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Abstract
Millimeter wave (mmWave) communications have been introduced in the 5G standardization pro-
cess due to their attractive potential to provide a huge capacity extension to traditional sub-6 GHz
technologies. However, such high-frequency communications are characterized by harsh propagation
conditions, thus requiring base stations to be densely deployed. Integrated access and backhaul (IAB)
network architecture proposed by 3GPP is gainingmomentum as themost promising and cost-effective
solution to this need of network densification.

IAB networks’ available resources need to be carefully tuned in a complex setting, including direc-
tional transmissions, device heterogeneity, and intermittent links with different levels of availability
that quickly change over time. It is hard for traditional optimization techniques to provide alone the
best performance in these conditions. We believe that Deep Reinforcement Learning (DRL) tech-
niques, especially assisted with Long Short-Term Memory (LSTM), can implicitly capture the regu-
larities of environment dynamics and learn the best resource allocation strategy in networks affected
by obstacle blockages. In this article, we propose a DRL based framework based on the Column
Generation (CG) that shows remarkable effectiveness in addressing routing and link scheduling in
mmWawe 5G IAB networks in realistic scenarios.

1. Introduction
The 3GPP 5G standardization has introduced new

frequencies above 24 GHz for Radio Access Networks
(RANs), namely Frequency Range 2 (FR2) or millimeter-
wave (mmWave) band, as one of the main reliefs from the
global mobile traffic growth that is challenging the capac-
ity of access networks with communication technologies be-
low 6 GHz. Large bandwidths (several hundred MHz) avail-
able at those mainly-underutilized spectrum portions have
unleashed plenty of opportunities to deliver the RAN Gbps-
throughput promise.

However, this attractive advantage comes at the cost of
a harsh propagation environment characterized by very high
path losses and no propagation through obstacles, not only
vehicle and buildings but also human bodies. While direc-
tional antennas (e.g., phased arrays) canmitigate path losses,
although requiring sophisticated hardware and smart beam
steering procedures, there is very little they can do against re-
current obstacle blockages. Indeed, mmWave deployments
are typically coverage-limited, thus 5GmmWave access net-
works require closer base stations than traditional radio ac-
cess networks. This translates into high installation costs for
operators that need to connect many sites with fibers.

In order to provide a technically and economically viable
solution to the required network densification, 3GPP release
16 specifications have introduced a new multi-hop wireless
access architecture, named Integrated Access and Backhaul
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(IAB)[2]. The idea is to place simpler relay nodes, called
IAB-nodes, in the coverage area of a full-fledged mmWave
base station (BS), called IAB-donor, and form a wireless
backhaul to forward data packets between the IAB-donor
and user equipment (UE). The peculiar aspect of this archi-
tecture is the self-backhauling approach, where both radio
access and wireless backhaul links share the same radio re-
sources and interfaces. Therefore, a proper management of
the radio resource allocation is fundamental to operate this
network and it is carried out by the IAB-donor. In particular,
since the proposed media access control (MAC) solution is
based on TDMA, it involves the optimization of the routing
paths and the scheduling of directional transmissions along
established links.

Routing and scheduling in wireless multi-hop networks
have a long-standing literature focusing on optimization
techniques that consider always-available links [34, 3, 5].
However, the harsh propagation environment of mmWave
frequencies and the strong impact of the obstacles on link
availability make these approaches inadequate for mmWave
IAB networks. Indeed, the optimal performance provided in
ideal link conditions can be hindered by their unpredictable
on-off behavior, thus destroying the advantages of the op-
timization. We could in principle perform an optimization
each time the network undergoes a change. However, op-
timization algorithms are usually time consuming, which
makes this solution infeasible for real-time operations.

We believe Reinforcement Learning (RL) techniques are
the ideal solution for mmWave IAB networks due to the in-
trinsic ability of these algorithms to adapt to environment
conditions. Indeed, RL agents can be trained to play against
the environment to understand what the best strategy is, even
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when the environment’s reply is stochastic. We can perform
offline training through realistic instances of the actual en-
vironment statistics, or we can have an online training and
operating system that learns while sending packets to UEs
through IAB nodes. Once trained, the agent will be able to
play the strategy and provide the best reward in front of any
instance of the random environment.

Routing and scheduling in wireless multi-hop networks
has been traditionally considered a hard problem due to inter-
ference constraints. Solely relying on an RL approach may
lead to largely suboptimal working points. This is the rea-
son why we decided to adopt a hybrid approach, which com-
bines traditional optimization techniques and recent RL ap-
proaches to synergically provide a quasi-optimal and adap-
tive resource allocation algorithm.

In this article, we formally introduce the optimization
problem of flow routing and link scheduling in mmWave
IAB networks, jointly coordinating access and backhaul
parts to maximize throughput in a multi-hop network archi-
tecture. We solve the problem with a Column Generation
(CG)-based approach and leverage its generated variables to
populate an optimal candidate action set for the RL agent.
Based on these action sets, built of promising scheduling
options, we design a Deep Reinforcement Learning (DRL)
framework, based on Long Short-Term Memory (LSTM)
neural networks, which can overcome the static limits of the
optimization approach in dynamic environments. We place
emphasis on realistic scenarios and unreliable networks that
are vulnerable to recurrent and dynamic blockages. We pro-
pose an offline and an online training version of the ap-
proach, which we evaluate against traditional approaches via
numerical simulations. Furthermore, we discuss feasibility
issues in implementing our solution in a real system.

The rest of the paper is organized as follows. We first
discuss related works in Section 2 and point out the contri-
butions of this article, then we provide a system overview
in Section 3. In Section 4 we present the formulation of
the problem based on Column Generation, whose results are
used in Section 5, where our RL-based approach is detailed.
The results of the numerical evaluation are showcased and
discussed in Section 6. Finally, Section 7 concludes the pa-
per with some final remarks.

2. Related Work
Resource management in mmWave access networks has

been largely investigated in recent literature, taking into ac-
count the new challenges brought in by directional transmis-
sions compared with the conventional omnidirectionality as-
sumption of works on sub-6GHz networks. Several papers
have investigated the optimization of bandwidth allocation
[6, 18, 27], power allocation [6, 23, 30, 15, 16, 33, 36],
beamwidth assignment [30], frame / slots design [28, 15,
34], transmission delay [8, 24, 12].

Among all these works, it draws remarkable attention
that a large part of them dedicates to the traffic routing and
transmission scheduling problem. Authors in [25] investi-

gate on the performance of different distributed greedy hop-
by-hop path selection to the core network. The work in [12]
proposes a routing scheme using multiple overlapping span-
ning trees and schedules transmissions to minimize the end-
to-end delay along a subset of paths computed from the rout-
ing scheme. Authors in [31] study path selection and rate
allocation to maximize the network data rate by leveraging
Lyapunov stochastic optimization.

Some works on routing and scheduling take into ac-
count the status of links (i.e., line-of-sight (LOS) and non-
LOS (NLOS)). The work in [9] performs a slot-by-slot link
scheduling to maximize the instantaneous throughput con-
sidering the blockage probability in the current slot de-
scribed according to a discrete-time Markov chain. Authors
in [8] present a joint dynamic routing and scheduling policy
based on proportional flow delays. Every packet requires a
multi-hop path to reach its destination, which is selected on
the base of the current network conditions. [11] performs
routing and scheduling to improve the end-to-end through-
put in the wireless backhaul, targeting at urban environments
and utilizing 3D models of buildings as primary blockage
sources. [22] maximizes the number of protected flows in
a wireless backhaul by selecting relay nodes to bypass the
blockages when they occur.

Recent years have also seen a widespread utilization of
machine learning techniques, such as reinforcement learn-
ing, in mmWave wireless networks. The work in [13] pro-
poses spectrum allocation algorithms based on Double Deep
Q-network (DQN) and Actor Critic for IAB networks. [24]
proposes a semi-distributed multi-armed bandit learning al-
gorithm to minimize the end-to-end latency in backhaul net-
works, which is proven to be adaptive to load imbalance,
channel variations and link failures. Authors in [31] resort
to regret RL to perform route selection and tackle the prob-
lem of rate allocation by successive convex approximation
method. The work in [30] maximizes data rate by control-
ling transmitter beamwidth and power by using risk-sensitive
RL, while authors in [7] present a DQN based approach
to assign backhaul resources to users with blockages. Fi-
nally, there have been some successful cases of combina-
tion of DRL and LSTM to perform resource management in
wireless networks [14, 21] as we do in this article. These
works show the good performance of RL methods on dy-
namic problems with different targets in various network
scenarios. However, none of them aims to deal with rout-
ing and link scheduling problem in mmWave IAB networks
and with the dynamics caused by link blockages.

Despite the significant results that have been achieved
in literature, the efforts made in dealing with the dynamic
blockage scenario characterizing IAB networks are far from
being enough. Some of the existing works assume static
blockages for specific propagation scenarios [6] or those
caused by urban buildings [11], while others assume simple
dynamic blockages [9, 22]. Indeed, these works either use
steady state distribution of the link status to compute an ex-
pected metric, which cannot capture frame-by-frame or slot-
by-slot actual link conditions [9], or make decisions based
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on the current blockage situation [22], which only aims to
maximize the instantaneous throughput of the current time
slot, without considering the impact on future time slots.
2.1. Our contribution

Differently from existing works, this article aims to
tackle the problem of joint routing and scheduling in
mmWave IAB networks, with an emphasis on dealing with
dynamic blockages described by a realistic blockage model
in rapidly changing environments. Extending our previous
work [35] that considers a simplified blockage model relying
on a Bernoulli process, we have completely redesigned the
neural network (NN) framework to deal with the temporal
correlation of the measure-based blockage model developed
in [19]. The main contributions of this article are summa-
rized as follows.

• Wepropose a hybrid approachwhere optimization and
RL techniques jointly contribute to provide an opti-
mal and adaptive solution to the complicated problem
of routing and link scheduling in mmWave IAB net-
works.

• We consider a very realistic scenario, and specifically
design an approach tailored to it, in which random
blockages remarkably impact on the resource alloca-
tion in mmWave IAB networks.

• We provide a CG-based formulation of the problem
that can be used both as a reference benchmark for
optimality and as a support for our DRL framework.

• We develop a DRL framework based on LSTM to
capture the regularity of environment dynamics so as
to better adapt to the changing conditions. Its per-
formance advantages with respect to traditional opti-
mization approaches clearly emerge from a numerical
evaluation.

• We address implementation and feasibility issues of
the proposed DRL framework.

