, a framework assist-
ing the life-cycle of AD applications in the phases of data preparation,
prediction performance evaluation, and error diagnosis.

Keywords: Time series · Anomaly detection · Data annotation · Model
evaluation · Evaluation metrics.

1 Introduction

With the advent of IoT architectures, the analysis of numerical temporal data
series is being increasingly applied in such industries as manufacturing and con-
struction, in which machines, appliances, and whole systems are equipped with
sensors producing timestamped numerical data streams. Applications include
anomaly detection (AD) [5] whose primary focus is to find anomalies in the op-
eration of working equipment at early stages to alert and avoid breakdowns. AD
is also at the core of predictive maintenance (PdM) [29], which aims at optimiz-
ing the trade-off between run-to-failure and periodic maintenance, improving the
Remaining Useful Life (RUL) of machines, and avoiding unplanned downtime.
The development of an AD solution follows the typical life-cycle of a data-driven
application, illustrated in Figure 1. Such a workflow differs from that of a tra-
ditional software system because it relies on predefined parametric algorithms
that must be fit to the specific task and data at hand [7].



2 N. Zangrando et al.

PREPARATION  

Task
definition

Data
collection

Data
preparation

TUNING  

Model
development/

selection

Model

training Evaluation Model

refinement


MAINTENANCE  

Model
deployment


Model
maintenance


Fig. 1: Life-cycle of a data-driven application

The workflow illustrated in Figure 1 contains many repetitive tasks. In the
preparation stage, the collected data must be annotated with ground truth la-
bels (GT) for training and evaluation purposes. They could also be enriched with
additional domain- or task-dependent meta-data, which could be exploited for
performance diagnosis purposes [11]. In the tuning stage, the quality of an algo-
rithm is assessed by computing general and task-specific prediction performance
metrics. When multiple candidate algorithms are available, their performances
must be compared head-to-head on the same data set. Their generalization capa-
bility must be checked too, by testing a model trained on the data from a specific
source with the data of another distinct source of the same type. Model refine-
ment also entails diagnosing the causes of prediction failures, which may require
the categorization of errors into general and task-specific types, the attribution
of errors to particular characteristics of the input data, and the quantification of
the impact that a certain error type has on the prediction performance metrics.

All these activities are amenable to support by computerized tools. An ideal
development environment should enable the data scientist to load multiple data
sets and annotate each one with GT labels or with other meta-data, pick the
selected algorithms from a library and execute them, and obtain per-algorithm
and also comparative performances reports. In the refinement phase, it should be
possible to break down the performance metrics based on user-defined criteria,
classify errors with user-defined criteria, and assess the impact of the various
types of errors on each metrics.



ODIN AD, a framework for Anomaly Detection Diagnosis 3

This paper presents ODIN AD, a framework supporting the development
of AD applications on numerical uni- and multi-variate data series. ODIN AD
offers the following features:

– Data ingestion. Temporal data series can be imported with CSV files. Ex-
isting meta-data can be imported too, in CSV format.

– Data annotation. If needed, a data set can be enriched with GT labels and
custom meta-data, with a dedicated annotator GUI.

– Algorithm selection and execution. ODIN AD does not support model design
and execution but lets the user import the predictions made with any algo-
rithm into the workspace. One or more prediction CSV files can be loaded
in the same analysis session.

– Model/algorithm evaluation under multiple configurations. The user can de-
fine the configuration of an evaluation session, by choosing the anomaly
definition and matching strategy to use and the metrics to compute. ODIN
AD implements 5 anomaly definition strategies, 4 anomaly to GT match-
ing strategies, 9 performance metrics and 4 performance curves off-the-shelf.
The users can plug in their own strategies and metrics.

– Error diagnosis. Prediction errors can be categorized with user-defined cri-
teria and the impact of a specific type of error on the performance metrics
can be quantified.

– Model/algorithm performance visualization and reporting. Prediction per-
formance metrics can be displayed in a visualization GUI and embedded in
a performance evaluation report.

– Performance comparison. The visualization and the reporting functions can
be applied to a single algorithm or to multiple ones. In the latter case, the
head-to-head comparison of the selected algorithms on all the chosen metrics
is provided.