• We implement both offline and online DRL ap-
proaches to discuss strengths and weaknesses of an
online NN parameters’ update rather than only an ini-
tial offline NN training.

3. System Overview
In this article, we consider a mmWave 5G access net-

work featuring an IAB architecture. It consists of a multi-
hopmmWavewireless networkwith a gNodeB (IAB-donor),
which is directly connected to the core network via a high ca-
pacity link (i.e., fiber), a set of self-backhauled IAB-nodes
that act as relay nodes for the user traffic to / from the
IAB-donor, and user equipment (UE) that can reach IAB-
donor either via direct links or through multi-hop IAB-node
paths. The backhaul links between IAB-donor and IAB-
node, or IAB-node and IAB-node, and the access links be-
tween IAB-donor and UEs, or IAB-nodes and UEs, are wire-
less and share the same frequency bands (i.e., in-band back-

IAB-donor
IAB-node

UE
Backhaul link
Access link

Pattern 1
Pattern 2
Pattern 3
Pattern 4
Pattern 5

Figure 1: A toy example of IAB network scenario and five
patterns constructed by access and backhaul links.

haul), i.e., they interfere with each other. Moreover, we con-
sider here a static 5G Enhanced Mobile Broadband (eMBB)
use case (like domestic broadband access, high-throughput
gates, digital kiosks, etc.) where UEs can be assumed to be
static nodes. This is expected to be the first application of
mmWave IAB networks.

We focus on the downlink traffic flow as it is expected to
play themost important role in such networks, leaving the in-
vestigation on the uplink transmission to a future work. The
main performance figures we will analyze are the average
UE throughput, in terms of number of data bits transferred
from the IAB-donor to UEs, and the service coverage, which
we express as the percentage of UEs in the service area ex-
perimenting a non-null throughput.

The network can be represented as a directed graph
( ,), where  denotes the index set of nodes including
IAB-donor, IAB-nodes and UEs, and  includes all the po-
tential links connecting the nodes in  . If not specified,
IAB-donor is deemed as a special IAB-node. Hence, the
node set  is divided into two subsets, namely, IAB-node
set  ⊂  and UE set  ⊂  . Without loss of general-
ity, IAB-donor is regarded as the 0-th IAB-node and the re-
maining subset of IAB-nodes is represented via their indices
sub = 1, 2,… , || − 1.

MmWave 5G access networks are based on a time-
division multiplexing / time-division multiple access (TDM
/ TDMA) resource sharingwhere each frame involves T ∈ ℕ
slots with equal duration � in a time domain  . IAB-nodes
transmit in these slots achieving a rate that depends on the
signal-to-interference-plus-noise ratio (SINR) available at
receivers, thus an interference coordination approach must
be adopted not only to activate a sequence of backhaul links
to transport traffic through IAB-nodes, but also to schedule
access links in the same frame backhaul links are scheduled.
In accordance with this premise, IAB networks implement
a space-division multiplexing (SDM) approach on top of
TDM / TDMA to take advantage of the high directivity of
mmWave antennas, allowing multiple concurrent transmis-
sions in each slot. This results in a frame composed of a slot-
by-slot sequence of sets of links simultaneously activated,
i.e., a sequence of link patterns, that satisfy channel con-
ditions (e.g., interference requirements, antenna patterns),
half-duplex constraints, multi-beam features, power limits,
etc. We will describe them in detail in Section 4. Figure 1
depicts an example of a network scenario with five possible
link patterns. Note that a link pattern can include both access
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and backhaul links. The optimal sequence of activated link
patterns allows to maximize the number of data bits trans-
ferred from the IAB-donor to UEs, which is equivalent to
maximize the downlink throughput of the IAB network.

Frequent obstacle obstructions strongly characterize
mmWave links, therefore a dynamic and realistic blockage
model has been introduced into our system. When a link is
blocked by an obstacle, no data can be transferred. How-
ever, IAB-nodes are expected to be installed at relatively
high places (e.g., lamp posts, roof tops, etc.) to improve vis-
ibility and avoid tampering, therefore we can expect few ob-
stacles to exist there, hence it is less likely for backhaul links
to be blocked. In contrast, access links are exposed to more
recurrent blockages caused by nomadic obstacles, like those
produced by pedestrian and transportation traffic. Based on
this observation, we realistically apply blockages only to ac-
cess links1. In particular, we adopt the measurement-based
signal fading model analyzed in [19], which characterizes
various blockages caused by pedestrian crowds in New York
to provide a stochastic blocked duration of a link. A binary
semi-Markov link-blockage model is proposed in that work
where the blocked duration of each access link follows a log-
normal distribution. Motivated by the Poisson nature of ob-
stacle blockage events, the non-blocked (available) duration
of a link follows a negative exponential distribution. The
considered probability density functions are shown in (1)
where � and � are respectively mean and standard deviation
of the blocked-link time duration and � is the obstacle block-
age event arrival rate. To coordinate with a time-slotted sys-
tem, the time spans of both blocked and not-blocked phases
(tB and tNB) are rounded up and expressed in number of slots.

f (tB) =
1

tB�
√

2�
e−(ln tB−�)

2∕2�2

f (tNB) = �e−�tNB

(1)

Resource allocation in wireless networks has been tra-
ditionally carried out via optimization-based approaches,
which can provide optimal solutions in quasi-static scenar-
ios. When facing the dynamic environment of mmWave ac-
cess networks (e.g., frequent topology changes due to recur-
ring link blockages), it is infeasible to resort to optimization
methods to compute a near-optimal scheduling scheme on-
the-fly, due to their time-consuming algorithms. To tackle
the complicated blockage scenario described above, RL can
be the ideal solution to capture the intrinsic regularities of
the dynamic environment and learn how to provide a ro-
bust network schedule well performing in realistic scenarios.
However, RL can get stuck into local optima. Therefore, we
present next our hybrid approach that joins together advan-
tages of both optimization and RL techniques.

Although indirectly, we believe our approach can play a
part in improving the network energy efficiency. Indeed, (1)
the generation of optimized link patterns to transfer a large

1Note that this is not a limitation of our scenario, but rather an effort to
make it more realistic. Indeed, backhaul link blockages can be straightfor-
wardly included in the approach if the specific use case needs it.

Table 1
Summary of notations in Section 4.1

ParameterDefinition

 ,  Set of nodes and set of potential links
,  Set of IAB-nodes and set of UEs
 , R Pattern set and restricted pattern set
CG Set of patterns obtained from CG pricing
T , � Number of slots in a frame and the length of a slot
BeBH(i,j) Amount of bits delivered over backhaul link (i, j) in pattern e
BeACC(i,u) Amount of bits delivered over access link (i, u) in pattern e
�min Minimum data rate required for each user
Cdonor Capacity value used to assign IAB-donor role in IAB-nodes

Variable Definition

�e Number of slots in which pattern e is activated
fBHi,j,k Flow bits from i to j directed to k (i, j, k ∈ )
fACCi,u Flow bits from i ∈  to UE u ∈ 
fBHCN,r,ℎ Flow bits from core to IAB-donor r directed to ℎ ∈ 

number of bits in each slot requires to reduce the impact of
interference, thus to minimize the transmission power for ev-
ery established link; (2) the ability of our RL approach to
learn of potentially obstructed links allows not to waste en-
ergy on transmitting data that will not be correctly decoded
at the receiver due to the blockage.

4. Optimization Approach to Resource
Allocation
From an optimization standpoint, the problem of max-

imizing the performance of a mmWave IAB network can
be reduced to a variant of the traditional problem of re-
source optimization in wireless multi-hop networks [5], in
which flow routing and link scheduling are jointly optimized
while ensuring fairness among UEs and meeting mmWave-
specific physical requirements, such as half-duplex, simul-
taneous multiple beams, directional interference, and trans-
mission power limitations.
4.1. Pattern-based Formulation

Link-based decision variables are usually considered
in optimization problem formulations, often leading to in-
tractable mathematical programs that can be solved in rea-
sonable time only for instances of very limited size. To over-
come this limitation, a different set of decision variables can
be defined. The idea of link patterns introduced in Section 3
can be leveraged and decision variables can be set to rep-
resent those compatible sets of links that can be simulta-
neously activated meeting both hardware specifications and
SINR requirements. We denote with  the set of all the po-
tential patterns, and associate an integer decision variable �eto each pattern e ∈  . The value of �e denotes the number
of slots in which pattern e is activated. Considering that only
one pattern can be activated per time slot, the overall num-
ber of times all patterns are activated provides the number
of occupied slots. Resorting to pattern-based decision vari-
ables also has the advantage to allow to separate the routing
and scheduling problem from the link coexistence problem
originated from physical constraints. Indeed, routing and
scheduling needs only to be fed up with feasible patterns,
regardless the assumptions and the procedures patterns are
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generated with.
We define flow variable fBHi,j,k as the total number of bits

in a frame of the flow from IAB-node i to IAB-node j di-
rected to IAB-node k (hence fBHi,j,j denotes the flow directly
from IAB-node i to IAB-node j) and fACCi,u as the number of
bits in a frame sent over the access link between IAB-node
i and UE u. Then, the mixed-integer linear programming
(MILP) formulation for the resource allocation problem is
given by:
max

∑

r∈,u∈
fACCr,u , (2a)

s.t.
∑

r∈
fACCr,u ⩾ �minT �, ∀u ∈  , (2b)

∑

n∈∶
n≠r

fBHn,r,r + f
BH
CN,r,r =

∑

u∈
fACCr,u , ∀r ∈ , (2c)

∑

n∈∶
n≠r

fBHn,r,ℎ + f
BH
CN,r,ℎ =

∑

m∈∶
m≠r

fBHr,m,ℎ, ∀r, ℎ ∈  ∶ r ≠ ℎ,

(2d)
∑

ℎ∈
fBHCN,r,ℎ ≤

{

Cdonor r = 0
0 r ≠ 0 , ∀r ∈ , (2e)

∑

e∈
BeBH(i,j)�e ≥

∑

ℎ∈
fBHi,j,ℎ, ∀i, j ∈  ∶ i ≠ j, (2f)

∑

e∈
BeACC(i,u)�e ≥ fACCi,u , ∀i ∈ , u ∈  , (2g)

∑

e∈
�e ≤ T , (2h)

fBHCN,i,k, f
BH
i,j,k , f

ACC
i,u ∈ ℝ+, ∀i, j, k ∈ , u ∈  , (2i)

�e ∈ ℤ+, ∀e ∈  . (2j)
We refer to Table 1 for the complete list of parameters and
variables.
Routing constraints (2c)-(2e) Traffic originates from the
core network and flows to UEs via the IAB-donor and the
IAB-nodes. We denote as fBHCN,r,ℎ the core-network flow
entering IAB-donor and directed to IAB-node ℎ. A core-
network flow is allowed only at node with a non-null ca-
pacity Cdonor. If node r is an IAB-donor, namely r = 0,
fBHCN,r,ℎ > 0; otherwise, fBHCN,r,ℎ = 0. This is enforced by
constraint (2e).

Flow balance equation (2c) states that the incoming flow
to a destination IAB-node r from both the other IAB-nodes
and the core network must equalize the flow sent to all the
UEs served by r. Similarly, enforced by (2d), the incoming
flow to an intermediate IAB-node r along the path to IAB-
node ℎ must equalize to the outgoing flow directed to ℎ.
Scheduling constraints (2f)-(2h) The flows defined by
the previous set of constraints must be supported by the
scheduling of proper link patterns. The activation of link
pattern e provides a number of bits to be transmitted over
each link in the single slot given by parameters BeBH(i,j) and
BeACC(i,u) for, respectively, backhaul and access links. The

sequence of activated link patterns defines a total number of
bits in a frame transmitted along each link, and this num-
ber must be larger than or equal to the one indicated by flow
variables to obtain a consistent solution. This aspect is en-
forced by constraint (2f) for backhaul links and (2g) for ac-
cess links. Finally, constraint (2h) states that the number of
activated pattern e, each considered with the multiplicity �e,must not exceed the frame length T .
Optimization objective (2a)-(2b) Since mmWave access
networks are envisioned to provide very high throughput
to the users in the service area, we jointly optimize routing
and scheduling to maximize the total flow of bits received
by UEs in a frame, as indicated in the objective function
(2a). However, a mere throughput maximization often
leads to solutions that prioritize some well-positioned UEs,
excluding many others from the service. In order to avoid
such an undesirable behavior, we set a min-rate constraint
(2b) to guarantee fairness among users, where �min is the
minimum required data rate that each user has to achieve
and � is the slot temporal duration.
Optimally solving the pattern-based problem formula-
tion presented above requires us to provide as input the
whole set of possible patterns that can be activated. How-
ever, this set has a cardinality that increases exponentially
with the number of links, thus creating a formulation with
a huge number of variables, still making the problem
potentially intractable. In order to solve this issue, the
Column Generation (CG) technique can be applied.

In CG, only a subset of �e variables is considered at the
beginning. Denoting the formulation (2) as Master Problem
(MP), we refer to Restricted Master Problem (RMP) to indi-
cate formulation (2) with a restricted set of pattern variables
�e ∶ e ∈ R ⊂  , where R is a restricted pattern set. The
solution of the RMP provides a selection of link patterns,
namely a frame, that is optimal for RMP, but may be not for
the original MP, as only a subset of variables (patterns) is
considered. We need a procedure, namely Column Genera-
tion, to check whether the solution obtained is also optimal
for the original MP or to find out the variables (patterns) to
be included into the pattern set to further improve the solu-
tion. Every time a new objective-improving pattern is found,
it is added to the set of available patterns, and the process it-
erates until no improving pattern can be generated. At the
end of the CG process, the final obtained pattern set CGprovides a good set of candidates to solve MP. The practice
also shows CG to be of limited size with respect to the set
of all possible link patterns.

The set CG includes link patterns built considering
nodes’ hardware constraints, SINR thresholds, channel and
antenna gains, power levels, etc., under the assumption that
links are always available, thus no randomobstacle is consid-
ered. From a point of view, this is a limitation, as scheduled
patterns can incur link blockages, limiting the expected bit
transfer of the current and next slots. However, set CG in-
cludes the best mix of link activations to support the optimal
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Table 2
Summary of notations in Section 4.2

Parameter Definition

BH ,ACC Sets of backhaul and access links
BH ,ACC Sets of MCSs for backhaul and access
RBHm , RACCm Bitrates with MCS m for backhaul and access
BHm , ACCm SINR thresholds of MCS m for backhaul and access
GBBBB , GBBBA Channel gain from backhaul to backhaul and access
GBABB , GBABA Channel gain from access to backhaul and access
�IAB , �UE Noises at IAB-node and UE receiver
COV BH Coverage matrix of backhaul
COV ACC Coverage matrix of access
i Set of panels of IAB-node i
KTX
i,p Multi-beams at panel p of node i for transmission

KRX
i,p Multi-beams at panel p of node i for reception

TxP BHi,j Panel ID of node i used on backhaul link (i, j)
TxPACCi,u Panel ID of node i used on access link (i, u)
RxP BHi,j Panel ID of node j from which node i receives
PMAX
i,p Total power available at panel p of node i
PMIN
i,p Minimum activation power at panel p of node i

Variable Definition

�i,j , �i,u,  Dual variables w.r.t. constraints 2f, 2g, 2h
zBHi,j,m Whether to activate backhaul link (i, j) with MCS m
wACC
i,u,m Whether to activate access link (i, u) with MCS m

pBH , pACC Transmission power allocated to backhaul and access
bRXi Whether IAB-node i is in reception
bp−TXi,p Whether panel p of IAB-node i is in transmission
bTXi Whether at least a panel of node i is in transmission

routing and scheduling enforced by MP. Therefore, among
all possible link patterns, CG forms the most promising set
of actions that an RL agent can play to achieve a good perfor-
mance. Note that set CG depends only on hardware config-
urations and nodes locations, thus can be computed a priori
once the IAB network is deployed: it is not an output of the
RL process, but rather an input that defines its action space
and must be computed once for all.

Given the above considerations, we can use the CG ap-
proach to achieve a twofold result:

1. Solving MP using formulation (2) with the link-
pattern set CG to obtain a quasi-optimal solution of
instances of any size, whose results will be the main
benchmark to be compared against those achievable
with the RL approach we propose in this article.

2. Exploiting CG to be a link-pattern generator that cre-
ates the action space of our RL approach, in which we
will learn the best sequence of link-patterns (among
those in CG) to apply in a dynamic environment to
pursue a fair user throughput maximization as in MP.

4.2. Link Pattern Generation
The generation of new promising link patterns in the CG

approach is based on the assessment of the new pattern’s po-
tential to improve the MP’s objective function. This proce-
dure is called pricing and relies on the continuous relaxation
of the original MP that we name as lin-MP, and in particular,
on the dual variables of lin-MP.

We recall that, given a solution of a primal problem lin-
MP, if the dual variables related to such solution are fea-
sible for lin-MP’s dual problem, then the given primal so-
lution is optimal for lin-MP. Besides, each variable (con-
straint) of lin-MP is associated to a constraint (variable) of
its dual problem. Given a primal variable, if the associated

dual constraint is violated, the considered variable has a pos-
itive reduced cost and therefore can produce an improvement
in the objective function if it is added to the set of the con-
sidered variables. Indeed, this inclusion can potentially pro-
vide a positive contribution to the object of the maximiza-
tion. Therefore, the aim of the pricing procedure is to gen-
erate a new feasible pattern (a new variable) with a positive
reduced cost such that the related dual constraint is violated.
The variable associated to this pattern must then be added to
lin-MP, the pattern included in the link-pattern set, and lin-
MP solved again. Then, the generation repeats. The genera-
tion stops when the optimal solution of lin-MP is achieved,
that is, when no pattern can be built such that the related dual
constraint is violated.

Consider formulation (2). Denoting with �i,j the dual
variable related to constraint (2f), �i,u the dual variable re-
lated to constraint (2g), and  the dual variable related to
constraint (2h), the dual constraint associated to a given pat-
tern e is

∑

(i,j)∈BH
BeBH(i,j)�i,j+

∑

(i,u)∈ACC
BeACC(i,u)�i,u− ≤ 0, (3)

where BH = {(i, j) ∈  × ∶ i ≠ j} and ACC =
{(i, u) ∈  × } are the sets of wireless backhaul links and
access links, respectively. Note that we have considered only
dual variables associated to constraints where primal pattern
variable �e does appear, as this is the primal variable we need
to generate. We refer to Table 2 for the complete list of pa-
rameters and variables.

To solve the pricing problemwemust look for a new pat-
tern e. We expresswith binary variables zBHi,j,m andwACCi,u,m that
take value 1 when deciding to activate in pattern e backhaul
link (i, j) and access link (i, u) with Modulation and Coding
Scheme (MCS) m, respectively. The new pattern must sat-
isfy feasibility constraints (namely, hardware constraints and
SINR thresholds described in Section 4.2.1) and, in order to
find a new pattern that violates the dual constraint (3), we
must maximize the following quantity:

∑

(i,j)∈BH ,
m∈BH

RBHm ��i,j z
BH
i,j,m +

∑

(i,u)∈ACC ,
m∈ACC

RACCm ��i,uw
ACC
i,u,m −  , (4)

where ACC and BH are, respectively, the set of MCSs
available for access and backhaul links, andRACCm andRBHmare the bitrates achievable with the m-th MCS in the set of
those available for access and backhaul links, respectively.

The pricing guarantees that, if a solution with a positive
objective function value is found, the dual constraint is vio-
lated and the pattern must be added to the set of those avail-
able. Thus, we should add a new pattern en to  by setting
BenBH(i,j) =

∑

m∈BH

RBHm � zBHi,j,m ∀(i, j) ∈ BH , (5)

BenACC(i,u) =
∑

m∈ACC

RACCm � wACCi,u,m ∀(i, u) ∈ ACC . (6)

Vice versa, if a negative solution or no solution is found,
we can certify that no other patterns would improve the ob-
jective function value. Therefore, the CG process can stop.
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Alternatively, we can put a maximum number of CG itera-
tions to arbitrarily approximate the optimal set of patterns.