ODIN AD is algorithm-agnostic and designed to be extensible. Its architec-
ture allows the integration of other input/output data formats, AD definition
strategies, performance metrics, and visualization widgets.

2 Related work

Statistical and ML algorithms are applied to temporal data series for such appli-
cations as forecasting [19], anomaly detection [3, 27] and predictive maintenance
[33]. The computer-based aid to AD application development mostly focuses on
the evaluation phase. Benchmark data sets, such as SKAB [16] and NAB Bench-
mark [18], annotate data with GT labels and implement common evaluation
metrics such as F1 score, NAB score, false alarm rate, and miss alarm rate.

Contributions such as [2, 10, 34] extend the support beyond the use of the
basic performance measures in the evaluation phase. The work [2] generalizes
the metrics provided by AD benchmarks by introducing the concept of Preced-
ing Window ROC, which extends the popular ROC diagram to the case of time



4 N. Zangrando et al.

series. Also, the evaluation process is adapted to better fit the needs of AD algo-
rithm assessment, e.g., by rewarding early anomaly detection. The Darts library
[10] assists time series analysis in general. It implements multiple models, from
ARIMA to Deep Neural Networks (DNNs). It supports uni- and multi-variate
series, meta-learning on multiple series, training on large datasets, model ensem-
bles, and probabilistic forecasting. The library is designed for usability, achieved
by wrapping the underlying functions under a simple and uniform Python inter-
face. The RELOAD tool [34] aids the ingestion of data, the selection of the most
informative features, the execution of multiple AD algorithms, the evaluation
of alternative anomaly identification strategies, the computation of performance
metrics, and the visualization of results in a GUI. RELOAD implements multiple
metrics and algorithms off-the-shelf and has an extensible architecture. However,
it does not support yet the breakdown of performance metrics by user-defined
criteria and the characterization of errors.

The PySAD tool [32] supports AD application development on streaming
data. It comprises pre-processors for data normalization and enables the exe-
cution of AD models and of model ensembles. It also features post-processors
to transform model scores for learning purposes. Its evaluator module includes
multiple AD metrics (e.g., precision, recall, and window score) and a wrap-
per to adapt Sklearn metrics so as to allow extensibility. Other tools, such as
TagAnomaly [23], Curve [1] or TRAINSET [13], focus mainly on the data prepa-
ration step. They let developers annotate anomalies but do not offer the possi-
bility to add meta-data to them. The Wearables Development Toolkit (WDK)
[9] is a framework for the analysis of time series produced by wearable and IoT
devices. It supports the annotation, the analysis, and the visualization of time
series and the performance assessment of activity recognition algorithms.

In the specific field of intrusion detection, the work [22] describes CyberVTI,
a client-server tool for AD in network time series. CyberVTI incorporates multi-
ple state-of-the-art unsupervised algorithms and helps the analyst inspect their
performances with different parameters. It supports the phases of data ingestion,
data preparation, in which the imported data are validated, feature engineering,
in which the features are selected, extracted, and normalized, and processing, in
which the AD algorithms are executed.

All the mentioned tools that support the evaluation step restrict performance
assessment to a few standard metrics. The use of DNNs for AD [3] is evidencing
the limits of such a basic approach. DNNs have a complex architecture which
makes their behavior hard to understand and debug. This characteristic demands
more informative approaches to error diagnosis and model refinement. One pos-
sibility is to exploit the semantic richness of time series, which are characterized
by many properties (e.g., the sampling frequency, the stationarity, and period-
icity of the series, the type and physical characteristics of the signal and of the
corresponding acquisition sensor). Such an abundance of significant input prop-
erties could be exploited to enable the breakdown of performance indicators and
to correlate the errors with specific features of the input and with user-defined
categories. The exploitation of data series semantic features, beyond those used



ODIN AD, a framework for Anomaly Detection Diagnosis 5

for training, and the characterization of errors in user-defined categories are
distinctive capabilities of ODIN AD.

3 ODIN AD

In this section we illustrate the main functionalities of ODIN AD. The running
example employed to produce the diagrams and the visualizations exploits the
time series of the REFIT data set, specifically the fridge consumption data series
of house 1 [26]. The GT labels used to compute the performance metrics have
been created by three independent annotators. The algorithms used to produce
the diagrams are GRU-autoencoder and LSTM-autoencoder [4, 20].

3.1 Data ingestion, analysis, and preparation

ODIN AD lets the user import the time series data, the GT labels, and the
semantic input annotations. The artifacts follow the formatting guidelines com-
mon to most public datasets. Temporal series are imported as CSV files with
a timestamp identifier followed by the feature values; GT data are encoded in
JSON files listing the timestamps at which anomalies occur; input properties can
be imported as CSV files with a timestamp identifier and a column per property.

When the GT labels are not available, ODIN AD lets the user define them
with the anomaly annotator GUI shown in Figure 2. An anomaly is created by
selecting a point or an interval on the time axis. Anomalies can be annotated
with user-defined meta-data, which can be inserted and/or modified with the
annotator GUI. In Figure 2 the custom annotations refer to a user-defined cat-
egorization of the anomalies. The anomaly annotations of the running example
include: Continuous OFF state, when the appliance is in the low consumption
state for a long time, Continuous ON state, when the appliance is in the con-
sumption state for an abnormally long time, Spike, when the appliance has an
abnormal consumption peak, Spike + Continuous, when the appliance has a
consumption peak followed by a prolonged ON state, Other, when the anomaly
does not follow a well-defined pattern.

Anomalies and their annotations can be deleted, updated, and exported to
a CSV file.

When the same time series is annotated by more than one user, ODIN AD
supports the analysis of the inter-annotator agreement over the anomalies and
their associated properties, with the help of the diagrams shown in Figure 3.

In addition to the manually provided properties, ODIN AD supports the
automatic extraction of properties from the data series, so as to speed up the
annotation process. The current version of ODIN AD implements some basic
property extractors: hour of the day, day of the week, month, and duration. The
user can add her own extractors to automatically compute custom and domain-
dependent properties. As an example, a custom extractor is implemented to
automatically derive the anomaly annotations shown in Figure 2. The user can
display and validate or modify the automatically extracted proposals in the



6 N. Zangrando et al.

Fig. 2: The interface of the GT anomaly annotator at work on the running exam-
ple time series. The user can specify the anomalies and add meta-data to them.
The user has annotated the currently selected GT anomaly, shown in red, with
the Continuous ON state label.

Fig. 3: Diagrams of the inter-annotation agreement: the annotator consensus
diagram (left) shows the percentage of data points that are classified in the
same way by each pair of annotators. The GT anomalies histogram plots the
number of anomalies (points or intervals) created by each annotator.

annotator GUI. In this way, the GT semantic labeling process is accelerated.
Figure 4 shows the distribution of the GT anomalies across the duration and
anomaly type properties of the time series.

The temporal data series can be pre-processed before the application of AD
algorithms. ODIN AD currently implements the following pre-processors: the
stationarity pre-processor, implemented with the Dickey-Fuller test [6], the pe-
riodicity pre-processor, implemented with the Fast Fourier Transform method
[15], and the seasonality, trend and residual decomposition pre-processor [12].
Residuals decomposition can be done with an additive model (addition of the
decomposed values restores the original times series) or with a multiplicative one



ODIN AD, a framework for Anomaly Detection Diagnosis 7

Fig. 4: ODIN AD shows the annotated anomalies in the running example time
series distributed by the automatically extracted duration property (left) and by
the manually refined anomaly type property (right).

(the original series is obtained by multiplying the decomposed values). ODIN AD
also supports data transformations. The input time series and the output pre-
dictions can be manipulated using scalers. The current version of ODIN AD
implements some predefined scalers (MinMaxScaler, StandardScaler) and can
be extended with user-defined ones.

3.2 Execution

AD algorithms are executed outside ODIN AD and their output is imported
into an analysis session. Depending on the AD approach, predictions can be
structured as follows:

– If the AD algorithms exploits classification (e.g., OneCLassSVM, LocalOut-
lierFactor, Isolation Forest), for each timestamp the prediction contains the
confidence score.