As a final step, when an optimal set of available patterns
CG has been found for lin-MP, the original problem MP
can be solved removing the continuous relaxation and con-
sidering  = CG. This final integer solution will provide a
heuristic result. Indeed, CG is not guaranteed to be optimal
for the original problem MP as the generated pattern set is
optimal just for lin-MP, the continuous relaxation, and may
not be so for the integer version. However, many works in
literature [4, 5, 17] show that results very close to the op-
timum can be achieved and a small gap can be obtained in
very short execution time. We present now the constraints
we must consider to provide a link pattern that is feasible
from a technological point of view.
4.2.1. Link pattern constraints

During the CG process, we generate admissible patterns
by considering all the technological and practical aspects
arising when we activate simultaneous links in a mmWave
IAB scenario, such as the channel model, the SINR values
required to activate specific MCSs, the availability of power
control to reduce the interference impact, half-duplex con-
straints, etc. These aspects also include how devices are en-
gineered. Details like the number of antenna panels and the
number of beams that can be simultaneously activated by the
panel in the pattern must be taken into account. The main
sets of constraints necessary to capture these aspects are de-
scribed in the following.
SINR constraints SINR constraints are fundamental to im-
plement a realistic MCS selection when a link is activated.
We define two SINR thresholds ACCm and BHm to indicate
the SINR values necessary to activate MCS m over an ac-
cess and a backhaul link, respectively. We compute received
powers using a channel gain matrix model, in which the
transmission power of node i is multiplied by the channel
gain matrix’s element (i, j) to provide the received power at
node j. Channel gain includes not only path loss but also
hardware- and antenna-related gain value. Since mmWave
transmissions are highly directional, the antenna’s pointing
direction is important for computing correct received power
and interference and must appear in channel gain matrices.

We introduce four channel gain matrices: GBBBBi→j,r→n,
GBABBi→u,r→n,GBBBAi→j,r→q andGBABAi→u,r→q . The first two matrices ex-
press the channel gains between two IAB-nodes. GBBBBi→j,r→nrepresents the channel gain between transmitter i and re-
ceiver n when i transmits to IAB-node j and n receives
from IAB-node r. The specification of nodes j and r al-
lows to properly compute channel gains, considering an-
tenna directionality and different pointing directions. Sim-
ilarly, GBABBi→u,r→n indicates the channel gain between IAB-
node i and IAB-node n when i transmits to UE u and n re-
ceives from IAB-node r. The other two matrices express
the channel gains between IAB-nodes and UEs. Specif-
ically, GBBBAi→j,r→q indicates the channel gain between IAB-
node i’s transmitter and UE q’s receiver when i transmits

Figure 2: Channel gain model. Blue and green triangles rep-
resent the transmitter and receiver IAB nodes which are con-
nected with backhaul links shown as blue arrows. Purple dots
are the UEs served with access links marked by purple arrows.
The dashed black arrows indicate the channel gains.

to IAB-node j and q receives from IAB-node r. GBABAi→u,r→qis the channel gain between IAB-node i’s transmitter and
UE q’s receiver when i transmits to UE u and q receives
from IAB-node r. Figure 2 illustrates the considered chan-
nel gain model. Channel gain matrices, together with the
assumption that transmitting nodes point their antennas to-
wards their intended receivers, allow us to provide a com-
plete description of the propagation conditions that the play-
ers of the considered scenario can meet. Note that these ma-
trices can be computed before the optimization, relying on
both statistical models and measurement campaigns. Also,
this matrix-based approach makes the model independent of
any fine technological and propagation detail, which can be
computed offline and directly included in the matrices.

Based on the above-mentioned channel gains, SINR con-
straints for backhaul links and access links can be written as
in Equation (7a), for IAB-node receivers, and Equation (7b),
for UEs. The left-hand side of each equation expresses the
power available at receivers of the link (from IAB-node i
to IAB-node j or from IAB-node i to UE u), where pBHi,j
and pACCi,u respectively refer to the transmission power from
IAB-node i to IAB-node j or to UE u. The right-hand side
includes the total interference power from other simultane-
ously active links and the noises at IAB-node and UE re-
ceiver, respectively, �IAB and �UE . SINR conditions must
be satisfied considering thresholds BHm and ACCm associated
to the MCS m. Note that theM(⋅) term derives from a Big-
M linearization technique that deactivates SINR constraints
over links that are not selected to be active with the MCS m
(or not active at all), namely zBHi,j,m = 0 and wACCi,u,m = 0.
Coverage constraints IAB-node i can transmit to UE u or
to another IAB-node j only if node i can cover u or reach
j. The coverage is evaluated by checking whether the low-
est access or backhaul MCS can be achieved over the link
activated in isolation. If such an MCS cannot be achieved,
the corresponding elements in the binary matricesCOV ACC

i,u
and COV BH

i,j are set to 0. They take value 1 otherwise. The
constraints are:
zBHi,j,m ≤ COV BH

i,j , ∀(i, j) ∈ BH , m ∈ BH , (8a)
wACCi,u,m ≤ COV ACC

i,u , ∀(i, u) ∈ ACC , m ∈ ACC . (8b)
Note that these constraints are not strictly required, as previ-
ous SINR constraints prevent out-of-coverage links from be-
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pBHi,j G
BBBB
i→j,i→j +M

(

1 − zBHi,j,m
)

≥ BHm

⎛

⎜

⎜

⎜

⎝

�IAB +
∑

ℎ,k∈∶
k≠j

pBHℎ,k G
BBBB
ℎ→k,i→j +

∑

ℎ∈,u∈
pACCℎ,u GBABB

ℎ→u,i→j

⎞

⎟

⎟

⎟

⎠

, ∀(i, j) ∈ BH , m ∈  (7a)

pACCi,u GBABA
i→u,i→u +M

(

1 −wACC
i,u,m

)

≥ ACCm

⎛

⎜

⎜

⎜

⎝

�UE +
∑

ℎ,k∈
pBHℎ,k G

BBBA
ℎ→k,i→u +

∑

ℎ∈,q∈ ∶
q≠u

pACCℎ,q GBABA
ℎ→q,i→u

⎞

⎟

⎟

⎟

⎠

, ∀(i, u) ∈ ACC , m ∈  . (7b)

ing activated. However, they remarkably speed up the solu-
tion process by efficiently cutting unfeasible solutions from
the exploration tree of the optimization solver.
Half-duplex and multiple beams constraints The most
common realization of an IAB-node consists of a set of 3
or 4 panels mounted on an node according to a triangle or
a square form factor to cover the entire node’s surrounding.
Given a node i, each panel p in the set of node’s panels, i,is equipped with a number of RF chains that allow the panel
to transmit up toKTX

i,p or to receive up toKRX
i,p simultaneous

streams (beams) to / from neighboring nodes. If at least one
link in a panel of node i is active in reception, the node i is
declared active in reception and the binary decision variable
bRXi is set to 1, as stated by constraint (9a). Due to the power
allocation constraints introduced later, we follow a slightly
different approach for transmissions. If at least one link in
panel p of node i is active in transmission, the panel is de-
clared active in transmission and the binary decision variable
bp−TXi,p is set to 1. Similarly, if at least one panel is active in
transmission, the entire node i is declared active in transmis-
sion and the binary decision variable bTXi is set to 1. This
behavior is enforced by constraints (9b) and (9c).

The binary variables allow to enforce an IAB-node to
operate in a half-duplexmode, that is, it cannot be active both
in transmission and in reception in the same slot2, as ensured
by constraint (9d). Finally, according to the current hardware
specifications, we assume that UEs can receive from at most
one IAB-node in each pattern (slot), as stated by constraint
(9e). The constraints are defined as follows:

∑

j∈,m∈∶
RxP BH

i,j =p

zBHj,i,m ≤ KRX
i,p b

RX
i , ∀i ∈ , p ∈ i, (9a)

∑

m∈,j∈∶
TxPBHi,j =p

zBHi,j,m +
∑

m∈,u∈ ∶
TxPACCi,u =p

wACCi,u,m ≤ bp−TXi,p KTX
i,p , ∀i ∈ , p ∈ i,

(9b)
bp−TXi,p ≤ bTXi , ∀i ∈ , p ∈ i, (9c)
bRXi + bTXi ≤ 1, ∀i ∈ , (9d)
∑

j∈
wACCj,u ≤ 1, ∀u ∈  , (9e)

where TxPBHi,j ∈ i and TxPACCi,u ∈ i are input parame-
2Note that this is a hardware constraint that can be easily removedwhen

the considered devices can work full-duplex by adopting cancellation tech-
niques to maintain a sufficient level of isolation between transmitting and
receiving panels.

ters that respectively provide the ID of node i’s panel to be
used for the transmission to IAB-node j and UE u, while
RxPBHi,j ∈ i defines the panel from which node i receives
node j’s transmissions. Note that these parameters can be
computed a priori as they depend on the nodes’ placement.
Power allocation constraints We assume that the power
assigned to each IAB-node beam can change at every slot to
follow SINR constraints and a per-panel power budget can
be applied on IAB nodes3. Constraints (10a) and (10b) en-
sure that no power can be allocated to a transmission if the
associated link is not activated in the pattern.

We capture a common feature of real hardware for which
the panel transmission power can be tuned only between a
minimum and maximum value. Constraint (10c) enforces
that the overall power allocated for concurrent transmissions
at the panel p of node imust not exceed the total power avail-
able at that panel, PMAX

i,p . Constraint (10d) imposes a min-
imum activation power PMIN

i,p to panel p of node i, which
must be shared among simultaneously activated links.
pBHi,j ≤ PMAX

i,T xPBHi,j

∑

m∈
zBHi,j,m, ∀(i, j) ∈ BH , (10a)

pACCi,u ≤ PMAX
i,T xPACCi,u

∑

m∈
wACCi,u,m , ∀(i, u) ∈ ACC , (10b)

∑

j∈∶
TxPBHi,j =p

pBHi,j +
∑

u∈ ∶
TxPACCi,u =p

pACCi,u ≤ PMAX
i,p , ∀i ∈ , p ∈ i, (10c)

∑

j∈∶
TxPBHi,j =p

pBHi,j +
∑

u∈ ∶
TxPACCi,u =p

pACCi,u ≥ PMIN
i,p bp−TXi,p , ∀i ∈ , p ∈ i.

(10d)

5. Adaptive Resource Allocation
In this section, the basic aspects of deep reinforcement

learning (DRL) and recurrent neural network (RNN) are in-
troduced. Subsequently, the flow routing and link schedul-
ing problem is reformulated as a buckets-pipes game. Then,
based on the patterns provided by the CG method, a DRL-
based approach is presented in detail. To adapt the DRL
model to the dynamic IAB scenario, an online framework is
presented at last and feasibility issues are discussed.