– If the AD algorithms exploit forecasting (e.g., ARIMA, LSTM) or recon-
struction (e.g., LSTMAutoencoder, GRUAutoencoder) the prediction file
can contain one value per timestamp (single-valued prediction) or multiple
values per timestamp (multi-valued prediction). The latter case is relevant
for the methods that exploit a sliding window (e.g., GRU, Autoencoder-
based), which assign a different predicted/reconstructed value to the same
data point based on the window used to compute the prediction.

3.3 Evaluation and refinement

ODIN AD supports the assessment of anomaly detectors under multiple anomaly
definitions and matching strategies and performance metrics.



8 N. Zangrando et al.

Anomaly definition strategies. An anomaly definition strategy specifies the
way in which the data points of the input time series are compared with the pre-
dicted or reconstructed points of the anomaly detector in order to infer whether
a point or an interval is anomalous. Each strategy takes in input a pair of entities
to compare (points and/or sets of points) and returns a score value s or a score
vector s interpretable as the confidence with which the prediction is considered
an anomaly. Different strategies can be adopted for the types of predictions com-
puted by the AD algorithms. The current version of ODIN AD implements the
following anomaly definition strategies:

– Absolute and Squared Error (AE/SE) [25]: computes the score s as the
absolute or squared error between the input and the predicted/reconstructed
value. It applies to single-valued predictions.

– Likelihood: each point in the time series is predicted/reconstructed l times
and associated with multiple error values. The probability distribution of the
errors made by predicting on normal data is used to compute the likelihood
of normal behavior on the test data, which is used to derive an anomaly score.
This method was introduced in [21]. It applies to single- and multi-valued
predictions.

– Mahalanobis: as in the likelihood strategy, each point in the time series
is predicted/reconstructed l times. For each point, the anomaly score s is
calculated as the square of the Mahalanobis distance between the error vector
and the Gaussian distribution fitted from the error vectors computed during
validation [20]. It applies to single-valued and to multi-valued predictions.

– Windows strategy: the strategy computes a score vector s of dimension l
associated with each point. Each element si of the score vector is the MAE
(by default) or the MSE of the i-th predicted/reconstructed window that
contains the point [17]. It applies to multi-valued predictions.

The AE, SE, Gaussian, and Mahalanobis strategies compute an anomaly
score s. A threshold τ is then applied to such a value for classifying the point
as normal or anomalous. The Windows strategy computes an array of anomaly
scores and in this case, a point is considered anomalous if each element of the
array is above the threshold.

Anomaly matching strategies. An anomaly matching strategy specifies the
way in which an identified anomaly is compared to the GT, so as to categorize
it as a true positive (TP), false positive (FP), true negative (TN), and false
negative (FN). ODIN AD implements four strategies:

– Point to point: each anomalous point is compared only to the corresponding
data series point using the GT label.

– Interval to interval: the Intersection over Union (IoU) metrics is calculated
between the GT anomaly interval and the predicted anomaly interval and a
threshold τ is applied to categorize the prediction (IoU > τ qualifies a TP).
By default, the threshold is set to 0.5, but it can be modified.



ODIN AD, a framework for Anomaly Detection Diagnosis 9

– Interval to point(s): each predicted anomalous interval is considered a TP if
it contains at least X GT anomaly points. By default, X is set to 50% of the
interval points.

– Point to interval: each predicted anomaly point is considered TP if it lies
within the boundaries of a GT anomaly interval.

Metrics ODIN AD implements the basic time series metrics and diagrams
(accuracy, precision, recall, F1 score, F0−1 score, miss alarm rate, false alarm
rate, NAB score, Matthews Coefficient, PR and ROC curves). The predefined
portfolio can be extended with additional metrics.

Analysis, reporting, and visualization. The analysis and reports include:

– Performance summary. The values of the selected metrics (standard and
custom) are organized in a comprehensive report.

– Performance per confidence threshold value. The performance metrics that
exploit a threshold on the anomaly confidence score are plotted for each
value used in their computation.

– Performance per IoU threshold value. The performance metrics that exploit
a threshold on the overlap between the prediction and the GT interval are
plotted for each value used in their computation.

– Confusion matrix. The TPs, FPs, FNs, and TNs are displayed in the usual
tabular arrangement.