3This is a realistic assumption based on current prototype device spec-
ifications. However, other types of power budget model (like per-node or
per-beam) can be easily included in the formulation with small modifica-
tions of the power allocation constraints.
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5.1. Deep Reinforcement Learning and Recurrent
Neural Networks

Reinforcement learning (RL) is widely adopted to opti-
mize decision making and control via sequential interactions
between an agent and the environment through accumulated
experience following a trial-and-error strategy. Specifically,
at time step t, the environment is in the state St, and, condi-tional on this state, the agent selects an actionAt according tothe current policy � and then executes it in the environment.
At time step t+1, based on its reaction toAt, the environment
transits to the state St+1 with some probability and gives a
reward Rt back to the agent. The agent adjusts the policy �
so as to maximize the long-term cumulative reward, namely
the expected return E�[Gt] = E[

∑T
k=t+1 

k−t−1Rk]. T is the
terminal step in an episode, a basic sequence of interactions
between the agent and the environment, and  is a discount
factor controlling the importance of a future reward to the
current utility. This maximization can be achieved by two
categories of algorithms, namely based on value functions
and based on policy gradient.

Value-function approaches pick actions at each state in
accordance with values estimated via value functions: ei-
ther state-value functions or action-value functions. A state-
value function v�(St) = E�[Gt|St] is the expected return
from state St, following the policy �. An action-value func-tion q�(St, At) = E�[Gt|St, At] is the expected return from
state St, taking action At and following policy � afterwards.
The best policy �∗ is the strategy that instructs the agent to
take the action that leads to the largest value, thus expected
future reward, at each state. The value functions can be ex-
pressed in tabular form or being approximated as a function
of states and actions, such as linear functions, kernels or deep
neural networks (DNNs). DRL employs DNNs to approxi-
mate value functions.

Policy gradient approaches directly represent policy
as a probability function of taking an action at a given
state depending on the parameter vector �, or in other
words, �(At|St; �) = Pr{At|St; �}. Like value functions,
�(At|St; �) can also be represented by a DNNwhere � stores
the connection weights. � is updated by applying approxi-
mate gradient ascent to ∇�E[Rt], whose unbiased estimate
is ∇� log�(At|St; �)Rt. To reduce the variance, a baseline
is often subtracted from the unbiased estimate. A common
choice is to use the estimated state-value function v(St) asbaseline: ∇� log�(At|St; �)(Rt − v(St)). In this formula,
�(At|St; �) behaves as an actor, indicating to the RL agent
the action to perform, and v(St) as a critic, providing a
quality assessment of the achieved state. Both v(St; ) and
�(At|St; �) can be approximated by a NN. The actor-critic
technique derives from policy gradient methods, but incor-
porates the strengths of value functions. Since Rt is an
estimate of q(At, St), the scaling factor Rt − v(St) of thepolicy gradient can represent the advantage of taking ac-
tion At over the other actions at state St and be written as
a(At, St) = q(At, St) − v(St). This outlines the definition ofadvantage actor critic (A2C) approaches [20].

Recurrent neural networks (RNNs) have been widely ap-

IAB-donor

IAB-node

UE

Figure 3: Buckets-pipes game formulation. The blue tanks
with water stored represent IAB-donor and IAB nodes, which
are connected to UEs’ green buckets with pipes. The thick
and thin pipes are respectively the equivalents of backhaul and
access links with different capacities. A pipe can be clogged
with obstacles denoted as the lower-left red patch. The water
(data) flows shown in blue dashed lines comply with the rules
derived from Section 4.

plied to sequential data in which the time order is strongly
relevant, e.g., in natural language processing tasks or stock
market predictions. Differently from basic NNs, RNN’s out-
put at the current step depends not only on the current input
but also on a hidden state that stores the relevant informa-
tion about the data sequence history, so as to capture time-
varying dynamics. However, RNNs only perform well when
short-termmemory is required, due to the vanishing gradient
problem encountered in the back propagation process. To
address this issue, LSTM [10] network has been proposed to
allow a NN to embrace both short-term and long-term mem-
ory by introducing data processing gates (i.e., forget gate,
input gate, output gate) to regulate the flow of information
in a memory cell. LSTM networks have seen many success-
ful wireless network applications based on variable memory
length, sometimes in connection with DRL. The most rele-
vant works are discussed in Section 2.

The ability of LSTM network to deal in a compact way
with the history of a data sequence makes it the ideal candi-
date in building the NNs to approximate actor and critic in
the considered scenario. Indeed, since a realistic mmWave
link blockage behavior exhibits a strong temporal compo-
nent, considering the history of this behavior allows the RL
agent to select better link patterns to be activated in each slot.
5.2. Buckets-Pipes Game Formulation

In order to perform flow routing and link-pattern
scheduling in an RL environment, we reformulate the system
model as a game for an RL agent. IAB-donor, IAB-nodes,
and UEs are regarded as buckets that store data bits as water.
Wireless links act as pipes of different capacities connect-
ing these buckets, which are controlled by valves. The link
pattern activated in a slot corresponds to a group of pipes’
valves to be opened, letting the water flow through the pipes.
Wireless links experimenting blockage situations are equiv-
alent to temporarily clogged pipes. The game’s objective is
to maximize the total amount of water reaching UEs’ buckets
in a frame. The buckets-pipes game is illustrated in Figure 3.

Note that in comparison with the optimization approach
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described in Section 4, the optimization objective (2a) cor-
responds to the long-term expected return RL aims to max-
imize. Also, technological constraints (7), (8), (9), and (10)
are already satisfied in the sets of candidate actions (pat-
terns) available to the agent. Indeed, it is built from link
patterns generated with the CG approach. The overall flow
routing, pattern scheduling, and provided fairness depend
on which patterns the RL agent selects and how the traffic
flows through the system. The RL agent selects one link
pattern (pipes’ valves) to activate in each slot based on the
action probability given by its action policy, while the data
transmission obeys the following rules. Traffic is buffered
in queues4 at IAB-nodes, and can be transmitted only to the
reachable IAB-nodes and UEs (see coverage constraints in
(8)). The total number of bits transferred in a slot from an
IAB-node through its outgoing links is limited by the num-
ber of bits in its queue, as indicated by flow balance equa-
tions (2c) and (2d). Similarly, the maximum number of bits
each link can transmit is limited by its capacity, which is de-
termined by the activated pattern, according to constraints
(2f) and (2g). UE throughput fairness (2b) is pursued by
equally sharing the number of currently buffered data bits
transmitted along multiple links originated at each single
IAB-node, which appear in the same link pattern.
5.3. Flow Allocation and Pattern Scheduling based

on LSTM-Assisted A2C
The buckets-pipes game formulated in the previous sec-

tion forms the environment the RL agent interacts with. Note
that, according to 5G IAB specifications, the IAB-donor is
in charge of managing the entire IAB network, therefore we
can assume this RL agent to be hosted in the IAB-donor and
act as a centralized controller. One slot of the frame is equiv-
alent to one step of RL interaction.

The proposed approach resorts to k-step Advantage Ac-
tor Critic (A2C) [20] to allocate resources under different
IAB network conditions. This technique is applied to our
scenario because it can take advantage of both value-based
and policy-gradient approaches and it empirically performs
better than other similar approaches such as Asynchronous
Advantage Actor Critic (A3C) and DQN, as we found out
in our preliminary tests. A2C makes sequential action de-
cisions based on the current state of the environment, how-
ever, it is difficult to select the appropriate action for the next
slot when drastic changes can occur in networks (e.g., dy-
namic link blockages). To address this issue, LSTM network
is adopted to characterize link status variation regularities
and feed A2C with a processed state description indicating
at which point of the repeating history the environment sta-
tus currently is.

The essential elements of the RL approach (state space,
action space and reward function), the NN’s architecture,
and their training procedures are further elaborated in the
following paragraphs.

4For a fair comparison with the optimization approach in Section 4,
we assume that queue sizes do not limit the performance of the system.
However, queue limits can be easily added to the RL environments and the
agent can be trained accordingly.

5.3.1. State space, action space, and reward function
State Space The factors having an impact on the through-
put in an IAB network mainly consist in two elements:
the buffer occupation in each IAB-node (i.e., whether re-
lay nodes store enough bits to be transferred) and links sta-
tus (i.e., whether the links are unobstructed or not). As ex-
plained in Section 3, backhaul links are hardly exposed to
blockages in practice, therefore we consider in the state def-
inition only the status of access links, which, instead, can
undergo several blockages. Thus, our state vector is built
from the concatenation of two components: the vector of the
number of data bits buffered in each IAB-node (excluding
IAB-donor) and the binary vector representing the blockage
status of every access link.

The buffer-occupation vector at the end of slot t is
an (|sub|)-dimensional vector storing the number of bits
buffered at each IAB-node n, Btn, normalized to the num-
ber of bits that can be transferred in a slot over the link
with the minimum capacity of the whole network, cmin ⋅ �.This normalization allows to shrink the state space so as to
facilitate the RL agent’s exploration, thus accelerating the
convergence of the learning process. Namely, the buffer-
occupation vector at step t is defined as:

S1
t = [stn]n∈sub

,with stn =
⌊

Btn
cmin ⋅ �

⌋

, (11)

while the link-blockage vector can be written as
S2
t = [otl]l∈ACC , (12)

where the value of otl depends on the availability of link l inthe current slot t. Two assumptions about the knowledge on
the link status can be made. In a first more ideal scenario,
the status of all access links can be monitored slot-by-slot,
which we call fully-observable case, and otl is defined as:

otl =
{

1, l is unblocked,
0, l is blocked, ∀l ∈ ACC . (13)

In a second more realistic scenario, we assume that only
the status of those links appearing in the pattern selected
in the current slot t can be collected, according to whether
transmissions are successful or not. We call this scenario
partially-observable case. Based on this consideration, if
an access link is outside the pattern selected, we deem its
status as "unknown", therefore we define otl as:

otl =

⎧

⎪

⎨

⎪

⎩

1, l is unblocked, inside pattern,
0, l is blocked, inside pattern,

−1, l is outside pattern,
∀l ∈ ACC . (14)

The RL state vector is the concatenation of the two afore-
mentioned vectors: St = [S1

t , S
2
t ].

Action Space The link patterns generated in the CG ap-
proach of Section 4.2 serve as actions among which the RL
agent can select the one to perform in each slot. Each pattern
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e contains links as sub-actions and the number of bits to be
transmitted in a single slot indicated by capacities BeBH(i,j)and BeACC(i,u) for backhaul and access links, respectively.
Denoting the set of generated patterns as  , the action at
step t is At ∈  .

In each slot (step) t, the agent selects a patternAt accord-ing to the current policy �, thus the links within this pattern
are activated and enabled to transfer data. Whether or not ac-
tivated links can truly deliver bits finally depends on whether
IAB nodes have enough bits buffered and on the presence of
random obstacles obstructing the links.
Reward Function Considering this work aims to maxi-
mize the total traffic volume downloaded by UEs in a frame,
an intuitive idea is to define the immediate reward as the
total number of bits UEs receive in each slot. However,
this design strongly biases the solution towards UEs directly
connected to the IAB-donor. In such a multi-hop network
scenario, data received by UEs in a certain slot are the cu-
mulative result of the bits moved through the wireless back-
haul in previous slots, which doesn’t produce any immediate
transmission to UEs. Also, we need to normalize the reward
to improve the agent’s learning, this means normalizing the
number of transferred bits. In short, we have to provide an
answer to the following questions:

• How could we precisely evaluate the current action
based only on its immediate effect, while simultane-
ously considering the cumulative effect of previous
actions?

• How could we relate throughput to reward, and also
maintain a normalized reward?

• How could we avoid the bias on direct connections
between IAB-donor and UEs, which provide a myopic
immediate advantage?

Based on these considerations, the reward function at step t
is defined as:

Rt =
∑

(n,u)∈At∶
n∈sub,u∈

I tn,u, (15)

where I tn,u is a binary indicator of whether an access link
of IAB-node n (IAB-donor excluded) is effective at t. It as-
sumes value 1 when link (n, u) indeed delivers bits (i.e., there
are bits in the transmitter’s queue and the link is not blocked),
0 otherwise. Therefore, the immediate reward Rt counts thenumber of access links between IAB-nodes and UEs that ef-
fectively transfer data.
5.3.2. Neural Network Architecture

The neural network architecture we have designed for the
resource allocation problem in IAB networks is sketched in
Figure 4. It mainly consists of three key components: a pre-
processing network, an actor network and a critic network.

The pre-processing network transforms the state vector
representing the status of the current slot into a prediction of
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Figure 4: Neural network architecture for IAB scheduling.

the IAB network status in the next slot. Specifically, it con-
tains a fully connected layer which extracts features from the
input state vector. Then, the LSTM layer captures the regu-
larities in dynamics of IAB nodes’ queue lengths and block-
age behaviors by constantly updating its hidden state and cell
state shown as green and orange circulating flows in Figure
4. LSTM’s hidden state and cell state are updated based on
forget gate, input gate and output gate, and differently oper-
ate5. Specifically, the hidden state focuses more on recent
experience, while the cell state stores relatively long-term
memorywith the help of the forget gate to eliminate unessen-
tial memories and the input gate to filter in useful fresh infor-
mation from hidden state and new input. LSTM layer out-
puts the hidden state to the A2C network, providing a con-
cise prediction about the near-future state, which captures
the upcoming situation, even in case of sudden changes, so
as to assist A2C in selecting the appropriate action.

Actor network and critic network are both composed of
several fully connected layers to represent the policy and the
value function. The actor network adopts a Softmax output
for the action probability distribution, �(At|St), from which
the next action to be executed is sampled. The critic network
utilizes a linear output for the estimated state-value function,
v(St). As we can see in Figure 4, the actor network’s outputdimension is the cardinality of the action space, while the
critic network has only one unit for the scalar state value.
5.3.3. Training Algorithm

The NN model presented is trained with momentum-
based methods and back-propagation through time, relying
on the data collected from the interaction process involving
the state space, the action space, and the reward function
defined in Section 5.3.1. The NN parameters consist in  
for the critic network to estimate state values, � for the ac-
tor network to generate action probability and ! for the pre-
processing network.

We can identify a critic part of the framework, which
consists of the pre-processing and the critic NN, that aims
at minimizing the value loss, namely the mean squared error
between the current and the estimated state value, formally

5We omit the details of the three gates due to limited space. Please,
refer to [10] for more details.
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expressed as:
min
 ,!

Lc = (Gk(St) − v(St; ,!))2, (16)

Gk(St) =
k−1
∑

i=0
 iRt+i + kv(St+k), (17)

where the expected k-step return Gk(St) is computed at step
t + k based on k-step experience.

Considering the policy’s performance measure is the
long-term reward (critic), the goal of the actor part of the
framework (pre-processing and actor NN) is to guide the pol-
icy parameters � and ! in the direction of ∇�,!E[Gt] to de-
rive the best action policy �(St; �, !). As explained in Sec-
tion 5.1, a low-variance unbiased estimate of the policy gra-
dient can be considered: ∇�,! log�(At|St; �, !)(Gk(St) −
v(St)). Moreover, in order to promote the action exploration,
thus preventing a premature convergence to sub-optimal de-
terministic policies, the policy entropy H(�(St; �, !)) is
included in the policy error minimization, which is com-
puted as: −

∑

At
�(At|St; �, !) log�(At|St; �, !). In this

way, similarly to the value loss, the policy loss to be min-
imized is defined as:

min
�,!

La = − log�(At|St; �, !)(Gk(St) − v(St))

− �H(�(St; �, !)). (18)
Let � denote the concatenation of  , � and !, i.e., � =

[ , �, !]. The ultimate goal of the training process is to iter-
atively update � to minimize the total loss function L (19),
which is the sum of the policy loss and value loss:
L = − log�(At|St; �)(Gk(St) − v(St)) − �H(�(St; �))

+ �(Gk(St) − v(St; �))2, (19)
� =� + ∇�L. (20)

The parameter vector � updates via Equation (20).
The detailed learning procedure is described in Algo-

rithm 1, which includes flow routing and pattern schedul-
ing aspects in order to compute the state transition and the
reward. The whole training period spans Tmax steps (slots),while the NNmodel is updated every tmax steps (slots). Con-sidering the IAB network needs to undergo an initial tran-
sient period to reach a realistic steady state (i.e., stationary
buffer levels and link behaviors), we introduce a warm-up
period twarm−up.After the parameter initialization of pre-processing, ac-
tor and critic networks (Line 1), the system warms up (Line
3). During the warm-up, rewards are set to 0 to prevent a pol-
icy bias in favor of IAB-donor’s direct access transmissions.
Before each model update, the pointer to the beginning of
the train sequence tstart is updated and the gradient d� is set
to 0 (Line 5).

Data for the main iteration update of gradients and pa-
rameters (Lines 4-25) are collected in a data collection loop
in Lines 6-17. The data collection loop focuses on an experi-
ence of tmax steps (stopping if the interaction reaches a termi-
nal state). In each run of the data collection loop, the action

At is selected according to the current policy �(At|St; �, !),which is determined by the NN vectors � and ! (Line 7).
Then, the set of blocked links Lb is removed from At (Line9) to simulate the occurrence of blockages according to the
model described in Equation (1). Finally, the data transfer is
performed over unblocked links. (Lines 10-14). The num-
ber of transferred data bits from each transmitter’s buffer to
each receiver’s buffer (Lines 12-13) is limited by:

1. the overall number of bits in transmitter i’s buffer at
step t: Bti (Line 11)2. the number of bits equally assigned by the node i’s
transmitter to each of the unblocked parallel links,
(i, ⋅), in At: Bti

|{(i,⋅)}|
3. the capacity ci,j of link (i, j) that limits to ci,j ⋅ � the

bits transferred over link (i, j) within a slot.
Effective link data transfers determine the reward, which

is set to the number of IAB-nodes’ access links that can
transfer a non-null number of bits (Line 14). The next state
St+1 is updated considering buffer-occupation vector S1

t+1
and link-status vector S2

t+1, which are filled according to
Equation (11) and Equation (12) (Lines 15-16). As for the
link status, either the fully-observable case or the partial-
observable case can be selected.

After the data collection loop, the value of the expected
k-step return Gk(St) is computed. Its initial value is set in
Lines 18-19, then the gradients are computed in Lines 21-24
based on Equations (19) and (20). Finally, NN parameters’
vector � is updated in Line 25. The above operations are
repeated until the learning phase ends, after Tmax steps.This is an offline training procedure, as in most of the
DRL applications, in which a deep NN, trained in a virtual
but realistic environment, can be then used in real network
operations in a real environment. This training procedure re-
quires some computational effort, however it only needs to
be run once to set the appropriate vector �, then the trained
NN can be used, with much less effort, to properly drive the
pattern selection in real-time, usually implementedwith ded-
icated neural engine hardware.
5.4. Online Learning

Since the offline training procedure described in the pre-
vious section instructs NNs using a random environment, the
RL agent can easily deal with the intermittent link availabil-
ity according to its implicit statistic. However, if this statistic
is not fully stationary and some drastic change occurs in the
distribution of link blockage probabilities, such pre-trained
NNs can incur in a performance degradation.

To tackle drastic changes, a more attractive solution is to
perform online learning, which means that NN training and
testing are carried out in parallel. In particular, the most-
recently updated NN model interacts with the current envi-
ronment, while in the meantime, the results of these inter-
actions are collected as training data to be used in the next
NN model update. In this way, NNs can catch system dy-
namics on-the-fly and adjust NN weights to adapt to the new
environment.
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Algorithm 1 Learning Procedures on IAB Resource Allocation
Parameters: total training steps Tmax, model update inter-
val steps tmax, warm-up steps twarm−up.
1: Initialize neural network weight vector � = [ , �, !];
2: Initialize step t← 1;
3: Warm up the IAB system within twarm−up;
4: while t < Tmax do
5: tstart ← t; Get state St; Reset gradient d� ← 0;
6: while t − tstart < tmax and St is not terminal do
7: Select pattern At based on �(At|St; �, !);
8: Rt ← 0;
9: Eliminate blocked link set At ← At ⧵ Lb;
10: for (i, j) ∈ At do
11: if Bti > 0 then

12: Bti ← Bti − min{ Bti
|{(i,⋅)}| , ci,j ⋅ �};

13: Btj ← Btj + min{ Bti
|{(i,⋅)}| , ci,j ⋅ �};

14: if i ∈ sub, j ∈  then Rt ← Rt + 1;
15: Get S1

t+1, S
2
t+1 based on Eqs. (11) and (12);

16: St+1 ← [S1
t+1, S

2
t+1];17: t← t + 1;

18: if St is not terminal then G ← v(St; ,!);
19: else G ← 0;
20: i← t − 1;
21: while i ⩾ tstart do
22: G ← Ri + G;
23: Update d� ← d� + ∇�L based on Eq. (19);
24: i← i − 1;
25: Update � using d� based on Eq. (20);

Despite being a promising solution, the online training
of LSTM-based NNs presents two big challenges: 1) how to
deal with the memory incorporated in the LSTM layer when
the environment changes; 2) how such an online learning
approach can be realistically implemented in real-time.
5.4.1. Dealing with LSTM memory

The LSTM layer of our framework is in charge of detect-
ing potential regularities in the past link blockage behavior.
This is of fundamental importance in stationary conditions
to select appropriate actions, however this memory can bias
NN training after a sudden environmental change. On the
opposite, the complete removal of the LSTM layer would
negatively affect the performance as well, due to the lack of
good predictions on the network status RL agent’s actions
will have to face. Therefore, we have investigated on three
strategies in order to strike the balance between these two
opposite aspects and better adapt the online training to block-
age behaviors. Whenever a radical change happens, which
can be identified by a sharp drop in the cumulative reward,
we apply the following strategies:

• Reset-all: Reset the memory factors in the LSTM
layer (i.e., the cell state and hidden state) and all the
parameters in the whole NN.