– Per-property metrics break down. One or more performance metrics are dis-
aggregated by the values of a semantic property of the input. An example
is presented in Figure 5: recall metrics break down by anomaly type and
anomaly duration.

Fig. 5: Break down of the recall metrics based on the values of the anomaly type
and of the duration property. The diagram shows that the algorithm identifies
well anomalies of type spike + continuous and has more difficulty in detecting
the continuous state types. Recall is maximal for long duration anomalies, which
are rare and easier to detect.



10 N. Zangrando et al.

– FP error categorization. FP errors are grouped into classes and for each
class the performance improvement achievable if such errors were removed is
computed. Figure 6 shows an example of FP error categorization and impact
analysis predefined in ODIN AD. The user can define other categorizations
and apply the break down to any metrics.

– Anomaly duration difference and distribution. The difference of duration
between the GT and the TP anomalies and the distribution of the duration
of the GT and of all the predicted anomalies are plotted.

– Calibration analysis. The confidence histogram and the reliability diagram [8]
enable the assessment of how well the distribution of the predicted anomalies
agrees with that of the real anomalies.

Before
32.0%

Closely before

21.9%

Closely after

7.4%

After
38.7%

FP errors per category

0.00 0.02 0.04 0.06 0.08 0.10
Precision impact

Before
Closely before

Closely after
After

FP Errors Impact

1500 1200 900 600 300 0 300 600 900 1200 1500
Distance

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

Co
un

t

Before
Closely before
Closely after
After

Distribution of FP distances

Fig. 6: The FP errors per category diagram (left) shows the distribution of the
FPs across four categories. In this breakdown, FPs are grouped by position
(before/after) and distance (close/not close) w.r.t. to the closest GT anomaly
based on a distance threshold parameter. The FP errors impact diagram (right)
shows the contribution of removing each error type on the precision metrics. The
distance distribution diagram (bottom) shows the distribution of the distance
between FPs and the closest GT anomaly. The analysis shows that most FPs
are positioned after more than two hours w.r.t. the closest anomaly and that the
post-anomaly false alarms impact the precision metrics the most.

In addition to the performance reports and diagrams, an interface permits
the inspection of the data set and of the predictions, as shown in Figure 7. The
user can import a data set and the predictions of one or more AD algorithms,



ODIN AD, a framework for Anomaly Detection Diagnosis 11

Fig. 7: The user interface of the anomaly visualizer showing the point-wise pre-
dictions of one model vs. the GT intervals. A scrollable window lets the user
browse the time series. GT interval anomalies are highlighted as colored rectan-
gles and the predicted anomalous points as dots. Adjusting the threshold value
used by the anomaly definition strategy updates the diagram.

select the feature to display, in the case of multi-variate data series, and scroll
the timeline to inspect the anomalies. The visualization can be configured by
setting the slice of the time series to show, the number of points per slice and
the granularity of the timeline. The default granularity is equal to the sampling
frequency of the data set but can be adjusted by aggregating the data points.
The user can also set the threshold value used by the anomaly definition strategy.

Model comparison. ODIN AD also supports the comparison of the result of
multiple models applied to the same data set. The comparative diagrams can
contrast the anomalies detected by the different models and the values of the
performance metrics. Figure 8 shows the comparative performance diagram and
anomaly visualization.

3.4 ODIN AD architecture

ODIN AD is open-source1 and implemented in Python. The annotator and the
visualizer are Jupyter Notebook applications.

Figure 9 illustrates the structure of the classes. The five main modules are:
(1) DatasetAD, responsible for loading the dataset and pre-processing/analyzing
1 https://github.com/rnt-pmi/odin



12 N. Zangrando et al.

Fig. 8: The user interface of the anomaly visualizer for jointly assessing the results
of multiple algorithms: head-to-head display of performance metrics (left) and
comparison of identified anomalies (right).

it; (2) AnalyzerAD, for computing the performance metrics and diagrams based
on the imported prediction files; (3) AnnotatorAD, for creating/editing GT and
meta-data annotations; (4) ComparatorAD, for contrasting different models on
the same dataset; (5) VisualizerAD for displaying the input time series and the
predictions. Other modules permit the customization of the data set pre/post-
processing (Scaler, PropertiesExtractor) and of the types of analysis (Anomaly-
DefinitionStrategy, AnomalyMatchingStrategy, CustomMetrics, ErrorCategory).

AnalyzerTS

Analyzer AD

DatasetTS

Dataset AD

VisualizerTS

Visualizer AD

AnomalyMatchingStrategy(*)

PointToPoint PointToInterval

IntervalToIntervalIntervalToPoint

Annotator AD

CustomMetric(*)

Interface

Implementation

AnomalyDefinitionStrategy(*)

Mahalanobis

GaussianWindow

AE

SE

ScalerTS(*)

StandardScaler MinMaxScaler

PropertiesExtractor(*)

WeekDayAnomalyDuration
ComparatorAD

ErrorCategories(*)

AnomalyType

Fig. 9: Simplified class diagram of the architecture of ODIN AD. The components
marked with (*) denote the entry points for the extension of ODIN AD.



ODIN AD, a framework for Anomaly Detection Diagnosis 13

3.5 Extending ODIN AD

ODIN AD is publicly available and the code repository contains a test suite
that facilitates extension and bug checking. The “plug&play” architecture en-
ables the customization of the anomaly definition and matching strategies, of
the performance metrics, of the pre- and post-data processors, and of the prop-
erty extractors. Next, we illustrate some examples of how the extension works.

Listing 1 shows how to add a custom anomaly definition strategy. The listing
imports the necessary interface (line 1), defines a CustomAnomalyDefinition
class implementing such interface (line 3), and codes the two required functions.
The get_anomaly_score function computes the anomaly scores (line 5) and the
check_prediction_format function verifies that the anomaly definition strat-
egy works with the proper prediction formats, single or multi-valued (line 8).

Listing 1: Addition of a custom anomaly definition strategy

1 from TOOL.classes.TimeSeries import AnomalyDefinitionStrategy
2

3 class CustomAnomalyDefinition(AnomalyDefinitionStrategy):
4

5 def get_anomaly_scores(self, gt, predictions):
6 # returns the anomaly score for the input time series
7

8 def check_prediction_format(self, predictions):
9 # returns a Boolean indicating if the predictions have the valid

type for the strategy↪→

Listing 2 shows an example of custom metrics. It declares a new class that im-
plements the CustomMetricTS interface (line 3), with the method evaluate_metric
that actually computes the measure (line 4) given the GT, the predicted anoma-
lies and the matching strategy. An instance of the new metrics is instantiated
(line 18) and added to the Analyzer module (line 19).

Listing 2: Custom metrics implementation

1 from TOOL.classes.TimeSeries import CustomMetricTS
2

3 class MyEvaluationMetric(CustomMetricTS):
4 def evaluate_metric(self, gt, predictions, matchingStrategy):
5 # Parameters:
6 # gt: contains the GT anomalies
7 # predictions: contains the predicted anomalies
8 # matchingStrategy: the selected by the user
9

10 # Returns:
11 # metric_value: the calculated value in the set



14 N. Zangrando et al.

12

13 #TODO: call metrics computation code using the matchingStrategy
14 metric_value = #...
15 std_deviation = # only if apply
16 return metric_value, std_deviation
17

18 my_evaluation_metric = MyEvaluationMetric("my metric name")
19 my_analyzer.add_custom_metric(my_evaluation_metric)

4 Conclusions

This paper presents ODIN AD, a framework supporting the life-cycle of AD
applications in the phases of data preparation and model evaluation and refine-
ment. Data scientists can load multiple data sets and annotate each one with GT
labels or with other meta-data, import the predictions made by the algorithms
of their choice, and obtain per-algorithm and also comparative performance re-
ports. In the refinement phase, they can break down the performance metrics
based on multiple criteria, classify errors in user-defined types, and assess the
impact of the various types of errors on each metrics. ODIN AD is open source
and designed with an architecture that eases the customization of such aspects
as the anomaly definition and matching strategy, the performance metrics, and
the pre- and post-processors.