• Reset-memory: Reset only the memory factors in the

tmax
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M0M0 M1 M1 M2 M2 M3 M3
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...
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Figure 5: Ideal simulation timeline and feasible solution in
practice.

LSTM layer (i.e., the cell state and hidden state) and
leave all the other parameters the same.

• Reset-none: Make no changes to the entire NNmodel.
In the simulation experiments, we compare the results ob-
tained with these three strategies to understand which one
performs best.
5.4.2. Dealing with implementation and feasibility

In the offline training of Algorithm 1, we select the best
actions according to the current NN model and apply them
to the IAB network in the virtual environment for tmax steps(slots) to collect a new training data batch. Then, we use this
data batch as new input for the NN whose parameters has to
be updated. The updated NN model will be used in the next
round of tmax steps to collect further data and the process
repeats until the end of the training is reached.

This approach is applicable only to an offline learning
scheme, with no training interactions with the real IAB net-
work. Indeed, a mere application of Algorithm 1 to an online
learning paradigm would require either the update time of
NN parameters to be negligible or the IAB network to pause
and wait for the NN model to be updated, which are two ap-
proaches not always possible in practice. To address this is-
sue of the online training, we propose the following scheme,
sketched in Figure 5. We refer to an ideal simulation time-
line (drawn in red) in which the data collected during a batch
of tmax interactions by using NN modelMx are processed atthe end of the batch to immediately update theNNmodel and
obtain the new modelMx+1, which will be used in the next
batch. In the practical solution (drawn in blue), we introduce
transient periods (shaded) during which the new NN param-
eters are computed and, in the meantime, the old modelMxis applied, but data are not collected. When a transient pe-
riod ends, the updated NN model Mx+1 is put to use and
a new batch of tmax interactions is collected. In doing so,
the IAB network can keep running while the model can be
trained as well.

The impact of these transient periods on the convergence
speed is limited. Indeed, the NN model update procedure
requires less than 100 ms on our general-purpose laptop.
Therefore, with the help of optimized coding and specialized
hardware, like TPUs and GPUs [32, 29], we can reasonably
assume to have an improvement of a factor 100, whichmakes
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the update procedure last less than 1 ms, namely less than 8
slots of a physical IAB frame. This is a very small time pe-
riod if compared with the data collection time tmax (in our
experimental settings, 200 ∼ 500 steps/slots, corresponding
to 25 ∼ 62.5 ms). In this sense, the online-learning training
period will not be significantly extended.

6. Experimental Results
In this section, we evaluate the performance of our

LSTM-assisted A2C-based resource allocation method
through a simulation campaign. We first describe the con-
sidered network scenario and the NN model settings. Then,
the performance of offline and online schemes is analyzed.
6.1. IAB Network Scenario

The instances we consider are the results of an internally-
developed random instance generator compliant with 3GPP
NR IAB simulation guidelines [2]. The playground consists
of a 300m × 300m square with 1 IAB-donor, 4 IAB-nodes
and 30 UEs randomly deployed. The IAB-donor is placed at
a height of 25m and is equipped with a single 24x16 panel
antenna array that can generate and process 4 simultaneous
streams. IAB-nodes are placed at a height of 6m and are
equipped with 4-panel 8x6 antenna array with elements per
panel, each able to create and process 1 stream. UEs are
equipped with omni-directional antennas and set to a height
of 1.5m. The maximum transmission power is set to 32dBm
for the IAB-donor and 23dBm for each IAB-node panel.

We consider a 3GPP NR TR 38.901 channel model [1].
IAB access and backhaul transmissions are carried out at 28
GHz with 400 MHz of bandwidth and NR Numerology #3
(120 kHz subcarrier spacing). Each frame consists of 80
slots, each of which lasts 125 �s. We consider a single MCS
for backhaul and access: 16 and 8, respectively6. MCS 16
corresponds to a SINR threshold of 5.60 dB and rate of 525.9
Mbps, while MCS 8 can achieve a rate of 121.4 Mbps with
a SINR threshold of -3.77 dB.
6.2. NN Settings

In the experiments, the sameNN settings are used in both
offline and online approaches. In particular, the NNmodel is
composed of 1 fully connected layer with 32 units, 1 LSTM
layer with 64 hidden units, 8 fully connected layers with 32
units for both actor and critic networks. The output layers of
actor and critic networks use Softmax and linear functions.

Reward’s discount factor  is set to 0.99, hence a long-
term reward is considered. Weights � for policy entropy and
� for value loss in total loss function of Equation (19) are
set to 0.01 and 0.25. Learning rate and batch size for the
learning process are 0.007 and 200, respectively. RMSProp
Optimizer is used to minimize the total loss so as to adjust
the NN parameters.

6Note that we have considered a single MCS for access and backhaul
only for sake of simplicity. Indeed, MCS selection is not in the charge of the
RL agent, whose actions are the different link patterns. MCS is implicitly
included in the definition of link patterns, which are automatically generated
in the CG procedure.

The total time for the offline training spans 1.8e6 steps,
which takes approximately 40 minutes on our Intel(R)
Xeon(R) CPU E5-2640 v4 @ 2.40GHz and 125GB RAM
machine. Since it takes some time to reach a stationary situa-
tion where IAB-nodes’ queues have enough data to be trans-
ferred, we have considered a warm-up period of 400 slots,
empirically determined, during which rewards are set to 0.
This allows us to avoid biasing the solution on IAB-donor
access transmissions, as they can provide immediate initial
reward with respect to IAB-nodes’ ones which initially have
empty queues.

The online approach is evaluated in a dynamic IAB net-
work scenario where not only a different number of links
undergo random blockages, but also blockage dynamics is
totally changed several times. In particular, the results of the
offline approach are compared with those of the online ap-
proach, demonstrating that the online training solution can
mostly outperform the offline model via automatically ad-
justing NN weights in accordance with blockage dynamics.
6.3. Offline Approach Performance Analysis

In this part, the LSTM-A2C NN models (referred to as
DRL in the following) are trained offline in scenarios char-
acterized by the same link blockage statistics as in the test-
ing scenarios to which the trained NNmodel is subsequently
applied. DRL’s performance is compared against three alter-
native resource allocation methods:

• CG-RND: where the link pattern to be activated in the
current slot is randomly chosen among those available
at the end of pricing process in CG Section 4;

• CG-OPT: where the (quasi-)optimal frame is com-
puted by using the whole CG approach, which con-
siders ideal fully-reliable links.

• Multi-Slot: a heuristic algorithm proposed in [26] to
perform link scheduling, which coordinates the link
interference to construct sets of links (similar to the
idea of link patterns in our work) that satisfy SINR
conditions. According to theMulti-Slot algorithm, we
generate patterns and then iteratively apply them in
sequential order slot by slot.

All the values are based on the average of 10 instances ran-
domly generated.

All four methods are radically different and have differ-
ent complexity levels, which are difficult to precisely com-
pare. Therefore, we resort to their average solution time on
our laptop to have an approximate idea. CG-RND solves
a sequence of integer and linear programming models and
stops when no objective function improvement can be ob-
tained. Each instance requires a different number of iter-
ations, but we have experimentally checked that the im-
provement is limited beyond the 200-th iteration. The en-
tire procedure lasts less than 1 minute. The optimization
approach of CG-OPT needs more time for the final inte-
ger solution compared with CG-RND, thus its total time in-
creases up to more than 10 minutes. Dealing with resource
allocation problems over integer resources, both CG-RND
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Table 3
Random blockage distribution settings for offline models.

Block. types Light Mid Severe
� 5.58 7.37 7.88
1∕� 5000 3500 2300

Table 4
Average per-UE data rates (Mbps).

Block. types Light Mid Severe
CG-RND 25.756 22.052 16.110
CG-OPT 38.588 26.843 17.598
DRL 36.821 28.802 21.752

and CG-OPT are NP-hard. The Multi-Slot algorithm is a
greedy polynomial algorithm with a worst-case complexity
of O(n3), where n is the number of links. It is very fast and
takes about 50 ms to provide a solution. All these methods
provide the final frame structure at the end of their execu-
tion. Our DRL approach is based on a NN formed by totally
about 1000 units in 20 layers. It needs about 40 minutes to
be trained, which is done once for all, and it takes about 1ms
to be applied to define each slot of the frame. Clearly, sim-
ple approaches have a time advantage, but their performance
has strong limitations, which we discuss later on.

Three levels of link-blockage intensities are imposed on
IAB networks. They are defined by three sets of parameters
�, �, � of the distributions in Equation (1), whose values are
shown in Table 3. We set � to 0.5 ms and adjust � to obtain
ratios of average blocked duration to average non-blocked
duration of respectively 0.06, 0.51, and 1.30. They corre-
spond to increasing blockage intensities, hence we refer to
them as light, mid and severe blockages in the rest of the ar-
ticle. Note that, since we have noticed a fast convergence of
the DRL approach, we have accelerated the blockage model
of a factor 10, for both online and offline versions, to shorten
the simulation duration.