The future work will focus on extending the support for the analysis of multi-
variate time series with algorithms that exploit forecasting and reconstruction.
This will require the design and implementation of multi-valued anomaly def-
inition strategies for multi-variate time series in which the user can select the
features and the distance function to exploit for the definition of the anomaly.
We will also improve the support for the analysis of periodic time series, by
implementing more robust approaches to the periodicity detection, such as the
one described in [28]. Finally, we aim at integrating interpretability techniques,
such as [14, 24, 30, 31], within the performance-oriented analysis functionalities
of ODIN AD.

Acknowledgements This work is supported by the project PRECEPT - A
novel decentralized edge-enabled PREsCriptivE and ProacTive framework for
increased energy efficiency and well-being in residential buildings funded by the
EU H2020 Programme, grant agreement no. 958284.

References

1. Baidu: Curve. https://github.com/baidu/Curve, [Online; accessed 16-June-2022]
2. Carrasco, J., López, D., Aguilera-Martos, I., García-Gil, D., Markova, I., García-

Barzana, M., Arias-Rodil, M., Luengo, J., Herrera, F.: Anomaly detection in predic-
tive maintenance: A new evaluation framework for temporal unsupervised anomaly
detection algorithms. Neurocomputing 462, 440–452 (2021)



ODIN AD, a framework for Anomaly Detection Diagnosis 15

3. Chalapathy, R., Chawla, S.: Deep learning for anomaly detection: A survey. arXiv
preprint arXiv:1901.03407 (2019)

4. Cho, K., Van Merriënboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk,
H., Bengio, Y.: Learning phrase representations using rnn encoder-decoder for sta-
tistical machine translation. arXiv preprint arXiv:1406.1078 (2014)

5. Choi, K., Yi, J., Park, C., Yoon, S.: Deep learning for anomaly detection in time-
series data: Review, analysis, and guidelines. IEEE Access (2021)

6. Dickey, D.A., Fuller, W.A.: Distribution of the estimators for autoregressive time
series with a unit root. Journal of the American statistical association 74(366a),
427–431 (1979)

7. Gharibi, G., Walunj, V., Nekadi, R., Marri, R., Lee, Y.: Automated end-to-end
management of the modeling lifecycle in deep learning. Empirical Software Engi-
neering 26(2), 1–33 (2021)

8. Guo, C., Pleiss, G., Sun, Y., Weinberger, K.Q.: On calibration of modern neu-
ral networks. In: International Conference on Machine Learning. pp. 1321–1330.
PMLR (2017)

9. Haladjian, J.: The Wearables Development Toolkit (WDK).
https://github.com/avenix/WDK (2019)

10. Herzen, J., Lässig, F., Piazzetta, S.G., Neuer, T., Tafti, L., Raille, G., Van Pot-
telbergh, T., Pasieka, M., Skrodzki, A., Huguenin, N., et al.: Darts: User-friendly
modern machine learning for time series. arXiv preprint arXiv:2110.03224 (2021)

11. Hoiem, D., Chodpathumwan, Y., Dai, Q.: Diagnosing error in object detectors. In:
European conference on computer vision. pp. 340–353. Springer (2012)

12. Hyndman, R.J., Athanasopoulos, G.: Forecasting: principles and practice. OTexts
(2018)

13. Inc, G.: Trainset. https://trainset.geocene.com/, [Online; accessed 17-June-2022]
14. Jacob, V., Song, F., Stiegler, A., Rad, B., Diao, Y., Tatbul, N.: Exathlon: A

benchmark for explainable anomaly detection over time series. arXiv preprint
arXiv:2010.05073 (2020)

15. Kao, J.B., Jiang, J.R.: Anomaly detection for univariate time series with statistics
and deep learning. In: 2019 IEEE Eurasia Conference on IOT, Communication and
Engineering (ECICE). pp. 404–407. IEEE (2019)

16. Katser, I.D., Kozitsin, V.O.: Skoltech anomaly bench-
mark (skab). https://www.kaggle.com/dsv/1693952 (2020).
https://doi.org/10.34740/KAGGLE/DSV/1693952

17. Keras: Keras documentation: Timeseries anomaly detection using an autoencoder.
https://keras.io/examples/timeseries/timeseries_anomaly_detection/

18. Lavin, A., Ahmad, S.: Evaluating real-time anomaly detection algorithms–the nu-
menta anomaly benchmark. In: 2015 IEEE 14th international conference on ma-
chine learning and applications (ICMLA). pp. 38–44. IEEE (2015)

19. Mahalakshmi, G., Sridevi, S., Rajaram, S.: A survey on forecasting of time series
data. In: 2016 International Conference on Computing Technologies and Intelligent
Data Engineering (ICCTIDE’16). pp. 1–8. IEEE (2016)

20. Malhotra, P., Ramakrishnan, A., Anand, G., Vig, L., Agarwal, P., Shroff, G.:
Lstm-based encoder-decoder for multi-sensor anomaly detection. arXiv preprint
arXiv:1607.00148 (2016)

21. Malhotra, P., Vig, L., Shroff, G., Agarwal, P., et al.: Long short term memory
networks for anomaly detection in time series. In: Proceedings. vol. 89, pp. 89–94
(2015)



16 N. Zangrando et al.

22. Marques, P., Dias, L., Correia, M.: Cybervti: Cyber visualization tool
for intrusion detection. In: 2021 IEEE 20th International Sympo-
sium on Network Computing and Applications (NCA). pp. 1–9 (2021).
https://doi.org/10.1109/NCA53618.2021.9685543

23. Microsoft: Tag anomaly. https://github.com/microsoft/TagAnomaly, [Online; ac-
cessed 16-June-2022]

24. Mujkanovic, F., Doskoč, V., Schirneck, M., Schäfer, P., Friedrich, T.: timexplain–a
framework for explaining the predictions of time series classifiers. arXiv preprint
arXiv:2007.07606 (2020)

25. Munir, M., Siddiqui, S.A., Dengel, A., Ahmed, S.: Deepant: A deep learning ap-
proach for unsupervised anomaly detection in time series. Ieee Access 7, 1991–2005
(2018)

26. Murray, D., Stankovic, L., Stankovic, V.: An electrical load measurements dataset
of united kingdom households from a two-year longitudinal study. Scientific data
4(1), 1–12 (2017)

27. Pang, G., Shen, C., Cao, L., Hengel, A.V.D.: Deep learning for
anomaly detection: A review. ACM Comput. Surv. 54(2) (mar 2021).
https://doi.org/10.1145/3439950, https://doi.org/10.1145/3439950

28. Puech, T., Boussard, M., D’Amato, A., Millerand, G.: A fully automated period-
icity detection in time series. In: Lemaire, V., Malinowski, S., Bagnall, A., Bondu,
A., Guyet, T., Tavenard, R. (eds.) Advanced Analytics and Learning on Temporal
Data. pp. 43–54. Springer International Publishing, Cham (2020)

29. Ran, Y., Zhou, X., Lin, P., Wen, Y., Deng, R.: A survey of predictive maintenance:
Systems, purposes and approaches. arXiv preprint arXiv:1912.07383 (2019)

30. Rojat, T., Puget, R., Filliat, D., Del Ser, J., Gelin, R., Díaz-Rodríguez, N.: Ex-
plainable artificial intelligence (xai) on timeseries data: A survey. arXiv preprint
arXiv:2104.00950 (2021)

31. Schlegel, U., Vo, D.L., Keim, D.A., Seebacher, D.: Ts-mule: Local interpretable
model-agnostic explanations for time series forecast models. In: Joint European
Conference on Machine Learning and Knowledge Discovery in Databases. pp. 5–
14. Springer (2021)

32. Yilmaz, S.F., Kozat, S.S.: Pysad: a streaming anomaly detection framework in
python. arXiv preprint arXiv:2009.02572 (2020)

33. Zhang, W., Yang, D., Wang, H.: Data-driven methods for predictive maintenance
of industrial equipment: A survey. IEEE Systems Journal 13(3), 2213–2227 (2019).
https://doi.org/10.1109/JSYST.2019.2905565

34. Zoppi, T., Ceccarelli, A., Bondavalli, A.: Evaluation of anomaly detection algo-
rithms made easy with reload. In: 2019 IEEE 30th International Symposium on
Software Reliability Engineering (ISSRE). pp. 446–455. IEEE (2019)