A first result is related to the two different state spaces
described in Section 5.3.1, which consider either the status
of all access links (fully-observable) or only that of those
links activated in the currently selected pattern (partially-
observable). We performed all the experiments with both
alternatives and the results were very similar. Therefore, for
the sake of brevity, we show in this article only the ones us-
ing the partially-observable state, which refers to a more re-
alistic approach.
6.3.1. IAB Network Traffic Delivery

The performance of the four methods can be evaluated
considering the average overall traffic volume (number of
bits) delivered to all UEs in a frame, which corresponds to
the value of the objective function (2a). In Figure 6(a), the
differences among the four methods over the three block-
age levels are illustrated. In general, the total traffic vol-
ume decreases as more intense blockages are introduced into
the scenario. Multi-Slot has a remarkably low performance
because (1) the quality of its generated patterns is lower
than that of CG-RND, even if CG-RND schedules its CG-

generated patterns randomly at each slot, which implies pat-
terns must be carefully designed; (2) the path routing and
scheduling also need to be optimized in addition to pat-
terns, this is the reason why CG-OPT performs much bet-
ter, in particular under light blockage conditions; (3) adap-
tive schemes are essential for a scheduling method to be ap-
plied in dynamic networks, as shown by the comparison with
DRL; (4)Multi-Slot does not consider queue lengths of IAB-
nodes that is important to define a good pattern sequence in a
frame. Comparing CG-OPT, CG-RND and DRL, the order
of the throughput reduction is CG-OPT >DRL > CG-RND,
which is due to the fact that the CG-OPT method, working
under ideal link behavior assumptions, is more severely af-
fected by blockages. By contrast, the CG-RND method, us-
ing all patterns with the same probability, is less influenced
by blockages as the inefficiencies in the multi-hop delivery
tend to dominate over blockages, i.e., the limited number of
delivered bits is due more to the recurrent lack of bits in the
transmission buffer when a link is activated than to a block-
age that occasionally prevents the link from transmitting.

Figure 6(a) also shows a fundamental aspect of our ap-
proach: DRL delivers more bits than CG-OPT after the
blockage intensity increases over a certain level (e.g., set-
tings for mid and severe blockages). Thanks to the adapt-
ability of RL to a dynamic environment, the DRL method,
assisted by LSTM, can learn the regularities in access links’
availability during the training phase and select the ap-
propriate link-pattern sequence accordingly. The CG-OPT
method, which provides the best choices in ideal conditions,
can still perform well when light blockages make the sce-
nario quasi-ideal. However, as soon as the blockage inten-
sity impairs this ideality, its performance quickly decreases.
The effect on perceived UE throughput can also be evaluated
by the average data rates reported in Table 4.

Figure 6(b) provides an insight into how the data bits are
delivered to UEs via the IAB network. The upper translucent
bars represent the traffic volume percentage received by UEs
from IAB-nodes through multi-hops, while the lower solid
bars report the complementary volume percentage directly
received from the IAB-donor. We can see that DRL and
CG-OPTmethods can more efficiently utilize the hops of the
wireless backhaul. This efficiency is almost independent of
the blockage intensity, demonstrating that a smart resource
allocation is necessary to operate a multi-hop wireless back-
haul in any conditions. Indeed, the CG-RND and Multi-Slot
methods result in more bits directly sent by the IAB-donor,
which reduce when the blockage intensity increases only be-
cause UEs can be reached by more than one IAB-node but
only one IAB-donor, and thus, IAB-node delivery is more
robust than IAB-donor’s one. Moreover, CG-RND delivers
less bits directly from IAB-donor than Multi-Slot because
good patterns allow to better exploit the wireless backhaul.
6.3.2. UE’s Quality of Service

The cumulative distribution function (CDF) curves of
achievable UEs’ data rates are shown in Figure 6(c). Since
previous analysis has shown much worse performance of
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Figure 6: Performance of offline DRL approach considering different blockage intensities, compared with CG-RND, CG-OPT and
Multi-Slot.

Multi-Slot than that of DRL, we don’t further include Multi-
Slot in CDF curves to simplify the presentation of the results.
As can be seen from the upper right corner of the figure, un-
der three cases of different blockage densities (i.e., light, mid
and severe blockages), the maximum rates achieved by DRL
and CG-OPT are near 121.4 Mbps (the maximum achiev-
able rate of MCS 8), while CG-RND can at most reach about
60 Mbps. This means that the problem faced is not triv-
ial and only a careful link-pattern selection can allow us to
reach good performance. In addition, DRL can learn how
to provide high throughput, even in case of blockages, to
those users that are not directly affected by them. The av-
erage per-UE data rates are reported in Table 4: while in
light-blockage conditions the throughput provided by DRL
is only 4.5% less than CG-OPT, DRL outperforms CG-OPT
by more than 23% in case of severe blockages.

The values of the CDFs at the origin indicate the percent-
age of users that cannot be served. This information is better
described by Figure 6(d), which indicates the percentage of
UEs in the playground that receives a non-null throughput in
the different scenarios. The first and expected result is that
as the blockages get denser, more users are excluded from
the service. Two interesting aspects further emerge: 1) CG-
RND and Multi-Slot methods show the highest service per-
centages, because they do not tend to select the best UEs to
maximize the overall throughput, but rather to reach all UEs

with the same probability, although with a small through-
put. 2) DRL can serve more users than CG-OPT in all three
blockage situations, showing an advantage not only from a
throughput perspective but also in terms of coverage, when
the links’ availability is not close to the ideal.
6.3.3. DRL success analysis

We analyze now the reasons of the success of DRL
method with the help of Figure 7, where, for the sake of
brevity, we consider only the case of severe blockages, but
the same considerations apply to other cases as well. The
heatmaps in the top row show the number of different access
links incident to each UE (horizontal axis) scheduled in the
whole testing period of each instance (vertical axis). The
bottom row instead shows the percentage of slots in which
the indicated UE appears as a receiver of a link in the acti-
vated patterns. For each method, the order of instances’ IDs
and UEs’ IDs in every heatmap is computed according to the
descending order of slot percentage.

Comparing the three heatmaps in the top row, we can
see that CG-OPT method activates the smallest number of
different access links for each UE, as shown by its darkest
heatmap. DRL and CG-RND, instead, resort to more access
links, which increase the probability to use alternatives when
an access link is blocked. This increases the scheduling ro-
bustness. In the bottom row, the lightest heatmap shows that
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(a) DRL.
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(b) CG-RND.
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(c) CG-OPT.
Figure 7: Comparison of the three methods with severe blockages.
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(b) Total Traffic Volume - Reset-memory.
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Figure 8: Comparison among the three online schemes in Lo-Hi-Lo-blockage scenario.

the DRL’s access link diversity is obtained by selecting pat-
terns with more access links than CG-OPT and CG-RND,
this stresses again the idea that the best scheduling strategy
is to select patterns with redundant access links so that the
probability that at least one is effective is higher.
6.4. Online Model Performance Analysis

We conclude this section by testing the online training
framework, where a NNmodel is continuously trained while
being applied to an IAB network. Since the ability of our
approach to adapt to random blockages and provide high
throughput has already been shown in the previous para-
graphs, we intend to evaluate here whether the online model
keeps learning from the ongoing interactions with the IAB
network and can automatically re-adapt on-the-fly to chang-
ing dynamics. All the results presented in this section are the
averages over 10 random instances and we apply a moving
average of 0.0625s to all reported plots.

In the following tests, the blockage intensities are di-
vided into 5 levels from lightest to severest (from 1st to 5th
level, correspondingly) which is defined by the parameters
in Table 5 referring to the blockage model in Equation (1).
As in the offline case, � is still set to 0.5 ms for simplicity.
The tests are conducted in two representative scenarios:

• Lo-Hi-Lo-blockage: where the experiment begins
with the lightest (1st-level) blockage intensity and pro-
ceeds with 3rd, 5th, 4th, and 2nd-level blockage inten-
sities;

• Hi-Lo-Hi-blockage: where the experiment begins
with the severest (5th-level) blockage intensity and
proceeds with 3rd, 1st, 2nd, and 4th-level blockage
intensities.

Table 5
Distribution settings for blockage levels in the online frame-
work.

Levels 1st 2nd 3rd 4th 5th
� 5.58 6.83 7.37 7.66 7.88
1∕� 5000 4250 3500 2900 2300

The three online strategies (reset-all, reset-memory, and
reset-none) presented in Section 5.4 are tested in these two
scenarios.

In Figures 8 and 9, the results show the performance in
terms of total traffic volume delivered to UEs in a frame. The
horizontal axis indicates the timeline under the simplified,
but reasonable, as shown in Section 5.4.2, assumption of
negligible NN update time. In these figures, the blue curves
represent the performance in the testing period of the pre-
trained offline model, while the red curves describe the sys-
tem behaviors during online training. Vertical dashed lines
delimit the stages of the experiment by indicating sudden
changes of blockage intensities. Moreover, while the offline
model is pre-trained over a scenario with the same statistics
as those of the first stage, the online model starts from a ran-
dom initialization and converges to a stable performance by
the end of the first stage.

As a first observation, we can see that the more the stage
blockage intensity differs from the one of the first stage, the
higher performance advantage the online model takes over
the offline one. This confirms that faced scenarios are in-
deed different and, ideally, different NN weights would be
required. Another interesting finding is that the onlinemodel
has only a small lead over the offline model in the Lo-Hi-Lo-
blockage scenario, while in the Hi-Lo-Hi-blockage scenario,
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Figure 9: Comparison among the three online schemes in Hi-Lo-Hi-blockage scenario.

the online model largely outperforms the offline model. The
reason is that frequent blockages of the first stage of the
Hi-Lo-Hi-blockage scenario implicitly set a limit to the of-
fline model’s policy, which leaves more rooms for the online
model to improve over whenmore link opportunities become
available in the next stages.

This allows us to draw further conclusions. If we want
to use an offline-training approach, we have to pay atten-
tion to training it in an environment that is less affected
by blockages than it can potentially be when severer con-
ditions are met. However, the blockage intensity cannot
be too light, otherwise blockage countermeasures cannot be
learned. Vice versa, an online-training solution can always
perform best.

Finally, the comparison across three strategies (i.e.,
reset-all, reset-memory and reset-none) indicates that the on-
line approach can potentially perform well. Considering the
longer convergence time at each stage of the "reset-all" strat-
egy and the performance similar to the other two strategies,
we suggest to use the "reset-none" strategy as the best trade-
off between performance and complexity.

7. Conclusion
In this paper, we have proposed a CG-based DRL ap-

proach for resource allocation in mmWave 5G IAB networks
able to face realistic link blockages. The results have shown
that we can outperform the optimization approaches typ-
ically used in wireless multi-hop networks, demonstrating
that our approach can automatically adapt to environmental
changes. In addition, we have developed an online version
of our approach to increase its robustness in front of dra-
matically changing environments. Indeed, it can catch sys-
tem dynamics on-the-fly and adjust the training to adapt to
the change. We have also carried out an analysis of imple-
mentation and feasibility issues of our approach, which has
proven how it can be practically implemented just relying on
realistic hardware requirements.

Finally, we believe that our approach can be seen as one
of the examples in which traditional optimization techniques
and recent RL approaches can positively coexist and provide
remarkable advantages by synergically leveraging their re-
spective strengths.
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